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Abstract

We consider the dilation property of the modulation spaces MP-4. Let D, : f(¢t) — f(At) be the dilation
operator, and we consider the behavior of the operator norm || Dy, || pp.9 — prp.a With respect to A. Our result
determines the best order for it, and as an application, we establish the optimality of the inclusion relation
between the modulation spaces and Besov spaces, which was proved by Toft [J. Toft, Continuity proper-
ties for modulation spaces, with applications to pseudo-differential calculus, I, J. Funct. Anal. 207 (2004)
399-429].
© 2007 Elsevier Inc. All rights reserved.

Keywords: Modulation spaces; Besov spaces; Dilation; Inclusion

1. Introduction

The modulation spaces M? 9 were first introduced by Feichtinger [3,4] and generalized by
Feichtinger and Grochenig [6]. The exact definition will be given in the next section, but the
main idea is to consider the decaying property of a function with respect to the space vari-
able and the variable of its Fourier transform simultaneously. That is exactly the heart of the
matter of the time—frequency analysis which is originated in signal analysis or quantum mechan-
ics.
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Based on a similar idea, Sjostrand [15] independently introduced a symbol class which as-
sures the L2-boundedness of corresponding pseudo-differential operators. In the last decade,
the theory of the modulation spaces has been developed, and its usefulness for the theory of
pseudo-differential operators is getting realized gradually. Nowadays Sjostrand’s symbol class
is recognized as a special case of the modulation spaces, and many authors used these spaces,
as a powerful tool, to discuss the boundedness or compactness properties of pseudo-differential
operators. See, for example, Boulkhemair [1], Grochenig [11], Grochenig and Heil [12,13], and
Toft [18,19]. Consult Feichtinger [5], Grochenig [10], and Teofanov [17] for further and de-
tailed history of this research fields. Some arguments in these works have their origin in the
field of phase space analysis. See also Dimassi and Sjostrand [2] and Folland [7] for this direc-
tion.

Now we are in a situation to start showing fundamental properties of the modulation spaces, in
order to apply them to many other problems. Actually in Toft’s recent work [18], he investigated
the mapping property of convolutions, and showed Young-type results for the modulation spaces.
As an application, he showed an inclusion relation between the modulation spaces and Besov
spaces. We also mention that some extensions to weighted modulation spaces of the inclusion
can be found in Toft [19,20]. We remark that Besov spaces are used in various problems of partial
differential equations, and his result will help us to understand how they are translated into the
terminology of modulation spaces.

Among many other important properties to be shown, we focus on the dilation property of
the modulation spaces in this article. Since M%2(R") = L?(R"), we have easily || fi|ls22 =
A2 £l 422 by the change of variables ¢ — A~'t, where f;(t) = f(At) and ¢t € R". But it
is not clear how | f; ||ar.« behaves like with respect to A except for the case (p,q) = (2,2).
Our objective is to draw the complete picture of the best order of A for every pair of (p, q)
(Theorem 1.1).

We can expect various kinds of applications of this consideration. In fact, this kind of dilation
property is frequently used in the “scaling argument,” which is a popular tool to know the best
possible order of the conditions in problems of partial differential equations. Actually, in this
article, we also show the best possibility of Toft’s inclusion relation mentioned above, as a side
product of the main argument (Theorem 1.2).

In order to state our main results, we introduce several indices. For 1 < p < 0o, we denote
by p’ the conjugate exponent of p (thatis, 1/p + 1/p’ = 1). We define subsets of (1/p, 1/q) €
[0, 1] x [0, 1] in the following way:

Ii: max(1/p,1/p) < 1/q,  If: min(1/p,1/p") > 1/q,
b max(1/g, /) <1/p/, I} min(1/g,1/2) > 1/p/,
Iz3: max(1/q,1/2) < 1/p, I3 min(1/q,1/2) > 1/p.

Let us consider Fig. 1. In [18], Toft introduced the indices

vi(p, q) =max{0, 1/g —min(1/p, 1/p"},

v(p, q) :min{ov 1/q —max(1/p, l/p/)}
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Fig. 1.
Note that
0 if (1/p,1/q) € I,

vi(p.g)=1{ 1/p+1/g—1 if(1/p,1/q) €15,
—1/p+1/q if(A/p,1/q)el],

and

0 if (1/p,1/q) € I,
wip,.g)=31/p+1/q—1 it(1/p,1/q) € b,
—1/p+1/q it (1/p,1/q) € I5.

We also introduce the indices

wi(p,q)=vi(p,q)—1/p, m2(p,q) =v2(p,q) —1/p.
Then we have

—1/p if (1/p,1/q) €I,
ui(p,g)=141/g—1 if (1/p,1/q) € I,
—2/p+1/q if(1/p,1/q)el],

and

—1/p it (1/p.1/q) € I,
pa(p.q) =14 1/qg =1 it (1/p,1/q) € Iy,
=2/p+1/q it (/p,1/q) € I5.
Our first main result is on the dilation property of the modulation spaces. For a function (or

tempered distribution) f on R” and A > 0, we use the notation f;, which is defined by f;(¢) =
f(), t e R,
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Theorem 1.1. Let 1 < p, g < 0. Then the following are true:
(1) There exists a constant C > 0 such that
=IO fllygra < fullmra < CNHIPDY fllarna (1.1)

for all f € MP1(R") and A > 1. Conversely, if there exist constants C > 0 and o, § € R
such that

CTPN flimra <N fullmra < CAE\ fllmra

forall fe MPI(R") and > > 1, then o > npu1(p,q) and B < npa2(p, q).
(2) There exists a constant C > 0 such that

CIWPD| fllyra < fillmra < CAH2PD | fllarng (1.2)

forall f € MP-4(R™) and 0 < A < 1. Conversely, if there exist constants C > 0 and o, 8 € R
such that

C N flmra < fullmra < CAP\ fllmra

forall f e MP9I(R") and 0 <A <1, thena = nu(p,q) and B <nua(p, q).

Since the Gauss function ¢(r) = eI’ ” does not change its form under the Fourier transfor-
mation, the modulation norm of it can have a “good” property. In this sense, it is reasonable to
believe that the Gauss function f = ¢ attains the critical order of || f; || ;rr.¢ With respect to 1. But
it is not true because ||@, || srr.a ~ A*1/4=1D in the case A > 1 and ||¢;.||pr.a ~ A~"/P in the case
0 <A <1 (see Lemma 2.1). Theorem 1.1 says that they are not critical orders for every pair of
P.q).

It should be pointed out here that the behavior of || fi|lar.e With respect to A might de-
pend on the choice of f € MP9(R"). In fact, f(t) =D ;e e* 1y (t — k), where ¥ is an
appropriate Schwartz function, has the property | fi|laroc ~ A72"/P (0 < A < 1) in the case
1 < p <2 (Lemma 3.10), while the Gauss function has the different behavior |@y || prp.00 ~ A~/ P
(0 < A < 1) as mentioned above. On the other hand, the L”-norm never has such a property since
I fillLe = A7P|| fllLr for all f € LP(R™). That is one of great differences between the modu-
lation spaces and L?-spaces.

