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Abstract 

In this paper we specialize the notion of abstract computational procedure previously in- 
troduced for intensionally presented structures to those which are extensionally given. This is 
provided by a form of generalized recursion theory which uses schemata for explicit definition, 
conditional definition and least fixed point (LFP) recursion in fimctionals of type level <2 over 
any appropriate structure. It is applied here to the case of potentially infinite (and more general 
partial) streams as an abstract data type. 

1. Introduction 

This paper is a continuation of the work of Feferman [5, 61 which initiated an 

approach through a form of generalized recursion theory (g.r.t.) to computation on 

abstract data types (ADTs), including intensionally presented types, in a sense ex- 

plained below. In this paper, we separate out the extensional part of the theory and 

show how it may be applied to computation on streams as an ADT. One of the main 

new contributions here is an explanation of how this is to be done for finite “nonter- 

minating” streams as well as infinite streams, and even more general partial (“gappy”) 

streams. 

From the logical point of view, what are called abstract data types in theoretical 

computer science are simply classes of structures closed under isomorphism. Among 

these, one is mainly interested in structures determined by categorical or relatively 

categorical conditions. A paradigm example is provided by the A-list structures, where 
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A is an arbitrary set. Each such consists of two domains, A and L (the finite lists 

over A), and three operations, Cons : A x L -+ L, Head : L-{niE} + A, Tail : L 

-{niZ} + L, where Cons appends an element of A to the head of a list, nil is a 

member of L representing the empty list, and Head and Tail are operations inverse 

to Cons; we also assume given a test on L for equality to the nil element. The struc- 

ture is characterized up to isomorphism relative to A by saying, in addition, that L 

is the least set containing nil and closed under the Cons operation. Computations 

on lists can be given by abstract algorithms which do not depend on the way that 

the members of the underlying set A are specified or represented (be they numbers 

or names, if they are specified at all) nor on the way that lists over A are actually 

implemented. Examples of such are the operations of concatenation, reversal, length, 

and term (at a given position); we can also test for equality of lists and being a 

sublist. As a final example, we can define the Map functional which takes any f : 
A -+ A and any member G of L and forms the result of replacing each term a of 8 

by f(a). 
The idea of A-streams is that of (possibly) infinitely proceeding sequences of ele- 

ments of A. There are actually three notions to be considered here: (i) infinite streams, 

(ii) finite terminating streams, and (iii) finite nonterminating streams. Those under 

(ii) are just another form of finite lists. Those under (iii) arise naturally from both 

mathematical computations and physical phenomena. An example of the former is pro- 

vided by the process of filtering a given infinite stream according to some decision 

function f, to form the substream of all elements a satisfying f(a) = 0, when we 

do not know whether there are infinitely many such terms. An example of the lat- 

ter is provided by signals from some extraterrestrial source, when we do not know 

at any point whether or not there will be any further signals. Streams of kind (ii) 

can also be subsumed under these, if we reserve a special element of A as a sig- 

nal for termination. Altogether, then, these are called potentially injinite streams. An 

appropriate structure for the injinite A-streams as an abstract data type is provided 

by two domains A and S and total operations Cons : A x S + S, Head : S + A, 

and Tail : S + S; in the case of potentially infinite streams Head must be taken 

to be a partial operation satisfying some additional conditions. Note that equality of 

streams is not decidable in the informal sense, and no test for it is included in the 

basic structure. In order to characterize the infinite stream structure up to isomorphism, 

we add a second-order functional Sim which associates with each f from the natural 

numbers N into A an element Sim( f) of S whose nth term for each n is the same 

as f(n) (so, Sim(f) simulates f as a stream). Without this, we could only ensure 

the existence of eventually constant streams. For potentially infinite streams we do 

the same, but now where Sim transforms any f defined up to a certain point into 

an element of S whose nth term is defined just in case f(n) is defined, in which 

case they are equal. Some operations we would expect to be able to obtain as ab- 

stract algorithms on potentially infinite streams are the term at any given position 

(if defined), the mesh of two streams, the map functional, and the general filtering 

procedure. 
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Our general theory of computation is thus designed to apply to many-sorted func- 

tional structures 

A’ = (Ao,Al,...,An,Fo,...,F,) (1) 

where each Fj is an object of type level 62 over the Ai’S, i.e. where each of these 

is either an individual in some Ai or a partial function or partial functional of type 

level 2 of specified arity, and where we always take A0 to be the Boolean set {at, fs}. 

For any given signature Z of such structures, the abstract computational procedures 

(ACPs) of signature C are formal objects F of type level 62 generated by schemata 

for explicit definition, conditional definition and least fixed point (UP) recursion from 

initial Fj 0’ = 0,. .., m) of the specified arity in C. Each such F determines for each 

structure d as in (1) an object F” of the same type as F, by means of the obvious 

semantics. These F are abstract in the sense that whenever ~9 and d’ are isomorphic 

then F” corresponds to F-“l’ under the given isomorphism. It is shown in the present 

paper how the examples of operations on lists and streams indicated above fall out 

as special cases of ACPs on the respective structures. Indeed, for both we derive 

quite general distinctive principles of recursion which appear to cover all cases met in 

practice. For the case of lists there is nothing surprising in this. But for the case of 

streams, the prior accounts of computation schemata on streams of which I am aware 

treat them within the framework of co-inductive definitions, which is quite special 

to them (cf. [7, 14, 181 among others). Here, in contrast, computation on streams is 

subsumed under a general theory of computation for arbitrary structures (1 ), once we 

settle on an appropriate structure for them. Moreover, the prior work in the co-inductive 

framework deals only with infinite or finite terminating streams, and it is by no means 

obvious how to extend that approach to deal with computation on finite nonterminating 

streams. (For comparison with other approaches, see the further discussion below in 

this introduction.) 

In outline, the contents of the present paper are as follows. Section 2 reviews the 

basic functional notions and notation for many-sorted structures from [5], in which, as 

in (l), we ignore any intensional equality relations on the basic domains. The schemata 

for ACPs are introduced in Section 3; it is shown there that they preserve monotonicity 

and are preserved under isomorphism. Section 4 deals with the relation of ACPs on a 

structure &’ with that on a substructure 8 of d, i.e. for which the basic function(al)s 

of ,?8 are the restriction to 5? of those in d in a suitable sense. It is shown that 

for each ACP F, the function(a1) Fs is the restriction to 9? of F”. This natural (and 

apparently novel) result proves to have a number of uses in the following. Still working 

within the general theory, Section 5 deals with the notion of continuity of fimctionals, 

and it is shown that this property is preserved by the schemata. Then in Section 6 

we look at first-order structures, i.e. where all the initial Fj are either individuals 

or (partial) functions on the basic domains. We automatically have continuity of the 

ACPs for first-order structures, and it is also possible to eliminate one of the schemes 

for such. Section 7 then takes up structures d which are represented in the natural 

numbers, i.e. where each Ai is a subset of N. First it is shown for the structure 
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JV” = (N, SC, Pd, O,Eqo), that the ACPs of type 1 over Jf are exactly the partial 

recursive functions, and those of type 2 are all partial recursive functionals and they 

are exactly the partial recursive functionals when applied to total function arguments, 

but not necessarily when applied to partial function arguments; the reason for this last 

is that our schemata admit sequential reduction procedures even on partial arguments, 

and so such partial recursive functionals as the strong (parallel) OR are not obtainable 

by them. A (not necessarily first-order) structure with basic sets Ai contained in N is 

said to be partial recursive if each initial Fj is the restriction of some partial recursive 

F,? on N; then the same holds for each ACP over d. All this is illustrated in Section 

8 with the case of A-lists where the structures are as indicated above with two basic 

domains A and L. These are first-order, and when A is contained in N, we can define 

L as a subset of N and the operations Cons, Head, and Tail in a uniform way, 

independent of A, so that the result is a partial recursive structure. Many examples are 

given in Section 8 to show how various expected procedures on lists are obtainable as 

A CPs. 

We turn, finally, to streams in Section 9. That is devoted to foundational considera- 

tions, in particular to demonstrating why it is insufficient to treat even infinite streams as 

a first-order structure; the reason, simply, is that then the eventually constant streams 

would form a substructure, and so we would not have closure under the recursion 

schemata which are distinctive for streams. We then move on in that section to show 

why it is useful to treat finite nonterminating streams as well as infinite ones. It turns 

out that the simplest theory of computation for potentially infinite streams is obtained 

if we allow completely partial or “gappy” streams. Then Section 10 gives a full de- 

velopment of ACPs on partial-stream structures, showing how one derives very gen- 

eral distinctive schemata which can then be specialized under certain conditions to 

potentially infinite as well as infinite streams. Many examples of computational pro- 

cedures are then given, including the ones indicated above. Section 11 is devoted to 

a recursion-theoretic interpretation of ACPs on A-partial streams when A is contained 

in N. Here the standard structure is obtained by taking the domain S to consist of all 

partial functions from N into A, with the identity functional for Sim; this is a sub- 

structure of the standard structure for N-partial streams, so it is sufficient to establish 

a recursive interpretation for the latter. Since the objects of sort S in this are of type 

level 1, and our schemata requires use of functionals of type level Q2 over the basic 

domains, we need a recursive interpretation in type levels 6 3. This is provided by 

a theory of partial recursion over hereditarily partial continuous functionals of arbi- 

trary finite type due to ErSov [2], for which closure under the ACP schemata holds. 

It follows that all our ACPs from streams to streams are partial recursive and, of 

course, continuous. Moreover, the partial recursive streams form a substructure of the 

standard structure, so ACPs on the former are simply the restriction of those on the 

latter. 

There are three Appendices. Appendix A concerns the relation of our schemata to 

Moschovakis’ formal language of recursion (FLR) in his papers [15, 161; that is pro- 

vided by a system of terms built by explicit definition, conditional definition and a 



S. Fefermanl Annals of Pure and Applied Logic 81 (1996) 75-l 13 19 

single application of a form of simultaneous least fixed point (SLFP) recursion. A 

proof that the schemata here yield the same class of procedures as FLR is sketched, 

and there is a brief discussion of the comparative advantages of the two approaches. 

Appendix B gives a comparison of the present approach with that of Tucker and 

Zucker [21] for schemes of computation on stream algebras. In the same spirit as our 

approach, the latter treats computation on streams as a special chapter in a general 

theory; however, there are significant points of difference both as to the general ap- 

proach and the special case. Some obvious relationships are indicated in the appendix; 

beyond these there are some interesting open questions. Finally, Appendix C contains 

some necessary corrections to the functional notions for computation on structures with 

intensional equality relations in [5]. The point of dealing with the latter is that when 

we finally come down to actual computation with data objects of one sort or another, 

we must deal with them under some system of representation, and that may require 

having many representations of the same object. In some cases (lists again provide 

a paradigm example), we do not have to face this problem, since we can provide a 

system of unique representations on which to carry out our computations; but that is 

not possible if we want to compute on algebraic word structures given by a presen- 

tation which does not have a decidable word problem or distinguished normal forms. 

It is definitely not possible when we turn to work on streams or “infinite-precision” 

real numbers (i.e. some form or other of Cauchy sequences of rational numbers with 

moduli-of-convergence information). In each such case we have a natural equivalence 

relation which our ACPs must respect; the aim of [5] was to show how this could 

be done both abstractly and concretely. Unfortunately, the resulting generality led to 

some confusions which need to be straightened out, both as to a few of the basic 

definitions and as to the applications to computation on streams and reals indicated 

there; for the definitions, that is done in Appendix C. What the present paper shows 

is how far we can go in the case of streams with a purely extensional theory, where 

no such confusions arise. But if we are to treat ACPs on infinite-precision reals, it is 

necessary to return to the intensional theory; that is planned for a sequel to the present 

paper. 

