
ANNALS OF
PURE AND
APPLIED LOGIC

ELsEYlER Annals of Pure and Applied Logic 81 (1996) 75-113

Computation on abstract
extensional approach, with

streams’

data types. The
an application to

Solomon Feferman *
Department of Mathematics, Stanford University, Stanford, CA 94305, USA

Received 5 September 1995; Communicated by A. Nerode

With profound gratitude to Stephen C. Kleeng

Abstract

In this paper we specialize the notion of abstract computational procedure previously in-
troduced for intensionally presented structures to those which are extensionally given. This is
provided by a form of generalized recursion theory which uses schemata for explicit definition,
conditional definition and least fixed point (LFP) recursion in fimctionals of type level <2 over
any appropriate structure. It is applied here to the case of potentially infinite (and more general
partial) streams as an abstract data type.

1. Introduction

This paper is a continuation of the work of Feferman [5, 61 which initiated an

approach through a form of generalized recursion theory (g.r.t.) to computation on

abstract data types (ADTs), including intensionally presented types, in a sense ex-

plained below. In this paper, we separate out the extensional part of the theory and

show how it may be applied to computation on streams as an ADT. One of the main

new contributions here is an explanation of how this is to be done for finite “nonter-

minating” streams as well as infinite streams, and even more general partial (“gappy”)

streams.

From the logical point of view, what are called abstract data types in theoretical

computer science are simply classes of structures closed under isomorphism. Among

these, one is mainly interested in structures determined by categorical or relatively

categorical conditions. A paradigm example is provided by the A-list structures, where

* E-mail: sf@csli.stanford.edu.

’ Research supported by the National Science Foundation.

2 Kleene was not my mentor, official or otherwise, but through his exceptional development of our subject

I learned as much from him as if he had been.

0168-0072/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved

XTD10168-0072(95)3056-9

76 S. Fefermani Annals of Pure and Applied Logic 81 (1996) 75-113

A is an arbitrary set. Each such consists of two domains, A and L (the finite lists

over A), and three operations, Cons : A x L -+ L, Head : L-{niE} + A, Tail : L

-{niZ} + L, where Cons appends an element of A to the head of a list, nil is a

member of L representing the empty list, and Head and Tail are operations inverse

to Cons; we also assume given a test on L for equality to the nil element. The struc-

ture is characterized up to isomorphism relative to A by saying, in addition, that L

is the least set containing nil and closed under the Cons operation. Computations

on lists can be given by abstract algorithms which do not depend on the way that

the members of the underlying set A are specified or represented (be they numbers

or names, if they are specified at all) nor on the way that lists over A are actually

implemented. Examples of such are the operations of concatenation, reversal, length,

and term (at a given position); we can also test for equality of lists and being a

sublist. As a final example, we can define the Map functional which takes any f :
A -+ A and any member G of L and forms the result of replacing each term a of 8

by f(a).
The idea of A-streams is that of (possibly) infinitely proceeding sequences of ele-

ments of A. There are actually three notions to be considered here: (i) infinite streams,

(ii) finite terminating streams, and (iii) finite nonterminating streams. Those under

(ii) are just another form of finite lists. Those under (iii) arise naturally from both

mathematical computations and physical phenomena. An example of the former is pro-

vided by the process of filtering a given infinite stream according to some decision

function f, to form the substream of all elements a satisfying f(a) = 0, when we

do not know whether there are infinitely many such terms. An example of the lat-

ter is provided by signals from some extraterrestrial source, when we do not know

at any point whether or not there will be any further signals. Streams of kind (ii)

can also be subsumed under these, if we reserve a special element of A as a sig-

nal for termination. Altogether, then, these are called potentially injinite streams. An

appropriate structure for the injinite A-streams as an abstract data type is provided

by two domains A and S and total operations Cons : A x S + S, Head : S + A,

and Tail : S + S; in the case of potentially infinite streams Head must be taken

to be a partial operation satisfying some additional conditions. Note that equality of

streams is not decidable in the informal sense, and no test for it is included in the

basic structure. In order to characterize the infinite stream structure up to isomorphism,

we add a second-order functional Sim which associates with each f from the natural

numbers N into A an element Sim(f) of S whose nth term for each n is the same

as f(n) (so, Sim(f) simulates f as a stream). Without this, we could only ensure

the existence of eventually constant streams. For potentially infinite streams we do

the same, but now where Sim transforms any f defined up to a certain point into

an element of S whose nth term is defined just in case f(n) is defined, in which

case they are equal. Some operations we would expect to be able to obtain as ab-

stract algorithms on potentially infinite streams are the term at any given position

(if defined), the mesh of two streams, the map functional, and the general filtering

procedure.

S. Fefermani Annals of Pure and Applied Logic 81 (1996) 75-113 71

Our general theory of computation is thus designed to apply to many-sorted func-

tional structures

A’ = (Ao,Al,...,An,Fo,...,F,) (1)

where each Fj is an object of type level 62 over the Ai’S, i.e. where each of these

is either an individual in some Ai or a partial function or partial functional of type

level 2 of specified arity, and where we always take A0 to be the Boolean set {at, fs}.

For any given signature Z of such structures, the abstract computational procedures

(ACPs) of signature C are formal objects F of type level 62 generated by schemata

for explicit definition, conditional definition and least fixed point (UP) recursion from

initial Fj 0’ = 0,. .., m) of the specified arity in C. Each such F determines for each

structure d as in (1) an object F” of the same type as F, by means of the obvious

semantics. These F are abstract in the sense that whenever ~9 and d’ are isomorphic

then F” corresponds to F-“l’ under the given isomorphism. It is shown in the present

paper how the examples of operations on lists and streams indicated above fall out

as special cases of ACPs on the respective structures. Indeed, for both we derive

quite general distinctive principles of recursion which appear to cover all cases met in

practice. For the case of lists there is nothing surprising in this. But for the case of

streams, the prior accounts of computation schemata on streams of which I am aware

treat them within the framework of co-inductive definitions, which is quite special

to them (cf. [7, 14, 181 among others). Here, in contrast, computation on streams is

subsumed under a general theory of computation for arbitrary structures (1), once we

settle on an appropriate structure for them. Moreover, the prior work in the co-inductive

framework deals only with infinite or finite terminating streams, and it is by no means

obvious how to extend that approach to deal with computation on finite nonterminating

streams. (For comparison with other approaches, see the further discussion below in

this introduction.)

In outline, the contents of the present paper are as follows. Section 2 reviews the

basic functional notions and notation for many-sorted structures from [5], in which, as

in (l), we ignore any intensional equality relations on the basic domains. The schemata

for ACPs are introduced in Section 3; it is shown there that they preserve monotonicity

and are preserved under isomorphism. Section 4 deals with the relation of ACPs on a

structure &’ with that on a substructure 8 of d, i.e. for which the basic function(al)s

of ,?8 are the restriction to 5? of those in d in a suitable sense. It is shown that

for each ACP F, the function(a1) Fs is the restriction to 9? of F”. This natural (and

apparently novel) result proves to have a number of uses in the following. Still working

within the general theory, Section 5 deals with the notion of continuity of fimctionals,

and it is shown that this property is preserved by the schemata. Then in Section 6

we look at first-order structures, i.e. where all the initial Fj are either individuals

or (partial) functions on the basic domains. We automatically have continuity of the

ACPs for first-order structures, and it is also possible to eliminate one of the schemes

for such. Section 7 then takes up structures d which are represented in the natural

numbers, i.e. where each Ai is a subset of N. First it is shown for the structure

78 S. Feferman I Annals of Pure and Applied Logic 81 (1996) 75-113

JV” = (N, SC, Pd, O,Eqo), that the ACPs of type 1 over Jf are exactly the partial

recursive functions, and those of type 2 are all partial recursive functionals and they

are exactly the partial recursive functionals when applied to total function arguments,

but not necessarily when applied to partial function arguments; the reason for this last

is that our schemata admit sequential reduction procedures even on partial arguments,

and so such partial recursive functionals as the strong (parallel) OR are not obtainable

by them. A (not necessarily first-order) structure with basic sets Ai contained in N is

said to be partial recursive if each initial Fj is the restriction of some partial recursive

F,? on N; then the same holds for each ACP over d. All this is illustrated in Section

8 with the case of A-lists where the structures are as indicated above with two basic

domains A and L. These are first-order, and when A is contained in N, we can define

L as a subset of N and the operations Cons, Head, and Tail in a uniform way,

independent of A, so that the result is a partial recursive structure. Many examples are

given in Section 8 to show how various expected procedures on lists are obtainable as

A CPs.

We turn, finally, to streams in Section 9. That is devoted to foundational considera-

tions, in particular to demonstrating why it is insufficient to treat even infinite streams as

a first-order structure; the reason, simply, is that then the eventually constant streams

would form a substructure, and so we would not have closure under the recursion

schemata which are distinctive for streams. We then move on in that section to show

why it is useful to treat finite nonterminating streams as well as infinite ones. It turns

out that the simplest theory of computation for potentially infinite streams is obtained

if we allow completely partial or “gappy” streams. Then Section 10 gives a full de-

velopment of ACPs on partial-stream structures, showing how one derives very gen-

eral distinctive schemata which can then be specialized under certain conditions to

potentially infinite as well as infinite streams. Many examples of computational pro-

cedures are then given, including the ones indicated above. Section 11 is devoted to

a recursion-theoretic interpretation of ACPs on A-partial streams when A is contained

in N. Here the standard structure is obtained by taking the domain S to consist of all

partial functions from N into A, with the identity functional for Sim; this is a sub-

structure of the standard structure for N-partial streams, so it is sufficient to establish

a recursive interpretation for the latter. Since the objects of sort S in this are of type

level 1, and our schemata requires use of functionals of type level Q2 over the basic

domains, we need a recursive interpretation in type levels 6 3. This is provided by

a theory of partial recursion over hereditarily partial continuous functionals of arbi-

trary finite type due to ErSov [2], for which closure under the ACP schemata holds.

It follows that all our ACPs from streams to streams are partial recursive and, of

course, continuous. Moreover, the partial recursive streams form a substructure of the

standard structure, so ACPs on the former are simply the restriction of those on the

latter.

There are three Appendices. Appendix A concerns the relation of our schemata to

Moschovakis’ formal language of recursion (FLR) in his papers [15, 161; that is pro-

vided by a system of terms built by explicit definition, conditional definition and a

S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-l 13 19

single application of a form of simultaneous least fixed point (SLFP) recursion. A

proof that the schemata here yield the same class of procedures as FLR is sketched,

and there is a brief discussion of the comparative advantages of the two approaches.

Appendix B gives a comparison of the present approach with that of Tucker and

Zucker [21] for schemes of computation on stream algebras. In the same spirit as our

approach, the latter treats computation on streams as a special chapter in a general

theory; however, there are significant points of difference both as to the general ap-

proach and the special case. Some obvious relationships are indicated in the appendix;

beyond these there are some interesting open questions. Finally, Appendix C contains

some necessary corrections to the functional notions for computation on structures with

intensional equality relations in [5]. The point of dealing with the latter is that when

we finally come down to actual computation with data objects of one sort or another,

we must deal with them under some system of representation, and that may require

having many representations of the same object. In some cases (lists again provide

a paradigm example), we do not have to face this problem, since we can provide a

system of unique representations on which to carry out our computations; but that is

not possible if we want to compute on algebraic word structures given by a presen-

tation which does not have a decidable word problem or distinguished normal forms.

It is definitely not possible when we turn to work on streams or “infinite-precision”

real numbers (i.e. some form or other of Cauchy sequences of rational numbers with

moduli-of-convergence information). In each such case we have a natural equivalence

relation which our ACPs must respect; the aim of [5] was to show how this could

be done both abstractly and concretely. Unfortunately, the resulting generality led to

some confusions which need to be straightened out, both as to a few of the basic

definitions and as to the applications to computation on streams and reals indicated

there; for the definitions, that is done in Appendix C. What the present paper shows

is how far we can go in the case of streams with a purely extensional theory, where

no such confusions arise. But if we are to treat ACPs on infinite-precision reals, it is

necessary to return to the intensional theory; that is planned for a sequel to the present

paper.