Our second main result is on the optimality of the inclusion relation between the modulation
spaces and Besov spaces. In [18, Theorem 3.1], Toft proved the inclusions

Brfv’?(p,q)(Rn) = MM (Rn) - B,f;g(p’q)(R”)
for 1 < p,q < oo. See also [19, Theorem 2.10] for the case of weighted modulation spaces,
and some related results can be seen in Grobner [9] and Okoudjou [14]. Toft also remarked that
the left inclusion is optimal in the case 1 < p = ¢ < 2, that is, if Bﬁ’p(R") < MP-P(R") then
s1 = nvi(p, p). The same is true for the right inclusion in the case 2 < p = ¢ < o0, that is,
if MP-P(R") — BL'P(R") then so < nva(p, p) [18, Remark 3.11]. The next theorem says that
Toft’s inclusion result is optimal in the above meaning for every pair of (p, g).
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Theorem 1.2. Let 1 < p, g < o0 and s € R. Then the following are true:

(1) If B9 (R") < MP-4(R"), then s > nvi(p, q).
2) If MP1(R") — BPI(R") and 1 < p,q < o0, then s <nva(p, q).

During the evaluation process of this paper, a preprint of the independent work by Wang and
Huang [22] was sent to the authors, where we can find a related result of Theorem 1.2.

‘We end this introduction by explaining the plan of this article. In Section 2, we give the precise
definition and basic properties of the modulation spaces and Besov spaces. In Sections 3 and 4,
we prove Theorems 1.1 and 1.2, respectively.

2. Preliminaries
We introduce the modulation spaces based on Grochenig [10]. Let S(R™) and S’(R") be the

Schwartz spaces of rapidly decreasing smooth functions and tempered distributions, respectively.
We define the Fourier transform f and the inverse Fourier transform F~! f of f € S(R") by

o) = / ENF()dy and Flf(n =

Rn

L / e f(E)dE
2" ’
@y J

Fix a function ¢ € S(R") \ {0} (called the window function). Then the short-time Fourier trans-
form V,, f of f € S'(R") with respect to ¢ is defined by

Vo f(x,8) =(f MgTvp) forx,&eR",

where Mgo(t) = e p(1), Tep(t) = o(t — x), and (-,-) is the inner product on L2(R™). We can
express it in a form of the integral

wa(x,é)=/f(l)<p(t—X)ef"5'tdt,

Rn

which has actually the meaning for an appropriate function f on R"”. We note that, for f €
S'(R"), V, f is continuous on R2" and Vo f(x, )| <CA + |x] + |EDN for some constants
C,N >0 [10, Theorem 11.2.3]. Let 1 < p, g < co. Then the modulation space M?-4(R") con-
sists of all f € S’(R™) such that

q/p 1/q
||f||Mp,q=||v¢f||Lp.q={/(/W@f(x,snpdx) ds} < o0,

R}‘I Rn

(with usual modification when p = oo or ¢ = 00). We note that MZ2(R") = LE(R") [10,
Proposition 11.3.1] and M?-9(R") is a Banach space [10, Proposition 11.3.5]. The definition of
MP-9(R") is independent of the choice of the window function ¢ € S(R") \ {0}, that is, different
window functions yield equivalent norms [10, Proposition 11.3.2].

We also introduce Besov spaces. Let 1 < p, g < 0o and s € R. Suppose that ¢g, ¢ € S(R")

satisfy suppgo C {£: €] <2}, suppe C (£: 1/2 < [§] <2} and ¢o(§) + D72, ¢(€/27) =1 for
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all§ e R". Set ¢; = ¢(-/2/) if j > 1. Then the Besov space BY*? (R") consists of all f € S'(R")
such that

00 1/q 00 l/q
If 1l gra = (sz Hf‘[gojﬁn‘zp) = (sz“fncp,- *fqup) <00,
j=0 j=0

where @; = F~!g; (with usual modification again when g = cc0). We remark that B (R")* =

Bf;’q,(R”) for 1 < p,q < oo.
Finally, we list below the lemmas which will be used in the subsequent section. In this article,
we frequently use the Gauss function ¢ () = e~ .

Lemma 2.1. (See [18, Lemma 1.8].) Let ¢ be the Gauss function. Then

“ V(ﬂ((p)t)”LPﬂ — j_[n(l/p+1/q+1)/2p—n/2pq—n/2q2n/qk—n/p(1 + )\‘2)"(1/174‘1/‘]—1)/2.

Lemma 2.1 says that [|¢; [|prr.a ~ A"17/4=D in the case A > 1 and [|@y || ppa ~ A 7/P in the
case 0 < A < 1.

Lemma 2.2. (See [10, Corollary 11.2.7].) Let f € S'(R") and ¢, ¥,y € S(R"). Then

(fip)=

/wa(X,S)Vyfp(x,g)dxdé forall p € S(R").
R2n

1
(v, ¥)

We remark that Lemma 2.2 is also found in Folland [7, Proposition 1.92].

Lemma 2.3. (See [10, Lemma 11.3.3].) Let f € S'(R") and ¢, ¥, y € S(R"). Then

|Vo f(x,8)] < (IVy £l % |Voy ) (x, &) forall x,& eR".

1
Ky, )l
Lemma 2.4. (See [10, Proposition 11.3.4, Theorem 11.3.6].) Let 1 < p,q < 0o. Then S(R") is
dense in MP9(R"™) and MP-9(R")* = M”,’q,(R”) under the duality

1 o
gt = o [ Vol .6 Vogle Brdxds
T
RZn

for f € MP4(R") and g € MV (R™).

By Lemmas 2.2 and 2.4,if 1 < p,q < oo and f € MP-4(R") then

I £l sra = sup|(f. g)m| = sup|(f. &)], (2.1)

where the supremum is taken over all g € S(R") such that ||gl[,,, .o = 1.
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Lemma 2.5. (See [3, Corollary 2.3].) Let 1 < py1, p2,q1,q2 < 00 and py,qa <o0. If T is a
linear operator such that

ITfllprrvar < Arll fllgrrar forall fe MPLI(R™)
and
ITf | pr2ar < Aol fllrrar  forall f € MP>P(R"),
then
ITflpra < CATOASN fllmva  forall f € MP9(RY),

where 1/p=(1—-6)/p1+6/p2, 1/g=10—-6)/q1 +60/q2, 0< 0 <1 and C is independent
of T.

Remark 2.6. Lemma 2.5 with the cases p = 00 or g = 00 is treated in [18, Remark 3.2], which
says that it is true under a modification.

3. The dilation property of modulation spaces

In this section, we prove Theorem 1.1 which appeared in Section 1. We remark that the left-
hand sides of inequalities in Theorem 1.1 are obtained from the right-hand sides of them.