To conclude this introduction I want, first, to say something briefly about how this 

fits in as a chapter in generalized recursion theory (g.r.t.). The main precursor to the 

approach here is to be found in the dissertation of Platek [ 191, which developed a 

notion - over fairly arbitrary basic structures - of partial recursion in all finite types, 

where the objects are hereditarily monotonic functionals, using schemata for explicit 

and conditional definition and LFP recursion. That in turn provided an elegant new 

treatment of recursion in finite types over N initiated in the remarkable fundamen- 

tal paper by Kleene [9]. In any case, Platek showed in his dissertation that partial 

recursion in objects of type level <2 can be carried out without going above that 

level in the application of his schemata; that is one justification for the restriction to 

those type levels here. The reason for the adjective ‘fairly arbitrary’ applied above to 

Platek’s underlying sets is that he assumed a pairing structure for those, which in effect 

allows building in recursion on the natural numbers. The approach here frees us of that 
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assumption and allows us further to treat computation on such structures as streams 

and infinite precision reals in which pairing is not built in. 3 

Finally, one may rightly ask how this work relates to that of the domain-theoretic 

approach, both in general and for the specific case of streams. As to the general ap- 

proach, there is a vast literature to which initial pointers can be found in the chapters 

by Mosses and by Scott and Gunter in the handbook [22], as well as in the refer- 

ences to the text by Winskel [24] - a literature of which (to be frank) I am largely 

ignorant. However, one central point of difference stands out: there, LFP is applied 

only to continuous monotonic functions on CPOs. That restriction excludes application 

to structures containing discontinuous functionals. There have been extensive develop- 

ments in g.r.t. of computation on such, beginning with the demonstration by Kleene 

[9] of the significance for definability theory of computation relative to the type 2 

functional 3”, for existential quantification over N. What Platek brought out in his 

dissertation is that monotonicity suffices for a g_r.t. based on the LFP scheme, and 

thus is applicable both to suitable discontinuous mnctionals and continuous ones. 

As to the domain-theoretic treatment of streams, I understand from Gordon Plotkin 

that considerable work has been done since the early 70s by Broy, Kahn, MacQueen, 

Park and others on potentially infinite streams. An indication of how such may be 

treated as a domain can be 

well be a translation from 

ACPs in the present case. 

found in Winskel [24, Sections 8.2 and 12.11. There may 

the results of the domain-theoretic approach to those of 

2. Functional notions and notations 

The following notations are relevant to any finite sequence of nonempty sets A = 

(Ao, . . . , A,). The letters a, b, c, u, v, w,x, y, z range over individuals in A&J. . .lJA,, as well 

as over finite sequences of such, as in x = (xi,. . . ,xy). The letters i,j, k, e range over -- 
the set (0,. . . , n} of sort indices; x is said to be sort i if x E A;. Then ?,J, k, t, are used 

to range over finite - possibly empty - sequences of sort indices. For i = (il,. . . , iv) 
with&(i)=v>l,takeA,=Ai, x... x Ai,,; when v = 0 we may identify A; with a 

one-element set. For simplicity of notation, we do not use corresponding overbars to 

indicate finite sequences x of individuals but rely on contexts such as x E AT instead 

to avoid ambiguity. 

If t is a possibly undefined expression for an individual (of some sort i) we write 

t J, if t is defined and t t otherwise; tl = t2 is written only when both tlJ and t2 _1 and 

their values are equal; tl N tz means (tl 1 Vt2 I + tl = t2). 

For any two sets B and C, we write f : B 1 C if f is a partial function from B to 

C; as usual, f : B + C means that f is total from B to C. 

3 Arguments for that step and for not treating higher types as the means for developing a g.r.t., but rather 
as one case to which g.r.t. is to be applied, were made in [3]. 
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Relative to any given A = (40,. . . , A,,), the letters cp, $, x, 6 are used to range over 

partial functions from some A; into an Ai, where e/z(i) > 1. By a type symbol of level 

one is meant a formal combination i z j where /h(i) 2 1; the letters C, r are used to 

range over such type symbols. Then for (T = (i 2; j) we take A, = (q 1 q : Ai 1 Aj}. 

For cp, II/ partial functions of the same type, cp s $ means that cp is a subfunction of 

II/. Given a sequence 0 = (al,. . . , 0,‘) of type symbols, take A, = A,, x . . . x A,,,; 

again this is identified with a one-element set if [h(V) = 0. Typical elements of A, 

are cp = (cpl,...,cp,) with (Pk E A,,; then for cp, $ E AT, cp G $ is defined by C& C $,, 

for each k. Once more, for simplicity of notation, we do not use overbars to indicate 

finite sequences of partial functions but rely instead on context to avoid ambiguity. 

Functionals of type level two are partial maps from some A, x A; to some A_/ 

where dh(Tj) > 0; we use F, G, H to range over such, as in F : A, x Ai 1 Ai. When 

cp = ((PI,...? qr) and x = (x1,..., xv), F(cp,x) is written for F(ql,..., qr, x1,. ..,xy). 

If 1 = 0 and v > 0, F is identified with an element of Ai 1 Ai, i.e. it is a partial 

mnction of type level one, and we write F(x) in this case. Finally, when p = v = 0, 

F is identified with an element c of Aj. 

Given F : A, x AT 1 Aj of type level two, F is said to be A-monotonic if 

Note that this condition is vacuously satisfied if [h(o) = 0, i.e. if F reduces to a 

partial function or an individual. Under certain combinations of types, each level two 

monotonic F has a least fixed point associated with it, as follows. The simplest case 

is that of a functional F : A, x 47 1 Ai, where 0 = (i 2 j). Then F induces the 

total map p : A, + A, given by F = &pI.x.F(qo,x). If F is monotonic so is F in the 

ordinary sense that Vq, $ E A,[cp C_ $ + F(q) & F($)]. Then the least fixed point of 

p, LFP(@ is determined as usual by: 

(i) UP(F) = U, qfa) (= q’“‘) where 

(ii) q(u) = Ua<.&@)) for each ordinal CI. 
(2) 

(It is understood here that q(O) is the empty function.) More generally, we shall deal 

with least fixed points relative to function and individual parameters as follows. Suppose 

0 = (fzr~,...,e~), i = (il ,...,i,), k= (kl ,...,k,,j) and z = (k;j); we write (a,~) for 

(OI,..., oP,z) and (T,k) for the concatenation of i and k. Thus an F : A(,,) xACZzl -2 Aj 

induces FV,, : A, -+ A, for each cp E A,, x E A,, by 

and @ ,+,X has an LFP when F is monotonic. More perspicuously, 

LFP (F+,X) = (I/ where $ is least with J/(v) 21 F(q, $,x, y) for all y E A, . (4) 
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3. Schemata for computational procedures on many-sorted functional structures 

Here we deal with structures of the form 

d = (AO,Al,...AFO ,... ,Fm) (1) 

where 

Ao=~={d;ff) (2) 

is the Boolean sort (with ft # ff), and each Fk is an object of type level 62 over 
A = (As ,..., A,), i.e. 

Fk : A, X A:; 1 Ajk (L’h(i&)~O and &&)>O for k = O,...,m) . (3) 

Thus Fk is of type level 2, 1, or 0, according as eh(&) > 0, &(&) = 0 & /A(&) > 0, 
or eh(&) = &(ik) = 0 (as explained in Section 2). It is further assumed that 

each F’k of type level 2 is A-monotonic, (4) 

the constants t and ff are among the Fk’s . (5) 

By the signature c for such & iS meant the pair (n, (&,$,jk)kQm). With each c 
are associated the following formal schemata for computation procedures on structures 

of signature C. 
I. (Initial function(al)s) F(q,x) = Fk(rp,x) (k = O,...,m), 

II. (Identity functions) F(x) = x, 

III. (Application functionals) F(cp,x) N q(x), 

IV. (Conditional definition) F(cp,x, b) N [ if b = tt then G(rp,x) else H(cp,x)] , 

V. (Structural) 

VI. (Individual substitution) F(cp,x) II G(rp,x,H(q,x)), 

VII. (Function substitution) F( cp, x) N G( rp, jZy.H( cp, x, y ), x) , 

VIII. (Least fixed point) 

In each of these schemata, the conditions to be met on the types of the arguments and 
sorts of the values should be fairly evident. We note only that in I, F is supposed to be 
of type zk x ik 2 jk, to accord with Z:; in IV, b is a Boolean (sort 0) variable; in the 
structural scheme V, f : {l,..., ,u’} + {I ,..., p}, g : {l,..., v’} + {l,..., v} and the 
scheme itself abbreviates F(ql,..., q+,x~ ,..., x,) N G(cp~-(l) ,..., cpf(p~),~g(l) ,..., x~(~!)), 
thus accounting for expansion, identification and permutation of arguments; finally, 
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in the LFP scheme VIII, G is supposed to be of a type (77,~) x (;,k) 7 j where 

r = (k =+ j). 

With each structure d (satisfying (l)-(5)) of signature C and each F generated 

by these schemata is associated Fd on A of the same type as F in the obvious way; 

again, this may be of type level 2, 1, or 0. (Only the interpretation of the scheme for 

conditional definition is subject to ambiguity; this is to be understood in the strong 

sense that F&(cp,x,tt) 2: Gd(cp,x) and Fd(cp,x,ff) E H&(go,x).) In order for the 

LFP scheme to make sense it must be verified that the Fd associated with F is A- 

monotonic. This is proved by induction on the schemata: it holds by assumption (4) 

for the scheme I, is immediate for the schemata II and III, and is easily verified to 

hold for F if it holds for G and H in the schemata III-VII. Finally, if it holds for G 

it holds for F in VIII as a result of the following. 

Lemma. Suppose G : &I x A(;,i, 2 Aj is A-monotonic, where z = (k 1 j). Then 

for F(cp,x,y) 21 [LFP (n~~.G(cp,Il/,x,z))](y), we have that F is A-monotonic. 

Proof. Using the notation of (3) of Section 2, 

F(cp,x,.~) = P’P (&x~I(~h where &,,, = Qh.z.G(cp,IC/,x,z). 

By monotonicity of G, the functionals z,, : A, -+ A, are monotonic in the usual sense. 

Then by definition, LFP(6q,x)=lJ,~,*? where I&) is the empty function and for c( > 0, 

6:. = UB<,e.,($&P?). N ow suppose that cp 2 8. We prove by induction on a that 

$$cc c +;,:“I’; . if this holds for each p < a then ~,,(I&$) c 6,&i&“,‘) c &J$$_‘) for 

each such /?, so it holds for a. (The second of these inclusions is by monotonicity of G 

in the parameter cp.) Hence LFP(g,,) C LFP (&,), which establishes monotonicity 

OfF. cl 

Suppose d and d’ are isomorphic structures of signature C, given by a pair (h, h’) 
of sequences of l-l functions h = (ho, . . . . h,),h’=(hh ,.._, hL)withhj:Ai-+A[,hi: 
Ai --+ Ai inverse to each other. Then it is proved by a straightforward induction on the 

F generated by the schemata that Fd and F”’ correspond to each other under (h, h’). 

For the LFP scheme this can be proved by a subsidiary transfinite induction on the 

approximations to the least fixed point, or directly by using its “leastness” property. 

Thus the schemata are invariant under isomorphism, and this justifies calling the F’s 
abstract computation procedures. For this reason we denote by ACP(C) the collection 

of all F’s generated by the schemata for signature C. Then for any particular A! of 

signature Cd, we take ACP(&) to be the collection of all Fd for F E ACP(C.d)), and 

say that F is an ACP over LZ? if F = Fd for some such F. 

4. The substructure theorem 

Given A = (Ao,. . . ,A,) and B = (Bo,. . . , B,) with Bo = A,J = El, we write B &A 

if each BiCAi. For i = (io,..., i,) and x E A;, we say x is in B if x E B?. Then for 
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cp E A, with cr = (; 1 j), write cp 1 B for the function Lx E B;.cp(x). This need not 
belong to B,; if it does, we say that B is closed under q, Equivalently that holds if 

for all x in B, q(x)1 * q(x) in B- (1) 

By direction extension, B is said to be closed under cp = (cpi, . . . , qr) if it is closed 
under each cpk(k = 1,. . . , p), and we write cp 1 B for (cpi r B, . . . , cp,, / B). Now for 
F : A, x A; 2 Aj, write F 1 B for the functional M E B&X E BT.F(e,x). We say that 
B is closed under F if 

for all cp and x, B closed under cp and x in B and F(cp,x) j, + F(q,x) in B 

and F(q t&x) = F(w) (2) 

This implies that F tB : B? x B7 2; Bj, but the converse does not necessarily hold. 
Suppose now that LZZ = (Ao,. . . ,A,,Fo,. . . , F,) meets the conditions of Section 3. 