To conclude this introduction I want, first, to say something briefly about how this

fits in as a chapter in generalized recursion theory (g.r.t.). The main precursor to the

approach here is to be found in the dissertation of Platek [191, which developed a

notion - over fairly arbitrary basic structures - of partial recursion in all finite types,

where the objects are hereditarily monotonic functionals, using schemata for explicit

and conditional definition and LFP recursion. That in turn provided an elegant new

treatment of recursion in finite types over N initiated in the remarkable fundamen-

tal paper by Kleene [9]. In any case, Platek showed in his dissertation that partial

recursion in objects of type level <2 can be carried out without going above that

level in the application of his schemata; that is one justification for the restriction to

those type levels here. The reason for the adjective ‘fairly arbitrary’ applied above to

Platek’s underlying sets is that he assumed a pairing structure for those, which in effect

allows building in recursion on the natural numbers. The approach here frees us of that

80 S. FefermanlAnnals of Pure and Applied Logic 81 (1996) 75-113

assumption and allows us further to treat computation on such structures as streams

and infinite precision reals in which pairing is not built in. 3

Finally, one may rightly ask how this work relates to that of the domain-theoretic

approach, both in general and for the specific case of streams. As to the general ap-

proach, there is a vast literature to which initial pointers can be found in the chapters

by Mosses and by Scott and Gunter in the handbook [22], as well as in the refer-

ences to the text by Winskel [24] - a literature of which (to be frank) I am largely

ignorant. However, one central point of difference stands out: there, LFP is applied

only to continuous monotonic functions on CPOs. That restriction excludes application

to structures containing discontinuous functionals. There have been extensive develop-

ments in g.r.t. of computation on such, beginning with the demonstration by Kleene

[9] of the significance for definability theory of computation relative to the type 2

functional 3”, for existential quantification over N. What Platek brought out in his

dissertation is that monotonicity suffices for a g_r.t. based on the LFP scheme, and

thus is applicable both to suitable discontinuous mnctionals and continuous ones.

As to the domain-theoretic treatment of streams, I understand from Gordon Plotkin

that considerable work has been done since the early 70s by Broy, Kahn, MacQueen,

Park and others on potentially infinite streams. An indication of how such may be

treated as a domain can be

well be a translation from

ACPs in the present case.

found in Winskel [24, Sections 8.2 and 12.11. There may

the results of the domain-theoretic approach to those of

2. Functional notions and notations

The following notations are relevant to any finite sequence of nonempty sets A =

(Ao, . . . , A,). The letters a, b, c, u, v, w,x, y, z range over individuals in A&J. . .lJA,, as well

as over finite sequences of such, as in x = (xi,. . . ,xy). The letters i,j, k, e range over --
the set (0,. . . , n} of sort indices; x is said to be sort i if x E A;. Then ?,J, k, t, are used

to range over finite - possibly empty - sequences of sort indices. For i = (il,. . . , iv)
with&(i)=v>l,takeA,=Ai, x... x Ai,,; when v = 0 we may identify A; with a

one-element set. For simplicity of notation, we do not use corresponding overbars to

indicate finite sequences x of individuals but rely on contexts such as x E AT instead

to avoid ambiguity.

If t is a possibly undefined expression for an individual (of some sort i) we write

t J, if t is defined and t t otherwise; tl = t2 is written only when both tlJ and t2 _1 and

their values are equal; tl N tz means (tl 1 Vt2 I + tl = t2).

For any two sets B and C, we write f : B 1 C if f is a partial function from B to

C; as usual, f : B + C means that f is total from B to C.

3 Arguments for that step and for not treating higher types as the means for developing a g.r.t., but rather
as one case to which g.r.t. is to be applied, were made in [3].

S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113 81

Relative to any given A = (40,. . . , A,,), the letters cp, $, x, 6 are used to range over

partial functions from some A; into an Ai, where e/z(i) > 1. By a type symbol of level

one is meant a formal combination i z j where /h(i) 2 1; the letters C, r are used to

range over such type symbols. Then for (T = (i 2; j) we take A, = (q 1 q : Ai 1 Aj}.

For cp, II/ partial functions of the same type, cp s $ means that cp is a subfunction of

II/. Given a sequence 0 = (al,. . . , 0,‘) of type symbols, take A, = A,, x . . . x A,,,;

again this is identified with a one-element set if [h(V) = 0. Typical elements of A,

are cp = (cpl,...,cp,) with (Pk E A,,; then for cp, $ E AT, cp G $ is defined by C& C $,,

for each k. Once more, for simplicity of notation, we do not use overbars to indicate

finite sequences of partial functions but rely instead on context to avoid ambiguity.

Functionals of type level two are partial maps from some A, x A; to some A_/

where dh(Tj) > 0; we use F, G, H to range over such, as in F : A, x Ai 1 Ai. When

cp = ((PI,...? qr) and x = (x1,..., xv), F(cp,x) is written for F(ql,..., qr, x1,. ..,xy).

If 1 = 0 and v > 0, F is identified with an element of Ai 1 Ai, i.e. it is a partial

mnction of type level one, and we write F(x) in this case. Finally, when p = v = 0,

F is identified with an element c of Aj.

Given F : A, x AT 1 Aj of type level two, F is said to be A-monotonic if

Note that this condition is vacuously satisfied if [h(o) = 0, i.e. if F reduces to a

partial function or an individual. Under certain combinations of types, each level two

monotonic F has a least fixed point associated with it, as follows. The simplest case

is that of a functional F : A, x 47 1 Ai, where 0 = (i 2 j). Then F induces the

total map p : A, + A, given by F = &pI.x.F(qo,x). If F is monotonic so is F in the

ordinary sense that Vq, $ E A,[cp C_ $ + F(q) & F($)]. Then the least fixed point of

p, LFP(@ is determined as usual by:

(i) UP(F) = U, qfa) (= q’“‘) where

(ii) q(u) = Ua<.&@)) for each ordinal CI.
(2)

(It is understood here that q(O) is the empty function.) More generally, we shall deal

with least fixed points relative to function and individual parameters as follows. Suppose

0 = (fzr~,...,e~), i = (il ,...,i,), k= (kl ,...,k,,j) and z = (k;j); we write (a,~) for

(OI,..., oP,z) and (T,k) for the concatenation of i and k. Thus an F : A(,,) xACZzl -2 Aj

induces FV,, : A, -+ A, for each cp E A,, x E A,, by

and @ ,+,X has an LFP when F is monotonic. More perspicuously,

LFP (F+,X) = (I/ where $ is least with J/(v) 21 F(q, $,x, y) for all y E A, . (4)

82 S. FefermanlAnnals of Pure and Applied Logic 81 (1996) 75-113

3. Schemata for computational procedures on many-sorted functional structures

Here we deal with structures of the form

d = (AO,Al,...AFO ,... ,Fm) (1)

where

Ao=~={d;ff) (2)

is the Boolean sort (with ft # ff), and each Fk is an object of type level 62 over
A = (As ,..., A,), i.e.

Fk : A, X A:; 1 Ajk (L’h(i&)~O and &&)>O for k = O,...,m) . (3)

Thus Fk is of type level 2, 1, or 0, according as eh(&) > 0, &(&) = 0 & /A(&) > 0,
or eh(&) = &(ik) = 0 (as explained in Section 2). It is further assumed that

each F’k of type level 2 is A-monotonic, (4)

the constants t and ff are among the Fk’s . (5)

By the signature c for such & iS meant the pair (n, (&,$,jk)kQm). With each c
are associated the following formal schemata for computation procedures on structures

of signature C.
I. (Initial function(al)s) F(q,x) = Fk(rp,x) (k = O,...,m),

II. (Identity functions) F(x) = x,

III. (Application functionals) F(cp,x) N q(x),

IV. (Conditional definition) F(cp,x, b) N [if b = tt then G(rp,x) else H(cp,x)] ,

V. (Structural)

VI. (Individual substitution) F(cp,x) II G(rp,x,H(q,x)),

VII. (Function substitution) F(cp, x) N G(rp, jZy.H(cp, x, y), x) ,

VIII. (Least fixed point)

In each of these schemata, the conditions to be met on the types of the arguments and
sorts of the values should be fairly evident. We note only that in I, F is supposed to be
of type zk x ik 2 jk, to accord with Z:; in IV, b is a Boolean (sort 0) variable; in the
structural scheme V, f : {l,..., ,u’} + {I ,..., p}, g : {l,..., v’} + {l,..., v} and the
scheme itself abbreviates F(ql,..., q+,x~ ,..., x,) N G(cp~-(l) ,..., cpf(p~),~g(l) ,..., x~(~!)),
thus accounting for expansion, identification and permutation of arguments; finally,

S. FefermanIAnnals of Pure and Applied Logic 81 (1996) 75-113 83

in the LFP scheme VIII, G is supposed to be of a type (77,~) x (;,k) 7 j where

r = (k =+ j).

With each structure d (satisfying (l)-(5)) of signature C and each F generated

by these schemata is associated Fd on A of the same type as F in the obvious way;

again, this may be of type level 2, 1, or 0. (Only the interpretation of the scheme for

conditional definition is subject to ambiguity; this is to be understood in the strong

sense that F&(cp,x,tt) 2: Gd(cp,x) and Fd(cp,x,ff) E H&(go,x).) In order for the

LFP scheme to make sense it must be verified that the Fd associated with F is A-

monotonic. This is proved by induction on the schemata: it holds by assumption (4)

for the scheme I, is immediate for the schemata II and III, and is easily verified to

hold for F if it holds for G and H in the schemata III-VII. Finally, if it holds for G

it holds for F in VIII as a result of the following.

Lemma. Suppose G : &I x A(;,i, 2 Aj is A-monotonic, where z = (k 1 j). Then

for F(cp,x,y) 21 [LFP (n~~.G(cp,Il/,x,z))](y), we have that F is A-monotonic.

Proof. Using the notation of (3) of Section 2,

F(cp,x,.~) = P’P (&x~I(~h where &,,, = Qh.z.G(cp,IC/,x,z).

By monotonicity of G, the functionals z,, : A, -+ A, are monotonic in the usual sense.

Then by definition, LFP(6q,x)=lJ,~,*? where I&) is the empty function and for c(> 0,

6:. = UB<,e.,($&P?). N ow suppose that cp 2 8. We prove by induction on a that

$$cc c +;,:“I’; . if this holds for each p < a then ~,,(I&$) c 6,&i&“,‘) c &J$$_‘) for

each such /?, so it holds for a. (The second of these inclusions is by monotonicity of G

in the parameter cp.) Hence LFP(g,,) C LFP (&,), which establishes monotonicity

OfF. cl

Suppose d and d’ are isomorphic structures of signature C, given by a pair (h, h’)
of sequences of l-l functions h = (ho, h,),h’=(hh ,.._, hL)withhj:Ai-+A[,hi:
Ai --+ Ai inverse to each other. Then it is proved by a straightforward induction on the

F generated by the schemata that Fd and F”’ correspond to each other under (h, h’).

For the LFP scheme this can be proved by a subsidiary transfinite induction on the

approximations to the least fixed point, or directly by using its “leastness” property.

Thus the schemata are invariant under isomorphism, and this justifies calling the F’s
abstract computation procedures. For this reason we denote by ACP(C) the collection

of all F’s generated by the schemata for signature C. Then for any particular A! of

signature Cd, we take ACP(&) to be the collection of all Fd for F E ACP(C.d)), and

say that F is an ACP over LZ? if F = Fd for some such F.

4. The substructure theorem

Given A = (Ao,. . . ,A,) and B = (Bo,. . . , B,) with Bo = A,J = El, we write B &A

if each BiCAi. For i = (io,..., i,) and x E A;, we say x is in B if x E B?. Then for

84 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

cp E A, with cr = (; 1 j), write cp 1 B for the function Lx E B;.cp(x). This need not
belong to B,; if it does, we say that B is closed under q, Equivalently that holds if

for all x in B, q(x)1 * q(x) in B- (1)

By direction extension, B is said to be closed under cp = (cpi, . . . , qr) if it is closed
under each cpk(k = 1,. . . , p), and we write cp 1 B for (cpi r B, . . . , cp,, / B). Now for
F : A, x A; 2 Aj, write F 1 B for the functional M E B&X E BT.F(e,x). We say that
B is closed under F if

for all cp and x, B closed under cp and x in B and F(cp,x) j, + F(q,x) in B

and F(q t&x) = F(w) (2)

This implies that F tB : B? x B7 2; Bj, but the converse does not necessarily hold.
Suppose now that LZZ = (Ao,. . . ,A,,Fo,. . . , F,) meets the conditions of Section 3.

