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Abstract

Tutte [W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15–20] conjectured that every
bridgeless Petersen-minor free graph admits a nowhere-zero 4-flow. Let (P10)µ̄ be the graph obtained from the Petersen graph
by contracting µ edges from a perfect matching. In this paper we prove that every bridgeless (P10)3̄-minor free graph admits a
nowhere-zero 4-flow.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of integer flow was introduced by Tutte as a generalization of map coloring problem. The following
conjecture is one of the major open problems in graph theory.

Conjecture 1.1 (Tutte [14]). Every bridgeless graph without a Petersen minor admits a nowhere-zero 4-flow.

For planar graphs, admitting a nowhere-zero 4-flow is equivalent to having a face 4-coloring. Hence, by the 4-
Color Theorem [1–3,10], Conjecture 1.1 has been verified for all planar graphs. Furthermore, it was also announced
that Conjecture 1.1 was verified for all cubic graphs [11,12]. By the Kuratowski Theorem, a graph is planar if and
only if it contains neither K5-minor nor K3,3-minor. By applying the 4-Color Theorem, Conjecture 1.1 was further
verified for K3,3-minor free graphs [15], K5-minor free graphs [7], and P−10-minor free graphs [13]. Each of these
families contains the family of all planar graphs and may not necessarily be cubic. Graphs K5, K3,3, P10 and P−10 are
illustrated in Figs. 1–5.

Let P10 be the Petersen graph with the exterior pentagon 1′2′3′4′5′1′, interior pentagon 1′′3′′5′′2′′4′′1′′ and a perfect
matching M = {ei = i ′i ′′ : i = 1, 2, 3, 4, 5}. Let (P10)µ̄ be the graph obtained from P10 by contracting F , where
F ⊆ M and |F | = µ.
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Fig. 1.

Fig. 2.

Fig. 3.

Remark. It is not hard to see that if M and M ′ are two perfect matchings of P10, F ⊆ M , F ′ ⊆ M ′ and |F | = |F ′|,
then P10/F ∼= P10/F ′. Hence (P10)µ̄ is well defined.

The following is our main theorem.

Theorem 1.2. Let G be a bridgeless graph. If G does not have a (P10)3̄-minor, then G admits a nowhere-zero 4-flow.

2. Notation and terminologies

For terms that are not defined here, readers can refer to textbooks [4,8,16] (for flows).
Let G = (V, E) be a graph with vertex set V and edge set E and let D be an orientation of G. For a vertex v ∈

V (G), let E+(v) (or E−(v)) be the set of all arcs of D(G) with their tails (or heads, respectively) at the vertex v. G is
said to admit a nowhere-zero k-flow if there exists an ordered pair (D, f ), where f : E(G)→ {±1,±2, . . .±(k−1)},
such that∑

e∈E+(v)

f (e) =
∑

e∈E−(v)

f (e)

for every vertex v ∈ V (G). A graph G is a 4-flow snark if it is bridgeless and does not admit a nowhere-zero 4-flow.
Let G and H be two graphs. If G contains a subgraph which is contractible to H , then H is a minor of G and we
say G contains an H -minor. A 4-flow snark G is minor-prime if no proper minor of G is a 4-flow snark. With the
definitions above, Conjecture 1.1 can be restated as follows.

Conjecture 2.1. The Petersen graph is the only minor-prime 4-flow snark.

Let H be a minor of a connected graph G. Then there is an onto mapping f : V (G) 7→ V (H) such that f −1(v)

induces a connected subgraph G[ f −1(v)] of G for every v ∈ V (H) and H can be obtained from a spanning subgraph
of G by contracting the edges of G[ f −1(v)] for all v ∈ V (H). Here f is called a minor mapping and f −1(v) is
called a v-domain of f . A k-separator of a graph G is an ordered triple (H1, H2; T ) such that H1 ∪ H2 = G and
V (H1 ∩ H2) = T , where T is a vertex subset of G and |T | = k. Sometimes we say T is a k-separator if there is no
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Fig. 4.

Fig. 5.

Fig. 6.

confusion. A k-separator (H1, H2; T ) of G is trivial if one of H1 and H2, say H1, is acyclic. G is quasi-k-connected
if G is 3-connected and every t-separator of G with t ≤ k is trivial. Let x be a vertex of G. The vertex x separates G
into q parts H1, . . . , Hq if G = H1 ∪ · · · ∪ Hq and V (Hi ∩ H j ) = {x} for every pair of i 6= j .

