Nowhere-zero 4-flow in almost Petersen-minor free graphs

Xiaofeng Wang ${ }^{\text {a }}$, Cun-Quan Zhang ${ }^{\text {a,* }}$, Taoye Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, United States
${ }^{\mathrm{b}}$ Department of Mathematics, Pennsylvania State University, Dunmore, PA 18512, United States

Received 22 February 2006; accepted 29 November 2007
Available online 31 December 2007

Abstract

Tutte [W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15-20] conjectured that every bridgeless Petersen-minor free graph admits a nowhere-zero 4-flow. Let $\left(P_{10}\right)_{\bar{\mu}}$ be the graph obtained from the Petersen graph by contracting μ edges from a perfect matching. In this paper we prove that every bridgeless $\left(P_{10}\right)_{\overline{3}}$-minor free graph admits a nowhere-zero 4 -flow.

(C) 2007 Elsevier B.V. All rights reserved.

Keywords: Integer flow; 4-flow; Edge-3-coloring; Petersen minor; Almost Petersen-minor free graphs

1. Introduction

The concept of integer flow was introduced by Tutte as a generalization of map coloring problem. The following conjecture is one of the major open problems in graph theory.

Conjecture 1.1 (Tutte [14]). Every bridgeless graph without a Petersen minor admits a nowhere-zero 4-flow.
For planar graphs, admitting a nowhere-zero 4 -flow is equivalent to having a face 4 -coloring. Hence, by the 4 Color Theorem [1-3,10], Conjecture 1.1 has been verified for all planar graphs. Furthermore, it was also announced that Conjecture 1.1 was verified for all cubic graphs [11,12]. By the Kuratowski Theorem, a graph is planar if and only if it contains neither K_{5}-minor nor $K_{3,3}$-minor. By applying the 4-Color Theorem, Conjecture 1.1 was further verified for $K_{3,3}$-minor free graphs [15], K_{5}-minor free graphs [7], and P_{10}^{-}-minor free graphs [13]. Each of these families contains the family of all planar graphs and may not necessarily be cubic. Graphs $K_{5}, K_{3,3}, P_{10}$ and P_{10}^{-}are illustrated in Figs. 1-5.

Let P_{10} be the Petersen graph with the exterior pentagon $1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} 1^{\prime}$, interior pentagon $1^{\prime \prime} 3^{\prime \prime} 5^{\prime \prime} 2^{\prime \prime} 4^{\prime \prime} 1^{\prime \prime}$ and a perfect matching $M=\left\{e_{i}=i^{\prime} i^{\prime \prime}: i=1,2,3,4,5\right\}$. Let $\left(P_{10}\right)_{\bar{\mu}}$ be the graph obtained from P_{10} by contracting F, where $F \subseteq M$ and $|F|=\mu$.

[^0]

Fig. 1.

Fig. 2.

Fig. 3.
Remark. It is not hard to see that if M and M^{\prime} are two perfect matchings of $P_{10}, F \subseteq M, F^{\prime} \subseteq M^{\prime}$ and $|F|=\left|F^{\prime}\right|$, then $P_{10} / F \cong P_{10} / F^{\prime}$. Hence $\left(P_{10}\right)_{\bar{\mu}}$ is well defined.

The following is our main theorem.
Theorem 1.2. Let G be a bridgeless graph. If G does not have a $\left(P_{10}\right)_{\overline{3}}$-minor, then G admits a nowhere-zero 4 -flow.

2. Notation and terminologies

For terms that are not defined here, readers can refer to textbooks [4,8,16] (for flows).
Let $G=(V, E)$ be a graph with vertex set V and edge set E and let D be an orientation of G. For a vertex $v \in$ $V(G)$, let $E^{+}(v)$ (or $\left.E^{-}(v)\right)$ be the set of all arcs of $D(G)$ with their tails (or heads, respectively) at the vertex $v . G$ is said to admit a nowhere-zero k-flow if there exists an ordered pair (D, f), where $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots \pm(k-1)\}$, such that

$$
\sum_{e \in E^{+}(v)} f(e)=\sum_{e \in E^{-}(v)} f(e)
$$

for every vertex $v \in V(G)$. A graph G is a 4-flow snark if it is bridgeless and does not admit a nowhere-zero 4-flow. Let G and H be two graphs. If G contains a subgraph which is contractible to H, then H is a minor of G and we say G contains an H-minor. A 4 -flow snark G is minor-prime if no proper minor of G is a 4 -flow snark. With the definitions above, Conjecture 1.1 can be restated as follows.