We say that B = (Bo,..., B,) determines a substructure of d if Bo = A0 = lE8 and
B g A and for each k = 0,. . . , m, B is closed under Fk.

Theorem 1 (Substructure Theorem). Suppose B determines a substructure of d. Then
for each ACP F and for F = Fd we have:

B is closed under F.

Proof. This proceeds by induction on the schemata for ACPs. By hypothesis it is
immediate for the scheme I, and it is straightforward for the schemata II-V. The
substitution schemata VI-VII require only a little more attention, as follows. Suppose
B is closed under G, H where G = G&, H = H”. In the scheme VI,

F(cp,x) = G(cp,x,H(cp,x)). (1’)

To show B is closed under F, suppose it is closed under cp and that x is in B. Then
H(cp,x) is in B so G(q,x,H(cp,x)) is in B. Also, F(cp tB,x) N G(cp rB,x,H(q /B,x)) 2:
G(cp rB,x,H(cp,x)) N G(cp,x,H(cp,x)) by hypothesis. In the scheme VII,

F(cp,x) = G(cp, dy.H(cp,x, y),x). (2’)

Again, suppose B is closed under cp and that x is in B. Then for each y in B, H(cp,x, y)
is in B, when defined. Hence B is closed under J/ = ly_ZY(cp,x, y) so G(cp, +,x) is in
B, when defined. Also,

F(cp t&x)--G(cp t& lyflH(cp tB,x,y),x)

= G(cp t& ly.H(cp tB,x,y) t&x)

- G(rp t& ~yJ-l(cp,x,y) t&x)

2 G(cp, ~~Jl(cp,x, Y),x) (3’)

whenever B is closed under cp and x is in B.

S. Feferman I Annals of Pure and Applied Logic 81 (1996) 75-113 85

To conclude the proof we now turn to the LFP scheme VIII. Here B is assumed to

be closed under G where G = G&,

F(cp>x,y) = LFP(I~iu.G(cp,rl/,x,u)>(~>.

Writing G,, for nlC/ Ly.G(cp, II/,x, y) as before, we have

F(cp,x, Y> = vk&y) where &,x = U d&! and each
c(

(4’)

(5’)

i.e.

@?(Y) 2 .z @ 38 < a [G (cP,$$,x,Y) 21 z] . (6’)

Now suppose that B is closed under cp and that x is in B. Then we prove by induction

on a that B is closed under I&$. If this is true for each fi < CI then for y in B,

G(cp, &‘: , ,x,y) is in B by hypothesis on G, so I,@;(Y) is in B by (6’). Thus B is

closed under I,!+,~ and so F(cp,x,y) is in B (when defined) by (5’). Finally, to show

F(cp rB,x, y) = F(cp,x, Y)

for cp closed under B and x, y in B, we show by induction on 01 that

I$$ Jy) N $(“)(y) for each y in B cp.x 3

and hence

I& tB = $@) tB RX . 0

(7’)

(8’)

(9’)

By examination of this proof we also obtain:

Corollary. Suppose B determines a substructure of ~4 = (Ao, . . . ,A,,, Fo, . . . , F,,,). Let

33 = (Bo ,..., B,,Fo tB ,..., F,,, IB); then for each ACP F and F = Fd we have

F tB = Fg.

In other words, the interpretation of F in W is the restriction to B of its interpretation

in _zl.

5. Continuity

Suppose d = (Ao,A,,. . .,A,,,Fo,. . . , F,,,) satisfies the conditions of Section 3. A

functional F on A = (Ao,. . . , A,) of type level 2 is said to be continuous if

whenever F(cp,x) N y there exists finite @ C cp such that F(@,x) N y. (1)

For F of type level < 1, F is automatically continuous.

86 S. Feferman I Annals of Pure and Applied Logic 81 (1996) 75-113

Theorem 2. If each Fk in d is continuous then for each ACP F, the functional F”I
is continuous.

Proof (By induction on the generation of F). Only the schemata VII and VIII require

any special attention. Suppose G = G&/, H = H” and that F = Fd where F is

obtained from G, H by VII, i.e.

F(cp,x) = G(cp,iyfl(~x, Y)P) . (1’)

Let Ic/ = Ay.H((p,x, y). If F_((cp,x) N z then there exist finite @(‘I g cp, Ic/ g $ with

G(Cp(‘), 4,~) N z. Let dom(lC/) = {y(t), . . . , y(P)}. For each i = 1,. . . , p, there exists

finite G(‘) C cp with H(@(‘),x,_y(‘)) N $(y(‘)). Let (p = @co) U . . . U @‘). Then by

monotonicity, H(@,x, y(‘)) N +(y(‘)) for each i = 1,. . . , p, i.e. $ s ly.H(&x, y). Hence

again by monotonicity G(Cp, Ry.H(@,x, y),x) pv z, so F&x) N z. Now for the scheme

VIII, where

F(w,Y) = [LFP(a~~u.G(cp,~,x,u))l(~) = W@p,x)l(~)

we first show that

(2’)

F(cp,x> Y) = Icl$? (3’)

where &$ = UB,,G&t@~). Th’ 1s is by the usual argument to show that

G,,X(k$,wx’) c_ @2. (4’)

For if G(co,+fi ,x, y) 21 z, there are finite 5 C cp and 4 C I&$> with G(@, $,x, y) N z.

Then II/g I@; for some n, so G(cp,&,"~,x, y) 21 z, i.e. t,@~“(y) N z and, finally,

&$(Y) = z. Hence Y& (w) is the LFP of’G,,.

It remains to show that F is continuous. We prove by induction on n that for each

y there is a finite (p C cp with

rc/‘“’ (Y) N Ii/(“)(Y) 3 .

For n 1 Ib, this is’ivial, since +(‘)

(5’)

‘p,X is empty by definition. Suppose for n. Then

If this is defined and its value is z, then by continuity of G there exist finite @co) and $

with s(O) C cp, 5 C &$ and G(@(O),$,x,y) cz z. Let dam($) = {y(l),. . .,ycp)}. By in-

duction hypothesis, for each i we can find finite S(i) s q with $$,X(y(i)) N_ $,$‘$y(‘)) N

$(y(‘)), for ea_ch i = 1,. . . , p. Let (p = @co) U ijjz) U . . . U @i(P). By monctonicity, also

$$‘,(y(‘)) N $(y(‘)) for each i = 1,. . .,p so tj c $5:. From G(Cp('),II/,x, y) N z it

follows that G(@, t,&$,y,x, y) N z, so J:” ’ (y) N z. This completes the inductive step.

Now, finally, if F(q,x,y) N z then ~,$$?(y) N z so for some n, 1,$2(y) N z. Then by

what has just been proved there exists finite (p C cp with @i(y) N z, hence Il/gj(y) N

z and F(@,x, y) N z. Thus F is indeed continuous. I7

S. FefermanIAnnals of Pure and Applied Logic 81 (1996) 75-113 87

6. Computation procedures on first-order structures

The signature C = (n, (iYk,&, jk)k Qm) is said to be first-order if &(Zk) = 0 for each

k < m. Structures ~22 = (Ao, . . . , A,,Fo,. . . , F,,,) of signature C are then first-order in the

sense that each Fk is of type level d 1, i.e. is a specified partial function or a constant.

In this case they are vacuously monotonic, so each ACP over d is monotonic by

Section 3. There is a useful simplification that can be made in the ACP schemata

for first-order C, namely, we can omit the scheme VII for function substitution. Write

ACPo for ACP minus scheme VII.

Theorem 3. Zf C is first order then ACPo(C) is closed under scheme VIZ.

Proof. Consider d of signature C. We prove the required closure condition in a

more general form, as follows. Suppose F E ACPo(Z), F of type 0 x i 1 j,is =

cm,... , op), with arguments (cp,x) or (cpt, . . . , (pp,x) for cp = (cpi, . . . , cpp). Suppose

also that HI,. . . , H, E ACP,(C), where Hk has arguments ((p,x, yck)) for k = 1,. . . , p.

Then the functional F* given by the scheme

F*(cp,x) N F(~y(‘)H,(cp,x,y(‘)),.. .,~y(~)H,(cp,x,y(~)),x)

is also in ACPo(C). This is proved by a straightforward induction on F, for arbitrary

HI,... ,H,. The more general statement is needed for F introduced by the structural

scheme V. It is trivially satisfied for the scheme I, since the initial Fk have no function

arguments in a first-order signature. 0

Theorem 4. If C is jirst-order and d is of signature C then F& is continuous for
each ACP F.

Proof. This is a corollary of Theorem 2 in the preceding section, since each

initial Fk is vacuously continuous in the case of first-order d. Note that by Theo-

rem 3, in the case of first-order structures the proof of Theorem 2 can be simplified,

so that the essential point is only to verify that LFP preserves continuity, as shown

there. 0

7. Computation on structures in the natural numbers

Consider, first, the ur-structure for recursion theory,

J = (N,Sc,Pd,O,Eq~) (1)

where k4 is the set of natural numbers with SC(X) = x’ = x + 1, Pd(x) = x T 1 and

Eqo(x) = (if x = 0 then 0 else 1). Here we identify B with (0, 1) and 8 with 0, ff
with 1. Let Z,M= the signature of M; this is first-order.

88 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

Theorem 5.
(i) The functions of type level 1 in ACP(.M) are exactly the partial recursive

functions.

(ii) The functionals of type level 2 in ACP(N) are coextensive with the partial
recursive functionals when restricted to total function arguments.

(iii) Every functional of type level 2 in ACP(M) is partial recursive on partial

function arguments but not conversely.

Proof (Sketch).
1. First show the forward implications in (iHiii) by associating with each F in

ACPo(Cx) a system of equations defining FM in the Herbrand-Gtidel-KIeene

equation calculus. For type 2 F(q,x), these derivations at any specific partial

function arguments cp = (cpi,. . . , (pp) and numerals for x = (xl,. . . ,xy) are made

from the equations for F” together with the formal diagrams for

the pk.

2. To show that every partial recursive function f is in ACP(.N), use the Kleene

normal form representation,

f(x1,..-5 x,) = U(~y.T,(e,xl,...,x,,y))

for suitable e, with U, T,, primitive recursive. Closure of ACPo (N) under the scheme

of primitive recursion and under the p operator are both obtained as usual by the

LFP scheme.

3. To show that every partial recursive functional F(cp, x1, . . . ,xn) of total arguments cp

is in ACP(M), use Kleene [8, p. 3301,

F(cp,xl,..., 4 21 u(~Ly.T~(e,xI,...,x,,Y))

with T,” primitive recursive uniformly in cp, hence in ACPo(.N).
4. As noted by Platek [19], an example of a partial recursive functional of partial

arguments which is not obtainable by his LFP schemata is the strong (parallel) or

functional OR+ (also denoted SO) given by

OR+(cpl, qp2) 2(0 M (PI(O) N 0 or ~(0) pu 0;

ORi is undefined otherwise. The functional OR+ is nondeterministic, while all FN
obtained in ACPo(N) can be computed by a deterministic (sequential) reduction

procedure as shown by Platek [19]. (Related procedures are to be found in [23, 13,

p. 386; 161.) 0

Remark. It has been shown by Sazonov [20] that the partial recursive functionals of

partial function arguments are just those obtained from schemata like ACPo (N) when

OR+ is added. It is of course an option to include OR+ as a basic functional with N,

for that purpose.

S. Fefermani Annals of Pure and Applied Logic 81 (1996) 75-113 89

By a partial recursive structure in FU is meant one of the form

(i) d = (As,At ,..., A,,Fa ,..., F,), where

(ii) each Ai 5. N, As = B = (0, l}, and

(iii) each Fk is the restriction to A = (As,Al,...,A,)

of a partial recursive function(a1) FF on kJ

under which A is closed in the sense of Section 4.2.

(2)

Note that since each type 2 Fi is monotonic on arbitrary partial function arguments,

its restriction Fk to A is monotonic on partial functions whose arguments and values

lie in A.

Theorem 6. Suppose S is a partial recursive structure in N of signature C. Then

for each F in ACP(Z) and for F = Fd we have that F is the restriction to d of a

partial recursive functional F*, and F is continuous.