We say that B = (Bo,..., B,) determines a substructure of d if Bo = A0 = lE8 and 
B g A and for each k = 0,. . . , m, B is closed under Fk. 

Theorem 1 (Substructure Theorem). Suppose B determines a substructure of d. Then 
for each ACP F and for F = Fd we have: 

B is closed under F. 

Proof. This proceeds by induction on the schemata for ACPs. By hypothesis it is 
immediate for the scheme I, and it is straightforward for the schemata II-V. The 
substitution schemata VI-VII require only a little more attention, as follows. Suppose 
B is closed under G, H where G = G&, H = H”. In the scheme VI, 

F(cp,x) = G(cp,x,H(cp,x)). (1’) 

To show B is closed under F, suppose it is closed under cp and that x is in B. Then 
H(cp,x) is in B so G(q,x,H(cp,x)) is in B. Also, F(cp tB,x) N G(cp rB,x,H(q /B,x)) 2: 
G(cp rB,x,H(cp,x)) N G(cp,x,H(cp,x)) by hypothesis. In the scheme VII, 

F(cp,x) = G(cp, dy.H(cp,x, y),x). (2’) 

Again, suppose B is closed under cp and that x is in B. Then for each y in B, H(cp,x, y) 
is in B, when defined. Hence B is closed under J/ = ly_ZY(cp,x, y) so G(cp, +,x) is in 
B, when defined. Also, 

F(cp t&x)--G(cp t& lyflH(cp tB,x,y),x) 

= G(cp t& ly.H(cp tB,x,y) t&x) 

- G(rp t& ~yJ-l(cp,x,y) t&x) 

2 G(cp, ~~Jl(cp,x, Y),x) (3’) 

whenever B is closed under cp and x is in B. 
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To conclude the proof we now turn to the LFP scheme VIII. Here B is assumed to 

be closed under G where G = G&, 

F(cp>x,y) = LFP(I~iu.G(cp,rl/,x,u)>(~>. 

Writing G,, for nlC/ Ly.G(cp, II/,x, y) as before, we have 

F(cp,x, Y> = vk&y) where &,x = U d&! and each 
c( 

(4’) 

(5’) 

i.e. 

@?(Y) 2 .z @ 38 < a [G (cP,$$,x,Y) 21 z] . (6’) 

Now suppose that B is closed under cp and that x is in B. Then we prove by induction 

on a that B is closed under I&$. If this is true for each fi < CI then for y in B, 

G( cp, &‘: , ,x,y) is in B by hypothesis on G, so I,@;(Y) is in B by (6’). Thus B is 

closed under I,!+,~ and so F(cp,x,y) is in B (when defined) by (5’). Finally, to show 

F(cp rB,x, y) = F(cp,x, Y) 

for cp closed under B and x, y in B, we show by induction on 01 that 

I$$ Jy) N $(“)(y) for each y in B cp.x 3 

and hence 

I& tB = $@) tB RX . 0 

(7’) 

(8’) 

(9’) 

By examination of this proof we also obtain: 

Corollary. Suppose B determines a substructure of ~4 = (Ao, . . . ,A,,, Fo, . . . , F,,,). Let 

33 = (Bo ,..., B,,Fo tB ,..., F,,, IB); then for each ACP F and F = Fd we have 

F tB = Fg. 

In other words, the interpretation of F in W is the restriction to B of its interpretation 

in _zl. 

5. Continuity 

Suppose d = (Ao,A,,. . .,A,,,Fo,. . . , F,,,) satisfies the conditions of Section 3. A 

functional F on A = (Ao,. . . , A,) of type level 2 is said to be continuous if 

whenever F(cp,x) N y there exists finite @ C cp such that F(@,x) N y. (1) 

For F of type level < 1, F is automatically continuous. 
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Theorem 2. If each Fk in d is continuous then for each ACP F, the functional F”I 
is continuous. 

Proof (By induction on the generation of F). Only the schemata VII and VIII require 

any special attention. Suppose G = G&/, H = H” and that F = Fd where F is 

obtained from G, H by VII, i.e. 

F(cp,x) = G(cp,iyfl(~x, Y)P) . (1’) 

Let Ic/ = Ay.H( (p,x, y). If F_((cp,x) N z then there exist finite @(‘I g cp, Ic/ g $ with 

G(Cp(‘), 4,~) N z. Let dom(lC/) = {y(t), . . . , y(P)}. For each i = 1,. . . , p, there exists 

finite G(‘) C cp with H(@(‘),x,_y(‘)) N $(y(‘)). Let (p = @co) U . . . U @‘). Then by 

monotonicity, H(@,x, y(‘)) N +(y(‘)) for each i = 1,. . . , p, i.e. $ s ly.H(&x, y). Hence 

again by monotonicity G( Cp, Ry.H( @,x, y),x) pv z, so F&x) N z. Now for the scheme 

VIII, where 

F(w,Y) = [LFP(a~~u.G(cp,~,x,u))l(~) = W@p,x)l(~) 

we first show that 

(2’) 

F(cp,x> Y) = Icl$? (3’) 

where &$ = UB,,G&t@~). Th’ 1s is by the usual argument to show that 

G,,X(k$,wx’) c_ @2. (4’) 

For if G(co,+fi ,x, y) 21 z, there are finite 5 C cp and 4 C I&$> with G(@, $,x, y) N z. 

Then II/g I@; for some n, so G(cp,&,"~,x, y) 21 z, i.e. t,@~“(y) N z and, finally, 

&$(Y) = z. Hence Y& (w) is the LFP of’G,,. 

It remains to show that F is continuous. We prove by induction on n that for each 

y there is a finite (p C cp with 

rc/‘“’ (Y) N Ii/(“)(Y) 3 . 

For n 1 Ib, this is’ivial, since +(‘) 

(5’) 

‘p,X is empty by definition. Suppose for n. Then 

If this is defined and its value is z, then by continuity of G there exist finite @co) and $ 

with s(O) C cp, 5 C &$ and G(@(O),$,x,y) cz z. Let dam($) = {y(l),. . .,ycp)}. By in- 

duction hypothesis, for each i we can find finite S(i) s q with $$,X(y(i)) N_ $,$‘$y(‘)) N 

$(y(‘)), for ea_ch i = 1,. . . , p. Let (p = @co) U ijjz) U . . . U @i(P). By monctonicity, also 

$$‘,(y(‘)) N $(y(‘)) for each i = 1,. . .,p so tj c $5:. From G(Cp('),II/,x, y) N z it 

follows that G(@, t,&$,y,x, y) N z, so $J$:” ’ (y) N z. This completes the inductive step. 

Now, finally, if F(q,x,y) N z then ~,$$?(y) N z so for some n, 1,$2(y) N z. Then by 

what has just been proved there exists finite (p C cp with @i(y) N z, hence Il/gj(y) N 

z and F(@,x, y) N z. Thus F is indeed continuous. I7 
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6. Computation procedures on first-order structures 

The signature C = (n, (iYk,&, jk)k Qm) is said to be first-order if &(Zk) = 0 for each 

k < m. Structures ~22 = (Ao, . . . , A,,Fo,. . . , F,,,) of signature C are then first-order in the 

sense that each Fk is of type level d 1, i.e. is a specified partial function or a constant. 

In this case they are vacuously monotonic, so each ACP over d is monotonic by 

Section 3. There is a useful simplification that can be made in the ACP schemata 

for first-order C, namely, we can omit the scheme VII for function substitution. Write 

ACPo for ACP minus scheme VII. 

Theorem 3. Zf C is first order then ACPo(C) is closed under scheme VIZ. 

Proof. Consider d of signature C. We prove the required closure condition in a 

more general form, as follows. Suppose F E ACPo(Z), F of type 0 x i 1 j,is = 

cm,... , op), with arguments (cp,x) or (cpt, . . . , (pp,x) for cp = (cpi, . . . , cpp). Suppose 

also that HI,. . . , H, E ACP,(C), where Hk has arguments ((p,x, yck)) for k = 1,. . . , p. 

Then the functional F* given by the scheme 

F*(cp,x) N F(~y(‘)H,(cp,x,y(‘)),.. .,~y(~)H,(cp,x,y(~)),x) 

is also in ACPo(C). This is proved by a straightforward induction on F, for arbitrary 

HI,... ,H,. The more general statement is needed for F introduced by the structural 

scheme V. It is trivially satisfied for the scheme I, since the initial Fk have no function 

arguments in a first-order signature. 0 

Theorem 4. If C is jirst-order and d is of signature C then F& is continuous for 
each ACP F. 

Proof. This is a corollary of Theorem 2 in the preceding section, since each 

initial Fk is vacuously continuous in the case of first-order d. Note that by Theo- 

rem 3, in the case of first-order structures the proof of Theorem 2 can be simplified, 

so that the essential point is only to verify that LFP preserves continuity, as shown 

there. 0 

7. Computation on structures in the natural numbers 

Consider, first, the ur-structure for recursion theory, 

J = (N,Sc,Pd,O,Eq~) (1) 

where k4 is the set of natural numbers with SC(X) = x’ = x + 1, Pd(x) = x T 1 and 

Eqo(x) = ( if x = 0 then 0 else 1). Here we identify B with (0, 1) and 8 with 0, ff 
with 1. Let Z,M= the signature of M; this is first-order. 
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Theorem 5. 
(i) The functions of type level 1 in ACP(.M) are exactly the partial recursive 

functions. 

(ii) The functionals of type level 2 in ACP(N) are coextensive with the partial 
recursive functionals when restricted to total function arguments. 

(iii) Every functional of type level 2 in ACP(M) is partial recursive on partial 

function arguments but not conversely. 

Proof (Sketch). 
1. First show the forward implications in (iHiii) by associating with each F in 

ACPo(Cx) a system of equations defining FM in the Herbrand-Gtidel-KIeene 

equation calculus. For type 2 F(q,x), these derivations at any specific partial 

function arguments cp = (cpi,. . . , (pp) and numerals for x = (xl,. . . ,xy) are made 

from the equations for F” together with the formal diagrams for 

the pk. 

2. To show that every partial recursive function f is in ACP(.N), use the Kleene 

normal form representation, 

f(x1,..-5 x,) = U(~y.T,(e,xl,...,x,,y)) 

for suitable e, with U, T,, primitive recursive. Closure of ACPo (N) under the scheme 

of primitive recursion and under the p operator are both obtained as usual by the 

LFP scheme. 

3. To show that every partial recursive functional F(cp, x1, . . . ,xn) of total arguments cp 

is in ACP(M), use Kleene [8, p. 3301, 

F(cp,xl,..., 4 21 u(~Ly.T~(e,xI,...,x,,Y)) 

with T,” primitive recursive uniformly in cp, hence in ACPo(.N). 
4. As noted by Platek [19], an example of a partial recursive functional of partial 

arguments which is not obtainable by his LFP schemata is the strong (parallel) or 

functional OR+ (also denoted SO) given by 

OR+(cpl, qp2) 2( 0 M (PI(O) N 0 or ~(0) pu 0; 

ORi is undefined otherwise. The functional OR+ is nondeterministic, while all FN 
obtained in ACPo(N) can be computed by a deterministic (sequential) reduction 

procedure as shown by Platek [19]. (Related procedures are to be found in [23, 13, 

p. 386; 161.) 0 

Remark. It has been shown by Sazonov [20] that the partial recursive functionals of 

partial function arguments are just those obtained from schemata like ACPo (N) when 

OR+ is added. It is of course an option to include OR+ as a basic functional with N, 

for that purpose. 
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By a partial recursive structure in FU is meant one of the form 

(i) d = (As,At ,..., A,,Fa ,..., F,), where 

(ii) each Ai 5. N, As = B = (0, l}, and 

(iii) each Fk is the restriction to A = (As,Al,...,A,) 

of a partial recursive function(a1) FF on kJ 

under which A is closed in the sense of Section 4.2. 