Conjecture 2.1. The Petersen graph is the only minor-prime 4-flow snark.
Let H be a minor of a connected graph G. Then there is an onto mapping $f: V(G) \mapsto V(H)$ such that $f^{-1}(v)$ induces a connected subgraph $G\left[f^{-1}(v)\right]$ of G for every $v \in V(H)$ and H can be obtained from a spanning subgraph of G by contracting the edges of $G\left[f^{-1}(v)\right]$ for all $v \in V(H)$. Here f is called a minor mapping and $f^{-1}(v)$ is called a v-domain of f. A k-separator of a graph G is an ordered triple ($H_{1}, H_{2} ; T$) such that $H_{1} \cup H_{2}=G$ and $V\left(H_{1} \cap H_{2}\right)=T$, where T is a vertex subset of G and $|T|=k$. Sometimes we say T is a k-separator if there is no

Petersen graph P_{10}
Fig. 4.

Fig. 5.

Fig. 6.
confusion. A k-separator $\left(H_{1}, H_{2} ; T\right)$ of G is trivial if one of H_{1} and H_{2}, say H_{1}, is acyclic. G is quasi-k-connected if G is 3 -connected and every t-separator of G with $t \leq k$ is trivial. Let x be a vertex of G. The vertex x separates G into q parts H_{1}, \ldots, H_{q} if $G=H_{1} \cup \cdots \cup H_{q}$ and $V\left(H_{i} \cap H_{j}\right)=\{x\}$ for every pair of $i \neq j$.

Let X be a connected subgraph of G and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ be four disjoint connected subgraphs of $G-V(X)$ and $X \cap N\left(Y_{i}\right) \neq \emptyset$ for $i=1,2,3,4$ where $N\left(Y_{i}\right)$ denotes the set of neighbors of Y_{i}. Let $J=\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}$. For each 2×2-partition $P=\{\{a, b\},\{c, d\}\}$ of $\{1,2,3,4\}, X$ is P-splittable if X contains two disjoint paths Q and Q^{\prime} such that Q joins $X \cap N\left(Y_{a}\right)$ and $X \cap N\left(Y_{b}\right), Q^{\prime}$ joins $X \cap N\left(Y_{c}\right)$ and $X \cap N\left(Y_{d}\right), i \in\{a, b, c, d\}$. An example of a $\{\{1,2\},\{3,4\}\}$-splittable subgraph is illustrated in Fig. $6 . X$ is k-splittable with respect to J if there are k distinct 2×2 partitions P_{1}, \ldots, P_{k} of $\{1,2,3,4\}$ such that X is P_{i}-splittable for each $i=1, \ldots, k$. (Remark: $k \leq 3$.) An example of a 2 -splittable subgraph is illustrated in Fig. 7.

3. Lemmas

Lemma 3.1 (Catlin [5]). If G is a minor-prime 4-flow snark, then the girth of G is at least 5.
Lemma 3.2 (Lai, Li and Poon [7]). If a bridgeless graph G does not admit a nowhere-zero 4 -flow, then G has a K_{5}-minor.

Fig. 7.
Lemma 3.3 (Thomas and Thomson, Lemma 4.4 of [13]). If G is a minor-prime 4-flow snark, then G is quasi-4connected (that is, every k-separator of G is trivial for each $k \leq 3$).

Obviously, Lemma 3.3 generalizes Lemma 3.1 and Theorem 3.7.15 of [16].
Proposition 3.4. Let X be a connected subgraph of G and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ be four disjoint connected subgraphs of $G-V(X)$ where $V(X) \cap N\left(Y_{i}\right) \neq \emptyset$ for $i=1,2,3,4$. Let k be the greatest integer such that X is k-splittable with respect to $J=\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}$.
(i) If $k \leq 1$, say, X is $\{\{1,2\},\{3,4\}\}$-splittable or 0 -splittable, then X has a 1 -separator $\left(H_{1}, H_{2} ;\{x\}\right)$ such that $V(X) \cap\left[N\left(Y_{1}\right) \cup N\left(Y_{2}\right)\right] \subseteq V\left(H_{1}\right)$ and $V(X) \cap\left[N\left(Y_{3}\right) \cup N\left(Y_{4}\right)\right] \subseteq V\left(H_{2}\right)$.
(ii) If $k=0$, then there exists a cut vertex x of X that separates X into four parts $H_{1}, H_{2}, H_{3}, H_{4}$ such that $V(X) \cap N\left(Y_{i}\right) \subseteq V\left(H_{i}\right)$ for each i.