Theorem 3.1. Let 1 < p, g < oo. Then the following are true:

(1) There exists a constant C > 0 such that
I fillagra < CAHVYPD Fllygpa forall f € MP9(R") and A > 1.
Conversely, if there exist constants C > 0 and « € R such that
| follmra < CAY|| fllmra  forall f e M”’q(R") and A > 1,

thena > nu1(p, q).
(2) There exists a constant C > 0 such that

I fullmra < CAM2PD| fllppg  forall f e MP4(R") and 0 <X < 1.
Conversely, if there exist constants C > 0 and B € R such that
I fillmra < CAPN fllpra  forall f € MP9(R") and 0 < A < 1,

then B <nua(p, q).
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Indeed, if 0 < A < 1, then the first part of Theorem 3.1(1) gives

I flmra = [ D 1/a] g < CATHIPD £ llprra

which proves the left-hand side of (1.2) in Theorem 1.1. The others in Theorem 1.1 are given by
Theorem 3.1 in a similar way. We also remark that Boulkhemair [1, Proposition 3.2] proved the
first part of Theorem 3.1(2) with (p, g) = (o0, 1).

Now we prove Theorem 3.1. We begin with the following preparing lemma which might be
well known.

Lemma 3.2. Let 1 < p, g < 00. Then there exists a constant C > 0 which only depends on the
window functions in the modulation space norms such that

n/2

I follagpa < CATMYP=VaD (14 02)Y 2| Fllprra

forall f € MP9(R") and A > 0.

Although the proof of Lemma 3.2 might be found in some literature, we provide it for reader’s
convenience. Here (and also in other situations) we may assume that the window function is given

by the Gauss function ¢(t) = eI,

Proof. Let ¢ be the Gauss function, that is, ¢(1) = e~/ 2, By a change of variable, we have

I fllagra = V()| pg = 2" M2V Fllra.
From Lemma 2.3 it follows that
[Vor £ 8| <Nl 3 (Vo £ 1 Vg, ) (x, 6).
Hence, by Young’s inequality and Lemma 2.1, we get
I fllagra < ATVP=VE DY 21V ol 11 1V f | Lra
=27 o) 2 Vi @1y | 11 1 Ve fllLpa
_ - - —1\— —2\n/2
—n/p 1/q+1)||¢”L22(jT3n/22n (A 1) "(1 + 2)n/ )IIfIIMM
- - 2
= C}’l,(p)‘- l’l(l/p l/q"l‘l)(l +)\-2)n/ ”f”M/’q
The proof is complete. O

We are now ready to prove Theorem 3.1(1) with (1/p, 1/q) € I and Theorem 3.1(2) with
(I/p.1/q) € I1.

Proof of Theorem 3.1(2) with (1/p,1/q) € I1. Let (1/p,1/q) € I1. Then us(p,q) = —1/p.
By Lemma 3.2, we have

I fllpgra SCATY7 | fllpes forall f e M™(R") and 0 <A < 1, (3.1
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where 1 < r < 00. On the other hand, since M22(R") = L*(R"), we have
I fllpze S CAT2|| fllpppa forall f e M**(R") and 0 <A < 1. (3.2)

Take | <r<ooand0< O < 1lsuchthat 1/p=(1—-6)/r+6/2and 1/g=(1—-6)/1+6/2.
Then, by interpolation (Lemma 2.5), (3.1) and (3.2) give

I fllra < €O ) £ v

forall f e MPI(R") and 0 < A < 1.Since (1 —0)/r=1/p+1/g—1and6/2=—-1/q + 1,
we get

I fillmra <CATP| fllypa  forall f e MP4(R")and 0 <A < 1. (3.3)
This is the first part of Theorem 3.1(2) with (1/p, 1/q) € I;.

We next prove the second part of Theorem 3.1(2) with (1/p, 1/q) € I1. Let (1/p,1/q) € I.
Assume that there exist constants C > 0 and 8 € R such that

I fullasgra < CAP|| Fllyra  forall f e MP4(R")and 0 < A < 1.

Let ¢ be the Gauss function. We note that the Gauss function belongs to M?-9(R"). Then, by
Lemma 2.1 and our assumption, we have

C,,,q)x_"/P < prq)\—"/p(l + AZ)"(l/p+l/q—l)/2
= [Ve(@) | g = l@rllmara < CAPll@lIpra
for all 0 < A < 1. This is possible only if 8 < —n/p. The proof is complete. O
Proof of Theorem 3.1(1) with (1/p,1/q) € I}. We recall that 11(p,q) = —1/p if (1/p,

1/q) e I{. Let (1/p,1/q) € I}. Then (1/p’, 1/q") € I1. We first consider the case p # 1. Since
1 < p, g < 00, by duality (2.1) and Theorem 3.1(2) with (1/p’, 1/q") € I, we have

Il fillmra =sup|(fo, &)| = A7 sup|(f. g11)|

<A sup L fllmraligrollypwar

<A sup | Fllwra (CO) P lgllygrar) = CL TP Fllara

for all f € MP9(R"™) and A > 1, where the supremum is taken over all g € S(R") such that
llgll e = 1. Inthe case p = 1, by Lemma 3.2, we see that

I fillagroe < CAT (I fllppr0 forall £ € MY°(R") and 1 > 1.

Hence, we obtain the first part of Theorem 3.1(1) with (1/p, 1/g) € I}.
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We consider the second part of Theorem 3.1(1) with (1/p,1/q) € I. Let (1/p,1/q) € I
and g < oo. Note that 1 < p, g < co. Assume that there exist constants C > 0 and « € R such
that

ligrllmra < CA%|Iglipra  forall g € MP4(R") and A > 1.

Then, by duality and our assumption, we have

1fllygrrar = sup| (o, &) = 27" sup|(f, g1/3)]
KA sup L fllygwr o 181/l 0120
<A sup Ll o (COTH) Ngllagra) = CAT "N f Ly
forall feM P/’q/(R") and 0 < A < 1, where the supremum is taken over all g € S(R") such
that ||g|lpre = 1. Since (1/p’, 1/q’) € I, by Theorem 3.1(2) with (1/p’,1/q") € I1, we get
—n —a < —n/p’. This implies a > —n/p.

We next consider the case ¢ = co. Let 1 < r < 0o. Assume that there exist constants C > 0
and « € R such that

I fillpree < CA® | fllpree forall f e M™®(R") and A > 1, (3.4)
where o < —n/r. Since M>2(R") = L2(R"), we have

I fall 2z < CAT2|| fllpp22 forall f € M**(R") and A > 1. (3.5)
Then, by interpolation, (3.4) and (3.5) give

C;\(ar+n)(1/p71/q)fn/p||f||MM’ if 1 <r < oo,
CAA=2/D=n/P|| |l spa, ifr =00

I follpgpa < {

forall f € MP9(R") and A > 1, where 1/p=(1—-0)/r +6/2,1/g =(1 —0)/oco + 6/2 and
0 <6 < 1. Note that (1/p, 1/q) € I] and 2 < g < oo. However, since (ar +n)(1/p —1/q) <0
if 1 <r <ooanda(l—2/g) < 0if r = oo, this contradicts Theorem 3.1(1) with (1/p, 1/q) € I}
and 2 < g < oco. Therefore, o must satisfy o« > —n/r. The proof is complete. O

Our next goal is to prove Theorem 3.1(1) with (1/p, 1/q) € Iik and Theorem 3.1(2) with
(1/p,1/q) € I>.

Lemma 3.3. Let 1 < p,q < 00 be such that (1/p,1/q) € I and 1/p > 1/q. Then there exists a
constant C > 0 such that

”f)\”Ml’*q g C}\'—H(Z/I)—l/q)(l + A-z)n(l/p_l/Z)”f”Ml’vq

forall f € MP49(R") and A > 0.



