PATRICK A. SIBONY, MD1
MARK J. KUPERSMITH, MD2

FOR THE OCT SUBSTUDY GROUP OF THE NORDIC IDIOPATHIC INTRACRANIAL HYPERTENSION TREATMENT TRIAL*

1Department of Ophthalmology, State University of New York at Stony Brook, Stony Brook, New York; 2Yealin School of Medicine at Mount Sinai, Mt. Sinai Roosevelt and the New York Eye and Ear Infirmary, New York, New York

*A list of the OCT Substudy Group of the NORDIC Idiopathic Intracranial Hypertension Treatment Trial is available online (www.aaojournal.org).

Financial Disclosures: The authors have no proprietary or commercial interest in any materials discussed in this article. Supported in part by U10 EY017281-01A1, U10 EY017387-01A1, 3U10EY017281-01A1S1

Trial registration: clinicaltrials.gov identifier: NCT01003639

Author Contributions:
Conception and design: Sibony
Analysis and interpretation: Sibony, Kupersmith
Data collection: Sibony, Kupersmith
Obtained funding: Not applicable
Overall responsibility: Sibony, Kupersmith

Correspondence:
Patrick A. Sibony, MD, Department of Ophthalmology, State University of New York at Stony Brook, Health Sciences Center, L2, Room 152, Stony Brook, NY 11794-8223. E-mail: patrick.Sibony@stonybrookmedicine.edu.

References

Bevacizumab or Dexamethasone Implants for DME: 2-year Results
(The BEVORDEX Study)

Both vascular endothelial growth factor inhibitors and steroids given intravitreally have demonstrated superior visual acuity (VA) benefits to laser and/or sham for center-involving diabetic macular edema (DME).1

The BEVORDEX study was the first head-to-head randomized clinical trial of bevacizumab versus a slow-release intravitreal dexamethasone implant (DEX-implant; Ozurdex; Allergan Inc., Irvine, CA) for DME. This study was conducted in accordance with the Declaration of Helsinki and was approved by local Human Research Ethics Committees. We previously reported the methodology and the primary and 12-month secondary outcomes.2 At 12 months, we reported no difference between the groups in proportion of eyes achieving the primary endpoint of a 10-letter gain in VA. There was significantly greater decrease in central macular thickness with fewer intravitreal injections in the DEX-implant group compared with the bevacizumab group at 12 months. However, a greater number of eyes in the DEX-implant group lost vision, mainly owing to cataract.

Eyes continued in the trial for another year on the same treatment allocation (i.e., bevacizumab every 4 weeks or DEX-implant every 16 weeks, both as required). Sixty-eight of the 88 enrolled eyes (77%) completed the 24-month trial. The CONSORT flow-sheet (Supplementary Fig 1, available at www.aaojournal.org) shows that of the 20 eyes (from 13 patients) that exited the study early, 10 had been assigned to DEX-implant and 10 to bevacizumab.

The VA improvement seen at 12 months in both groups was maintained at 24 months, with 20 of 46 DEX-implant—treated eyes (43%) and 19 of 42 bevacizumab—treated eyes (45%) achieving ≥10 letter VA gain (P = 0.99). The proportion of bevacizumab—treated eyes with a ≥10 letter VA gain was comparable with other trials of discontinuous anti-vascular endothelial growth factor therapy in DME (e.g., Prospective Randomized Trial of Intravitreal Bevacizumab or Laser Therapy in the Management of Diabetic Macular Edema [BOLT] at 49% and Diabetes Retinopathy Clinical Research Network Protocol I at 49%), although baseline VA, inclusion criteria, and retreatment strategies were different.3 4