Proof. (i) Let G_{1} be the graph induced by $X \cup Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{4}$. Let G_{2} be the graph obtained from G_{1} by contracting each Y_{i} into a single vertex y_{i} for $i=1,2,3,4$, and deleting all edges between y_{i} and y_{j} for all $\{i, j\} \subset\{1,2,3,4\}$. Note that G_{2} is connected since $V(X) \cap N\left(Y_{i}\right) \neq \emptyset$ for $i=1,2,3,4$.

Since X is neither $\{\{1,3\},\{2,4\}\}$-splittable nor $\{\{1,4\},\{2,3\}\}$-splittable, it is impossible that there is a pair of disjoint paths joining $\left\{y_{1}, y_{2}\right\}$ and $\left\{y_{3}, y_{4}\right\}$. By Menger's theorem, there is a cut vertex $x \in V\left(G_{2}\right)$ that separates $\left\{y_{1}, y_{2}\right\}$ and $\left\{y_{3}, y_{4}\right\}$. It is obvious that $x \in V(X)$. That is, X has a 1-separator $\left(H_{1}, H_{2} ; x\right)$ that $N_{G_{2}}\left(y_{1}\right) \cup N_{G_{2}}\left(y_{2}\right) \subseteq V\left(H_{1}\right)$ and $N_{G_{2}}\left(y_{3}\right) \cup N_{G_{2}}\left(y_{4}\right) \subseteq V\left(H_{2}\right)$.
(ii) Continue from (i). Assume that there is a path P_{1} joining y_{1} and y_{2} in the graph $G_{2}-\{x\}$ (without passing through x). Note that x is a cut vertex that separates $\left\{y_{1}, y_{2}\right\}$ and $\left\{y_{3}, y_{4}\right\}$. Thus, this path P_{1} is contained in the induced subgraph $G_{2}\left[V\left(H_{1}-x\right) \cup\left\{y_{1}, y_{2}\right\}\right]$ and there is another path P_{2} joining y_{3} and y_{4} in the induced subgraph $G_{2}\left[H_{2} \cup\left\{y_{3}, y_{4}\right\}\right]$ since H_{2} is connected. This contradicts that X is 0 -splittable. So every path from y_{1} to y_{2} must go through x. Symmetrically, every path from y_{3} to y_{4} must go through x as well. That implies each component of $X-x$ is adjacent to at most one of $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$.

4. Proof of the main theorem

Let G be a minor-prime 4-flow snark. By Lemma 3.3, G is quasi-4-connected. By Lemma 3.2, K_{5} is a minor of G. Let $V\left(K_{5}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, and $f: V(G) \mapsto V\left(K_{5}\right)$ be a minor mapping.

If G does not contain a $\left(P_{10}\right)_{4}$-minor, then v_{a}-domain $f^{-1}\left(v_{a}\right)$ is at most 0 -splittable with respect to $\left\{f^{-1}\left(v_{i_{j}}\right)\right.$: $j=1,2,3,4\}$ for every $\left\{a, i_{1}, i_{2}, i_{3}, i_{4}\right\}=\{1,2,3,4,5\}$. By Proposition 3.4(ii), each $f^{-1}\left(v_{a}\right)$ has a cut vertex v_{a}^{*} that separates $N\left(f^{-1}\left(v_{i_{j}}\right)\right)$ for $j=1,2,3,4$. Hence $\left\{v_{i}^{*}, v_{j}^{*}\right\}$ is a 2 -separator of G. Since $G \neq K_{5}$, there exist $\{i, j\} \subseteq\{1,2,3,4,5\}$ such that $\left\{v_{i}^{*}, v_{j}^{*}\right\}$ is a non-trivial 2 -separator. This contradicts the fact that G is quasi-4connected. Hence G contains $\left(P_{10}\right)_{\overline{4}}$ as a minor. ${ }^{1}$