M. Sugimoto, N. Tomita / Journal of Functional Analysis 248 (2007) 79-106 89

Proof. Let 1 <r < 0o. By Lemma 3.2, we have

1 fllpnr < CAMA/7=D (1 422)"?

I 1 pgrr (3.6)

forall f € M (R") and A > 0. Then, by interpolation, (3.2), (3.5) and (3.6) give Lemma 3.3. O
The proof of the following lemma is based on that of [21, Theorem 3].

Lemma 3.4. Suppose that ¢ € S(R") is a real-valued function satisfying ¢ > C on [—1/2,1/2]"

for some constant C > 0, suppe C [—1, 1]", @) = ¢(—t) and ZkeZ” (t —k) =1 for all

t e R". Then

sup |(Mx®) * f |2 <1V fll 200 < 5" D@ N 11 sup [(Mx®) = £
keZ keZn

forall f € M>®(R"), where ® = F~ ' and My® (1) = e (1).

Proof. Let f € M>*°(R"). Since @ is a real-valued function and @ () = @ (—1) for all ¢, we
have

Vo f(x,6)] = ’/f(t)me—i@ dt
Rn

= ’/f(z)cwx—t)eif‘(x—’)dz =|(Ms®) * f(x)|. 3.7)
Rl‘l

We first prove
1/2 1/2
esssup( /|V¢f(x £)| dx) = sup ( /|V¢f(x £)| dx> . (3.8)

To prove (3.8), it is enough to show that (fR,, Vo f(x, $)|2a7x)1/2 is continuous with respect
to &. Since ess supgcpn (fR,, Ve f(x,)>dx)'/? < 0o, for each k € Z" there exists & € k/2 +
[—1/4,1/4]" such that (fg. |Ve f(x, &)|*dx)!/? < co. Then, by (3.7), we have

1 1/2
Gy et - g0 f o= | (Me, @) % £ > = ( f|v¢f(x,sk>|2dx) < 0.
Rn

Since k/2+[—1/4,1/4]" C & +[—1/2,1/2]" and (- — &) = C > 0 on & +[—1/2, 1/2]" we
see that | f|2 is integrable on k/2+[—1/4, 1/4]". The arbitrariness of k € Z" gives f € Lloc (R™).
By the Lebesgue dominated convergence theorem, we see that || (- — &) f |I;2 is continuous with
respect to £. Hence, (fR,, Ve f(x, £)>dx)'/? is continuous with respect to £. We obtain (3.8).
Then, from (3.7) and (3.8) it follows that
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1/2
sup | (M@) = f ||, < sup |(Mz®) = f||,, = sup ( /|Vq>f(x,s)|2dx)
kezn EecR” EeRn B

12
=esssup< /|V¢f(x,§)|2dx> = Vo fll12.00.

EeRn

IRH

We next prove || Vo fll12.00 < (5" @1 p1) supgegn |(Mi®@) * fll 2. Let§ = (&1,...,5,) e R".

Since

Me® =F '[p(-—&)]=F"" [w(- - s)( Yot — k))}

keZ

= Y Flet=5e(-b]= Y (Mc®)x (M),
ki —&i1<2, ki —&i1<2,
i=l1,..., n i=1 n

.....

by (3.7), we have
D |(Me®) 5 (M)  f (%)

ki~ 1<2,

=

Vo f(x,8)| = |(Me®) % f(x)| <

,,,,,

Hence, by (3.8), we get

1/2
2
Vo fll 200 = sup ( /|V¢>f(x,é)| dX>
%—ERM o

<sup D [(Mg®) % (Mi®) % f |2

n
FER™ 1 —g1<2,
i=l1,..., n

<sup D0 IMe@ | (M) % £

n
FER™ 1 —g1<2,
i=l1,..., n

<Iel (;:Zg | (Me2) *f||L2)<$s€llpn ) 1)
ki —&;1<2,
i=1,..., n

<" @p sup | (Me®) % ] 2.
Le7

The proof is complete. O

We remark that Lemma 3.2 implies

I full oo < CAT2) fllpppo forall f € M**(R") and 0 < A < 1.

This is not our desired order of A in the case (p, g) = (2, c0). But we have
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Lemma 3.5. There exists a constant C > 0 such that

| Allppzce S CAT" | fllppzo forall f € MZ‘OO(R") and 0 < X <1

Proof Let & = F~'¢g, where ¢ is as in Lemma 3.4. Suppose that f € M>>°(R"). We note that
f e L2 (R") (see the proof of Lemma 3.4). Then, by Lemma 3.4, we see that

loc
Vo (1] yyoee <5 1@1I L1 sup |(M®) % fo]|
e n
=5"1® .1 sup 2m) "o = k) fi ] 2
kez"

=C,A7"? sup Hcp()» . —k)f”Lz
kez"

= C,A "% sup || p(h - —k)( > el —z))fﬂ
kezr ez L?
Since
‘qz(xr — k)( > ot - e))f(r) <4 Y oGt — et — 0 F (1))
Lezr Lez
=4" 3 et —ke -
16 —ki /M<2/A
we have

L

LeZh

1/2
LY /|<p(,\t gt — 0 F1)] d;)

I¢; k /A|<2/A RN

.....

(
(4"(2n) Il Y ||<Mf¢>*f||iz>
(

1/2

1e; k /M<2/x

.....

172
40" ol sup (Mo oeflp) Y 1)
1€ —ki [A<2/ A,

i=1,...,n

< (Coteten( sup 15 1,2)')”

mez"

= Cull@lliLor™* sup [(My®) % £ -
meZn
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Hence, by Lemma 3.4, we get

I follpgzce < Cod™" sup (M ®)  f| ;2 < Cud ™" [ £l g0
mezr

The proof is complete. O
Lemma 3.6. Ler 1 < p < oo. Then the following are true:
(1) If p <2, then there exists a constant C > 0 such that
I fillsgra S CNSllpgoa forall f € MPH(R") and > 1.
(2) If p = 2, then there exists a constant C > 0 such that
I fllpgrs SCAT" PN fllygp - forall f € MPH(R") and 3. > 1.

