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The structure of PknB in complex with mitoxantrone, an ATP-competitive
inhibitor, suggests a mode of protein kinase regulation in mycobacteria
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Abstract Mycobacterium tuberculosis PknB is an essential
receptor-like protein kinase involved in cell growth control.
Here, we demonstrate that mitoxantrone, an anthraquinone
derivative used in cancer therapy, is a PknB inhibitor capable
of preventing mycobacterial growth. The structure of the com-
plex reveals that mitoxantrone partially occupies the adenine-
binding pocket in PknB, providing a framework for the design
of compounds with potential therapeutic applications. PknB
crystallizes as a ‘back-to-back’ homodimer identical to those ob-
served in other structures of PknB in complex with ATP analogs.
This organization resembles that of the RNA-dependent protein
kinase PKR, suggesting a mechanism for kinase activation in
mycobacteria.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The ability of Mycobacterium tuberculosis, the pathogen

responsible for tuberculosis (TB), to adapt to changing envi-

ronmental conditions requires an efficient way of sensing and

transducing extracellular signals. One of the mechanisms used

in mycobacteria to assure a tight regulation of cell growth and

division involves the reversible phosphorylation on serine/thre-

onine residues, a well-established process for eukaryotic signal-

ing networks [1].

M. tuberculosis PknB is a trans-membrane Ser/Thr protein

kinase (STPK) highly conserved in Gram-positive bacteria

and apparently essential for mycobacterial viability [2]. The

crystal structure of the kinase domain of PknB in complex with

an ATP analogue [3,4] showed a striking conservation of both

protein fold and catalytic mechanism between eukaryotic and
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prokaryotic STPKs. We have previously shown that PknB is

regulated by autophosphorylation and dephosphorylation by

the Ser/Thr protein phosphatase PstP [5,6] and recent work

showed that PknB is predominantly expressed during exponen-

tial growth, where its overexpression causes morphological

changes linked to defects in cell wall synthesis and cell division

[7].

Aberrant kinase activity is implicated in numerous human

diseases and, not surprisingly, protein kinases represent today

one of the most important groups of drug targets [8,9]. Here

we report that mitoxantrone, a compound used in cancer treat-

ment, is a PknB inhibitor capable of preventing mycobacterial

cell growth, suggesting that bacterial kinases may also repre-

sent a potential target for drug design. The crystal structure

of the complex demonstrates that mitoxantrone is an ATP-

competitive inhibitor of PknB and suggests a mode of regula-

tion of protein kinases in mycobacteria.
2. Materials and methods

2.1. In silico screening
Over 40000 compounds from different chemical libraries, including

the Comprehensive Medicinal Chemistry database, were docked into
the nucleotide-binding pocket of the M. tuberculosis PknB structure
(pdb ID 1O6Y [3]) using the program FlexX [10].

2.2. Kinase assays
The kinase assays were carried out in 15 ll kinase buffer (50 mM

HEPES, pH 7.0, 1 mM DTT, 0.01% Brij35, 5% glycerol, and 2 mM
MnCl2) using GarA as a substrate [6] (kinase:substrate molar ratio
1:2000). The reactions were started with the addition of 2.25 lM final
ATP (containing 1 lCi of [c-33P]ATP), and carried out for 20 min at
30 �C. For the inhibition experiments, each compound was pre-incu-
bated for 30 min at 4 �C with the reaction mixture (without ATP).
The reactions were stopped by heat inactivation and the mixture trans-
ferred onto P81 paper (phosphocellulose, Whatman). The paper was
washed with 1% phosphoric acid, rinsed with acetone and allowed to
dry. Radiolabelled spots were analyzed with a PhosphorImager
(Storm, Molecular Dynamics). IC50 values were determined using
KaleidaGraph (Synergy Software).

2.3. Determination of MIC values
Minimal inhibitory concentration (MIC) values for mitoxantrone

against different mycobacteria (Fig. 1c) were determined using the col-
orimetric resazurin microtiter assay in 7H9-OADC broth (Difco) at
37 �C, as described [11].
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Mitoxantrone inhibits PknB and prevents mycobacterial
growth. (a) Radiolabelled spots of twofold serial dilutions of stauro-
sporine (S; first spot: 10 lM) and mitoxantrone (M; first spot: 20 lM).
A control without inhibitor (+) is included. (b) IC50 values for
staurosporine and mitoxantrone. (c) Minimal inhibitory concentra-
tions (MIC) values of mitoxantrone for different mycobacteria. (M.tb:
M. tuberculosis H37Rv; M.au: M. aurum A+; M.sg: M. smegmatis
mc2155; M.sg+pknb: M. smegmatis mc2155 overexpressing pknB; and
M.sg+pOMK: M. smegmatis mc2155 transformed with the control
vector). Histogram values are representative of 2 or 3 independent
experiments in each case. The chemical formula of mitoxantrone is
shown in the inset.