Let $f: V(G) \rightarrow\left(P_{10}\right)_{\overline{4}}$ be a minor mapping where the vertex set of $\left(P_{10}\right)_{\overline{4}}$ is $\left\{v_{1^{\prime}}, v_{1^{\prime \prime}}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, the contraction of the edge $v_{1^{\prime}} v_{1^{\prime \prime}}$ yields a $K_{5}, v_{1^{\prime}}$ is adjacent to v_{2} and v_{5}, and $v_{1^{\prime \prime}}$ is adjacent to v_{3} and v_{4}. Let $U_{i}=f^{-1}\left(v_{i}\right)$ for $i \in\left\{1^{\prime}, 1^{\prime \prime}, 2,3,4,5\right\}$ (see Fig. 8). Define $U_{1}=U_{1^{\prime}} \cup U_{1^{\prime \prime}}$ and choose a minor mapping f such that $\left|U_{1}\right|$ is as small as possible. Now assume that G does not contain a $\left(P_{10}\right)_{\overline{3}}$-minor.

[^1]

Fig. 8.

U_{2} is $\left\{\left\{1^{\prime}, 3\right\},\{4,5\}\right\}$-splittable
Fig. 9.
Claim 1. $\left|U_{1^{\prime}}\right|=\left|U_{1^{\prime \prime}}\right|=1$.
Proof. It is clear that $\left|U_{1^{\prime}}\right| \geq 1$ and $\left|U_{1^{\prime \prime}}\right| \geq 1$.
Let $e=u_{1^{\prime}} u_{1^{\prime \prime}}$ be an edge between $U_{1^{\prime}}$ and $U_{1^{\prime \prime}}$ where $u_{1^{\prime}} \in U_{1^{\prime}}, u_{1^{\prime \prime}} \in U_{1^{\prime \prime}}$. Since each of $U_{1^{\prime}}$ and $U_{1^{\prime \prime}}$ is connected, there are spanning trees T_{1} and T_{2} of $U_{1^{\prime}}$ and $U_{1^{\prime \prime}}$, respectively. Let $T=T_{1} \cup T_{2} \cup\{e\}$. T is a spanning tree of U_{1}.

Assume there exist $w_{2} \in N\left(U_{2}\right) \cap U_{1^{\prime}}$ and $w_{5} \in N\left(U_{5}\right) \cap U_{1^{\prime}}$ such that $w_{2} \neq w_{5}$. Since T_{1} is a spanning tree of $U_{1^{\prime}}$, there is a unique path P_{2} from $u_{1^{\prime}}$ to w_{2} in T_{1}, and a path P_{5} from $u_{1^{\prime}}$ to w_{5} in T_{1}. Without loss of generality, we may assume that P_{2} is not shorter than P_{5}. Since $w_{2} \neq w_{5}, P_{5}$ does not contain w_{2}. Let C_{2} be the set of vertices of the component of $T_{1} \backslash P_{5}$ that contains w_{2}. Now we define a new minor mapping f_{1} by $f_{1}^{-1}\left(v_{i}\right)=f^{-1}\left(v_{i}\right)$ for $i=1^{\prime \prime}, 3,4,5, f_{1}^{-1}\left(v_{1^{\prime}}\right)=f^{-1}\left(v_{1^{\prime}}\right) \backslash C_{2}$ and $f_{1}^{-1}\left(v_{2}\right)=f^{-1}\left(v_{2}\right) \cup C_{2}$. We call this operation moving w_{2} from $U_{1^{\prime}}$ to U_{2}.

$$
\left|f_{1}^{-1}\left(v_{1^{\prime}}\right) \cup f_{1}^{-1}\left(v_{1^{\prime \prime}}\right)\right|=\left|f^{-1}\left(v_{1^{\prime}}\right) \cup f^{-1}\left(v_{1^{\prime \prime}}\right)\right|-\left|C_{2}\right|<\left|f^{-1}\left(v_{1^{\prime}}\right) \cup f^{-1}\left(v_{1^{\prime \prime}}\right)\right| .
$$

That contradicts the choice of f. So we have $N\left(U_{2}\right) \cap U_{1^{\prime}}=N\left(U_{5}\right) \cap U_{1^{\prime}}=\{u\}$ for some u. Similarly, $N\left(U_{3}\right) \cap U_{1^{\prime \prime}}=N\left(U_{4}\right) \cap U_{1^{\prime \prime}}=\{v\}$ for some v.