Proof. We first consider the case p < 2. By Lemmas 2.2, 2.4 and 3.5, we have

Il il pg2t = sup|{ fr. &) am| = sup|(f. 8)|
=A""sup

(s 81| <A sup || f gz gyl ppzee
<SATsup | flla2a (CA/2) T gllpgzoe) = CllLf llpg

for all f € S(R") and A > 1, where the supremum is taken over all g € M 2.00(R") such that
llgll 2.0 = 1. Since S(R") is dense in M?>1(R™), this gives

I fillyzr S Clfllp2n forall f e M*'(R") and A > 1. (3.9)
On the other hand, by Lemma 3.2, we see that
I fillyrn S Clfllpynn forall fe MM (R") and A > 1. (3.10)

Hence, by interpolation, (3.9) and (3.10) give Lemma 3.6(1).
We next consider the case p > 2. By Lemma 3.2, we have

I fullpgoot < CANl fllpgoon forall £ € MO (R") and A > 1. (3.11)
Therefore, by interpolation, (3.9) and (3.11) give Lemma 3.6(2). O
Lemma 3.7. Let 1 < p < oo. Then the following are true:
(1) If p <2, then there exists a constant C > 0 such that
I fullmroe < CAT2VP| fliypoe  forall f € MP®(R") and 0 < A < 1.
(2) If p = 2, then there exists a constant C > 0 such that

I fillmpoe <SCAT" || fllmpoe  forall f € MP(R") and 0 <1 < 1.
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Proof. Let 1 < p < 2. By duality and Lemma 3.6(2), we have
Il fill s = sup|(fa, &) = 2" sup|(f, g1/2)|
<A sup | f llaaroe (CA/M) TP gy i) = CA72P || fllagroo

for all f e MP->°(R") and 0 < A < 1, where the supremum is taken over all g € S(R") such
that ||g||M,,/_1 = 1. In the case p =1, by Lemma 3.2, we have

I fll oo < CAT2 N fllppoo forall f € MM °(R") and 0 < 2 < 1.
Hence, we obtain Lemma 3.7(1). In the same way, we can prove Lemma 3.7(2). O

Lemma 3.8. Let 1 < p,q <00, (p,q) # (1,00), (00, 1) and € > 0. Set

FO ="k () in S'(R),

k0

where ¢ is the Gauss function. Then f € MP9(R") and there exists a constant C > 0 such that
I fillagra = CAM4=DF€ forall 0 < A < 1.

Proof. We first prove f € MP-9(R"). Although this fact is an immediate consequence of the dis-
cretization properties of the modulation spaces (see Feichtinger and Grochenig [6], or Grochenig
[10, Theorem 12.2.4]), here we give the proof for reader’s convenience. Since

‘ /eik'tgo(t)w(t —x)e € dr
Rn

= ‘/w(tkp(x —0{(1+1& —k*) "I — Ap)"e ER " ar
]Rn

=(1+1E=k)T" Y Cm,ﬁz/(aﬁ‘w)(t)(a’gz(p)(x — e 1€t gy
B1+B21<2n Rn

<C+1E—kP)™ Y [|9Prg]x]0P20| ).
[B1+B21<2n

we see that

| fllagra =11V fllLra

N {/( / Z'krn/q_G/eik't(p(t)gp(t_x)e—i§~tdt
R~ R

B ' k£0

<c{ /<Z|k|—"/q—€(1+|s—k|2)‘”)qu}

Rn kO

q/p 1/q
dx) dé}

1/q
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:c{ > / (Z|k|"/‘16(1+|§—k|2)")qd§}1/q

CeL 12,1/ KFO

< C{ Z (Z k| =47 (1+ | — k|2)‘”)q}l/q.

£eZn N k#£0

Since {|k|’”/‘1’€}k¢o € L9(Z"), by Young’s inequality, we have f € MP4(R").
We next consider the second part. Since ¢ € M P4 (R, by duality, we see that

I fllmra = sup  |(fr. @) m| = |(fr. @)
gl pr g =1
=Y ke f e M) (r) dt
k#£0 Rn
) _ k2”‘,|2
= C(1+A2) Y ke w
ks£0
_ AZ‘k‘Z
>C Z |k|_"/q_ée 1(1-+22)
0<Iki| <1/,
i=l1,..., n
2 C}\‘I‘l/qﬂ-é Z 1 2 C}\'n(l/q—l)+€
0<Iki| <1/,
i=1,..., n

for all 0 < A < 1. The proof is complete. O

We are now ready to prove Theorem 3.1(1) with (1/p, 1/q) € I} and Theorem 3.1(2) with
(I/p.1/q) € .

Proof of Theorem 3.1(2) with (1/p,1/q) € I,. We recall that u(p,q) = 1/q — 1 if
(1/p,1/g)e . Let (1/p,1/q) e b and 1/p < 1/q.1If g =1 then p = 0o, and we have already
proved this case in Theorem 3.1(2) with (1/p, 1/q) € I,. Hence, we may assume 1 < g < oo.
Note that 1 < p’, ¢’ < oo. Since (1/p’,1/q") € I and 1/p" > 1/4’, by duality and Lemma 3.3,
we have

Il fullasgra = sup|(fi. 8)| = A" sup|(f, g12)|
<A sup | fllwrallgall oo
_ _1\—nQ/p'—=1/q" _ 1/p'—1/2
<A sup | fllpgea (C(Y) TP VD (1572 WD 0y )

< A=V Fllarpa (3.12)
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forall f € MP9(R") and 0 < A < 1, where the supremum is taken over all g € S(R") such that
gl .q = 1. This is the first part of Theorem 3.1(2) with (1/p,1/g) € I and 1/p < 1/q. We
next consider the case (1/p, 1/q) € I, 1/p > 1/q and ¢ < co. From (3.12) it follows that

I fullrr < CAMYT=D ) fllygrr - forall f € MY (R") and 0 < A < 1, (3.13)
where 2 < r < 0o. Then, by interpolation, Lemma 3.5 and (3.13) give
I follmra < CA 9D Fllypa forall f e MP9(R") and 0 < A < 1,

where (1/p,1/q) € b, 1/p > 1/q and g < oo. In the case ¢ = oo, by Lemma 3.7(2), we have
nothing to prove. Hence, we get the first part of Theorem 3.1(2) with (1/p,1/g) e b and 1/p >
1/q.

We next consider the second part of Theorem 3.1(2) with (1/p,1/q) € I,. Let (1/p,
1/q) € I. Since (1/00,1/1) € I, we may assume (p, q) # (0o, 1). Assume that there exist
constants C > 0 and 8 € R such that

I fillra < CAPY fllppa forall f e MP4(R") and 0 <A < 1,

where 8 > n(1/q — 1). Then we can take € > 0 such that n(1/g — 1) + € < B. For this €, we set

F@ =Yk (1),

k0

where ¢ is the Gauss function. Then, by Lemma 3.8, we see that f € M P79 (R") and there exists
a constant C’ > 0 such that || f; || yrr.a > C'A"(1/4=D+€ for all 0 < A < 1. Hence,

CA VDT fillyra < CAP N fllra

for all 0 < A < 1. However, since n(1/g — 1) 4+ € < B, this is a contradiction. Therefore, 8 must
satisfy B <n(1/q — 1). The proof is complete. O

Proof of Theorem 3.1(1) with (1/p,1/q) € I5. We recall that ui(p,q) = 1/q — 1 if
(1/p,1/q) € I3. In every case except for (p,q) # (1,00), by duality, Theorem 3.1(2) with
(1/p’,1/q’) € I and the same argument as in the proof of Theorem 3.1(1) with (1/p, 1/q) € I},
we can prove Theorem 3.1(1) with (1/p, 1/q) € I;. For the case (p,q) = (1, 00), we have al-
ready proved in Theorem 3.1(1) with (1/p, 1/q) € If. O

Our last goal of this section is to prove Theorem 3.1(1) with (1/p,1/q) € I5 and The-
orem 3.1(2) with (1/p,1/q) € I3. In the following lemma, we use the fact that there exists
@ € S(R™) such that suppe C [—1/8,1/8]" and |¢| > 1 on [—2, 2]" (see, for example, the proof
of [8, Theorem 2.6]).