Table 1
Data collection and refinement statistics

Data collection

Wavelength (Å) 0.931
Space group P43212
Cell dimensions [a = b,c] (Å) 116.9, 260.3
Unique reflections 28110
Resolution (Å)a 69.84–2.9 (2.97–2.9)
Multiplicitya 12.3 (2.6)
Rmeas

a,b refinement 0.12 (0.58)
Reflections usedc 26678 (1432)
Resolution limits 70–2.9 Å
R-factord 0.218
Free R-factord 0.278
Number of refined atoms

Protein 7890
Mitoxantrone 128

R.m.s. deviations
Bond lengths (Å) 0.018
Bond angles (�) 1.901

Ramachandran outliers (%) 0.9

aNumbers in parentheses correspond to the highest resolution shell.
bRmeas ¼ f

P
hð
pfnh=nh � 1gÞg

P
j ĵIh � Ih;jj=

P
h;jIh;j, where Î h ¼

ð
P

jI h;jÞ=nh and nh is the multiplicity of reflection h.
cThe number of reflections used for free R-factor calculation is shown
in parentheses.
dR-factor ¼

P
hkljjF oj � kjF cjj=

P
hkljF oj.
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2.4. Crystallography
The cytoplasmic domain of PknB (residues 1–279) was produced

and purified as described [3]. Crystals of PknB (11 mg/ml) in complex
with mitoxantrone (0.2 mM) (Sigma–Aldrich) appeared after 2 or 3
days in 1.2 M sodium acetate, 50 mM sodium cacodylate, pH 5.6, at
18 �C. After testing several crystals grown in slightly different condi-
tions, we retained the best dataset from a single flash-frozen crystal col-
lected on the ID14.3 beamline (ESRF, Grenoble) for further analysis
(Table 1). The data are highly anisotropic (2.9 Å resolution limit along
the c* axis, but only 3.5 Å along the a* and b* axes), which accounts
for the poor data completeness (data are 99% complete at 3.49 Å,
45% in the 3.49–3.21 Å shell, but only 16% in the 3.21–2.9 Å shell)
and implies that the effective resolution may be around 3.2 Å. All crys-
tallographic calculations were carried out using programs from the
CCP4 software package [12]. Four independent monomers of PknB
were positioned in the asymmetric unit by molecular replacement
methods using the program PHASER [13] and the previously deter-
mined PknB structure (1O6Y) as a search probe. The bound ligand
was clearly visible in the initial Fourier difference map for three out
of the four independent monomers. After a few rounds of simulated
annealing refinement using the program CNS [14] and manual model
building with the program O [15], the crystallographic refinement
was continued with the program REFMAC from CCP4 using tight
non-crystallographic symmetry restraints and a translation/libration/
screw model with eight different groups (corresponding to the
N- and C-terminal lobes of each kinase domain in the asymmetric
unit). The final parameters for the refined model are given in Table
1. Structure factors and atomic coordinates have been deposited with
the Protein Data Bank (Accession Code 2FUM).

2.5. Sequence and structural comparisons
A homology search using the PknB sequence against all finished bac-

terial genomes (NCBI, as of December 2005) identified 39 trans-mem-
brane kinases with predicted extracellular PASTA domains. The
sequences were aligned and the residue conservation pattern was
mapped onto the structure (Fig. 3b) using the program ConSurf [16].
3. Results and discussion

3.1. Mitoxantrone inhibits mycobacterial growth in culture

We carried out an in silico screening to search for PknB inhib-

itors (see Section 2), and 20 commercially available compounds

from the first 60 hits were then tested for their inhibitory

properties. Kinase assays revealed that mitoxantrone (1,4-

dihydroxy-5,8-bis[2-(hydroxyethylamino)-ethylamino]-9,10-

anthracenedione) was able to inhibit PknB with an IC50 in the

micromolar range (IC50 = 0.8 ± 0.05 lM), comparable to that

observed for the cytotoxic large-spectrum kinase inhibitor

staurosporine (IC50 = 0.6 ± 0.05 lM), see Fig. 1a/b. Mitoxan-

trone is a DNA-reactive agent that has been used for several

years in cancer treatment [17]. Besides its DNA-binding proper-

ties, other mechanisms to account for mitoxantrone cytotoxicity

may involve free radical production [18] and inhibition of Ser/

Thr protein kinases [19,20].