Since G is quasi-4-connected, if $\{u, v\}$ is a 2 -separator, then $\left|U_{1}\right|=2$. If $\left|U_{1}\right| \geq 3$, then $\{u, v\}$ is not a 2-separator and there exists $w \in U_{1} \backslash\{u, v\}$ such that $w \in N\left(U_{i}\right)$ for some $i=2,3,4,5$. Without loss of generality, we can assume $w \in N\left(U_{2}\right)$.

Since $N\left(U_{2}\right) \cap U_{1^{\prime}}=\{u\}, w \notin U_{1^{\prime}}$. If the path P from u to v in T passes through w, then we can move w from $U_{1^{\prime \prime}}$ to $U_{1^{\prime}}$, which contradicts $w \notin U_{1^{\prime}}$. If P does not pass through w, then we can move w from $U_{1^{\prime \prime}}$ to U_{2}, which contradicts the choice of f.

From Claim 1, we can let $U_{1^{\prime}}=\left\{u_{1^{\prime}}\right\}$ and $U_{1^{\prime \prime}}=\left\{u_{1^{\prime \prime}}\right\}$.
Claim 2. U_{2} is at most 1 -splittable with respect to $J=\left\{1^{\prime}, 3,4,5\right\}$ with a possible partition $\left\{\left\{1^{\prime}, 5\right\},\{3,4\}\right\}$.
Proof. U_{2} is neither $\left\{\left\{1^{\prime}, 3\right\},\{4,5\}\right\}$-splittable nor $\left\{\left\{1^{\prime}, 4\right\},\{3,5\}\right\}$-splittable. Otherwise we can have the $\left(P_{10}\right) \overline{3}$-minors illustrated in Figs. 9 and 10, respectively.

Fig. 10.

Fig. 11.

Each U_{i} is at most 1-splittable

$$
\text { for } i=2,3,4,5
$$

Fig. 12.
By Proposition 3.4(i), U_{2} has a 1-separator ($A_{2}, B_{2} ; x_{2}$) such that $\left[N\left(U_{1^{\prime}}\right) \cup N\left(U_{5}\right)\right] \cap U_{2} \subseteq A_{2}$ and $\left[N\left(U_{3}\right) \cup\right.$ $\left.N\left(U_{4}\right)\right] \cap U_{2} \subseteq B_{2}$, as we can see in Fig. 11 .

Symmetrically, we have the following conclusions (as shown in Fig. 12):
(i) U_{5} is at most 1 -splittable with respect to $J=\left\{1^{\prime}, 2,3,4\right\}$ with the only possible (2×2)-partition $\left\{\left\{1^{\prime}, 2\right\},\{3,4\}\right\}$ and it has a 1-separator $\left(A_{5}, B_{5} ; x_{5}\right)$ such that $\left[N\left(U_{1^{\prime}}\right) \cup N\left(U_{2}\right)\right] \cap U_{5} \subseteq A_{5}$, and $\left[N\left(U_{3}\right) \cup N\left(U_{4}\right)\right] \cap U_{5} \subseteq B_{5}$.
(ii) U_{3} is at most 1 -splittable with respect to $J=\left\{1^{\prime \prime}, 2,4,5\right\}$ with the only possible (2×2)-partition $\left\{\left\{1^{\prime \prime}, 4\right\},\{2,5\}\right\}$ and it has a 1-separator $\left(A_{3}, B_{3} ; x_{3}\right)$ such that $\left[N\left(U_{1^{\prime \prime}}\right) \cup N\left(U_{4}\right)\right] \cap U_{3} \subseteq A_{3}$, and $\left[N\left(U_{2}\right) \cup N\left(U_{5}\right)\right] \cap U_{3} \subseteq B_{3}$.
(iii) U_{4} is at most 1 -splittable with respect to $J=\left\{1^{\prime \prime}, 2,3,5\right\}$ with the only possible (2×2)-partition $\left\{\left\{1^{\prime \prime}, 3\right\},\{2,5\}\right\}$ and it has a 1-separator $\left(A_{4}, B_{4} ; x_{4}\right)$ such that $\left[N\left(U_{1^{\prime \prime}}\right) \cup N\left(U_{3}\right)\right] \cap U_{4} \subseteq A_{4}$, and $\left[N\left(U_{2}\right) \cup N\left(U_{5}\right)\right] \cap U_{4} \subseteq B_{4}$.