Lemma 3.9. Let 1 < p <00, | < g < o0oande > 0. Suppose that ¢,y € S(R") satisfy supp o C
[—1/8,1/8)", suppyr C [—1/2,1/21", |¢| =1 on[—2,2]" and ¥ =1 on [—1/4,1/4]". Set

F@ =Y kR e — k) in S'(R?).

k0
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Then f € MP9(R") and there exists a constant C > 0 such that
[Ve(f) | pg = CA7"E VDT forall 0 < 2 < 1

Proof. In the same way as in the proof of Lemma 3.8, we can prove f € MP9(R") (see
also [6] or [10]). We consider the second part. It is enough to show that ||V, , fllLre 2

C)F”/PJF”“ forall 0 < A < 1, since ||V, (fo)llpra = A~/ P~ 1/q+])IIV¢1Mf||Lp,q. We note that
suppp((- —x)/A) CL+[—1/4,1/4]" forall 0 < A < 1, LeZ"and x € £ +[—1/8, 1, 8]". Since
supp ¥ (- — k) C k +[—1/2,1/21" and ¥ (t — k) = 1 if € k + [—1/4, 1/4]", it follows that

1/p

(/wmf(x,s)\”dx)
Rn

, r—x . p 1/p

(/chr”/q / ”‘"w(z—kw( - >e_’s"dt dx)
k0

—nfg—e [ k)t i _ r—x

><Z / ‘Zlkl / v k)w( . )dr

01 —178,1/81n K70
P I/p
dx)

(S [ e [
Rn

00 178, 1/81

1/p
—47n/p ( Z; |70 G (—A(E — ) y”) .

€40

b4 1/p
dx)

Hence, using |¢]| > 1 on [—2, 2]", we get

qa/p 1/q
||V<Pl/Af||L1’-‘1 >4n/p)\n{ /<Z||K|”/q€¢(_k(§ _g))|P> dé}
Rn

££0

q/p 1/q
—soimreriaf [(S <o aop) o)
Rll

€40

q/p 1/q
24—n/Pkﬂ—n/l]{ 3 IIEI"l/q‘€¢($+M)|p> dé}

iy S 0<l&I<1/A,
’ i=1,...n

1/p
> 4~n/pon/ayn—n/q ( Z |g|—(n/q+e)p>

0<|€;|<1/A,
i=l,..., n

1/p
> Cn)\nn/qxn/q+e< Z 1) > Cn)tfn/p+n+€
0<|€; <1/,

i=l1,..., n

for all 0 < A < 1. The proof is complete. O
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For Lemma 3.9, we do not need € > 0 in the case g = co.

Lemma 3.10. Let 1 < p < 00. Suppose that ¢, € S(R™) are as in Lemma 3.9. Set

f0y=> """y —k inS(R").

keZ

Then f € MP-°°(R") and there exists a constant C > 0 such that
Ve (fO| s = CA72"P forall 0 <A< 1.
In particular, if 1 < p < 2 then there exist constants C, C' > 0 such that
CA™2P | fullmroe S C AP forall0 < A < 1.

Proof. In the same way as in the proof of Lemma 3.8, we can prove

‘ /eik-tw(t — ket —x)e S dr| < C(1+|x —k?) " (1+1& —k*) ™",
Rn

Hence,
Vo f(x, 6)| = Z /eik"w(t — kot —x)e 61 dt
keZ"Rn
SCY (Ul =kP) " (1+1 —kP) " <C1+1x—£2) ™"
kezr

for all x, & € R". This implies f € MP-*°(R") (which is also a consequence of [6] or [10]).

We next consider the second part. Since ||V, , f (-, §) |l L is continuous with respect to § € R",
we see that ||V, ; fllLrco = supgern [ Vg, f (-, €)llLr for each 0 < A < 1. Hence, by the same
argument as in the proof of Lemma 3.9, we have

[Vl pe = 27" PE NV, Fllznoe = 27" P |V £ O]

1/p
2 CA—n(l/p—H)( Z P\jl@()\e”ﬂ)

Lez

1/p
20\‘”“’( > |¢>(u>|”> > Cam2/r
l6:1<1/A,
i=1

forall0 <A < 1.
By Lemma 3.7(1), if 1 < p <2, then || f || psrp.c ~ A~2"/? in the case 0 < A < 1. The proof is
complete. O

We are now ready to prove Theorem 3.1(1) with (1/p, 1/q) € I3 and (2) with (1/p, 1/q) € I3.
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Proof of Theorem 3.1(2) with (1/p,1/q) € I3. We recall that ux(p,q) = —2/p + 1/q if
(1/p.1/q) € I5. Let (1/p,1/q) € I and 1/p + 1/q > 1. We note that, if (1/p, 1/q) € I3 and
1/p+1/q>1,then (1/p,1/q) € 1 and 1/p > 1/q. Then, by Lemma 3.3, there exists a con-
stant C > 0 such that

I fullapa < CAT"P=VD fllypg  forall fe MP4(R")and0 <A< 1. (3.14)

This is the first part of Theorem 3.1(2) with (1/p, 1/q) € I3 and 1/p+1/qg > 1. We next consider
the case (1/p,1/q) € I3, 1/p+1/q <1 and g < co. (3.14) implies

1 fill gy < CATMCT V0 £ s = CAT ST £ (3.15)

for all f € M”/(IR{") and 0 < A < 1, where 1 < r < 2. Then, by interpolation, Lemma 3.5 and
(3.15) give

I fllpa < CAT"P=VD) fllypg  forall f e MP4(R")and 0 <A < 1,

where (1/p,1/q) € I3, 1/p+1/q < 1 and ¢ < 00. In the case ¢ = oo, by Lemma 3.7(1), we
have nothing to prove. Hence, we obtain the first part of Theorem 3.1(2) with (1/p, 1/q) € Iz
and 1/p+1/g <1.

By using Lemma 3.9 (or 3.10), we can prove the second part of Theorem 3.1(2) with
(1/p,1/g) € Iy in the same way as in the proof of the second part of Theorem 3.1(2) with
(1/p,1/q) € I,. We omit the proof. 0O

Proof of Theorem 3.1(1) with (1/p,1/q) € I5. We recall that u1(p,q) = =2/p + 1/q if
(1/p,1/q) € If. In every case except for (p,q) # (oo, 1), by duality, Theorem 3.1(2) with
(1/p’, 1/q’) € Iz and the same argument as in the proof of Theorem 3.1(1) with (1/p, 1/q) € I},
we can prove Theorem 3.1(1) with (1/p, 1/q) € I5.

For the first part of Theorem 3.1(1) with (p,q) = (oo, 1), by (3.11), we have nothing to
prove. By using interpolation, we can prove the second part in the same way as in the proof of
Theorem 3.1(1) with (1/p, 1/q) € I{k andg =oc0. O

4. The inclusion between Besov spaces and modulation spaces
In this section, we prove Theorem 1.2 which appeared in Section 1. It is sufficient to prove

the first statement only because the first one implies the second one by the duality argument and
the elementary relation

v (p,q)=-vi(p',q).