(2) 

Note that since each type 2 Fi is monotonic on arbitrary partial function arguments, 

its restriction Fk to A is monotonic on partial functions whose arguments and values 

lie in A. 

Theorem 6. Suppose S is a partial recursive structure in N of signature C. Then 

for each F in ACP(Z) and for F = Fd we have that F is the restriction to d of a 

partial recursive functional F*, and F is continuous. 

Proof. Note that d satisfying (2) can be considered to be a substructure of 

Jf* = (B,N ,..., N,F; ,..., F;) 

of signature C. Then by the Substructure Theorem (Theorem 2 of Section 4), F is the 

restriction of F* = F”* to d. Now by an extension of the argument 1 for Theorem 

S(iii), we show (by induction on F) that F* is equationally definable, hence is a partial 

recursive fimction(a1). Then F’ is continuous, so its restriction to _c$ is continuous. 

q 

This result provides another version of the theorem in Section 11 of [5], which 

was interpreted as telling us how computation on ADTs could, in suitable cases, be 

interpreted as ordinary computation (in the sense of recursion theory). If the ADT 

K is strict (i.e., K is an isomorphism type) and contains a partial recursive structure 

d on N, then abstract computational procedures on any structure of K transfer under 

isomorphism to partial recursive timction(al)s on the “implementation” or “realization” 

of K via d in N. 

Most examples of abstract data types K which contain partial recursive structures 

are those whose domains are generated by finitely many finitary operations, or are 

obtained from such by restriction, such as lists, finite sets, finite trees, records, etc. 

When treated as relative ADTs, such as lists-of-A’s, the elements of the domains to 

which they are relativized need not be finitary, but can still lead to partial recursive 

structures. Thus if A = {ao,al,. . . ,a,, . . .} IS an countable set, we can realize lists-of- y 
A’s as a partial recursive structure, no matter how A is identified as a subset of N; 

this will be demonstrated in the next section. For example, A might be a countable set 

of functions or other set-theoretical objects, or A might be a nonrecursive subset of N, 

such as the set of Giidel numbers of total recursive functions, or the set of constructive 

ordinal notations. That is why no restriction was made on the Ai’S in the definition 

above of partial recursive structures other than that they be subsets of kJ. 
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8. Computation on list structures 

The case of abstract computational procedures on (relativized) list structures is 
paradigmatic for finitary data types in many respects, and is useful for comparison 
with computation on infinitary data types, of which streams form the main example in 
this paper. 

There are actually several kinds of data types to be considered, depending on whether 
the sets A from which we are forming lists come with additional structure or not, and 
also whether list computations may take natural number arguments and values (e.g., the 
term and length functions). We begin with the core case: let LIST be the collection 
of all structures 

2 = (A, L, Cons, Hd, Tl, nil, Eq,i/) where 

(i) A # 4~ 

(ii) Cons : A x L -+ L, Hd : L - {nil} + A, 

Tl : L - {niZ} + L, nil E L, Eqnil : L -+ B, 

(iii) Vx E L[x = nil @ Eq,il(x) = t] 

(iv) Vu E AV’e E L[Cons(a,d) # nil and Hd(Cons(a,k)) = a and 

Te(Cons(a, d)) = e] 

(v) VX C L[niZ E X and Cons : A x X --t X + X = L]. 

(1) 

These are evidently first-order structures. In (1 ), L is thought of as the A-lists, nil as 
the empty list, and “Cons”, “Hd” and “Te” abbreviate the usual cons, head and tail 
operations. Condition (v) is the basis of proof by induction on L and thence defini- 
tion by recursion (cf. Theorem 7 below). Note that we have suppressed the Boolean 
part (B, t, ff) of 9; this is assumed to be implicitly given here and throughout the 
following. 

The core structures _Y may be augmented by some new basic domains and/or new 
basic (monotonic) function(al)s or distinguished elements. For example, with JV = 
(fV, SC, Pd, O,Eqo), we write (9, JV) for the structure 2 augmented by the set N, the 
operations SC, Pd, Eqo and the element 0. In general (possibly) expanded structures 
are indicated by _Y+ = (9,. . .). In all cases, Y is supposed to satisfy the conditions 
in (1) above. The basic scheme for recursive definition on any such structure is given 
by the following. 

Theorem 7. Suppose 2’+ = (3,. . . ) with 9 E LIST us in (1) and that C is a 
subset of one of the basic sets in 2 +. Suppose also that G,H are ACPs over 9+ 
with G E C and H : A x L x C + C. Then we can find an ACP F over Y+ 
satisfying 

(i) F : L --) C 
(ii) F(niZ) = G, and 
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(iii) F(Cons(a,b’)) = H(a,e,F(/)) for each e E L. 

Moreover, the same holds uniformly in any parameters q,x. 

Proof. Simply take F to be the LFP $ of 

I++([) 21 [ if e = nil then G else H(Hd(e), Z’Q&), +(TQQ)]. 

Then (i)-(iii) are proved by induction on L’. 0 

Corollary . If 9’ = (A’, L’, Cons’, Hd’, Te’, nil’, Eqnip ) satisfies the conditions ( 1 )(i)- 

(v), and if Z : A g A’ then F : B ST _Y’, where 

(i) F(nil) = nil’, and 

(ii) F(Cons(a, e)) = Cons’(Z(a), F(l)). 

Given A, now write Y(A) for any structure of the form (1) and LIST(A) for all 

such structures; this is a strict ADT. We show next how to produce a partial recursive 

structure in LIST(A) uniformly for all A 2 N. Namely, let P be a (primitive) recursive 

pairing operation on the natural numbers, with inverses PI and P2 and with 0 not in 

its range. 

(i) P : IV2 --+ N - {0}, 

(ii) Pl(P(n, m)) = n and P,(P(n,m)) = m 

Further identify B with (0, l}, lt with 0 and ff with 1, and take 

Eqo = In.[if n = 0 then 0 else 11. 

Finally, given A C N, let 

L(A)=nXGN[O&Y and Vu E Ab’x E X(P(a,x) E X)]. 

Then 

(2) 

(3) 

(4) 

GW4,P tA x WM’I t&A) - {O)J’2 tW) - {O),O, Qo rW)) (5) 

is a partial recursive structure in LIST(A). 
We turn now to abstract computational procedures on list structures in general. For 

greater perspicuity, we write (a; l) for Cons(a,/) in the following. First, working 

simply on the core structure 9, we obtain operations for concatenation, one-termed 

lists and reversal as follows: 

(i) Concat : L x L + L is given as follows, where we write e+/’ 

for Concat(l, J’) : nil&’ = 8’ and (a; l)*/’ = (a; L&J. (6) 

(ii) One : A -+ L, for which we write One(a) = (a), is given by (a) = (a; nil). 

(iii) Rev : L + L is given by Rev(nil)=nil and Rev((a;/))=Rev(&(a). 
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We can now write (a)& for (a; e) or Cons(a, l). The Map functional, which sends 

A-lists pointwise into A-lists via any given cp, is provided by 

Map:(A+A)xL+L, where (7) 

Map(cp,niZ) = nil and Map(q, (a)+{) = (cp(a))+Map(cp,Q. 

This can obviously be generalized to Map : (A + A’) x L --f L’ in expanded structures 

(2, 2’). Other interesting ACPs defined by recursions of the form given by Theorem 

7 with function parameters are: (i) FiZter(cp, e) which, for rp : A + B, forms the sublist 

of all terms a in e such that q(a) = ti; (ii) RepZ( cp, t+b, 8) which, for cp : A + El, I,$ : 

A + A, forms the list obtained by replacing each term a in e satisfying q(a) = it 

by $(a); and (iii) DeZ(cp,e) which, again for q : A + B, forms the sublist of e 

obtained by deleting all terms a with q(a) = it. For example, for the first of these we 

have: 

FiZter:(A-+B)xL+L isgivenby 

FiZter(rp,niZ) = niZ and (8) 

FiZter(rp, (a)+!) = (if q(a) = t then (a)* FiZter (cp,e) else Filter (cp,l)). 

Turning now to the expansion (2, N) of the core list structure _Y by the natural 

number structure .N, we can define the length function by 

Lh :L + N, where (9) 

Lh(niZ) = 0 and Lh((a)+e) = Lb(L) + 1 . 

To define the term in position n of a list L’ for n < LIZ(~) - which is a partial function 
_ we return to the LFP scheme: 

Tm:NxLsA, where 

Tm(n,d) N {if e = nil then U(0) else (10) 

[if n = 0 then Hd(L’) else Tm(n - l,T8(/))]}, 

where U : N -G A is the nowhere defined function (obtained, e.g., as the LFP of 

U(k) 21 U(k + 1)). In order to make Tm total, we would have to choose some ad hoc 

element a0 E A as value for Tm(n,Q when n >Lh(l). In any case, (10) does not fall 

under Theorem 7 since the parameter n is varied in the recursion on L’. Alternatively, 

(10) can be considered as given by recursion on n with the parameter e varied. Related 

operations obtained in either of these ways are: (i) DeZ(n,e) which deletes Tm(n,f) 

from 8, and (ii) Ins(b,n, /) which inserts an element b of A in L following Tm(n,f). 

We shall not spell out these recursions. From now on we write (e), for Tm(n,l) when 

n < Lh(/), so (& = Hd(L) when e # nil. Also we write 8’ for T/(e), so that 

(L), = (.P)+i when 0 < n < LA(e). 
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The general scheme analogous to that for Theorem 7 for recursion on lists 6 in 

which given parameters x may be varied is as follows: 

F(x,e) N { if G = nil then G(x) else H(x,e,F(K(x),C))} 

where x’ = K(x) is of the same arity as x. 

(11) 

More generally, we may vary function parameters as well. The proof that such F is 

total when G, H are total on suitable sets proceeds by induction on LIZ(/). Another 

interesting example of such recursive definition with varied parameters is provided by 

the test for equality on A-lists. This requires augmenting 9 by a test for equality 

EqA : A x A + B on A, i.e. such that EqA(a,a’) = t ej u = a’. Then we take 

EqL(t’,L’) 21 [if e = nil then Eq,u(t’) else 
(12) 

where 7 : B --f B and A : [EB x B -+ B are the usual Boolean operations of nega- 

tion and conjunction. Then EqL : L x L + B by induction on Lb(t) and we have 

EqL(d,t’) = lt ti Lb(L) = Lh(d’) & Vn < Lh(t)[EqA((t),,(t’),) = t]. More gener- 

ally, any “decidable” relation p : A x A -+ B on A can be extended pointwise to lists 

uniformly by 

I?.+, d, e’) 2~ [ if G = nil then Eq,il(t’) else 

+nil(e’) A P((& V’)o) A WP, e-9 (f)-)I. (13) 

To treat sorting on lists as an ACP, we need to augment A by a less-than relation on 

A, LessA : A x A -+ B. Then any of the usual sorting procedures such as bubble-sort, 

merge-sort, quick-sort, etc., can be turned into an ACP over 9(A) with LessA. Again, 

more generally, each of these can be considered as obtained uniformly from a relation 

p:AxA+B. 

Each of the abstract computational procedures considered here determines a partial 

recursive fImction(a1) when specialized to partial recursive list structures. Moreover, 

they are obtained uniformly from the operations P,Pl,Pz and Eqo of (2), (3) above. 

Thus they may be considered as polymorphic operations on partial recursive list struc- 

tures. Another way of looking at this uniformity is through the substructure theorem, 

with each substructure 2’(A) in (5) considered as a substructure of 

=mJ) = 6% M NP,P1,P2,Wqo). (14) 

Then for each ACP F and each A C N, the restriction of the partial recursive fiurc- 

tion(a1) FYcN) to 9(A) is co-extensive with FY(A). The same applies to the ACPs 

for the various augmented structures considered above. 