Claim 3. $\left\{N\left(u_{1^{\prime \prime}}\right) \cap A_{2}-\left\{x_{2}\right\}\right\} \cup\left\{N\left(u_{1^{\prime \prime}}\right) \cap A_{5}-\left\{x_{5}\right\}\right\} \neq \emptyset$.
Proof. Otherwise, $T=\left\{u_{1^{\prime}}, x_{2}, x_{5}\right\}$ is a non-trivial 3-separator of G that separates G with $A_{2} \cup A_{5} \cup U_{1^{\prime}}$ as one part. By Lemma 3.3, G is quasi-4-connected; therefore, $A_{2} \cup A_{5} \cup U_{1^{\prime}}$ is trivial, but it is not acyclic.

Similarly, $\left\{N\left(u_{1^{\prime}}\right) \cap A_{3}-\left\{x_{3}\right\}\right\} \cup\left\{N\left(u_{1^{\prime}}\right) \cap A_{4}-\left\{x_{4}\right\}\right\} \neq \emptyset$.

Fig. 13.

Fig. 14. A $\left(P_{10}\right) \overline{3}$-minor.
Without loss of generality, we assume that

$$
\begin{equation*}
\left\{N\left(u_{1^{\prime}}\right) \cap A_{3}-\left\{x_{3}\right\}\right\} \neq \emptyset, \quad\left\{N\left(u_{1^{\prime \prime}}\right) \cap A_{2}-\left\{x_{2}\right\}\right\} \neq \emptyset \tag{1}
\end{equation*}
$$

Claim 4. U_{2} is not $\left\{\left\{1^{\prime \prime}, 5\right\},\{3,4\}\right\}$-splittable.
Proof. Otherwise G has a $\left(P_{10}\right)_{\overline{3}}$-minor as in Fig. 13 (note that the edge between $U_{1^{\prime}}$ and U_{3} is given by (1)).
Symmetrically, U_{5} is not $\left\{\left\{1^{\prime \prime}, 2\right\},\{3,4\}\right\}$-splittable.
Claim 5. U_{2} is at most 0 -splittable with respect to $J=\left\{1^{\prime}, 3,4,5\right\}$.
Proof. By way of contradiction, assume U_{2} is not 0 -splittable with respect to $J=\left\{1^{\prime}, 3,4,5\right\}$. By Claim $2, U_{2}$ is $\left\{\left\{1^{\prime}, 5\right\},\{3,4\}\right\}$-splittable.

Let $\left\{P_{1^{\prime}, 5}, P_{3,4}\right\}$ be a pair of vertex disjoint paths in U_{2} that $P_{i j}$ joins $N\left(U_{i}\right) \cap U_{2}$ and $N\left(U_{j}\right) \cap U_{2}$ for $i, j \in\left\{1^{\prime}, 3,4,5\right\}$.

It is obvious that $P_{3,4}$ must contain the cut vertex x_{2} for otherwise A_{2} contains a path joining $N\left(u_{1^{\prime \prime}}\right)$ and $N\left(U_{5}\right)$. This contradicts Claim 4. Therefore, $N\left(U_{1^{\prime}}\right) \cap\left(A_{2}-x_{2}\right) \neq \emptyset, N\left(U_{5}\right) \cap\left(A_{2}-x_{2}\right) \neq \emptyset$ and both of them are contained in the same component of $A_{2}-x_{2}$, called C_{2}, while $N\left(U_{1^{\prime \prime}}\right) \cap\left(A_{2}-x_{2}\right)$ is contained in another component of $A_{2}-x_{2}$.

Symmetrically, $A_{5}-x_{5}$ has a component C_{5} that contains $N\left(U_{1^{\prime}}\right) \cap\left(A_{5}-x_{5}\right)$ and $N\left(U_{2}\right) \cap\left(A_{5}-x_{5}\right)$ and is disjoint with $N\left(U_{1^{\prime \prime}}\right)$.

Here we have obtained a 3-separator ($\left.H_{1}, H_{2} ; T\right)$ with $T=\left\{u_{1^{\prime}}, x_{2}, x_{5}\right\}$ as the cut and $H_{1}=C_{2} \cup C_{5} \cup\left\{u_{1^{\prime}}, x_{2}, x_{5}\right\}$. Note that neither H_{1} nor H_{2} is trivial. This contradicts Lemma 3.3.