The mean improvement in VA was 6.9 letters in DEX-implant—treated eyes (95% CI, 2.7–11.1) and 9.6 letters (95% CI, 6.9–12.3) in bevacizumab—treated eyes (P = 0.30; Fig 1A). At baseline, 26 of 88 study eyes (29.5%) were pseudophakic; 10 randomized to bevacizumab and 16 to DEX-implant. In pseudophakic eyes, the improvement in VA in DEX—implant—treated eyes was similar to bevacizumab—treated eyes (Fig 1B). In phakic eyes, there was a difference in mean VA change between the 2 treatment groups between the 12- and 24-month time-points (Fig 1C), with the DEX—implant group experiencing worse VA. This likely represented development of cataract in the DEX—implant group with subsequent improvement in vision by 24 months after cataract surgery, with 11 of 30 DEX—implant—treated eyes (37%) and 2 of 32 bevacizumab—treated eyes (6%) undergoing cataract surgery during the study. It is possible a larger study may have identified a statistically significant greater mean improvement in VA in favor of bevacizumab in phakic eyes.

Although there was a significantly greater reduction in central macular thickness in the DEX-implant group at 12 months, the graph of central macular thickness over time (Supplementary Fig 2, available at www.aaojournal.org) shows that the bevacizumab group gradually caught up so that there was no difference between the groups at 24 months. This pattern was also reflected in regression of hard exudates from the foveal center.5

Eyes randomized to receive bevacizumab received more injections (mean; 9.1; median, 9.0; SD, 3.1) than those randomized to the DEX—implant (mean, 2.8; median, 3.0; SD, 0.9) during the first 12 months of treatment. However, the difference was less pronounced in the second year of treatment, with the mean number bevacizumab injections being 4.8 (median, 2.0; SD, 5.1) compared with 2.2 (median, 2.0; SD, 1.2) DEX—implant
injections. Over 2 years, the number of bevacizumab intravitreal injections was comparable with the number of ranibizumab injections in the deferred laser cohort of Diabetes Retinopathy Clinical Research Network Protocol I.4 The 5-year results from the Diabetes Retinopathy Clinical Research Network Protocol I trial reported a significant decrease in the number of ranibizumab injections required for DME in years 3 through 5, so the difference in treatment load may be less significant after 2 years of intensive anti-vascular endothelial growth factor therapy.1

One bevacizumab-treated eye lost \textgreek{10} letters, whereas 5 of 46 DEX-implant treated eyes had this degree of vision loss. In 2 eyes in the DEX-implant group and 1 eye in the bevacizumab group with a history of laser-treated proliferative diabetic retinopathy, neovascularization developed after cataract surgery. There was 1 patient with undiagnosed syphilis who developed acute posterior placoid chorioretinopathy after receiving a DEX-implant to that eye.2 There were no cases of endophthalmitis or retinal detachment. There was no new systemic safety signal.

As expected, DEX-implant—treated eyes had higher rates of increased intraocular pressure. An increase in intraocular pressure by \textgreek{5} mmHg from baseline at any visit, occurred in 34 of 46 DEX-implant—treated eyes (74%) and 20 of 42 bevacizumab—treated eyes (48%), with 10 of 46 DEX-implant—treated eyes (22%) requiring the addition of topical ocular hypotensives, whereas no bevacizumab—treated eyes required this. Remembering eyes with advanced or uncontrolled glaucoma were excluded from entry, no study eye underwent incisional glaucoma drainage surgery similar to the low rates seen in other trials of Ozurdex in DME (0.6% in the MEAD trial and 0% in the PLACID trial).1

A strength of this study was the opportunity to use the DEX-implant every 16 weeks. Previous industry-sponsored studies have failed to reach predefined primary endpoints because of the mistaken belief that the DEX-implant usually has a therapeutic effect lasting 6 months.1

In conclusion, the 24-month results of the BEVORDEX study identified no significant difference in the primary endpoint of proportion of eyes with a 10-letter gain in VA between bevacizumab and DEX-implant treatment, with both agents providing good improvements. The burden of injections was significantly greater with bevacizumab. However, the DEX-implant group had more cases of visual loss, mainly in eyes that were phakic at baseline. Elevated intraocular pressure in the DEX-implant group could largely be managed with topical therapy. Therefore, the DEX-implant could be considered a second-line treatment option in phakic patients with DME, whereas potentially a first-line treatment option in pseudophakic patients.
Financial Disclosures: The authors made the following disclosures: M.C.G.: Grants — Allergan; Personal fees — Bayer; Consultant — Allergan, Novartis, Bayer; Expert testimony — Bayer S.F.-B.: Grants — Allergan L.L.L.: Consultant — Bayer, Novartis, Abbvie, Allergan; Speaker fees — Bayer, Abbvie Funded by a project grant (632667) from the National Health and Medical Research Council (NHMRC), which was supplemented by an unrestricted educational grant from Allergan Pharmaceuticals.