Remark 

1. Abstract data types and computation on them are supposed to be independent of their 

implementation; but some forms of implementation are more suitable for efficiency 

of operations than others. For example, in the case of lists, the operations of deletion 
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and insertion at a given position in a list are much more efficiently performed if 

these are implemented as linked lists rather than as arrays. In a linked A-list, each 

item is at a given location in “memory” and consists of a member a of A together 

with a “pointer” to another memory location. For these an appropriate ADT would 

contain besides A,L also a domain M interpreted as the memory locations. 

2. There is a sense in which one can compose ADTs. For example we can substitute 

for the domain A in lists-of-As the domain lists-of-& so that the L in Z(A) is 

interpreted as lists-of-lists-of-&. An example of an operation which can be defined 

on this composed structure is Fluften, which takes a list-of-lists-of-& into lists of Bs 

in the usual way. We shall not try to develop the formation of composed structures as 

a general notion here. It should be clear how the result of any particular composition 

of structures can be treated as a new structure to which the notion of ACP is then 

appropriately applied. Note that the special case lists-of-list works out nicely in the 

partial recursive interpretation (5) simply by taking A = L(B) as defined in (4), and 

we can use the same operations in 9(A) as in L?(B). 

9. Foundations of computation on stream structures 

In the framework of computation on ADTs, streams over a set A are to be treated 

as a basic set S in a suitable structure Y analogous to that for A-lists. Intuitively, an 

A-stream is an infinite sequence s = (so,. . . ,s,, . . . ) of members of A, or a potentially 

infinite sequence of such, in a sense to be explained below. Thus, though the standard 

interpretation of S consists of second-order objects, in the present approach they are to 

be treated as jirst-order objects in Y. On the other hand, as we shall now argue, it is 

insufficient for the intended applications to construe Y itself as a first-order structure 

in the sense of Section 6; that is, Y will have to include a functional of type level 2 

among its basic Fk. 

If we try to treat the structures for infinite streams as being first-order in the sense 

of Section 6, the obvious form for these to take would be as follows (where we use 

the superscript “1” to distinguish these from second-order structures): 

(i) P’(l) = (A S Cons Hd T/) where 

(ii) A # g5 ’ ’ ’ ’ 

(iii) Cons : A x S -+ S, Hd : S + A, Te : S + S 
(iv) Va E A Vs E S[Hd (Cons(a,s)) = a and TQCons(a,s)) = s] . 

(1) 

The main point against this is that these (and similar) conditions do not uniquely 

determine Y(l) up to isomorphism, given A. Two nonisomorphic structures are obtained 

by interpreting S in the first instance to be the set (RJ + A) of all functions from 

N to A, and in the second instance to be the subset (IV;-A) = {f E N -+ A 1 

3nVm 2 n(f(m> = f(n))) f o eventually constant functions. In both cases we take 

Cons(a,f) = In.[if n = 0 then a else f(n - l)],Hd(f) = f(0) and 7’/(f) = h.f(n + 
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l), for f : N 4 A. The first-order structure (1) with S = (N -+ A) is denoted 9’gLA 

and the second YEyA; obviously the latter is a substructure of the former. 

Secondly, the con&ions (1) do not guarantee closure under the expected computation 

procedures. Schemes of definition by recursion on streams have been proposed and 

studied by Mendler [14], Geuvers [7] and Paulson [18], among others, in the approach 

to streams as a co-inductive type ( in a sense to be explained below). The simplest 

associated scheme, called co-recursion, is supposed to yield F from G, H defined on 

a set C, satisfying: 

F : C + S with F(x) = Cons(G(x), F(H(x))) for x E C, 
(2) 

whenG:C+A, H:C-+C. 

It will be shown in the next section how such F (among others) can be obtained as 

an ACP on suitable second-order stream structures Y @) In particular, this will permit . 

us to define a function F from B to B-streams (as S) by 

F : B + S with F(u) = Cons(G(u),F(H(u)), 

where G(u) = U, H(u) = X, for u E B. 
(3) 

If this F could be defined as an ACP over first-order stream structures Y(l), then in 
y(i) N_n, F(E) would be the stream (it, fl, it, fJ:. .), but this F is not a map from B 

to S in the sPi,n interpretation. By the substructure theorem of Section 4 it follows 
/In 

that F cannot be defined as an ACP over Yp(fiJ1)_n, because the substructure ,4pt,n 

is not closed under F. Moreover, there is no obvious expansion of (1) by first-order 

operations for which the latter is not still a substructure of the former. 

The need to somehow expand the structure (1) by a type 2 functional (or func- 

tionals) has been argued from another point of view in [5, 61, namely, if we are to 

characterize the infinite A-streams up to isomorphism relative to A, we need some 

kind of second-order expansion of (1) which ensures the completeness of the structure. 

However, unlike the case of lists in the preceding sections, there is no evident way to 

achieve this simply by adding a second-order condition to those of (1 ), though the ap- 

proach through co-inductive types mentioned above might seem to suggest that. There, 

informally, the set S of A-streams is identified as the largest X such that X C @(X) 

where @ is the monotonic operation given by Q(X) = {Cons(a,x) 1 a E A and x E X}. 

(This is dual to the identification of the A-lists as the smallest X such that Q(X) GX.) 

But while such S always exists as a subset of a universe V on which we have an oper- 

ation Cons : A x V -+ V (simply take S = UX G V[X C @J(X)]), its value depends very 

much on what V is, even if we have Hd and Tt operations with Hd(Cons(a,x)) = a 

and Tf(Cons(a,x)) = x. For example, for A = N, here are three essentially different ex- 

amples where this S turns out to be V: (i) take VI = N, Consl a pairing operation from 

N x N onto N, and Hdl, Tel its projections; (ii) take V2 = (N --+ N), Consz(a,f) = 

h. [if n = 0 then a else f(n - l)], Hdz(f) = f(0) and 7’e,(f) = Rn.f(n + 1); 
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(iii) take V3 = (lV -+ N) x N, Cons3(a,(f,m)) = (Cons2(a,f),m),Hd3((f,m)) = 
Hdz(f) = f(0) and Tes((f,112)) = (Tez(f),m). Note that we do not have closure 
under the scheme (2) in case (i), and while we have closure under it in case (iii), the 
resulting F is not uniquely determined. In the articles on the co-inductive approach to 
streams mentioned above, the largest X G Q(X) is singled out by reference to a “suit- 
able” categorical or set-theoretical framework which is external to the structure Y that 
we are trying to characterize. For an internal characterization in the next section, we 
simply add instead a type 2 functional Sim which is used to ensure that every (total) 
cp : N + A can be simulated by a stream Sim(cp) E S considered as a type 0 object. 

Remark. This discussion is not meant as a criticism of the co-inductive approach, 
which has both heuristic value and independent interest. However, the resulting notions 
of computation on streams appear rather specific to that approach rather than fall out 
as a special case of a general notion of computation on arbitrary structures as here. 

Granted, now, that we must take something like the type 2 Sim functional as basic 
in structures for infinite streams, we turn next to the extension of these ideas to finite 

nonterminating streams, i.e. those for which there is no signal for termination. Streams 
which are either infinite or finite nonterminating are called here potentially infinite. 

These arise naturally both from mathematical computations and physical phenomena. 
An example of the first is provided by the formation of FiZter(cp,s) - which is supposed 
to be the substream of the stream s consisting of all terms (s)~ for which cp ((s)~) = it 
- when we do not know in advance whether there exist infinitely many (or even any) 

n for which rp ((s)~) = it. An example of the second is provided by irregularly received 
signals from some extraterrestrial source, when we do not know at any point whether 
or not there will be any further signals. Such physical examples can even be considered 
as giving rise to “gappy” streams, where we regard (s), as being undefined if there is 
no signal at time n (allowing for the fact that there may have been such but it was 
too weak to be received). In any case, it turns out that the ADTs for partial streams 
and the abstract computational procedures on them are simpler to describe than for 
potentially infinite streams, while we can easily extract from them the ACPs for the 
latter as special cases. 

We are thus led to consider structures of the form 

9’ = (A, S, Cons, Hd, Te, Sim, .N) where 

(i) A # 4 
(ii) Cons:AxS+S, Hd:SzA, Te:S+S,Sim:(NsA)-+S, (4) 

(iii) Vu E AVs E S[Hd(Cons(a,s)) = a and TQCons(a,s)) = s] ,and 

(iv) Vrp E (fV 2 A)Vn E N[Hd(Tf’(Sim(cp))) 2: q(n)]. 

Here fV is built in as a basic domain, along with the structure JV = (N, SC, Pd, 0, Eqo) 
that it carries; this is necessary in order to make sense of Sim and to produce useful cp 
to which Sim can be applied. Note that if we were just to deal with infinite streams, we 
would take Hd to be total, i.e. Hd : S -+ A, and Sim to be of type Sim : (N + A) --+ S, 
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otherwise, no change in (4) would be necessary, but, having argued above for the value 

of working with potentially infinite and even more general partial streams, we shall 

take (4) in the above form as the starting point of the next section. However, we 

meet one new problem in taking this added step of generality, namely that the Sim 

functional is not monotonic in the sense of Section 2, i.e. we do not have q C $ + 

Sim(cp) = Sim($). For, the nth term of Sim(cp) is defined only when q(n) is defined, 

by (iv) above. Write (s), N Hd(TP’(s)) for s E S, )2 E N, and s&s’ for v~n[(s), I+ 

(s’), = (s),]. What we do have is that Sim is monotonic in the weaker sense that 

cp C $ * Sim(cp) CS Sim($). 
Now, in order to accommodate computation on partial streams in terms of the func- 

tional schemata of Section 3 ( in particular, of the LFP scheme) we must generalize 

our basic framework to assume given with each set Ai a relation GA,, so that mono- 

tonicity of F : A: x AT 1 Aj is taken to mean that if the arguments of F increase 

in A, x A; then its values increase (under Gj) in Aj. In the case at hand, &, will 

still be the identity relation on A and N, but will be taken to be & on S. Such a 

generalization would not be necessary if we were to restrict our attention to infinite 

streams, since there Sim : (N --) A) + S is trivially monotonic in the sense of Section 

2. However, the recursion schemata for partial streams (such as needed for the FiEter 

operation) come out much more simply than they do for total streams. It turns out 

that little modification of our basic framework is necessary in order to deal with the 

generalized notion of monotonic functional. In outline, this is done as follows. 

First, returning to Section 2, assume fixed for each i = 0,. . . , n, a chain-complete 

partial ordering CA, (also written gi) on Ai. For X C Ai nonempty and linearly ordered 

by Ci, write UX for L.u.b.(X). Given x,Y E A;, i = (il )...) i,), x = (x ,,..., X”), y = 

(Yl,..., Yy), put X G;Y @ xk ci, Yk for k = 1,. . . , V. Now for 0 = (i 2; j) by 

A, we mean the set of all cp : Ai G Aj which are monotonic in the sense that 

vx, Y E AT [v(x) 1 and x CT Y + q(Y) I and q(x) sj q(Y)]. Then for q, $ E A,, take 

q 2, $ @ Vx E A; [q(x) J+ $(x) 1 and q(x) Cj $(x)1. This relation is extended term- 

wise to gTi for 5 = (al,..., aP). Finally, for F : A, x AT 2 Aj of type level 2, we take 

F to be monotonic (in the generalized sense) if 

Vqp, $ E &Vx, y E A~[F(q,x)l and q Ca $ and x zI y 

* F($, Y) 1 and F(cp,x) Cj F($, y)l. (5) 

In the following, we shall omit the subscripts on the various inclusion relations when 

these are determined by the context. 

The next step is to re-examine the definition of LFP in Section 2. Here, the basic 

point to be observed is that each A, is also chain-complete: if X CA,, is any nonempty 

linearly ordered collection then X has a e.u.b. U X defined by 

(UX^)(x) = ( ) u cp (xl = u cp(x>. 
cpES VW 

(6) 
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Actually, completeness is needed only for well-ordered chains (as also for the basic 
si), in order to define LFP for monotonic F in the above sense. This is done exactly 
as in Section 2, for F = ~@~.F(cp,x): 

LFP (F) = u q+) where q(O) is the empty function and 

c$‘) = ; &rp@)) for each c( > 0. 