See also Section 2 for the dual spaces of the modulation spaces (Lemma 2.4) and Besov spaces.
For the preparation to prove Theorem 1.2(1) with (1/p, 1/q) € I, we show three lemmas in
the below. We denote by B the tensor product of B-spline of degree 2, that is

n
B(t) = HX[—1/2,1/2] * X[=1/2,1/21(t),

i=1
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where 1 = (t1,...,1,) € R". We note that supp B C [—1,1]" and F~'B € MP4(R") for all
1< p, g <oo.

Lemma 4.1. Let 1 < p,g < 00, (p,q) # (1,00), (00, 1) and € > 0. Suppose that ¥ € S(R")
satisfies v = 1 on {&: |&]| < 1/2} and supp ¢ C {&: |&| < 1}. Set

fO=3 1w — o) inS'(RY),
040

where W = F~. Then f € MP4(R") and there exists a constant C > 0 such that || fo.||yr.a >
CA™P=¢ for all A > 2./n.

Proof. In the same way as in the proof of Lemma 3.8, we can prove f € MP9(R") (see also [6]
or [10]). We consider the second part. Let A > 2./n. Since ¥ (-/A) =1 on [—1, 1]", we have

/W(,\t—z)(f—lB)(z)dtz(2n)—”,\—"/e—"“/”"wt/x)B(t)dt
R® R®
= (2n)—",\—"/e—"<‘f“>‘f B(r)dt
Rn

e (2

We note that [[7_, {(sin £)/&Y* > C on [—m/2,7/2]" for some constant C > 0. Since F~'B
M”,*‘I’(R"), by Lemmas 2.2 and 2.4, we get

o= sup el > |7 Bl 7 Bl
Hg”Ml” r=1
=C Z| |~ n/p—e /V¢[W(k‘_£)](x7f)mdxd§
(20 ||q)|| )
ZIZI_”/I’ E/W(M—Z)(}"_IB)([)dt
€0 i
— Li[2A
|-/ (sm )
E;| | 1:! Li[2A
DY R § (A
~ ; £i[2A
0§|Zi|<)\ﬂ, i=1

i=1,...,n

> Ck—nk—)z/p—e Z 1> C)L—n/p—s

0<[¢;|<Am,
i=l1,...,n

for all A > 2.,/n. The proof is complete. O
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Lemma 4.2. Suppose that 1 < p,q < 0o, (p,q) # (1,00), (00, 1) and € > 0. Let y € S(R") be
as in Lemma 4.1. Set

f@y =P w -y inS'(R), .1
€0
where t = (t1,...,t,) € R" and ¥ = F~y. Then f € MP4(R") and there exists a constant

C > 0 such that || f || ppa = CA™P~€ for all A > 2./n.

Proof. Let g(t) = Z#O |e|~"/P=€@(t — £). Since f = Mg, g and fy = Mgy, g1, we have
Vo (i) (x,&) = Vo (gr)(x, & —8ey), where ey = (1,0, ...,0). This gives || fillmr.a = llgallpra.
Hence, by Lemma 4.1, we obtain Lemma 4.2. O

Lemma 4.3. Suppose that 1 < p,q < 00, s e Rand e > 0. Let f be defined by (4.1). Then there
exists a constant C > 0 such that || fox ”Bf"f < C2K6=1/P) forall k € 7.

Proof. Let k € Z. Since suppgy C {&: €] <2}, suppy; C {&: 2771 < |g] <271} if j > 1
(see Section 2), and supp ¥/ (-/2F — 8e1) C {&: |& — 2K3¢1| < 2K, we see that

fq>j(x —1)(M My 2kt — g)) ar
R~

— (27_[)—}1 / eix.t(/?j (t)(z—kne—il‘(t/f‘—gel)w(t/zk _ 8@])) dt
R}’l

B { Q)8 [, el @501 Qkeyy (r — ey dr, ifk+2< j <k-+4,

0, otherwise.

Hence,

| * (f20) ()]

Zwr"/f’—f/@j(x—z)(e8f<2k“>t1/(2"t—e))dt

040 Rn

<Cy lere /{(1 + 25— )T = A0 e C O g (K1) (¢ — Bey) d
££0 Rn

<Y jeT e (14 2R — )
££0

where k +2 < j <k + 4. On the other hand, @; * (for) =01if j <k +2 or j > k + 4. Thus,
1D (fo)llLr < C27F/Pifk+2 < j <k+4,and @+ (fo)llLr =0if j <k+2o0r j > k+4.
Therefore,
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k4 14
ilgpe = ( 3" 20, 4 <f2k>||z,,)

j=k+2
k+4 1/q
< C2k”/P< Z 2]’“1) < C2kGs—n/p)
Jj=k+2

The proof is complete. O
We are now ready to prove Theorem 1.2(1) with (1/p, 1/q) € I}.

Proof of Theorem 1.2(1) with (1/p, 1/q) € I§. Let (1/p,1/q) € I] and (p, q) # (1, 00). Then
v1(p,q) = 0. We assume that BY"?(R") < MP-4(R"), where s < 0. Set s = —e, where € > 0.
For this €, we define f by

F@y =8y "o PR (e — ),
££0

where t = (t1,...,t,) e R", ¥ = ,7-"110 and ¢ is as in Lemma 4.1. Then, by Lemmas 4.2
and 4.3, we have

CLa P L fllmra < Call forll ppa < C32007MP) = C327k0/PHe)

for any large integer k. However, this is a contradiction. Hence, s must satisfy s > 0.

We next consider the case (p,q) = (1, 00). Assume BSI’OO(R”) — ML (RM). Let ¥ €
S@®") \ {0} be such that suppy C {£: 1/2 < |&] < 2}. Since ML®°(R") — FL®R") [18,
Proposition 1.7], we see that

27y || oo = | FIr ]| oo < ClWptllpproe forall k € Zy,
where ¥ = F~! Y. On the other hand, it is easy to show that
1l groo < C2X6™ forall k € Zy.
Hence, by our assumption, we get
27 Y llzoe < Crlldpellpgroe < Call Wil oo < €250

for all k € Z. This implies s > 0. The proof is complete. O

Our next goal is to prove Theorem 1.2(1) with (1/p, 1/q) € I5. We remark the following fact,
and give the proof for reader’s convenience.

Lemma 4.4. (See [16, Proposition 1.1].) Let 1 < p,q < 00 and s > 0. Then there exists a con-
stant C > 0 such that

| fillgps <CAP| fllgpa forall f € BI(R") and s> 1.
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Proof. Let jo € Z, be such that 2/0 < A < 2/0F! Since Z?OIO @j(&)=1forall £ e R", we see
that

1
pj(AE) = Z (pj(kf)¢j+g(2j0§) forallé e R" and j € Z,,
(=-2

where ¢ =0if j + £ < 0. Hence, by Young’s inequality, we have

o 1/q
I full gra = (ZW IIF“[wjqu‘ip)

Jj=0

1/q
q
LP

1 N 1/q
<y (Zziw ||J-“1[¢j(/\~)<ﬂj+l(2j°')ﬂ||ip>

t=—2\ j=0

-t T o]
=0

1/q
<A Z {ZW |77 o5 00)] I}f‘[¢j+e(2f°-)f]|u,)q}

e=—21 j=0

. 1/q
< CA‘”“’(ZZM |7 ) (2%) ] IIip)

j=0

1/q
q
LP :

Lr = Zzﬂq ”]: ‘PJ 2]0 )(9"0 +‘Pl)ﬂ|

:CA—n/p{(’i+ 5 )zfsq||f-1[w,-<zf°->ﬂ|

j=0  j=jo+1

For the first term, we see that

Jo
> 211 [, @) 1N
j=0

LP

Jo

<CY 2 F [wo+en 17,
j=0

<SCRP (£ lgra)’ <CR NS llgra)’.