Mitoxantrone showed an inhibitory effect on cell growth

(Fig. 1c) when tested on cultures of M. tuberculosis

(MIC = 400 lM), M. smegmatis mc2155 (MIC = 100 lM),

and M. aurum A+ (MIC = 25 lM) using the resazurin micro-

titer assay. Differences in the permeability of the cell envelope

and/or in the structure of the targets of mitoxantrone in the
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three mycobacterial species may account for the different

MICs observed. The effect of mitoxantrone on M. smegmatis

was partially reversed when the wild-type strain was trans-

formed with a multicopy replicative plasmid (pOMK) [21] car-

rying a wild-type copy of the M. tuberculosis pknB gene

expressed from its own promoter. The MIC of the pknB over-

expressor was twofold those of the wild-type strain (200 lM)

or the strain transformed with the control vector alone

(Fig. 1c), suggesting that PknB is at least one of the lethal tar-

gets of mitoxantrone in this species.
3.2. Structure of the PknB-inhibitor complex

To investigate the mode of action of mitoxantrone on PknB,

we crystallized the complex and determined its 3D structure by

X-ray diffraction methods (Table 1). The overall structure of

the enzyme is similar to those previously described for PknB

in complex with ATP analogs [3,4], with the kinase domain

in an overall closed conformation and a disordered activation

loop. The most noticeable structural change involves the gly-

cine-rich loop, which in the absence of ATP moves further

towards the C-terminal lobe (Fig. 2a).

Clear electron density is observed for mitoxantrone in the

nucleotide-binding cleft of PknB (Fig. 2b). The planar dihy-

droxy anthraquinone moiety of the inhibitor occupies the

hydrophobic cage that binds the adenosine moiety of ATP.

An important number of residues of both the N- and C-termi-

nal lobes makes van der Waals contacts with the inhibitor,

including Leu17, Gly18, Val25, Ala38, Met 92, Glu93, Tyr94

and Val95 in the N-terminal lobe, Met145 and Met155 in the

C-terminal lobe. The main-chain amide group of Val95, which

in the PknB-AMPPCP complex is hydrogen bonded to the N1

atom of adenosine [3], now forms a hydrogen bonding interac-

tion with one hydroxyl group of the inhibitor (Fig. 2c). This

interaction may account for the observed lateral positioning

of the inhibitor within the wide hydrophobic binding pocket

(Fig. 2b). The partial occupancy of the cleft leaves space to

accommodate bulkier substituents at the three-ring moiety,

which might be exploited to improve the inhibitory properties

of the compound.

The limited resolution of this study precludes a detailed

analysis of the interactions made by the flexible hydroxyethyla-

mino moieties of the ligand, although in at least two of the four

independent PknB molecules the side-chain of Asn143 makes

additional hydrogen bonding interactions with the nitrogen

atom of one hydroxyethylamino moiety. As observed in other

protein kinase-inhibitor complexes [9], it is possible that these

flexible extended moieties, which protrude away from the

ATP-binding pocket, could interfere with the active conforma-

tion of the kinase and account in part for the inhibitory prop-

erties of mitoxantrone.
Fig. 2. Structure of the PknB-mitoxantrone complex. (a) Super-
position of the PknB-mitoxantrone complex (in yellow) and the
PknB-AMPPCP complex (1O6Y, in cyan). Note the movement of the
Gly-rich loop (black arrow). (b) Observed (yellow) and predicted (thin
lines) orientations of mitoxantrone within the adenosine-binding cavity
(represented as a molecular surface). The electron density map for the
inhibitor is contoured at 1r. (c) Schematic view (represented as in Ref.
[26]) of the PknB ATP-binding site showing hydrogen bonding
interactions with both the inhibitor (in blue) and AMP-PCP (PDB
code 1O6Y).
3.3. The conserved dimeric arrangement of PknB is similar to

that of PKR

When expressed as a recombinant protein, the catalytic do-

main of PknB was observed to behave as a mixture of mono-

mers and dimers in solution (Ref. [4] and data not shown).

Interestingly, in the PknB-mitoxantrone complex the kinase

domain crystallized as a ‘back-to-back’ homodimer (Fig. 3a).