B<m 

(7) 

Again, this is extended to LFP of F(cp, $,x, y) relative to parameters cp,x by taking 

@V,X = h,bly.F(cp, $,x, y). All that then needs to be proved is that if G(cp, @,x, y) is 
monotonic in the sense of (5) above, then so also is 

(8) 

This is established by the same argument as for the Lemma of Section 3. The schemata 
for ACPs of Section 3 then make sense for any structure d on basic domains (Ai, ci) 
for which the basic functions or functionals Fk are monotonic in the above sense. 
(Note, in particular, that the application functional F(cp,x) ‘v q(x) is monotonic by our 
requirement that we restrict attention to monotonic cp.) This suffices for the treatment 

of ACPs on partial streams which we take up next. 

10. Computation on partial-stream structures 

Let P-STREAM (“F”’ for “partial”) be the collection of all structures 

Y = (A, S, Cons, Hd, Tt, Sim, N) where 

0) A # 9, 

(ii) Cons:AxS+S, Hd:SsA, Tf:S+S, Sim:(NrA)+S, (1) 

(iii) Vu E A Vs E S [Hd(Cons(a,s) = a and Tf(Cons(u,s)) = s], 

(iv) Vq E (N 1 A)Vn E N[Hd(Th’“(Sim(cp)) N q(n)], and 

(v) s, s’ E S and V’n E N [Hd( Tt”(s)) -G Hd( Tt”(s’))] =s s = s’. 

The following notation will be used for any such structure. Given s E S, write 

(i) (s), 21 Hd(Tt’“(s)), and 

(ii)s s,s’ * Vn[(s)nl* (s’), = (s),]. (2) 

This will be the basic relation assumed given on the domain S, while the relations CA 
and CN are taken to be equality on A and N, resp. (We here identify B with (0, 1 }.) 
Then, according to the definition (2), the basic function(al)s of 9 are automatically 
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monotonic, in the sense of the preceding section, for we have 

(i) (Cons(a,s)), N [ if n = 0 then a else (s),_t], 

(ii) EM(s) 21 (s)o 

(iii) (R’(s)), N (s)“+i, and 

(iv) (SWcp)), = q(n). 

(3) 

In the following we shall write s G s’ for s&s’, S is chain complete under G. To 
make the notation more perspicuous we shall also write (a; S) for Cons(a,s) and s-) 
for T/(S). Note that ((a;s))c = a is always defined, given a E A. To make sense of 

(e; s) when e is an expression for an element of A that may fail to be defined, we take 
(e;s) = Sim(ln.[if n = 0 then e, else (Q-i]). 

It was emphasized in the preceding section that something like the Sim functional 
is needed to characterize stream structures up to isomorphism. This is now provided 
directly by the following: 

Theorem 8. Suppose 9” = (A’, S’, Cons’, Hd’, T8, Sim’, JV) also satisjes the condi- 

tions of(l)(i)-(v), and that I : A g A’. Then F : Y Z Y’for F(s) = Sim’(lnJ((s),)). 

By stream recursion we mean any general computational scheme for producing 
streams as values. The following suffices for all our applications here, but more gen- 
eral schemata are derivable, as will be indicated below. Here Y+ = (9,. . . , ) is any 
expanded structure with Y as in (1). 

Theorem 9. Let Y+ = (9,. . .) with 9’ in P-STREAM. Suppose C is a subset of 

one of the basic sets in Y+ and that G, Ho,H,, D are ACPs over Y+ with G : C 1 

A, Ho:C+C, Hl:C--,CandD:C + B. Then we can find an ACP F over Y+ 
satisfying: 

(i) F : C + S with 

(ii) F(c) = [ ifD(c) = f then (G(c);F(H,,c)) else F(HIc)] for all c E C, and 

(iii) if F’ : C + S is any other function satisfying (ii) then F(c) 2 F’(c) for all 
c E C. The same holds uniformly in any parameters cp,x. 

Proof. While F solves a fixed-point equation (ii), it cannot be described as its LFP, 
since that is the completely undefined function. Here, in contrast, F is total and is 
characterized by (iii) among all total solutions of (ii) as the one which is least pointwise 
on C. Instead we take 

F(c) = Sim(ln.t&c,n)) (1’) 
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where 

$(c,n) N 

BY (1 )(iv), 

G(c) if D(c) = ti and n = 0, 

r&H&n - 1) if D(c) = tt and n > 0, 

twl c, n 1 otherwise. 
(2’) 

(F(c),) N Il/(c,n) for all c,n and F(c) E S for all c. 

Hence 

(3’) 

G(c) if D(c) = # and n = 0, 

(F(c))~ N 

{ 

(F(Hoc))~_~ if D(c) = dt and n > 0, (4’) 

(F(Sc))n otherwise. 

This shows that F satisfies (ii) in the statement of our theorem. Then if F’ also satisfies 

(ii) and we take 8(c,n) N (F’(c))~, we have that 8 satisfies (2’) in place of $, so 
Ic/ c 0 by its definition as LFP of (2’); hence F(c) c F’(c). 0 

More general such recursions can be justified with the same conclusion, e.g. 

F(c) = [ if DO(C) = tt then (G(c); if Dr(c) = tt then F(Hoc) else K(c)) 

else F(Hr c)] (4) 

when DI : C + B and K : C + S. Similarly we can add more “else” clauses at the 
end, according to suitable cases. However, as stated above, the scheme of Theorem 9 
stices for the applications here. Our next step is to see when we can strengthen the 
conclusion about the values of F(c) for c E C. 

A stream s E S is said to be infinite (or total) if Vn[(s), 11, and potentially injnite 

(or nonguppy) if Vn,m[(s), 1 and m < n + (s,)J]. We denote by Sinf, S,,,f the 
subsets of S consisting of these s, resp. A stream s is said to be jinite (nonterminating) 

if S E Sp&nf - Sinf . 

Theorem 10. Under the same hypothesis as Theorem 9, if G : C + A then F : C + 

Spotinf . 

Proof. Returning to the proof of Theorem 9, we have 

rc/(c’ O) N 
if D(c) = ar, iiilc, 0) otherwise, 

‘(c’n + ’ ) N 
Ic/Woc, n) if D(c) = n, 
$(Hlc, n + 1) otherwise. 

(1’) 

(2’) 
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It follows from (1’) that 

l/qc,O) 1 w 3m(D(H;nc) = P). (3’) 

For if D(H;“c) = t and m is the least such then 

$(c, 0) 21 $(Htc, 0) N . . . N $(H;“c, 0) N G(H;“c). 

But G is total so $(c,O) 1. Conversely, if Vm(D(Hrc) =fl) then we have $(c, 0) 21 
ICI(H,C,0)21...NICI(HI”C,O)N... for all m, and the least solution Ic/ makes Il/(c,O) T. 

rl/(c,n + 1) J 9 3m[D(H;“c) = tt and Vk < m(D(H[c) =$) 

and $(ff~Tc,n) 11. (4’) 

For suppose Vm[D(Hrc) =fl], then by the same argument just given, $(c,n + 1) T. 
Hence if $(c,n + 1) J the least m with D(H;“c) = @ satisfies I(/(c,n + 1) 21 $(Hrc,n + 

1) P IC/(HoHyc,n), so $(HoZY;“c,n) I. Conversely, tracing this back makes $(c,n+l) 1. 

\JWti(c,n + 1) 1 =s Il/(c,n) 11. (5’) 

This is proved by induction on n. For n = 0 this follows directly from (3’) and (4’). 
Suppose it holds for n. To show for n + 1 we apply (4’) to n + 1 in place of n: 

IC/(c,n + 2) 1 +$ 3m[D(Hrc) = tt and Vk c m(D(i$c) =fl) 

and II/(HoH;nc,n + 1) 11. (6’) 

By induction hypothesis [$(H&” c,n + 1) 1 +- II/(HoHrc,n) 11; Hence from (4’) and 

(6% [$(c,n+2) 1 * +(c,n+ 1) 11. S’ mce (F(c)),, 2: $(c,n) for all n, (5’) shows us 

that (F(c))n+~ 1 * (fT~)h 1, SO f’(c) E Spotinf. 17 

We cannot strengthen this further to F : C + Sinr under the given general conditions 
but that cun be established for less general forms of recursion such as the following. 

Theorem 11. Suppose Y+ = (9,. . . ) with 9’ in P-STREAM. Suppose C is a subset 
of one of the domains in Yi and that G,H are ACPs over Yf with G : C + A and 
H : C -+ C. Then we can find an ACP F over Yi satisfying: 

(i) F : C + Sinf and 

(ii) F(c) = (G(c);F(Hc)) for all c E C. 

Proof. This may be regarded as a special case of Theorem 10 with D(c) = t for all 
c. At any rate, here (F(c))~ N +(c,n) where 1+9 is the LFP of 

(1’) 

It is then proved by induction on n that Vc[$(c,n) 11. Hence F(c) E Sinf. Cl 
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The same conclusion can be drawn for slightly more general recursions of the form: 

F(c) = (G(c); if D(c) = tt then F(Hc) else K(c)) (5) 

when G : C -+ A, D : C + B, H : C -+ C and K : C -+ C. (This is the form that 
corresponds to the scheme of corecursion in [7].) 

We now turn to examples of the recursive stream definitions in Theorems 9-l 1. 
Most of these are drawn from Abelson et al. [ 1, Section 3.41 (cf. especially 3.4.4 for 
operations on and to infinite streams). First, for 9, Y’ both in P-STREAM, we can 
define the A CP 

MAP:(A-+A’)xS--+S’ with 

MAP((P,s) = (cp((s)o); MAP(cp,s’))‘. 
(6) 

This is obtained from Theorem 9 uniformly in q~, with Y+ = (9, P”), and S’ in place 
of S there, C = S, G(s) z cp(s)o,H(s) = s+ and D(s) = dt all s, for any given total cp. 
We can then apply Theorem 11 to conclude 

if s E S&r then MAP((p,s) E l&, (7) 

by restricting C to Si”r, on which G(s) = q(s)0 becomes total. Note that if cp is a 
l-l correspondence between the domain A of S and A’ of S’ then MAP(q) induces 
an isomorphism of 9 with Sp’, so this gives another route to Theorem 8. 

The next example extends any operation q : A x A -+ A pointwise to A-streams, 

Op:(AxA+A)xSxS+Swith (8) 

OPGw,4 = (cpwo,(~‘)o); OP(cp, W), W’)). 

This is by Theorem 9 uniformly in q with C = SxS, G(s,s’) N cp((s)s,(s’)c), H(s,s’) = 
(s*, (s’)+), D(s, s’) = I all s,s’. Again, by Theorem 11, 

if 8,s’ E &,f then Op(cp, s,s’) E l&f. (9) 

The procedure of meshing or interleaving two A-streams is given by 

Mesh : S x S + A with Mesh(s,s’) = ((s)~; Mesh(s’,s’)), (10) 

taking C = S x S, G(s,s’) N (s)c, H(s,s’) = (s’,s+) and D(s, s’) = tt, in Theorem 9. 
Again, by Theorem 11, 

if S, S’ E Si”f then Mesh(s, s’) E Sinf. (11) 

More interesting, next, is the general procedure of filtering with respect to a predicate 
q : A + B. We have 

Filter : (A + IB) x Sinf --+ S+,,f with (12) 

FiZter( cp, s) = 
((SW’i~ter(cp,s’)) if COO) = 6 

Filter( q, s+) otherwise. 
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This falls under Theorem 10 uniformly in cp, with C = Sinf, G(s) = (~)a, H(s) = s- 
and D(s) = cp((s)s). (The restriction of C to Sinf is needed to make G total). Clearly, 

if tin% >, n[cp((s),) = t] and s E Sinf then FiZter(cp,s) E Sinr. (13) 

However, if the hypothesis of (13) is not known, we can only treat F’ilter(cp,s) as a 
potentially infinite stream. If 3nVm > n[cp((s),) = ff] but we have no proof of that, 
then Filter(cp,s) is an example of a finite nonterminating stream. 