Author Contributions:
Conception and design: Fraser-Bell, Lim, Campain, Mehta, Aroney, Quin, McAllister, Gillies
Analysis and interpretation: Fraser-Bell, Lim, Campain, Mehta, Aroney, Bryant, Li, Gillies
Data collection: Fraser-Bell, Lim, Mehta, Aroney, Bryant, Li, Quin, McAllister, Gillies
Obtained funding: Fraser-Bell, Lim, Gillies
Overall responsibility: Fraser-Bell, Lim, Campain, Mehta, Gillies

Correspondence:
Hemal Mehta, MA, FRCOphth, Save Sight and Eye Health Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.

Hemal Mehta, MA, FRCOphth, Save Sight and Eye Health Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia. E-mail: HM@cantab.net.

References

Aryl Hydrocarbon Receptor-Interacting Protein-Like 1 in Cancer-Associated Retinopathy

Paraneoplastic syndromes constitute symptoms from organs distant from a malignant neoplasm present in the body, and are in many cases mediated by immune cross-reactivity between the neoplasm and normal host tissue. Cancer-associated retinopathies (CAR) are rare retinal disorders associated with autoantibodies directed to various retinal antigens. The immune response initially arises to suppress a tumor growth, ultimately resulting in rapid, bilateral, and painless loss of vision. If a subsequent clinical investigation reveals an underlying malignancy, the retinal damage is categorized as a paraneoplastic syndrome.

We report on the identification of aryl hydrocarbon receptor interacting protein-like 1 (AIP1), a retinal and pineal gland–specific protein, as the autoantigen in a patient with CAR and malignant osteosarcoma. The study was performed in accordance with the Declaration of Helsinki and ethics committee approval was obtained (application number UP02-415). The patient was a previously healthy 13-year-old girl without any family history of autoimmunity or ophthalmic disorders. She suffered from pain of varying intensity in her right heel with simultaneous progressive photosensitivity and bilateral gradually increasing visual loss. Ophthalmologic examinations revealed a rapid decline in visual acuity over 3 months, from 1.0 to 0.2 in the left eye, and from 0.8 to 0 in the right eye. Optical coherence tomography showed a thinning of retinal layers, indicating retinal atrophy (Fig 1A, available at www.aaojournal.org).

Full-field electroretinogram demonstrated a reduction of rod–cone function with >90% compared with the response some months before the patient developed blindness (Fig 1B). At the age of 15, two years after the onset of symptoms of visual loss, her vision had deteriorated to a stage at which she only could distinguish between dark and light. Owing to the severity of the visual loss, the initial medical attention was focused on the eyes. Eventually, the patient’s pain in the heel was investigated and routine skeletal x-ray examination of the foot did not show any abnormality (Fig 2A, left). However, magnetic resonance imaging indicated an edematous tumor in right calcaneus (Fig 2A, right). Biopsy of the calcaneus and cytological examination after decalcification revealed a small cell tumor (Fig 2B). Because the tumor cells did not show typical chromosomal abnormalities seen in Ewing sarcoma, the tumor was classified as osteosarcoma. Using a serum sample from the patient, a healthy control, and an anti-AIP1 antibody, human retinal tissue was immunostained. Using the CAR serum, this revealed a strong staining of the synaptic region of the photoreceptor cells, with an overlap with anti-AIP1 antibody staining. A similar staining pattern was not seen with serum from a healthy control (Fig 2C-E).