Proof. Note that d satisfying (2) can be considered to be a substructure of

Jf* = (B,N ,..., N,F; ,..., F;)

of signature C. Then by the Substructure Theorem (Theorem 2 of Section 4), F is the

restriction of F* = F”* to d. Now by an extension of the argument 1 for Theorem

S(iii), we show (by induction on F) that F* is equationally definable, hence is a partial

recursive fimction(a1). Then F’ is continuous, so its restriction to _c$ is continuous.

q

This result provides another version of the theorem in Section 11 of [5], which

was interpreted as telling us how computation on ADTs could, in suitable cases, be

interpreted as ordinary computation (in the sense of recursion theory). If the ADT

K is strict (i.e., K is an isomorphism type) and contains a partial recursive structure

d on N, then abstract computational procedures on any structure of K transfer under

isomorphism to partial recursive timction(al)s on the “implementation” or “realization”

of K via d in N.

Most examples of abstract data types K which contain partial recursive structures

are those whose domains are generated by finitely many finitary operations, or are

obtained from such by restriction, such as lists, finite sets, finite trees, records, etc.

When treated as relative ADTs, such as lists-of-A’s, the elements of the domains to

which they are relativized need not be finitary, but can still lead to partial recursive

structures. Thus if A = {ao,al,. . . ,a,, . . .} IS an countable set, we can realize lists-of- y
A’s as a partial recursive structure, no matter how A is identified as a subset of N;

this will be demonstrated in the next section. For example, A might be a countable set

of functions or other set-theoretical objects, or A might be a nonrecursive subset of N,

such as the set of Giidel numbers of total recursive functions, or the set of constructive

ordinal notations. That is why no restriction was made on the Ai’S in the definition

above of partial recursive structures other than that they be subsets of kJ.

90 S. FefermanlAnnals of Pure and Applied Logic 81 (1996) 75-113

8. Computation on list structures

The case of abstract computational procedures on (relativized) list structures is
paradigmatic for finitary data types in many respects, and is useful for comparison
with computation on infinitary data types, of which streams form the main example in
this paper.

There are actually several kinds of data types to be considered, depending on whether
the sets A from which we are forming lists come with additional structure or not, and
also whether list computations may take natural number arguments and values (e.g., the
term and length functions). We begin with the core case: let LIST be the collection
of all structures

2 = (A, L, Cons, Hd, Tl, nil, Eq,i/) where

(i) A # 4~

(ii) Cons : A x L -+ L, Hd : L - {nil} + A,

Tl : L - {niZ} + L, nil E L, Eqnil : L -+ B,

(iii) Vx E L[x = nil @ Eq,il(x) = t]

(iv) Vu E AV’e E L[Cons(a,d) # nil and Hd(Cons(a,k)) = a and

Te(Cons(a, d)) = e]

(v) VX C L[niZ E X and Cons : A x X --t X + X = L].

(1)

These are evidently first-order structures. In (1), L is thought of as the A-lists, nil as
the empty list, and “Cons”, “Hd” and “Te” abbreviate the usual cons, head and tail
operations. Condition (v) is the basis of proof by induction on L and thence defini-
tion by recursion (cf. Theorem 7 below). Note that we have suppressed the Boolean
part (B, t, ff) of 9; this is assumed to be implicitly given here and throughout the
following.

The core structures _Y may be augmented by some new basic domains and/or new
basic (monotonic) function(al)s or distinguished elements. For example, with JV =
(fV, SC, Pd, O,Eqo), we write (9, JV) for the structure 2 augmented by the set N, the
operations SC, Pd, Eqo and the element 0. In general (possibly) expanded structures
are indicated by _Y+ = (9,. . .). In all cases, Y is supposed to satisfy the conditions
in (1) above. The basic scheme for recursive definition on any such structure is given
by the following.

Theorem 7. Suppose 2’+ = (3,. . .) with 9 E LIST us in (1) and that C is a
subset of one of the basic sets in 2 +. Suppose also that G,H are ACPs over 9+
with G E C and H : A x L x C + C. Then we can find an ACP F over Y+
satisfying

(i) F : L --) C
(ii) F(niZ) = G, and

S. FefermanlAnnals of Pure and Applied Logic 81 (1996) 75-113 91

(iii) F(Cons(a,b’)) = H(a,e,F(/)) for each e E L.

Moreover, the same holds uniformly in any parameters q,x.

Proof. Simply take F to be the LFP $ of

I++([) 21 [if e = nil then G else H(Hd(e), Z’Q&), +(TQQ)].

Then (i)-(iii) are proved by induction on L’. 0

Corollary . If 9’ = (A’, L’, Cons’, Hd’, Te’, nil’, Eqnip) satisfies the conditions (1)(i)-

(v), and if Z : A g A’ then F : B ST _Y’, where

(i) F(nil) = nil’, and

(ii) F(Cons(a, e)) = Cons’(Z(a), F(l)).

Given A, now write Y(A) for any structure of the form (1) and LIST(A) for all

such structures; this is a strict ADT. We show next how to produce a partial recursive

structure in LIST(A) uniformly for all A 2 N. Namely, let P be a (primitive) recursive

pairing operation on the natural numbers, with inverses PI and P2 and with 0 not in

its range.

(i) P : IV2 --+ N - {0},

(ii) Pl(P(n, m)) = n and P,(P(n,m)) = m

Further identify B with (0, l}, lt with 0 and ff with 1, and take

Eqo = In.[if n = 0 then 0 else 11.

Finally, given A C N, let

L(A)=nXGN[O&Y and Vu E Ab’x E X(P(a,x) E X)].

Then

(2)

(3)

(4)

GW4,P tA x WM’I t&A) - {O)J’2 tW) - {O),O, Qo rW)) (5)

is a partial recursive structure in LIST(A).
We turn now to abstract computational procedures on list structures in general. For

greater perspicuity, we write (a; l) for Cons(a,/) in the following. First, working

simply on the core structure 9, we obtain operations for concatenation, one-termed

lists and reversal as follows:

(i) Concat : L x L + L is given as follows, where we write e+/’

for Concat(l, J’) : nil&’ = 8’ and (a; l)*/’ = (a; L&J. (6)

(ii) One : A -+ L, for which we write One(a) = (a), is given by (a) = (a; nil).

(iii) Rev : L + L is given by Rev(nil)=nil and Rev((a;/))=Rev(&(a).

92 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

We can now write (a)& for (a; e) or Cons(a, l). The Map functional, which sends

A-lists pointwise into A-lists via any given cp, is provided by

Map:(A+A)xL+L, where (7)

Map(cp,niZ) = nil and Map(q, (a)+{) = (cp(a))+Map(cp,Q.

This can obviously be generalized to Map : (A + A’) x L --f L’ in expanded structures

(2, 2’). Other interesting ACPs defined by recursions of the form given by Theorem

7 with function parameters are: (i) FiZter(cp, e) which, for rp : A + B, forms the sublist

of all terms a in e such that q(a) = ti; (ii) RepZ(cp, t+b, 8) which, for cp : A + El, I,$:

A + A, forms the list obtained by replacing each term a in e satisfying q(a) = it

by $(a); and (iii) DeZ(cp,e) which, again for q : A + B, forms the sublist of e

obtained by deleting all terms a with q(a) = it. For example, for the first of these we

have:

FiZter:(A-+B)xL+L isgivenby

FiZter(rp,niZ) = niZ and (8)

FiZter(rp, (a)+!) = (if q(a) = t then (a)* FiZter (cp,e) else Filter (cp,l)).

Turning now to the expansion (2, N) of the core list structure _Y by the natural

number structure .N, we can define the length function by

Lh :L + N, where (9)

Lh(niZ) = 0 and Lh((a)+e) = Lb(L) + 1 .

To define the term in position n of a list L’ for n < LIZ(~) - which is a partial function
_ we return to the LFP scheme:

Tm:NxLsA, where

Tm(n,d) N {if e = nil then U(0) else (10)

[if n = 0 then Hd(L’) else Tm(n - l,T8(/))]},

where U : N -G A is the nowhere defined function (obtained, e.g., as the LFP of

U(k) 21 U(k + 1)). In order to make Tm total, we would have to choose some ad hoc

element a0 E A as value for Tm(n,Q when n >Lh(l). In any case, (10) does not fall

under Theorem 7 since the parameter n is varied in the recursion on L’. Alternatively,

(10) can be considered as given by recursion on n with the parameter e varied. Related

operations obtained in either of these ways are: (i) DeZ(n,e) which deletes Tm(n,f)

from 8, and (ii) Ins(b,n, /) which inserts an element b of A in L following Tm(n,f).

We shall not spell out these recursions. From now on we write (e), for Tm(n,l) when

n < Lh(/), so (& = Hd(L) when e # nil. Also we write 8’ for T/(e), so that

(L), = (.P)+i when 0 < n < LA(e).

S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113 93

The general scheme analogous to that for Theorem 7 for recursion on lists 6 in

which given parameters x may be varied is as follows:

F(x,e) N { if G = nil then G(x) else H(x,e,F(K(x),C))}

where x’ = K(x) is of the same arity as x.

(11)

More generally, we may vary function parameters as well. The proof that such F is

total when G, H are total on suitable sets proceeds by induction on LIZ(/). Another

interesting example of such recursive definition with varied parameters is provided by

the test for equality on A-lists. This requires augmenting 9 by a test for equality

EqA : A x A + B on A, i.e. such that EqA(a,a’) = t ej u = a’. Then we take

EqL(t’,L’) 21 [if e = nil then Eq,u(t’) else
(12)

where 7 : B --f B and A : [EB x B -+ B are the usual Boolean operations of nega-

tion and conjunction. Then EqL : L x L + B by induction on Lb(t) and we have

EqL(d,t’) = lt ti Lb(L) = Lh(d’) & Vn < Lh(t)[EqA((t),,(t’),) = t]. More gener-

ally, any “decidable” relation p : A x A -+ B on A can be extended pointwise to lists

uniformly by

I?.+, d, e’) 2~ [if G = nil then Eq,il(t’) else

+nil(e’) A P((& V’)o) A WP, e-9 (f)-)I. (13)

To treat sorting on lists as an ACP, we need to augment A by a less-than relation on

A, LessA : A x A -+ B. Then any of the usual sorting procedures such as bubble-sort,

merge-sort, quick-sort, etc., can be turned into an ACP over 9(A) with LessA. Again,

more generally, each of these can be considered as obtained uniformly from a relation

p:AxA+B.

Each of the abstract computational procedures considered here determines a partial

recursive fImction(a1) when specialized to partial recursive list structures. Moreover,

they are obtained uniformly from the operations P,Pl,Pz and Eqo of (2), (3) above.

Thus they may be considered as polymorphic operations on partial recursive list struc-

tures. Another way of looking at this uniformity is through the substructure theorem,

with each substructure 2’(A) in (5) considered as a substructure of

=mJ) = 6% M NP,P1,P2,Wqo). (14)

Then for each ACP F and each A C N, the restriction of the partial recursive fiurc-

tion(a1) FYcN) to 9(A) is co-extensive with FY(A). The same applies to the ACPs

for the various augmented structures considered above.

Remark

1. Abstract data types and computation on them are supposed to be independent of their

implementation; but some forms of implementation are more suitable for efficiency

of operations than others. For example, in the case of lists, the operations of deletion

94 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

and insertion at a given position in a list are much more efficiently performed if

these are implemented as linked lists rather than as arrays. In a linked A-list, each

item is at a given location in “memory” and consists of a member a of A together

with a “pointer” to another memory location. For these an appropriate ADT would

contain besides A,L also a domain M interpreted as the memory locations.

2. There is a sense in which one can compose ADTs. For example we can substitute

for the domain A in lists-of-As the domain lists-of-& so that the L in Z(A) is

interpreted as lists-of-lists-of-&. An example of an operation which can be defined

on this composed structure is Fluften, which takes a list-of-lists-of-& into lists of Bs

in the usual way. We shall not try to develop the formation of composed structures as

a general notion here. It should be clear how the result of any particular composition

of structures can be treated as a new structure to which the notion of ACP is then

appropriately applied. Note that the special case lists-of-list works out nicely in the

partial recursive interpretation (5) simply by taking A = L(B) as defined in (4), and

we can use the same operations in 9(A) as in L?(B).

9. Foundations of computation on stream structures

In the framework of computation on ADTs, streams over a set A are to be treated

as a basic set S in a suitable structure Y analogous to that for A-lists. Intuitively, an

A-stream is an infinite sequence s = (so,. . . ,s,, . . .) of members of A, or a potentially

infinite sequence of such, in a sense to be explained below. Thus, though the standard

interpretation of S consists of second-order objects, in the present approach they are to

be treated as jirst-order objects in Y. On the other hand, as we shall now argue, it is

insufficient for the intended applications to construe Y itself as a first-order structure

in the sense of Section 6; that is, Y will have to include a functional of type level 2

among its basic Fk.