In the present approach, there is no obvious general way to represent the filtering 
process computationally which ensures that it will always lead from infinite streams to 
infinite streams. One way has been suggested in the co-inductive approach by Leclerc 
and Paulin-Mohring [12], in the framework of the Coq language. Their idea is to build 

in a proof of the hypothesis of (13) as part of the data parameters. One particular case is 
examined [12] (The Sieve of Eratosthenes, see next), and the general treatment is only 
suggested. In any case, this only shifts the problem from providing an external proof 
to that of providing its formalization as internal data, a step which will only make the 
filtering procedure more cumbersome. Our view here is that for programming purposes, 
the computational procedure of filtering should be represented in as simple a way as 
possible (here, as in (12)), and that while its application to a specific (cp,s) may call 
for a proof of the hypothesis of infinitude of {n : opt) = f}, it need not require it. 
For example, we may want to filter the predicate of being a twin prime up to a point, 
say n = 109, in order to provide experimental data about twin primes. If one insisted 
on internalizing a proof of infinitude as part of the data, this would never get off the 
ground, at least not as a stream procedure. 

Filtering can also be carried out relative to a parameterized predicate cp : A x U -+ El, 

by taking 

FiZter(cp, u,s) = FiZter(jla.cp(a, u),s). 

The general sieving procedure is then defined by 

(14) 

Sieoe : (A x U 4 B) x Sinr + Spotinf with (15) 

Sieue( rp,s) = ((s)s; Sieoe(Filter(cp, (s)~, .s’)). 

In particular, the Sieve of Eratosthenes applied to a stream s of natural numbers is 
given by Sieue(cpx,s) where 

(p~:NxN+-’ with ~%(a, u) = t @ u If a. (lo) 

Sieve(cpz,s) acts by filtering out all multiples of (s)s before proceeding on to the 
sieve of s+. Hence 

Prime = Sieve(cp~,SimAn.(n + 2)). (17) 

On the other hand for example, Sieue(cp~,Simln.2) is undefined following its first 
term. Of course, (17) is only one of many methods for generating the sequence of 
primes as a stream. 
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A nice example of an infinite number-theoretical stream produced without filtering 
is the Fibonacci sequence (cf. [l, p. 2671); 

Fib = Fib(0, 1) where Fib(n,m) = (n; Fib(m,n + m)). (18) 

By Theorem 11, Fib E S(N)inf (i.e. is an infinite N-stream). Another nice example 
comes from the theory of divergent series: the Cesrko (C, 1) summation method leads 
from any infinite stream s of rational numbers (or, more generally, real numbers) to 
the infinite stream Ces(s) of partial averages given by 

(19) 

In terms of the stream operations, this can be analyzed as the composition of pointwise 
division by the stream of positive integers with the operation Sum : S + S given by 

Sum(s) = ((s)o; @IO i Sum(s’)) (20) 

where x -i- s is the stream obtained from s by pointwise addition by X, i.e. (X + s), = 
x + (s)~. The operation Ces itself can be iterated any number of times. 

We close this section with a few applications to combined structures of streams and 
lists. To begin with, a structure (Y,Y) in which 9’ acts as the A-streams and 9 as 
the A-lists allows us to define 

Append : L x S + S with (21) 

Append(e,s) = [ if e = niE then s else (Hd(6’); Append(/‘, s)). 

This is simply given by recursion on L. In the following we write e*s for Append 
(e,s). Inversely, we define 

Truncate : S x N + L with (22) 

Truncate(s,n) = [if n = 0 then nil else Trancate(s,n - ~)*((zz)~)], 

which is given by recursion on N. Writing s(n) for Truncate(s,n), we have 

e+s(LI@)) = e. 
To treat streams of lists we can use a combined structure (YA, 9’~, 9~), where 

9’~,9~ are the structures of A-streams and B-streams, resp., and 9~ is the structure 
of B-lists and where, finally, it is assumed that 

A=LB, (23) 

i.e. that the members of A are exactly the B-lists. Hence, given a E A we can test (in 
9~) whether a = niIB, and if a # nilB, form Hd&a) as an element of B and T/B(a) 
as a B-list, i.e. as a member of A. Now S,, the A-streams, can be thought of as streams 
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of B-lists. Hence we can define the ACP: 

Flatten : S, --+ S, with (24) 

FEatten = [if(s)0 # nile then (Zfd~((s)s); FZatten(Tk’B((s)o)+T(s))) 

else Flatten(TeA(s))]. 

This falls under Theorems 9 and 11, so that if s E (S~)i,,f then Flatten(s) E (S~&~ti”f, 

and Flatten(s) E (SB)inf only if s has infinitely many nonnil terms. 

Remark. Some authors, including Abelson et al. [l] and Paulson [ 181 treat lists as 
finite streams. But these must be distinguished from finite nonterminating streams in 
the sense defined above. If a list is to be considered as a stream in the way these 
are dealt with here, it must be provided with a signal for termination. One way in 
which that can be accomplished is to reserve a specified element as of A to serve 
as such a signal. Then, for example, lists could be identified with infinite streams 
s with the property that if (s)~ = a0 then (s), = a0 for all m > n; the list in the 
proper sense associated with s is then just Z(n) for the least such n. Obvious alternative 
identifications are also workable. 

11. Recursion-theoretic interpretation of computation on number-stream structures 

We shall deal here with computational procedures on structures for A-streams when 
A C N. The standard realization for these will simply take 

S(A)=(NsA) foreachACN. 

In particular, the standard realization for A = N is taken as 

(1) 

Y(N) = (N,S(N),Cons,Hd,Te,Sim,N) 

where 

(2) 

(i) Cons : N x S(N) + S(N), Hd : S(N) 1 N, R : S(N) --f S(N), 

Sim : (N 1 N) + S(N) 
are given by 

(ii) Cons(a,s) = h.[ if n = 0 then a else s(n - l)], 
(iii) Hd(s) N s(O), 

(iv) T{(s) = In.s(n + l), 
(v) Sim(q) = cp. 

The substructure induced by A is then 

Y(A) = (A, S(A), Cons, Hd, Te, Sim, JV) (3) 

where Cons is restricted to A x S(A),Hd and Te are restricted to S(A) and Sim is 
restricted to N s A. Clearly, Y(A) is in P-STREAM for any A, and by the categoricity 
theorem 8, every member 9 of P-STREAM on A has Y %! Y(A). 
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In (1) and (2) we are trying to maintain the distinction between A! 7 N in its role 
as the set of all partial functions from N to N and its role as the interpretation of 
the individual domain S( IV) in Y( IV). For the former, we continue to use function 

letters q,$,..., while for the latter, stream letters s,s’, . . . . The notation is not without 
ambiguity, though. In (2)(v), cp appears as a partial function on the left hand side of 
the equation and as a member of S(N) on the right hand side, and in Eqs. (2)(ii)-(iv) 

with expressions of the form s(e), the stream object s is treated as a partial function. 
We can lessen the latter ambiguity by writing (s), for s(n) when treating s as a stream 
object. Note that the inclusion relation C for partial functions coincides with ES(N) in 
their guise as stream objects. 

The following is an immediate consequence of the substructure theorem (and its 

corollary) in Section 4. 

Theorem 12. For each ACP F in signature Z (P-STREAM) and for F = F”(“) we 

have 
(i) 9’(A) is closed under F, and 

(ii) F 1 Y(A) = F”@). 

Thus for a recursion-theoretic description of ACPs over Y(A) for A C N it is suf- 
ficient to describe the ACPs over Y(N) and then form their restrictions. To simplify 

matters in doing so, we first replace Y( IV) by the structure 

b(N) = (N,S(~),EvaZ,Sim,Sc,Pd,O,Eqo), (4) 

where Evaf : S(N) x iW .G N is given by EvaE(s, n) N s(n). Every ACP over Y( BJ) 
can be obtained as one over b( N ) and conversely. For the former we use 

(i) Cons(a,s) = Sim(ln.[if n = 0 then a else EvaZ(s,n 7 l)]), 
(ii) Hd(s) 21 Eval(s, 0), 

(iii) Z(s) = Sim(ln.Eval(s, n + l)), 
(5) 

while for the latter we use 

EvaZ(s, n) 21 Term(s, n) N Hd(Tt”(s)). (6) 

Now, to see how the ACPs over b(N) work out, let us first return to the Iunction 
and functional notation of Section 2. We have just two basic domains Ai to consider, 
namely As = N and Al = S( N ). Hence the A; are products A;’ x A;;Z, or S( N )“I x NV2 . 
The type i is in this case written as i = 1 ‘I x O”*, and (s,x) is written for a typical 
element of A;, where s = (st,. . . ,sv, ), x = (xl,. . . ,xy2), and eh(i) = v = VI + ~2. Next, 
the partial function types B = (i 1 j) reduce to those of the form 1” x O”* 1 0 
or 1”’ x O”* 1 1. In the first case, a partial function cp E A, becomes a partial map 
cp : S(N)” x N”~ 2 N. Recall that at the end of Section 9 it was further required that 
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cp preserves & when applied to arguments in S. Hence: 

For v1 > 0, the partial functions cp : S(N)” x NV* z N of type level 1 

which preserve (Is(,) are identified with the monotonic partial functionals 

cp : ( N 1 N )“I x NY2 2 N of type level 2 over JV. 
(7) 

In the case that VI = 0, cp remains of type level 1 over JV. 

Next, with each cp of type (T = 1”’ x 0”~ 1 1 is associated cp- of type rr- = 

1”’ x 0y2-t1 1 0 by 

q-(s,x,n) = EvaZ(q(s,x),n). (8) 

With cp required to preserve &(,), the same holds for cp-. Conversely, with each tj 

of type 1”’ x 0y2+’ z 0 is associated $+ of type 1”’ x Ovz -+ 1 

$+(s,x) = kt.$(s,x,n). (9) 

Note that 

(i) ($+)- = I++, and 

(ii) cp C(cp-)+, with cp(s,x) = (cp-)+(s,x) when cp(s,x) I, 

and (cp-)+ = empty function when cp(s,x) r . (10) 

While by this we do not have a one-one match-up between A, and A,-, for all com- 

putational purposes we can reduce A, to A,-; the reason is that we are only concerned 

here with cp(s,x) when cp(s,x) I. Thus: 

For VI > 0, the partial functions cp : S( N )“’ x NV* 1 S( N ) of type 
level 1 over b(N) which preserve G,(N) are identijed with the 

monotonic partial finctionals cp : (N 1 N)“’ x PVvzfl 1 N of type (11) 
level 2 over JV. In the case that v1 = 0, cp is identijed with II/ of type 

level 1 over M. 

It should now be clear how things will go with the functionals in our framework: 

The monotonic partial functionals F of type level 2 
over b( N ) which have some partial function arguments 
that, in turn, have arguments in S(N), are identified with monotonic 
partial functionals of type level 3 over JV. But if all partial function (12) 

arguments of F have only numerical arguments, then such F are 
identijed with monotonic partial functionals of type level 2 over JV. 

Thus for a recursion-theoretic interpretation of the ACPs over S(N) or equivalently 

over b(N), we need an extension of the notion of partial recursiveness to fimctionals 

of type level 3 over ~4’“. This is provided by the work of Ereov [2], which leads 

to a notion of partial recursiveness for functionals of arbitrary finite type applied 
to hereditarily partial continuous arguments. ErSov derives this via his theory of 
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enumerated structures from an abstract theory of special kinds of topological spaces, 

called f-spaces. Subsequently, I presented in [3, 41 a direct concrete version of these 

notions which is analogous to that given for finite type functionals of hereditarily total 

continuous arguments in Kleene [lo] and Kreisel [ 111. This concrete version can be 

explained much more quickly than that due to Ersov. For simplicity, this is done for 

the pure types n where (n + 1) = ( II 1 0). The idea is that objects of type (n + 1) 

are partial functions cp such that for each Ic/ of type n, the value of cp($) depends only 

on a finite amount of information about Ic/. That information is represented by formal 

neighborhoods. The set of formal neighborhoods of type n, Nd”, is defined inductively; 

we use letters U”, U;, . . . to range over members of Nd”. 