For the second term, we have
Z 2754 H]:_l[% (2/O)ﬂ HLLII — Z 2754 ”f_l[(p]*jof] Hqu < (}"Y“f”B!’q)q
Jj=jo+1 Jj=Jjo+1

Combining these estimates, we obtain the desired result. O
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We are now ready to prove Theorem 1.2(1) with (1/p, 1/q) € I

Proof of Theorem 1.2(1) with (1/p, 1/q) € I5. Let (1/p,1/q) € I5. Then vi(p,q) =1/p +
/g — 1. If (1/p,1/q) € I} and 1/p + 1/q =1 then (1/p,1/q) € I], and we have al-
ready proved this case in Theorem 1.2(1) with (1/p,1/q) € I{. Hence, we may assume
1/p +1/q > 1. Suppose that B/"?(R") < MP-4(R"), where s < n(1/p + 1/q — 1). Then,
since n(1/p + 1/q — 1) > 0, we can take so > 0 such that s <sg <n(l/p+1/g —1). Let ¢
be the Gauss function. By Lemma 2.1, we see that ||@ || srp.a = CA*1/9=D for all A > 1. On the
other hand, by Lemma 4.4, we have

lgnllgria < CAOT/Pllg|gra forall 2> 1.
Hence, using BY? (R") < BYY(R") — MP4(R"), we get
"I gallmpa < Callgallgra < C3A0 7Pl ppa

for all A > 1. However, since so —n/p < n(l/q — 1), this is a contradiction. Therefore, s must
satisfy s > n(1/p + 1/q — 1). The proof is complete. O

Our last goal is to prove Theorem 1.2(1) with (1/p, 1/q) € I5.

Lemma 4.5. Let 1 < p <00, 1 < g < o0 and € > 0. Suppose that ¢,y € S(R™) \ {0} satisfy
suppe C [—1/8,1/81", suppy C [—1/2,1/2)  and ¥ =1 on [—1/4,1/4)". For j € Z, set

Flay=270r N ek 2y (120 k), (4.2)
0<k <2/,

i=l,...n
where W = F~\y. Then f/ € MP-4(R") and there exists a constant C > 0 such that
Vo[ (7)) pa = C2InCIP VDI forall j e Zy,
where ® = F~ 1.

Proof. Since f/ € S(R"), we have f/ € MP-4(R"). We consider the second part. Note that
suppp(-—&) CL+[—1/4,1/4]" forall¢ € Z" and & € £+[—1/8, 1, 8]". Since supp ¥ (- —k) C
k+[—1/2,1/2)" and ¥ (t — k) =1if r € k +[—1/4, 1/4]", it follows that

” Vo [(f'i)zj] HLM

Az, f (e 5 e

CeZ 1 1/8,1/8]" Re 0§|k11|<2f,
i=l,..., n

. o 14 q/p 1/q
x/e'k"wa—k)cp(z—x)e—lf"dz dx) ds}

IRH
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e 2 [ () 5, e

0<|[ |<2/ 0+[—1/8,1/8]" R~ 0<|k <2/,
=1

) P q/p 1/q
x/e—””w Kot — £)e™ " dr dx) df;‘}

Rﬂ
— (zn)—nz—j'l/ﬁ

(S, [ (fl e

0<|E |<ZJ 0+[—1/8,1/8]" Rn R

.....

P q/p 1/q
dx) d“;‘}

) 1/q
S I ST aRY f ||q§(_._|_g)”zpd€}

0<uz1 <2, £+[—1/8,1/8]"
i=1,..., n

1/q
—ae 2] Y |g|—(n/l7+€)¢1}
0<1t;1<2/,

i=1,...,n

1/q
> an—jn/PZ—j(Vl/P+€){ Z 1} > an—jn(2/p—l/q)—je

O<\€ <2,
i=l1,..., n

for all j € Z. The proof is complete. O

Lemma 4.6. Suppose that 1 < p,q < 0o and s > 0. Let f I be defined by (4.2). Then there exists
a constant C > 0 such that ||(f7)y;|| gra < C2/ s=n/P) forall j € 7.

Proof. By Lemma 4.4, we have ||(f/),; ||BS”"1 < C2J6=n/p) ”fj”BSpq for all j € Z, . Hence, it
is enough to prove that sup 7, || f/ Il gra < 00. Since

Fi(g) = 2in1=1/p) SO ke e ey (2] g )

0<|k <2/,
i=l,...,n

and supp ¥ (27 - —k) C k/2/ +[—27U+D 2=U+DJ" we see that suppf/ C {&: |E] <2/n}. Let
£o be such that 20~1 > 2. /n. Then,

_ £o—1 ' 1/q
177 e = ( S 254 0 £ ||zp)

=0

to—1 ' 1/q _
<( T2l 1,0) =cd

£=0
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Therefore, it is enough to show that sup; .z, I f J)|Lr < 00. By a change of variable, we have

P 1/p
dt)
Rt 0<lki|<2/,

i=1,...,n
P 1/p
< { Z (Z|k|—"/f’—f|tp(z —k)|) dt}

MmEL (172,121 K#O

“{ 2 (Zlkl”“”(l +|m—kl>"l>p}l/p -

mezn N k#£0

Il =( | X wrrcdtea-n

for all j € Z,. The proof is complete. O
We are now ready to prove Theorem 1.2(1) with (1/p, 1/q) € I3.

Proof of Theorem 1.2(1) with (1/p,1/q) € I5. Let (1/p,1/q) € I. Then vi(p,q) = —1/p+
1/q.1f(1/p,1/q) € I§ and p = q then (1/p, 1/q) € I, and we have already proved this case in
Theorem 1.2(1) with (1/p, 1/q) € I{. Hence, we may assume 1/q > 1/p. Note that g # oo.
Suppose that B (R") < MP4(R"), where s < —n(1/p — 1/q). Then, since —n(1/p —
1/q) > 0, we can take so > 0 such that s < s¢9 < —n(l/p —1/q). Setso = —n(1/p —1/q) — €,
where € > 0. For this €, we define f/ by

Flay=27r N etk Y g (120 k),

0<k; <2/,
i=1,..., n

where j € Z,, ¥ = F~ 'y and v is as in Lemma 4.5. Then, since Bﬁ)’q(R") < BPYR") —
MP4(R™), by Lemmas 4.5 and 4.6, we get

Cra AU Vo [(£7) 3] g < ol ()i pgva

SCa|(#7)y1 ] g < Ca2/ 07/ = CypmInClPm ¢

for all j € Z,, where ® = F ¢ and ¢ is as in Lemma 4.5. However, this is a contradiction.
Therefore, s must satisfy s > —n(1/p — 1/q). The proof is complete. O
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