If we try to treat the structures for infinite streams as being first-order in the sense

of Section 6, the obvious form for these to take would be as follows (where we use

the superscript “1” to distinguish these from second-order structures):

(i) P’(l) = (A S Cons Hd T/) where

(ii) A # g5 ’ ’ ’ ’

(iii) Cons : A x S -+ S, Hd : S + A, Te : S + S
(iv) Va E A Vs E S[Hd (Cons(a,s)) = a and TQCons(a,s)) = s] .

(1)

The main point against this is that these (and similar) conditions do not uniquely

determine Y(l) up to isomorphism, given A. Two nonisomorphic structures are obtained

by interpreting S in the first instance to be the set (RJ + A) of all functions from

N to A, and in the second instance to be the subset (IV;-A) = {f E N -+ A 1

3nVm 2 n(f(m> = f(n))) f o eventually constant functions. In both cases we take

Cons(a,f) = In.[if n = 0 then a else f(n - l)],Hd(f) = f(0) and 7’/(f) = h.f(n +

S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113 95

l), for f : N 4 A. The first-order structure (1) with S = (N -+ A) is denoted 9’gLA

and the second YEyA; obviously the latter is a substructure of the former.

Secondly, the con&ions (1) do not guarantee closure under the expected computation

procedures. Schemes of definition by recursion on streams have been proposed and

studied by Mendler [14], Geuvers [7] and Paulson [18], among others, in the approach

to streams as a co-inductive type (in a sense to be explained below). The simplest

associated scheme, called co-recursion, is supposed to yield F from G, H defined on

a set C, satisfying:

F : C + S with F(x) = Cons(G(x), F(H(x))) for x E C,
(2)

whenG:C+A, H:C-+C.

It will be shown in the next section how such F (among others) can be obtained as

an ACP on suitable second-order stream structures Y @) In particular, this will permit .

us to define a function F from B to B-streams (as S) by

F : B + S with F(u) = Cons(G(u),F(H(u)),

where G(u) = U, H(u) = X, for u E B.
(3)

If this F could be defined as an ACP over first-order stream structures Y(l), then in
y(i) N_n, F(E) would be the stream (it, fl, it, fJ:. .), but this F is not a map from B

to S in the sPi,n interpretation. By the substructure theorem of Section 4 it follows
/In

that F cannot be defined as an ACP over Yp(fiJ1)_n, because the substructure ,4pt,n

is not closed under F. Moreover, there is no obvious expansion of (1) by first-order

operations for which the latter is not still a substructure of the former.

The need to somehow expand the structure (1) by a type 2 functional (or func-

tionals) has been argued from another point of view in [5, 61, namely, if we are to

characterize the infinite A-streams up to isomorphism relative to A, we need some

kind of second-order expansion of (1) which ensures the completeness of the structure.

However, unlike the case of lists in the preceding sections, there is no evident way to

achieve this simply by adding a second-order condition to those of (1), though the ap-

proach through co-inductive types mentioned above might seem to suggest that. There,

informally, the set S of A-streams is identified as the largest X such that X C @(X)

where @ is the monotonic operation given by Q(X) = {Cons(a,x) 1 a E A and x E X}.

(This is dual to the identification of the A-lists as the smallest X such that Q(X) GX.)

But while such S always exists as a subset of a universe V on which we have an oper-

ation Cons : A x V -+ V (simply take S = UX G V[X C @J(X)]), its value depends very

much on what V is, even if we have Hd and Tt operations with Hd(Cons(a,x)) = a

and Tf(Cons(a,x)) = x. For example, for A = N, here are three essentially different ex-

amples where this S turns out to be V: (i) take VI = N, Consl a pairing operation from

N x N onto N, and Hdl, Tel its projections; (ii) take V2 = (N --+ N), Consz(a,f) =

h. [if n = 0 then a else f(n - l)], Hdz(f) = f(0) and 7’e,(f) = Rn.f(n + 1);

96 S. FefermanlAnnals of Pure and Applied Logic 81 (1996) 75-113

(iii) take V3 = (lV -+ N) x N, Cons3(a,(f,m)) = (Cons2(a,f),m),Hd3((f,m)) =
Hdz(f) = f(0) and Tes((f,112)) = (Tez(f),m). Note that we do not have closure
under the scheme (2) in case (i), and while we have closure under it in case (iii), the
resulting F is not uniquely determined. In the articles on the co-inductive approach to
streams mentioned above, the largest X G Q(X) is singled out by reference to a “suit-
able” categorical or set-theoretical framework which is external to the structure Y that
we are trying to characterize. For an internal characterization in the next section, we
simply add instead a type 2 functional Sim which is used to ensure that every (total)
cp : N + A can be simulated by a stream Sim(cp) E S considered as a type 0 object.

Remark. This discussion is not meant as a criticism of the co-inductive approach,
which has both heuristic value and independent interest. However, the resulting notions
of computation on streams appear rather specific to that approach rather than fall out
as a special case of a general notion of computation on arbitrary structures as here.

Granted, now, that we must take something like the type 2 Sim functional as basic
in structures for infinite streams, we turn next to the extension of these ideas to finite

nonterminating streams, i.e. those for which there is no signal for termination. Streams
which are either infinite or finite nonterminating are called here potentially infinite.

These arise naturally both from mathematical computations and physical phenomena.
An example of the first is provided by the formation of FiZter(cp,s) - which is supposed
to be the substream of the stream s consisting of all terms (s)~ for which cp ((s)~) = it
- when we do not know in advance whether there exist infinitely many (or even any)

n for which rp ((s)~) = it. An example of the second is provided by irregularly received
signals from some extraterrestrial source, when we do not know at any point whether
or not there will be any further signals. Such physical examples can even be considered
as giving rise to “gappy” streams, where we regard (s), as being undefined if there is
no signal at time n (allowing for the fact that there may have been such but it was
too weak to be received). In any case, it turns out that the ADTs for partial streams
and the abstract computational procedures on them are simpler to describe than for
potentially infinite streams, while we can easily extract from them the ACPs for the
latter as special cases.

We are thus led to consider structures of the form

9’ = (A, S, Cons, Hd, Te, Sim, .N) where

(i) A # 4
(ii) Cons:AxS+S, Hd:SzA, Te:S+S,Sim:(NsA)-+S, (4)

(iii) Vu E AVs E S[Hd(Cons(a,s)) = a and TQCons(a,s)) = s] ,and

(iv) Vrp E (fV 2 A)Vn E N[Hd(Tf’(Sim(cp))) 2: q(n)].

Here fV is built in as a basic domain, along with the structure JV = (N, SC, Pd, 0, Eqo)
that it carries; this is necessary in order to make sense of Sim and to produce useful cp
to which Sim can be applied. Note that if we were just to deal with infinite streams, we
would take Hd to be total, i.e. Hd : S -+ A, and Sim to be of type Sim : (N + A) --+ S,

S. FefermanlAnnals of Pure and Applied Logic 81 (1996) 75-113 91

otherwise, no change in (4) would be necessary, but, having argued above for the value

of working with potentially infinite and even more general partial streams, we shall

take (4) in the above form as the starting point of the next section. However, we

meet one new problem in taking this added step of generality, namely that the Sim

functional is not monotonic in the sense of Section 2, i.e. we do not have q C $ +

Sim(cp) = Sim($). For, the nth term of Sim(cp) is defined only when q(n) is defined,

by (iv) above. Write (s), N Hd(TP’(s)) for s E S,)2 E N, and s&s’ for v~n[(s), I+

(s’), = (s),]. What we do have is that Sim is monotonic in the weaker sense that

cp C $ * Sim(cp) CS Sim($).
Now, in order to accommodate computation on partial streams in terms of the func-

tional schemata of Section 3 (in particular, of the LFP scheme) we must generalize

our basic framework to assume given with each set Ai a relation GA,, so that mono-

tonicity of F : A: x AT 1 Aj is taken to mean that if the arguments of F increase

in A, x A; then its values increase (under Gj) in Aj. In the case at hand, &, will

still be the identity relation on A and N, but will be taken to be & on S. Such a

generalization would not be necessary if we were to restrict our attention to infinite

streams, since there Sim : (N --) A) + S is trivially monotonic in the sense of Section

2. However, the recursion schemata for partial streams (such as needed for the FiEter

operation) come out much more simply than they do for total streams. It turns out

that little modification of our basic framework is necessary in order to deal with the

generalized notion of monotonic functional. In outline, this is done as follows.

First, returning to Section 2, assume fixed for each i = 0,. . . , n, a chain-complete

partial ordering CA, (also written gi) on Ai. For X C Ai nonempty and linearly ordered

by Ci, write UX for L.u.b.(X). Given x,Y E A;, i = (il)...) i,), x = (x ,,..., X”), y =

(Yl,..., Yy), put X G;Y @ xk ci, Yk for k = 1,. . . , V. Now for 0 = (i 2; j) by

A, we mean the set of all cp : Ai G Aj which are monotonic in the sense that

vx, Y E AT [v(x) 1 and x CT Y + q(Y) I and q(x) sj q(Y)]. Then for q, $ E A,, take

q 2, $ @ Vx E A; [q(x) J+ $(x) 1 and q(x) Cj $(x)1. This relation is extended term-

wise to gTi for 5 = (al,..., aP). Finally, for F : A, x AT 2 Aj of type level 2, we take

F to be monotonic (in the generalized sense) if

Vqp, $ E &Vx, y E A~[F(q,x)l and q Ca $ and x zI y

* F($, Y) 1 and F(cp,x) Cj F($, y)l. (5)

In the following, we shall omit the subscripts on the various inclusion relations when

these are determined by the context.

The next step is to re-examine the definition of LFP in Section 2. Here, the basic

point to be observed is that each A, is also chain-complete: if X CA,, is any nonempty

linearly ordered collection then X has a e.u.b. U X defined by

(UX^)(x) = () u cp (xl = u cp(x>.
cpES VW

(6)

98 S. Feferman I Annals of Pure and Applied Logic 81 (1996) 75-l 13

Actually, completeness is needed only for well-ordered chains (as also for the basic
si), in order to define LFP for monotonic F in the above sense. This is done exactly
as in Section 2, for F = ~@~.F(cp,x):

LFP (F) = u q+) where q(O) is the empty function and

c$‘) = ; &rp@)) for each c(> 0.

B<m

(7)

Again, this is extended to LFP of F(cp, $,x, y) relative to parameters cp,x by taking

@V,X = h,bly.F(cp, $,x, y). All that then needs to be proved is that if G(cp, @,x, y) is
monotonic in the sense of (5) above, then so also is

(8)

This is established by the same argument as for the Lemma of Section 3. The schemata
for ACPs of Section 3 then make sense for any structure d on basic domains (Ai, ci)
for which the basic functions or functionals Fk are monotonic in the above sense.
(Note, in particular, that the application functional F(cp,x) ‘v q(x) is monotonic by our
requirement that we restrict attention to monotonic cp.) This suffices for the treatment

of ACPs on partial streams which we take up next.

10. Computation on partial-stream structures

Let P-STREAM (“F”’ for “partial”) be the collection of all structures

Y = (A, S, Cons, Hd, Tt, Sim, N) where

0) A # 9,

(ii) Cons:AxS+S, Hd:SsA, Tf:S+S, Sim:(NrA)+S, (1)

(iii) Vu E A Vs E S [Hd(Cons(a,s) = a and Tf(Cons(u,s)) = s],

(iv) Vq E (N 1 A)Vn E N[Hd(Th’“(Sim(cp)) N q(n)], and

(v) s, s’ E S and V’n E N [Hd(Tt”(s)) -G Hd(Tt”(s’))] =s s = s’.

The following notation will be used for any such structure. Given s E S, write

(i) (s), 21 Hd(Tt’“(s)), and

(ii)s s,s’ * Vn[(s)nl* (s’), = (s),]. (2)

This will be the basic relation assumed given on the domain S, while the relations CA
and CN are taken to be equality on A and N, resp. (We here identify B with (0, 1 }.)
Then, according to the definition (2), the basic function(al)s of 9 are automatically

S. Fefermanl Annals of Pure and Applied Logic 81 (19%) 75-113 99

monotonic, in the sense of the preceding section, for we have

(i) (Cons(a,s)), N [if n = 0 then a else (s),_t],

(ii) EM(s) 21 (s)o

(iii) (R’(s)), N (s)“+i, and

(iv) (SWcp)), = q(n).