Similarly, U_{3} is at most 0 -splittable with respect to $J=\left\{1^{\prime \prime}, 3,4,5\right\}$.

Final Step:

By Claim 5 and Proposition 3.4(ii), x_{2} separates U_{2} into four parts $U_{2}\left(1^{\prime}\right), U_{2}(5), U_{2}(4)$ and $U_{2}(3)$ such that $N\left(U_{i}\right) \cap U_{2} \subseteq U_{2}(i)$ for $i \in\left\{1^{\prime}, 3,4,5\right\}$.

By Claim 3, $N\left(u_{1^{\prime \prime}}\right) \cap A_{2}-\left\{x_{2}\right\} \neq \emptyset$. Assume that $N\left(u_{1^{\prime \prime}}\right) \cap A_{2}-\left\{x_{2}\right\} \subseteq U_{2}\left(1^{\prime}\right)-x_{2}$. Then $\left\{u_{1^{\prime}}, u_{1^{\prime \prime}}, x_{2}\right\}$ is a 3 -separator of G with $U_{2}\left(1^{\prime}\right) \cup U_{1}$ as a part. Both parts of G separated by $\left\{u_{1^{\prime}}, u_{1^{\prime \prime}}, x_{2}\right\}$ contain cycles. This contradicts Lemma 3.3. So, there exists a vertex $v \in U_{2}(5) \cap N\left(u_{1^{\prime \prime}}\right)-\left\{x_{2}\right\}$ since $A_{2}=U_{2}\left(1^{\prime}\right) \cup U_{2}(5)$.

Similarly, there is a vertex $w \in N\left(u_{1^{\prime}}\right) \cap A_{3}-\left\{x_{3}\right\}$, from which we deduce $w \in U_{3}(4)$. Now we have a $\left(P_{10}\right)$-minor as in Fig. 14.

Acknowledgements

The second author was partially supported by the National Security Agency under Grant MSPR-03G-023 and a WV-RCG grant.

References

[1] K. Appel, W. Haken, Every map is four colorable, Part I: Discharging, Illinois J. Math. 21 (1977) 429-490.
[2] K. Appel, W. Haken, J. Koch, Every map is four colorable, Part II: Reducibility, Illinois J. Math. 21 (1977) 491-567.
[3] K. Appel, W. Haken, Every map is four colorable, Contemp. Math. AMS 98 (1989).
[4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976. Elsevier, New York.
[5] P.A. Catlin, Double cycle covers and the Petersen graph, J. Graph Theory 13 (1989) 465-483.
[6] H.-J. Lai, Matroid Theory, Chinese Higher Education Press, ISBN: 7-04-010563-2, 2002 (in Chinese).
[7] H.-J. Lai, X. Li, H. Poon, Nowhere-zero 4-flow in regular matroids, J. Graph Theory 49 (2005) 196-204.
[8] R. Diestel, Graph Theory, 2nd ed., Springer-Verlag, New York, 1997.
[9] J. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[10] N. Robertson, D. Sanders, P.D. Seymour, R. Thomas, The 4-color theorem, J. Combin. Theory Ser. B 70 (1) (1997) 2-44.
[11] N. Robertson, D. Sanders, P.D. Seymour, R. Thomas, Tutte's edge-colouring conjecture, J. Combin. Theory Ser. B 70 (1) (1997) $166-183$.
[12] N. Robertson, D. Sanders, P.D. Seymour, R. Thomas, Personal communication.
[13] R. Thomas, J.M. Thomson, Excluding minors in nonplanar graphs of girth at least five, Combin. Probab. Comput. 9 (2000) $573-585$.
[14] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15-20.
[15] P.N. Walton, D.J.A. Welsh, On the chromatic number of binary matroids, Mathematika 27 (1980) 1-9.
[16] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.

[^0]: * Corresponding author.

 E-mail address: cqzhang @math.wvu.edu (C.-Q. Zhang).

[^1]: ${ }^{1}$ It was suggested by a referee that this part of the proof can be obtained directly by applying the Splitter Theorem (see [6,9]). Here, for the purpose of completeness, we include this short proof.