(i) Nd” = N 

(ii) Nd”+’ consists of all finite sequences (UF, pi)i<m such that U: ENd” (13) 
and piE N . 

Then we define C” and 1 U” 1 G C’ inductively as follows, where we write cp E U” for 

cp E 1 U" 1; also superscripts are omitted when these are determined by the context. 

(i) Co = N and JpI = {p}, 
!I+, 

(ii) C - is the set of all cp : C’ 1 N such that 

V’II/ E C%‘p[q($) = p + 3U”($ E U and Yx E U(q(X) = p))] . 

For Un” = (U:,pi)igm, 

(14) 

IUn+ll = {(PIviGmW E U/[Y$lc/) = Pill . 

Note that CL is the same as N 2 N. 

F: C’ x . . . x C’ s N is said to be partial recursively continuous, 

and we write F E PRIG’, if 

(i) F is continuous, i.e. whenever F(tj, . . . , t,bk) = p then 

SJ;‘,..., U,““[$l E U,&...&$k E Uk 

M,..., l(k(Xl E uI&...&xk E uk * F(Xl,...,Xk) = p), and (15) 

(ii) there exists partial recursive f : Nk -5 N such that 

F($i,..., $k) = p * lu;‘,... u,““[$, E u,&...&+k E uk 

&f(ul,...,Uk) = p] . 

(In (ii), we assume formal neighborhoods coded by natural numbers.) By use of prim- 

itive recursive tupling functions, objects of type level n are represented as objects of 

pure type n. The following result is a consequence of the work in [2], which is via a 

rather lengthy development through the theory of f-spaces. I plan to make available 

a much shorter direct proof for PR/C’ as explained here. 
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Theorem 13. PRIG” is closed under the extension of the ACP schemata to arbitrary 

jinite types. 

Corollary. 
(i) The ACPs over Y(N) are all partial recursively continuous. 

(ii) If F : S( N )“I x NY2 1 N with VI > 0 is an ACP over Y(N), then F is a partial 

recursive functional in the usual sense; similarly for F : S( N )“I x NV* 1 S( N ). 

(iii) If F E S(N) is generated by the ACP schemata over Y(N) then F is partial 

recursive. 

(iv) The structure of partial recursive streams is closed under the ACP schemata 
over Y(N). 

Remarks. 
1. Re(iv): though in Y(N), Sim is regarded as having domain N 2; N, it can only be 

used in the schemata in the form Sim(kG(n, . . .)) where G is an ACP over Y( N ); 

thus it will only be applied to partial recursive function arguments. 

2. If we expand Y(N) by some specified si, . ..,s, E S(N) as imput data to P(N) = 

(YP(f+J),Sl , . . . , s,), then the results of the corollary hold for F( N ) relative to 

A-l,...,&. 

3. In actual computation with streams, we cannot pass them as arguments or values 

in the extensional sense as partial functions, but can only deal with them via some 

method of representation, typically by Giidel numbers of partial recursive functions. 

Then partial recursive stream operations as in (ii) above are represented by ejktive 
operations, in the sense of Myhill and Shepherdson [ 171. A basis for treating abstract 

computational procedures which would have direct such intensional interpretations 

was provided in [5], but its proposed application to streams there [17, Section 

121 needs to be corrected; that will be done elsewhere. Incidentally, the Myhill- 

Shepherdson theorem extends to PRIG’ in all finite types. 

4. The preceding remark can be relativized to any given input data streams such as 

come from external (prima-facie) nonrecursive sources. 

Appendix A. Relation of ACPs to Moschovakis’ FLR 

Moschovakis [15, 161 has developed a formal language of recursion (FLR), which 

provides for any C a language of terms for computation procedures over structures of 

signature C. Besides the formation of terms by explicit definition, which correspond to 

the procedures obtained by our schemata I-VII, FLR features the formation of a term 

using simultaneous least fixed point (SLFP) recursion, to which the following scheme 

is analogous for appropriate combinations of types: 

VIII’ (Simultaneous least fixed point) 

F(cp,x) - WWG,. .,G) in HI(w), 
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interpreted in each structure d of signature Z as follows, when F = F”, Gk = Gf(k = 
1 ,...,m),H=H”Q,withargumentsF(cp,x),Gk(cp,~,/1,...,~~,x,y(k)),H(cp,~~/I,...,~~,~): 

F(cp,x) = H(cp,&i,...,3/m,~) where 

&,...,& are the least simultaneous solution of the system of equations (A. 1) 

MY(‘)) N G(cp,$i ,...,~~‘m,x,~(~)),...,~~m(y(~)) = G,(cp,rl/l,...,~~,n,~‘~‘). 

Let AU”(C) be the abstract computation procedures in signature C generated by I-VII 

plus VIII’ in place of VIII. Let ED(C) be the procedures for explicit definition, i.e. 

those generated by the schemata I-VII without VIII (or VIII’). 

Theorem A.l. 
(i) AU(Z) is equivalent to ACP’(,Y) for each C. 

(ii) AU”(C) is equivalent to the procedures obtained by restricting VZZZ’ to 

GI,..., G,,H in ED(C). 

Proof (Sketch). (i) Clearly the result of a single LFP by VIII can be treated as a 

special case of SLFP (VIII’), so ACP(C) is included in ACP’(C). Conversely, VIII’ 

can be obtained by a succession of single LFPs. This was proved in [5, Section 91; the 

idea is briefly as follows (for m = 2, where we suppress the function and individual 

parameters (cp,x)): To find the simultaneous LFP $1, $2 of 

&(Y(‘)) = GO,h,vh/2,~(~)), 

&/t(~‘~‘> p G2($1, $22, yC2)I, 
(A.l’) 

define 

(A.2’) 

Then 

&y(l)) N [~~P(nll/l~z’1’.G~(~~,~y’Z’K(~~,y(2)),z(’))](y(1)) 

and &(Y’~‘) N K(&, yc2)) . (A.3’) 

In other words, in the equation for $i we treat 6 as a LFP uniformly in $1. 

(ii) The idea of the proof for this part is that the end result of two applications of 

VIII’ can be merged into a single application by combining the successive SLFPs into 

a single SLFP. Hence any number of applications of VIII’ can be reduced to a single 

one preceded and followed only by explicit definitions. q 

It is the abstract computation procedures obtained as in (ii) which are directly analo- 

gous to the terms of FLR. Hence the two approaches yield the same class of procedures 

over each structure. The fact that the kind of definition VIII’ of SLFP can be reduced 

to a single application is an advantage of FLR over the use of successive applica- 

tions of LFP via VIII. However, for the results in this paper, it would have been 
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more complicated to work with VIII’ in place of VIII. This of course is irrelevant to 

Moschovakis’ main purpose for FLR, which is his interesting proposal to use it to 

explain the intensional notion of algorithm and, via his normalization procedure (in 

[16]) for terms in FLR, the notion of identity of algorithms. 

Appendix B. Comparison with the work of Tucker and Zucker 

In a series of publications since 1988 (detailed in the references to [21]) J.V. Tucker 

and J.I. Zucker have explored various notions (or “models”) of computation applied to 

rather general multi-sorted structures d. In [21] they have extended these notions to 

structures 2 for streams. In the same spirit as ours, that work treats computation on 

streams as a special chapter in their general theory; however, there are significant points 

of difference both as to the general approach and the special case. The following points 

initiate a comparison, but more work needs to be done to establish exact relationships. 

1. The general approach of Tucker and Zucker (“T-Z” in the following) is reviewed in 

[2 1, Sections 2 and 31, which is what we follow here. That applies only to first-order 

structures d. Moreover, in addition to assuming that a structure for the Booleans 

IEK is built in, it is also assumed there that a structure for the natural numbers F+4 

(equivalent to our M) is built into d. Thus, even for first-order structures, the T-Z 

approach is more restrictive than ours. There are two primary notions of computation 

studied for such structures: PR(d) and @R(d). These make use of generalized 

schemata for primitive recursive functions extended in the second case by a scheme 

for the least number operator ~1. (Note that both definitions by primitive recursion 

and by ~1 make essential use of the assumption that Jlr is contained in &‘.) It 

is easy to see that for first-order d containing N, every pPR partial computable 

function over d agrees with an ACP over d. It is a question whether the converse 

is true. Also, there is no obvious comparison of PR(d) with a subset of the ACPs 

over d. 

2. The T-Z approach also studies computation over structures d* associated with 

d as in 1, where &* contains the domain &* of finite sequences (or “ar- 

rays”) of elements of each Ai in d, with the appropriate additional structure. Then 

PR(d* ) and pPR(d*) determine, by restriction, notions of computation PR*(d) 

and @R*(d), respectively. Since d * is a first-order structure containing Jlr, we 

also have pPR(d*) C ACP(d*). I conjecture that the reverse inclusion also holds, 

using the results here from Sections 5-7 and using finite sequences to code (finite) 

computations in the LFP scheme. 

3. The notions of computations for streams studied in [21] apply to structures 2 

which contain with (some) Ai also the set Ai = (N + Ai). Thus, only infi- 

nite streams are treated there. The structure 2 contains for each Ai an evalua- 

tion fi.mction(al) eaali : Ji x N + Ai. In addition to the schemata dealt with 

in the general situation (as described in 1 and 2 above), there is a special new 

scheme 2, which allows one to pass from a function g : D x N + Ai to a 
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fbnction(a1) Ig : D + Ai in the canonical way. This leads to four new notions of 

computation: PR(&), l,&%(g), LPZ?*(%?), J@%*(g). Our treatment of ACPs 

over stream structures in Section 10 extends in the obvious way to such struc- 

tures 2 and g*, when the appropriate second-order simulation functionals Simi 

are added; in order to make this explicit, we shall indicate the latter structures 

by g[Sim] and J*[sim]. Again it is easy to see that JPR(&) GACP (g[Sim]) 

and @PR(z*) CACP(g*[Sim]), since we have closure under the 1 scheme using 

the Sim operators and the substitution scheme VII for ACPs. The interesting ques- 

tion here is whether all the stream operations obtained by ACPs over s[Sim] or 

g*[Sim] can be obtained by the IpPR schemes over d, or z*. This is perhaps 

possible in the latter case via the recursion-theoretic interpretation in Section 11. 

Finally, we remark that no recursion schemata distinctive for streams (as in Section 

10 here) are studied in [21]. 

Appendix C. Corrections to [S] 

The following corrections are to be made to my paper [S]. 

p. 80, 8 -10 and in Fn. 2, change [4] to [3] and [5] to [4]. 

p. 83, (1). Using the notation of Section 6, assume given =A~, =A,, . . . , =A,. Then 

change “C&X) = I&)” to “q(x) =A, I&)“. 

p. 83, (3). Similarly, change ‘F($,x) = F(cp,x)” to ‘F($,x) =A, F(cp,x)“. 

p. 83, (4). Similarly, change “Pi(cp,x) = F2(cp,x)” to ‘Fi(rp,x) =A, Fz(cp,x)“. 

(The need for these corrections on p. 83 of [5] was brought to my attention by Scott 

Stoller.) 

p. 93, The recursion-theoretic interpretation of computation on streams indicated in 

the next to the last paragraph of Section 12 of [5] is incorrect as it stands. It 

is superseded by the work of Section 11 in the present paper combined with 

Remark 3 thereto. A direct treatment in terms of indices of partial recursive 

functions is also possible, by adapting the generalization of monotonicity and 

thence of our basic approach introduced here in the latter part of Section 9. 

Namely, we write z C w if {z} is a subfunction of {w}; then sim” = 2.z.z is 

trivially monotonic in the sense that z C w + sim*(z) & sim*(w). 
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