(3)

In the following we shall write s G s’ for s&s’, S is chain complete under G. To
make the notation more perspicuous we shall also write (a; S) for Cons(a,s) and s-)
for T/(S). Note that ((a;s))c = a is always defined, given a E A. To make sense of

(e; s) when e is an expression for an element of A that may fail to be defined, we take
(e;s) = Sim(ln.[if n = 0 then e, else (Q-i]).

It was emphasized in the preceding section that something like the Sim functional
is needed to characterize stream structures up to isomorphism. This is now provided
directly by the following:

Theorem 8. Suppose 9” = (A’, S’, Cons’, Hd’, T8, Sim’, JV) also satisjes the condi-

tions of(l)(i)-(v), and that I : A g A’. Then F : Y Z Y’for F(s) = Sim’(lnJ((s),)).

By stream recursion we mean any general computational scheme for producing
streams as values. The following suffices for all our applications here, but more gen-
eral schemata are derivable, as will be indicated below. Here Y+ = (9,. . . ,) is any
expanded structure with Y as in (1).

Theorem 9. Let Y+ = (9,. . .) with 9’ in P-STREAM. Suppose C is a subset of

one of the basic sets in Y+ and that G, Ho,H,, D are ACPs over Y+ with G : C 1

A, Ho:C+C, Hl:C--,CandD:C + B. Then we can find an ACP F over Y+
satisfying:

(i) F : C + S with

(ii) F(c) = [ifD(c) = f then (G(c);F(H,,c)) else F(HIc)] for all c E C, and

(iii) if F’ : C + S is any other function satisfying (ii) then F(c) 2 F’(c) for all
c E C. The same holds uniformly in any parameters cp,x.

Proof. While F solves a fixed-point equation (ii), it cannot be described as its LFP,
since that is the completely undefined function. Here, in contrast, F is total and is
characterized by (iii) among all total solutions of (ii) as the one which is least pointwise
on C. Instead we take

F(c) = Sim(ln.t&c,n)) (1’)

100 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

where

$(c,n) N

BY (1)(iv),

G(c) if D(c) = ti and n = 0,

r&H&n - 1) if D(c) = tt and n > 0,

twl c, n 1 otherwise.
(2’)

(F(c),) N Il/(c,n) for all c,n and F(c) E S for all c.

Hence

(3’)

G(c) if D(c) = # and n = 0,

(F(c))~ N

{

(F(Hoc))~_~ if D(c) = dt and n > 0, (4’)

(F(Sc))n otherwise.

This shows that F satisfies (ii) in the statement of our theorem. Then if F’ also satisfies

(ii) and we take 8(c,n) N (F’(c))~, we have that 8 satisfies (2’) in place of $, so
Ic/ c 0 by its definition as LFP of (2’); hence F(c) c F’(c). 0

More general such recursions can be justified with the same conclusion, e.g.

F(c) = [if DO(C) = tt then (G(c); if Dr(c) = tt then F(Hoc) else K(c))

else F(Hr c)] (4)

when DI : C + B and K : C + S. Similarly we can add more “else” clauses at the
end, according to suitable cases. However, as stated above, the scheme of Theorem 9
stices for the applications here. Our next step is to see when we can strengthen the
conclusion about the values of F(c) for c E C.

A stream s E S is said to be infinite (or total) if Vn[(s), 11, and potentially injnite

(or nonguppy) if Vn,m[(s), 1 and m < n + (s,)J]. We denote by Sinf, S,,,f the
subsets of S consisting of these s, resp. A stream s is said to be jinite (nonterminating)

if S E Sp&nf - Sinf .

Theorem 10. Under the same hypothesis as Theorem 9, if G : C + A then F : C +

Spotinf .

Proof. Returning to the proof of Theorem 9, we have

rc/(c’ O) N
if D(c) = ar, iiilc, 0) otherwise,

‘(c’n + ’) N
Ic/Woc, n) if D(c) = n,
$(Hlc, n + 1) otherwise.

(1’)

(2’)

S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113 101

It follows from (1’) that

l/qc,O) 1 w 3m(D(H;nc) = P). (3’)

For if D(H;“c) = t and m is the least such then

$(c, 0) 21 $(Htc, 0) N . . . N $(H;“c, 0) N G(H;“c).

But G is total so $(c,O) 1. Conversely, if Vm(D(Hrc) =fl) then we have $(c, 0) 21
ICI(H,C,0)21...NICI(HI”C,O)N... for all m, and the least solution Ic/ makes Il/(c,O) T.

rl/(c,n + 1) J 9 3m[D(H;“c) = tt and Vk < m(D(H[c) =$)

and $(ff~Tc,n) 11. (4’)

For suppose Vm[D(Hrc) =fl], then by the same argument just given, $(c,n + 1) T.
Hence if $(c,n + 1) J the least m with D(H;“c) = @ satisfies I(/(c,n + 1) 21 $(Hrc,n +

1) P IC/(HoHyc,n), so $(HoZY;“c,n) I. Conversely, tracing this back makes $(c,n+l) 1.

\JWti(c,n + 1) 1 =s Il/(c,n) 11. (5’)

This is proved by induction on n. For n = 0 this follows directly from (3’) and (4’).
Suppose it holds for n. To show for n + 1 we apply (4’) to n + 1 in place of n:

IC/(c,n + 2) 1 +$ 3m[D(Hrc) = tt and Vk c m(D(i$c) =fl)

and II/(HoH;nc,n + 1) 11. (6’)

By induction hypothesis [$(H&” c,n + 1) 1 +- II/(HoHrc,n) 11; Hence from (4’) and

(6% [$(c,n+2) 1 * +(c,n+ 1) 11. S’ mce (F(c)),, 2: $(c,n) for all n, (5’) shows us

that (F(c))n+~ 1 * (fT~)h 1, SO f’(c) E Spotinf. 17

We cannot strengthen this further to F : C + Sinr under the given general conditions
but that cun be established for less general forms of recursion such as the following.

Theorem 11. Suppose Y+ = (9,. . .) with 9’ in P-STREAM. Suppose C is a subset
of one of the domains in Yi and that G,H are ACPs over Yf with G : C + A and
H : C -+ C. Then we can find an ACP F over Yi satisfying:

(i) F : C + Sinf and

(ii) F(c) = (G(c);F(Hc)) for all c E C.

Proof. This may be regarded as a special case of Theorem 10 with D(c) = t for all
c. At any rate, here (F(c))~ N +(c,n) where 1+9 is the LFP of

(1’)

It is then proved by induction on n that Vc[$(c,n) 11. Hence F(c) E Sinf. Cl

102 S. Feferman I Annals of Pure and Applied Logic 81 (1996) 75-113

The same conclusion can be drawn for slightly more general recursions of the form:

F(c) = (G(c); if D(c) = tt then F(Hc) else K(c)) (5)

when G : C -+ A, D : C + B, H : C -+ C and K : C -+ C. (This is the form that
corresponds to the scheme of corecursion in [7].)

We now turn to examples of the recursive stream definitions in Theorems 9-l 1.
Most of these are drawn from Abelson et al. [1, Section 3.41 (cf. especially 3.4.4 for
operations on and to infinite streams). First, for 9, Y’ both in P-STREAM, we can
define the A CP

MAP:(A-+A’)xS--+S’ with

MAP((P,s) = (cp((s)o); MAP(cp,s’))‘.
(6)

This is obtained from Theorem 9 uniformly in q~, with Y+ = (9, P”), and S’ in place
of S there, C = S, G(s) z cp(s)o,H(s) = s+ and D(s) = dt all s, for any given total cp.
We can then apply Theorem 11 to conclude

if s E S&r then MAP((p,s) E l&, (7)

by restricting C to Si”r, on which G(s) = q(s)0 becomes total. Note that if cp is a
l-l correspondence between the domain A of S and A’ of S’ then MAP(q) induces
an isomorphism of 9 with Sp’, so this gives another route to Theorem 8.

The next example extends any operation q : A x A -+ A pointwise to A-streams,

Op:(AxA+A)xSxS+Swith (8)

OPGw,4 = (cpwo,(~‘)o); OP(cp, W), W’)).

This is by Theorem 9 uniformly in q with C = SxS, G(s,s’) N cp((s)s,(s’)c), H(s,s’) =
(s*, (s’)+), D(s, s’) = I all s,s’. Again, by Theorem 11,

if 8,s’ E &,f then Op(cp, s,s’) E l&f. (9)

The procedure of meshing or interleaving two A-streams is given by

Mesh : S x S + A with Mesh(s,s’) = ((s)~; Mesh(s’,s’)), (10)

taking C = S x S, G(s,s’) N (s)c, H(s,s’) = (s’,s+) and D(s, s’) = tt, in Theorem 9.
Again, by Theorem 11,

if S, S’ E Si”f then Mesh(s, s’) E Sinf. (11)

More interesting, next, is the general procedure of filtering with respect to a predicate
q : A + B. We have

Filter : (A + IB) x Sinf --+ S+,,f with (12)

FiZter(cp, s) =
((SW’i~ter(cp,s’)) if COO) = 6

Filter(q, s+) otherwise.

S. Feferman I Annals of Pure and Applied Logic 81 (1996) 75-113 103

This falls under Theorem 10 uniformly in cp, with C = Sinf, G(s) = (~)a, H(s) = s-
and D(s) = cp((s)s). (The restriction of C to Sinf is needed to make G total). Clearly,

if tin% >, n[cp((s),) = t] and s E Sinf then FiZter(cp,s) E Sinr. (13)

However, if the hypothesis of (13) is not known, we can only treat F’ilter(cp,s) as a
potentially infinite stream. If 3nVm > n[cp((s),) = ff] but we have no proof of that,
then Filter(cp,s) is an example of a finite nonterminating stream.

In the present approach, there is no obvious general way to represent the filtering
process computationally which ensures that it will always lead from infinite streams to
infinite streams. One way has been suggested in the co-inductive approach by Leclerc
and Paulin-Mohring [12], in the framework of the Coq language. Their idea is to build

in a proof of the hypothesis of (13) as part of the data parameters. One particular case is
examined [12] (The Sieve of Eratosthenes, see next), and the general treatment is only
suggested. In any case, this only shifts the problem from providing an external proof
to that of providing its formalization as internal data, a step which will only make the
filtering procedure more cumbersome. Our view here is that for programming purposes,
the computational procedure of filtering should be represented in as simple a way as
possible (here, as in (12)), and that while its application to a specific (cp,s) may call
for a proof of the hypothesis of infinitude of {n : opt) = f}, it need not require it.
For example, we may want to filter the predicate of being a twin prime up to a point,
say n = 109, in order to provide experimental data about twin primes. If one insisted
on internalizing a proof of infinitude as part of the data, this would never get off the
ground, at least not as a stream procedure.

Filtering can also be carried out relative to a parameterized predicate cp : A x U -+ El,

by taking

FiZter(cp, u,s) = FiZter(jla.cp(a, u),s).

The general sieving procedure is then defined by

(14)

Sieoe : (A x U 4 B) x Sinr + Spotinf with (15)

Sieue(rp,s) = ((s)s; Sieoe(Filter(cp, (s)~, .s’)).

In particular, the Sieve of Eratosthenes applied to a stream s of natural numbers is
given by Sieue(cpx,s) where

(p~:NxN+-’ with ~%(a, u) = t @ u If a. (lo)

Sieve(cpz,s) acts by filtering out all multiples of (s)s before proceeding on to the
sieve of s+. Hence

Prime = Sieve(cp~,SimAn.(n + 2)). (17)

On the other hand for example, Sieue(cp~,Simln.2) is undefined following its first
term. Of course, (17) is only one of many methods for generating the sequence of
primes as a stream.

104 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

A nice example of an infinite number-theoretical stream produced without filtering
is the Fibonacci sequence (cf. [l, p. 2671);

Fib = Fib(0, 1) where Fib(n,m) = (n; Fib(m,n + m)). (18)

By Theorem 11, Fib E S(N)inf (i.e. is an infinite N-stream). Another nice example
comes from the theory of divergent series: the Cesrko (C, 1) summation method leads
from any infinite stream s of rational numbers (or, more generally, real numbers) to
the infinite stream Ces(s) of partial averages given by

(19)

In terms of the stream operations, this can be analyzed as the composition of pointwise
division by the stream of positive integers with the operation Sum : S + S given by

Sum(s) = ((s)o; @IO i Sum(s’)) (20)

where x -i- s is the stream obtained from s by pointwise addition by X, i.e. (X + s), =
x + (s)~. The operation Ces itself can be iterated any number of times.