The two crystallographically independent dimers in the com-

plex are very similar to each other and to those observed in

two other structures of PknB crystallized in different space



Fig. 3. The conserved PknB homodimer. (a) Superposition of the two
crystallographically independent homodimers from the PknB-
mitoxantrone complex (in red and green) with those observed in the
PknB-nucleotide complexes 1O6Y [3] (in blue) and 1MRU [4] (in
yellow). (b) Overall view of the PknB monomer (rotated 90� along the
vertical axis with respect to the right monomer in Fig. 3a), color-coded
according to amino acid conservation (red: highly conserved) in 39
PknB-like protein sequences from 35 different bacterial species
(Bacillus anthracis, B. cereus, B. clausii, B. licheniformis, B. subtilis,
Bifidobacterium longum, Clostridium acetobutylicum, C. perfringens, C.
tetani, Corynebacterium diphtheriae, C. efficiens, C. glutamicum,
Enterococcus faecalis, Geobacillus kaustophilus, Lactobacillus acidoph-
ilus, L. johnsonii, Listeria monocytogenes, Mycobacterium avium, M.
bovis, M. leprae, M. tuberculosis, Nocardia farcinica, Nocardioides,
Leifsonia xyli, Oceanobacillus iheyensis, Propionibacterium acnes,
Staphylococcus haemolyticus, S. saprophyticus, Streptococcus agalac-
tiae, S. mutans, S. pyogenes, Streptomyces coelicolor, Symbiobacterium
thermophilum, Thermoanaerobacter tengcongensis, Thermobifida fusca).
(c) Comparison of the PknB and RNA-dependent PKR dimer
interfaces. The side-chain residues belonging to the interfaces are
shown (PknB color-coded as in (b)).
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groups [3,4], lending strong support to the hypothesis that this

homodimeric arrangement is physiologically relevant [4].

The dimer interface, composed almost exclusively of residues

from the N-lobe, is largely conserved in PknB-like bacterial

protein kinases (Fig. 3b). When the amino acid sequences of

39 pknB putative ortholog genes are mapped onto the PknB

structure, 8 positions at the dimer interface are almost invari-

ably conserved (i.e. conserved in at least 35 of the 39 protein

sequences): Arg10, Leu33, Arg35, Ala60, Pro69, Asp76,

Gly78 and Glu93. The strictly invariant residues Arg10 and
Asp76 form a double intermolecular salt bridge in the homodi-

mer. Two other highly conserved residues are also engaged in

intermolecular hydrogen-bonding interactions: the guanidium

group of Arg35 forms two hydrogen bonds with the main-

chain oxygen atoms of residues Ala64 and Val74, and the

side-chain of Asn67 forms a hydrogen bond with the carboxyl-

ate group of Glu93. Interestingly, the main-chain atoms of

Glu93 are hydrogen-bonded to the ATP analog in the binary

complex (and are also in contact with mitoxantrone in the

PknB-inhibitor complex), thus establishing a direct link be-

tween the dimer interface and the nucleotide-binding site.

Remarkably, the PknB homodimer strongly resembles that

recently observed for the RNA-dependent antiviral protein ki-

nase PKR [22] (Fig. 3c). In both cases the same equivalent

positions are involved in the interface and a similar surface

area is occluded upon dimer formation: the PknB interface is

made up of 23 residues (80 atoms) that contribute 800 Å2 to

the contact surface area, while the PKR dimer interface in-

cludes 26 residues (78 atoms) and has a buried surface area

of 730 Å2 per monomer. Whereas a precise understanding of

how PknB dimerization can directly influence the catalytic

activity must await the structural study of the enzyme in a re-

pressed monomeric state, the striking similarity between the

PknB and PKR homodimers allows us to speculate on a pos-

sible role of dimerization on PknB activity regulation, based

on the analogy with PKR [22,23]. Thus, in its monomeric state,

PknB would be inactive due, for instance, to a misplacement of

helix aC (whose C-terminal end is within the dimer interface),

in much the same way as proposed for other eukaryotic pro-

tein kinases. Upon ligand binding, the extracellular region

would then promote ‘back-to-back’ dimerization of the cata-

lytic domain, as observed in the crystal structure. Indeed, the

influence of the extracellular domain on dimerization was dem-

onstrated for the PknB-like protein kinase PrkC from B. sub-

tilis [24]. In turn, PknB homodimer formation would then

promote autophosphorylation at Ser/Thr residues in the acti-

vation loop [5,25] and subsequent substrate recruitment [6,7].

While many aspects of the above model remain necessarily

speculative at this stage, it suggests a possible strategy for drug

design based on ATP-competitive lead compounds such as

mitoxantrone derivatives. Given the direct structural links be-

tween PknB dimerization, catalytic activity and nucleotide

binding, it should be possible to obtain specific ATP-competi-

tive inhibitors that either block the catalytic domain in an inac-

tive state or just preclude ‘back-to-back’ dimerization.
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