We close this section with a few applications to combined structures of streams and
lists. To begin with, a structure (Y,Y) in which 9’ acts as the A-streams and 9 as
the A-lists allows us to define

Append : L x S + S with (21)

Append(e,s) = [if e = niE then s else (Hd(6’); Append(/‘, s)).

This is simply given by recursion on L. In the following we write e*s for Append
(e,s). Inversely, we define

Truncate : S x N + L with (22)

Truncate(s,n) = [if n = 0 then nil else Trancate(s,n - ~)*((zz)~)],

which is given by recursion on N. Writing s(n) for Truncate(s,n), we have

e+s(LI@)) = e.
To treat streams of lists we can use a combined structure (YA, 9’~, 9~), where

9’~,9~ are the structures of A-streams and B-streams, resp., and 9~ is the structure
of B-lists and where, finally, it is assumed that

A=LB, (23)

i.e. that the members of A are exactly the B-lists. Hence, given a E A we can test (in
9~) whether a = niIB, and if a # nilB, form Hd&a) as an element of B and T/B(a)
as a B-list, i.e. as a member of A. Now S,, the A-streams, can be thought of as streams

S. Fefennanl Annals of Pure and Applied Logic 81 (1996) 75-113 105

of B-lists. Hence we can define the ACP:

Flatten : S, --+ S, with (24)

FEatten = [if(s)0 # nile then (Zfd~((s)s); FZatten(Tk’B((s)o)+T(s)))

else Flatten(TeA(s))].

This falls under Theorems 9 and 11, so that if s E (S~)i,,f then Flatten(s) E (S~&~ti”f,

and Flatten(s) E (SB)inf only if s has infinitely many nonnil terms.

Remark. Some authors, including Abelson et al. [l] and Paulson [181 treat lists as
finite streams. But these must be distinguished from finite nonterminating streams in
the sense defined above. If a list is to be considered as a stream in the way these
are dealt with here, it must be provided with a signal for termination. One way in
which that can be accomplished is to reserve a specified element as of A to serve
as such a signal. Then, for example, lists could be identified with infinite streams
s with the property that if (s)~ = a0 then (s), = a0 for all m > n; the list in the
proper sense associated with s is then just Z(n) for the least such n. Obvious alternative
identifications are also workable.

11. Recursion-theoretic interpretation of computation on number-stream structures

We shall deal here with computational procedures on structures for A-streams when
A C N. The standard realization for these will simply take

S(A)=(NsA) foreachACN.

In particular, the standard realization for A = N is taken as

(1)

Y(N) = (N,S(N),Cons,Hd,Te,Sim,N)

where

(2)

(i) Cons : N x S(N) + S(N), Hd : S(N) 1 N, R : S(N) --f S(N),

Sim : (N 1 N) + S(N)
are given by

(ii) Cons(a,s) = h.[if n = 0 then a else s(n - l)],
(iii) Hd(s) N s(O),

(iv) T{(s) = In.s(n + l),
(v) Sim(q) = cp.

The substructure induced by A is then

Y(A) = (A, S(A), Cons, Hd, Te, Sim, JV) (3)

where Cons is restricted to A x S(A),Hd and Te are restricted to S(A) and Sim is
restricted to N s A. Clearly, Y(A) is in P-STREAM for any A, and by the categoricity
theorem 8, every member 9 of P-STREAM on A has Y %! Y(A).

106 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

In (1) and (2) we are trying to maintain the distinction between A! 7 N in its role
as the set of all partial functions from N to N and its role as the interpretation of
the individual domain S(IV) in Y(IV). For the former, we continue to use function

letters q,$,..., while for the latter, stream letters s,s’, The notation is not without
ambiguity, though. In (2)(v), cp appears as a partial function on the left hand side of
the equation and as a member of S(N) on the right hand side, and in Eqs. (2)(ii)-(iv)

with expressions of the form s(e), the stream object s is treated as a partial function.
We can lessen the latter ambiguity by writing (s), for s(n) when treating s as a stream
object. Note that the inclusion relation C for partial functions coincides with ES(N) in
their guise as stream objects.

The following is an immediate consequence of the substructure theorem (and its

corollary) in Section 4.

Theorem 12. For each ACP F in signature Z (P-STREAM) and for F = F”(“) we

have
(i) 9’(A) is closed under F, and

(ii) F 1 Y(A) = F”@).

Thus for a recursion-theoretic description of ACPs over Y(A) for A C N it is suf-
ficient to describe the ACPs over Y(N) and then form their restrictions. To simplify

matters in doing so, we first replace Y(IV) by the structure

b(N) = (N,S(~),EvaZ,Sim,Sc,Pd,O,Eqo), (4)

where Evaf : S(N) x iW .G N is given by EvaE(s, n) N s(n). Every ACP over Y(BJ)
can be obtained as one over b(N) and conversely. For the former we use

(i) Cons(a,s) = Sim(ln.[if n = 0 then a else EvaZ(s,n 7 l)]),
(ii) Hd(s) 21 Eval(s, 0),

(iii) Z(s) = Sim(ln.Eval(s, n + l)),
(5)

while for the latter we use

EvaZ(s, n) 21 Term(s, n) N Hd(Tt”(s)). (6)

Now, to see how the ACPs over b(N) work out, let us first return to the Iunction
and functional notation of Section 2. We have just two basic domains Ai to consider,
namely As = N and Al = S(N). Hence the A; are products A;’ x A;;Z, or S(N)“I x NV2 .
The type i is in this case written as i = 1 ‘I x O”*, and (s,x) is written for a typical
element of A;, where s = (st,. . . ,sv,), x = (xl,. . . ,xy2), and eh(i) = v = VI + ~2. Next,
the partial function types B = (i 1 j) reduce to those of the form 1” x O”* 1 0
or 1”’ x O”* 1 1. In the first case, a partial function cp E A, becomes a partial map
cp : S(N)” x N”~ 2 N. Recall that at the end of Section 9 it was further required that

S. FefermanlAnnals of Pure and Applied Logic 81 (1996) 75-113 107

cp preserves & when applied to arguments in S. Hence:

For v1 > 0, the partial functions cp : S(N)” x NV* z N of type level 1

which preserve (Is(,) are identified with the monotonic partial functionals

cp : (N 1 N)“I x NY2 2 N of type level 2 over JV.
(7)

In the case that VI = 0, cp remains of type level 1 over JV.

Next, with each cp of type (T = 1”’ x 0”~ 1 1 is associated cp- of type rr- =

1”’ x 0y2-t1 1 0 by

q-(s,x,n) = EvaZ(q(s,x),n). (8)

With cp required to preserve &(,), the same holds for cp-. Conversely, with each tj

of type 1”’ x 0y2+’ z 0 is associated $+ of type 1”’ x Ovz -+ 1

$+(s,x) = kt.$(s,x,n). (9)

Note that

(i) ($+)- = I++, and

(ii) cp C(cp-)+, with cp(s,x) = (cp-)+(s,x) when cp(s,x) I,

and (cp-)+ = empty function when cp(s,x) r . (10)

While by this we do not have a one-one match-up between A, and A,-, for all com-

putational purposes we can reduce A, to A,-; the reason is that we are only concerned

here with cp(s,x) when cp(s,x) I. Thus:

For VI > 0, the partial functions cp : S(N)“’ x NV* 1 S(N) of type
level 1 over b(N) which preserve G,(N) are identijed with the

monotonic partial finctionals cp : (N 1 N)“’ x PVvzfl 1 N of type (11)
level 2 over JV. In the case that v1 = 0, cp is identijed with II/ of type

level 1 over M.

It should now be clear how things will go with the functionals in our framework:

The monotonic partial functionals F of type level 2
over b(N) which have some partial function arguments
that, in turn, have arguments in S(N), are identified with monotonic
partial functionals of type level 3 over JV. But if all partial function (12)

arguments of F have only numerical arguments, then such F are
identijed with monotonic partial functionals of type level 2 over JV.

Thus for a recursion-theoretic interpretation of the ACPs over S(N) or equivalently

over b(N), we need an extension of the notion of partial recursiveness to fimctionals

of type level 3 over ~4’“. This is provided by the work of Ereov [2], which leads

to a notion of partial recursiveness for functionals of arbitrary finite type applied
to hereditarily partial continuous arguments. ErSov derives this via his theory of

108 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

enumerated structures from an abstract theory of special kinds of topological spaces,

called f-spaces. Subsequently, I presented in [3, 41 a direct concrete version of these

notions which is analogous to that given for finite type functionals of hereditarily total

continuous arguments in Kleene [lo] and Kreisel [111. This concrete version can be

explained much more quickly than that due to Ersov. For simplicity, this is done for

the pure types n where (n + 1) = (II 1 0). The idea is that objects of type (n + 1)

are partial functions cp such that for each Ic/ of type n, the value of cp($) depends only

on a finite amount of information about Ic/. That information is represented by formal

neighborhoods. The set of formal neighborhoods of type n, Nd”, is defined inductively;

we use letters U”, U;, . . . to range over members of Nd”.

(i) Nd” = N

(ii) Nd”+’ consists of all finite sequences (UF, pi)i<m such that U: ENd” (13)
and piE N .

Then we define C” and 1 U” 1 G C’ inductively as follows, where we write cp E U” for

cp E 1 U" 1; also superscripts are omitted when these are determined by the context.

(i) Co = N and JpI = {p},
!I+,

(ii) C - is the set of all cp : C’ 1 N such that

V’II/ E C%‘p[q($) = p + 3U”($ E U and Yx E U(q(X) = p))] .

For Un” = (U:,pi)igm,

(14)

IUn+ll = {(PIviGmW E U/[Y$lc/) = Pill .

Note that CL is the same as N 2 N.

F: C’ x . . . x C’ s N is said to be partial recursively continuous,

and we write F E PRIG’, if

(i) F is continuous, i.e. whenever F(tj, . . . , t,bk) = p then

SJ;‘,..., U,““[$l E U,&...&$k E Uk

M,..., l(k(Xl E uI&...&xk E uk * F(Xl,...,Xk) = p), and (15)

(ii) there exists partial recursive f : Nk -5 N such that

F($i,..., $k) = p * lu;‘,... u,““[$, E u,&...&+k E uk

&f(ul,...,Uk) = p] .

(In (ii), we assume formal neighborhoods coded by natural numbers.) By use of prim-

itive recursive tupling functions, objects of type level n are represented as objects of

pure type n. The following result is a consequence of the work in [2], which is via a

rather lengthy development through the theory of f-spaces. I plan to make available

a much shorter direct proof for PR/C’ as explained here.

S. Fefermani Annals of Pure and Applied Logic 81 (1996) 75-113 109

Theorem 13. PRIG” is closed under the extension of the ACP schemata to arbitrary

jinite types.

Corollary.
(i) The ACPs over Y(N) are all partial recursively continuous.

(ii) If F : S(N)“I x NY2 1 N with VI > 0 is an ACP over Y(N), then F is a partial

recursive functional in the usual sense; similarly for F : S(N)“I x NV* 1 S(N).

(iii) If F E S(N) is generated by the ACP schemata over Y(N) then F is partial

recursive.

(iv) The structure of partial recursive streams is closed under the ACP schemata
over Y(N).

Remarks.
1. Re(iv): though in Y(N), Sim is regarded as having domain N 2; N, it can only be

used in the schemata in the form Sim(kG(n, . . .)) where G is an ACP over Y(N);

thus it will only be applied to partial recursive function arguments.

2. If we expand Y(N) by some specified si, . ..,s, E S(N) as imput data to P(N) =

(YP(f+J),Sl , . . . , s,), then the results of the corollary hold for F(N) relative to

A-l,...,&.

3. In actual computation with streams, we cannot pass them as arguments or values

in the extensional sense as partial functions, but can only deal with them via some

method of representation, typically by Giidel numbers of partial recursive functions.

Then partial recursive stream operations as in (ii) above are represented by ejktive
operations, in the sense of Myhill and Shepherdson [171. A basis for treating abstract

computational procedures which would have direct such intensional interpretations

was provided in [5], but its proposed application to streams there [17, Section

121 needs to be corrected; that will be done elsewhere. Incidentally, the Myhill-

Shepherdson theorem extends to PRIG’ in all finite types.

4. The preceding remark can be relativized to any given input data streams such as

come from external (prima-facie) nonrecursive sources.

Appendix A. Relation of ACPs to Moschovakis’ FLR

Moschovakis [15, 161 has developed a formal language of recursion (FLR), which

provides for any C a language of terms for computation procedures over structures of

signature C. Besides the formation of terms by explicit definition, which correspond to

the procedures obtained by our schemata I-VII, FLR features the formation of a term

using simultaneous least fixed point (SLFP) recursion, to which the following scheme

is analogous for appropriate combinations of types:

VIII’ (Simultaneous least fixed point)

F(cp,x) - WWG,. .,G) in HI(w),

110 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

interpreted in each structure d of signature Z as follows, when F = F”, Gk = Gf(k =
1 ,...,m),H=H”Q,withargumentsF(cp,x),Gk(cp,~,/1,...,~~,x,y(k)),H(cp,~~/I,...,~~,~):

F(cp,x) = H(cp,&i,...,3/m,~) where

&,...,& are the least simultaneous solution of the system of equations (A. 1)

MY(‘)) N G(cp,$i ,...,~~‘m,x,~(~)),...,~~m(y(~)) = G,(cp,rl/l,...,~~,n,~‘~‘).

Let AU”(C) be the abstract computation procedures in signature C generated by I-VII

plus VIII’ in place of VIII. Let ED(C) be the procedures for explicit definition, i.e.

those generated by the schemata I-VII without VIII (or VIII’).

Theorem A.l.
(i) AU(Z) is equivalent to ACP’(,Y) for each C.

(ii) AU”(C) is equivalent to the procedures obtained by restricting VZZZ’ to

GI,..., G,,H in ED(C).

Proof (Sketch). (i) Clearly the result of a single LFP by VIII can be treated as a

special case of SLFP (VIII’), so ACP(C) is included in ACP’(C). Conversely, VIII’

can be obtained by a succession of single LFPs. This was proved in [5, Section 91; the

idea is briefly as follows (for m = 2, where we suppress the function and individual

parameters (cp,x)): To find the simultaneous LFP $1, $2 of

&(Y(‘)) = GO,h,vh/2,~(~)),

&/t(~‘~‘> p G2($1, $22, yC2)I,
(A.l’)

define

(A.2’)

Then

&y(l)) N [~~P(nll/l~z’1’.G~(~~,~y’Z’K(~~,y(2)),z(’))](y(1))

and &(Y’~‘) N K(&, yc2)) . (A.3’)

In other words, in the equation for $i we treat 6 as a LFP uniformly in $1.

(ii) The idea of the proof for this part is that the end result of two applications of

VIII’ can be merged into a single application by combining the successive SLFPs into

a single SLFP. Hence any number of applications of VIII’ can be reduced to a single

one preceded and followed only by explicit definitions. q

It is the abstract computation procedures obtained as in (ii) which are directly analo-

gous to the terms of FLR. Hence the two approaches yield the same class of procedures

over each structure. The fact that the kind of definition VIII’ of SLFP can be reduced

to a single application is an advantage of FLR over the use of successive applica-

tions of LFP via VIII. However, for the results in this paper, it would have been

S. Feferman I Annals of Pure and Applied Logic 81 (1996) 75-113 111

more complicated to work with VIII’ in place of VIII. This of course is irrelevant to

Moschovakis’ main purpose for FLR, which is his interesting proposal to use it to

explain the intensional notion of algorithm and, via his normalization procedure (in

[16]) for terms in FLR, the notion of identity of algorithms.

Appendix B. Comparison with the work of Tucker and Zucker

In a series of publications since 1988 (detailed in the references to [21]) J.V. Tucker

and J.I. Zucker have explored various notions (or “models”) of computation applied to

rather general multi-sorted structures d. In [21] they have extended these notions to

structures 2 for streams. In the same spirit as ours, that work treats computation on

streams as a special chapter in their general theory; however, there are significant points

of difference both as to the general approach and the special case. The following points

initiate a comparison, but more work needs to be done to establish exact relationships.

1. The general approach of Tucker and Zucker (“T-Z” in the following) is reviewed in

[2 1, Sections 2 and 31, which is what we follow here. That applies only to first-order

structures d. Moreover, in addition to assuming that a structure for the Booleans

IEK is built in, it is also assumed there that a structure for the natural numbers F+4

(equivalent to our M) is built into d. Thus, even for first-order structures, the T-Z

approach is more restrictive than ours. There are two primary notions of computation

studied for such structures: PR(d) and @R(d). These make use of generalized

schemata for primitive recursive functions extended in the second case by a scheme

for the least number operator ~1. (Note that both definitions by primitive recursion

and by ~1 make essential use of the assumption that Jlr is contained in &‘.) It

is easy to see that for first-order d containing N, every pPR partial computable

function over d agrees with an ACP over d. It is a question whether the converse

is true. Also, there is no obvious comparison of PR(d) with a subset of the ACPs

over d.

2. The T-Z approach also studies computation over structures d* associated with

d as in 1, where &* contains the domain &* of finite sequences (or “ar-

rays”) of elements of each Ai in d, with the appropriate additional structure. Then

PR(d*) and pPR(d*) determine, by restriction, notions of computation PR*(d)

and @R*(d), respectively. Since d * is a first-order structure containing Jlr, we

also have pPR(d*) C ACP(d*). I conjecture that the reverse inclusion also holds,

using the results here from Sections 5-7 and using finite sequences to code (finite)

computations in the LFP scheme.

3. The notions of computations for streams studied in [21] apply to structures 2

which contain with (some) Ai also the set Ai = (N + Ai). Thus, only infi-

nite streams are treated there. The structure 2 contains for each Ai an evalua-

tion fi.mction(al) eaali : Ji x N + Ai. In addition to the schemata dealt with

in the general situation (as described in 1 and 2 above), there is a special new

scheme 2, which allows one to pass from a function g : D x N + Ai to a

112 S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113

fbnction(a1) Ig : D + Ai in the canonical way. This leads to four new notions of

computation: PR(&), l,&%(g), LPZ?*(%?), J@%*(g). Our treatment of ACPs

over stream structures in Section 10 extends in the obvious way to such struc-

tures 2 and g*, when the appropriate second-order simulation functionals Simi

are added; in order to make this explicit, we shall indicate the latter structures

by g[Sim] and J*[sim]. Again it is easy to see that JPR(&) GACP (g[Sim])

and @PR(z*) CACP(g*[Sim]), since we have closure under the 1 scheme using

the Sim operators and the substitution scheme VII for ACPs. The interesting ques-

tion here is whether all the stream operations obtained by ACPs over s[Sim] or

g*[Sim] can be obtained by the IpPR schemes over d, or z*. This is perhaps

possible in the latter case via the recursion-theoretic interpretation in Section 11.

Finally, we remark that no recursion schemata distinctive for streams (as in Section

10 here) are studied in [21].

Appendix C. Corrections to [S]

The following corrections are to be made to my paper [S].

p. 80, 8 -10 and in Fn. 2, change [4] to [3] and [5] to [4].

p. 83, (1). Using the notation of Section 6, assume given =A~, =A,, . . . , =A,. Then

change “C&X) = I&)” to “q(x) =A, I&)“.

p. 83, (3). Similarly, change ‘F($,x) = F(cp,x)” to ‘F($,x) =A, F(cp,x)“.

p. 83, (4). Similarly, change “Pi(cp,x) = F2(cp,x)” to ‘Fi(rp,x) =A, Fz(cp,x)“.

(The need for these corrections on p. 83 of [5] was brought to my attention by Scott

Stoller.)

p. 93, The recursion-theoretic interpretation of computation on streams indicated in

the next to the last paragraph of Section 12 of [5] is incorrect as it stands. It

is superseded by the work of Section 11 in the present paper combined with

Remark 3 thereto. A direct treatment in terms of indices of partial recursive

functions is also possible, by adapting the generalization of monotonicity and

thence of our basic approach introduced here in the latter part of Section 9.

Namely, we write z C w if {z} is a subfunction of {w}; then sim” = 2.z.z is

trivially monotonic in the sense that z C w + sim*(z) & sim*(w).

[l] H. Abelson, G.J. Sussman and J. Sussman, Structure and Interpretation of Computer Programs (MIT

Press, Cambridge, MA, 1985).

[2] Y.L. ErHov, Computable functionals of finite types, Algebra and Logic 11 (1972) 203-242 (translated

from Algebra i Logika 11 (4) (1972) 367-437).

[3] S. Feferman, Inductive schemata and recursively continuous functionals, in: R.O. Gandy and J.M.E.

Hyland, eds., Logic Colloquium, ‘76 (North-Holland, Amsterdam, 1977) 373-392.
[4] S. Feferman, Generating schemes for partial recursively continuous fnnctionals, in: Colloque

International de Logique (Editions de CNRS, Paris, 1977) 191-198.

S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-113 113

[5] S. Feferman, A new approach to abstract data types II. Computations on ADTs as ordinary computation,

in: E. Borger et al., eds., Computer Science Logic, Lecture notes in Computer Science, 626 (Springer,

Berlin, 1991) 79-95.

[6] S. Feferman, A new approach to abstract data types I. Informal development, Math. Struct. Comput.

Sci. 2 (1992) 193-229.

[7] H. Geuvers, Inductive and co-inductive types with iteration and recursion (notes of a talk at the BRA-LF

meeting in Edinburgh, May 1991 (1992)).

[8] S.C. Kleene, Introduction to Metamathematics (North-Holland, Amsterdam, 1952).

[9] SC. Kleene, Recursive timctionals and quantifiers of finite types I, Trans. Amer. Math. Sot. 91 (1959)

l-52.

[lo] S.C. Kleene, Countable functionals, in: A. Heyting, ed., Constructivity in Mathematics, (North-Holland,

Amsterdam 1959) 81-100.

[I l] G. Kreisel, Interpretation of analysis by means of constructive functionals of finite types, in: A. Heyting,

ed., Constructivity in Mathematics (North-Holland, Amsterdam 1959) 101-128.

[12] F. Leclerc and C. Paulin-Mohring, Programming with streams in Cog - a case study: The sieve of

Eratasthenes, in: H. Barendregt and T. Nipkow, eds., Types for Proofs and Programs, Lecture Notes in

Computer Science 806 (1994) 191-212.

[13] Z. Manna, Mathematical Theory of Computation, (McGraw-Hill, New York, 1974).

[14] N.P. Mendler, Recursive types and type-constraints in second-order lambda calculus, in: Proc. 2nd

Annual Symposium on Logic and Computer Science (IEEE Computer Society Press, 1987) 30-36.

[151 Y.N. Moschovakis, Abstract recursion as a foundation of the theory of recursive algorithms, in: M.M.

Richter et al., eds., Computation and Proof Theory, Lecture Notes in Mathematics 1104 (1984) 289-364.

[16] Y.N. Moschovakis, The formal language of recursion, J. Symbolic Logic 54 (1989) 12161252.

[171 J. Myhill and J. Shepherdson, Effective operations on partial recursive functions, Zeitschrifi Math. Logik

u. Grundlagen der Mathematik 1 (1955) 310-317.

[I81 L. Paulson, Co-induction and co-recursion in higher-order logic, Technical Report 334, Computer Lab.,

Univ. of Cambridge (1994).

[19] R.A. Platek, Foundations of recursion theory, Ph.D. Thesis, Stanford University, Stanford, CA (1966).

[20] V.Y. Sazonov, Degrees of parallelism in computations, in: Mathematical Foundations of Computer

Science, Lecture Notes in Computer Science 45 (1976) 517-523.

[21] J.V. Tucker and J.I. Zucker, Computable functions on stream algebras, in: H. Schwichtenberg, ed., Proc.

NATO Summer School in Proof and Computation, Marktoberdorf, 1993 (Springer, Heidelberg, 1994)

341-382.

[22] J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. B: Formal Models and Semantics

(MIT Press, Cambridge, MA and Elsevier, Amsterdam, 1990).

[23] J. Vuillemin, Proof techniques for recursive programs, Ph.D. Thesis, Stanford University, Stanford, CA

(1973).

[24] G. Winskel, The Formal Semantics of Programming Languages. An Introduction (MIT Press, Cambridge,

MA, 1993).