Let X be a connected subgraph of G and Y1, Y2, Y3, Y4 be four disjoint connected subgraphs of G − V (X) and
X ∩ N (Yi ) 6= ∅ for i = 1, 2, 3, 4 where N (Yi ) denotes the set of neighbors of Yi . Let J = {Y1, Y2, Y3, Y4}. For
each 2 × 2-partition P = {{a, b}, {c, d}} of {1, 2, 3, 4}, X is P-splittable if X contains two disjoint paths Q and Q′

such that Q joins X ∩ N (Ya) and X ∩ N (Yb), Q′ joins X ∩ N (Yc) and X ∩ N (Yd), i ∈ {a, b, c, d}. An example of a
{{1, 2}, {3, 4}}-splittable subgraph is illustrated in Fig. 6. X is k-splittable with respect to J if there are k distinct 2×2
partitions P1, . . . , Pk of {1, 2, 3, 4} such that X is Pi -splittable for each i = 1, . . . , k. (Remark: k ≤ 3.) An example
of a 2-splittable subgraph is illustrated in Fig. 7.

3. Lemmas

Lemma 3.1 (Catlin [5]). If G is a minor-prime 4-flow snark, then the girth of G is at least 5.

Lemma 3.2 (Lai, Li and Poon [7]). If a bridgeless graph G does not admit a nowhere-zero 4-flow, then G has a
K5-minor.
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Fig. 7.

Lemma 3.3 (Thomas and Thomson, Lemma 4.4 of [13]). If G is a minor-prime 4-flow snark, then G is quasi-4-
connected (that is, every k-separator of G is trivial for each k ≤ 3).

Obviously, Lemma 3.3 generalizes Lemma 3.1 and Theorem 3.7.15 of [16].

Proposition 3.4. Let X be a connected subgraph of G and Y1, Y2, Y3, Y4 be four disjoint connected subgraphs of
G − V (X) where V (X) ∩ N (Yi ) 6= ∅ for i = 1, 2, 3, 4. Let k be the greatest integer such that X is k-splittable with
respect to J = {Y1, Y2, Y3, Y4}.

(i) If k ≤ 1, say, X is {{1,2},{3,4}}-splittable or 0-splittable, then X has a 1-separator (H1, H2; {x}) such that
V (X) ∩ [N (Y1) ∪ N (Y2)] ⊆ V (H1) and V (X) ∩ [N (Y3) ∪ N (Y4)] ⊆ V (H2).

(ii) If k = 0, then there exists a cut vertex x of X that separates X into four parts H1, H2, H3, H4 such that
V (X) ∩ N (Yi ) ⊆ V (Hi ) for each i .

Proof. (i) Let G1 be the graph induced by X ∪Y1∪Y2∪Y3∪Y4. Let G2 be the graph obtained from G1 by contracting
each Yi into a single vertex yi for i = 1, 2, 3, 4, and deleting all edges between yi and y j for all {i, j} ⊂ {1, 2, 3, 4}.
Note that G2 is connected since V (X) ∩ N (Yi ) 6= ∅ for i = 1, 2, 3, 4.

Since X is neither {{1,3},{2,4}}-splittable nor {{1,4},{2,3}}-splittable, it is impossible that there is a pair of disjoint
paths joining {y1, y2} and {y3, y4}. By Menger’s theorem, there is a cut vertex x ∈ V (G2) that separates {y1, y2} and
{y3, y4}. It is obvious that x ∈ V (X). That is, X has a 1-separator (H1, H2; x) that NG2(y1) ∪ NG2(y2) ⊆ V (H1) and
NG2(y3) ∪ NG2(y4) ⊆ V (H2).

(ii) Continue from (i). Assume that there is a path P1 joining y1 and y2 in the graph G2 − {x} (without passing
through x). Note that x is a cut vertex that separates {y1, y2} and {y3, y4}. Thus, this path P1 is contained in the
induced subgraph G2[V (H1 − x) ∪ {y1, y2}] and there is another path P2 joining y3 and y4 in the induced subgraph
G2[H2 ∪ {y3, y4}] since H2 is connected. This contradicts that X is 0-splittable. So every path from y1 to y2 must go
through x . Symmetrically, every path from y3 to y4 must go through x as well. That implies each component of X − x
is adjacent to at most one of {y1, y2, y3, y4}. �

4. Proof of the main theorem

Let G be a minor-prime 4-flow snark. By Lemma 3.3, G is quasi-4-connected. By Lemma 3.2, K5 is a minor of G.
Let V (K5) = {v1, v2, v3, v4, v5}, and f : V (G) 7→ V (K5) be a minor mapping.

If G does not contain a (P10)4̄-minor, then va-domain f −1(va) is at most 0-splittable with respect to { f −1(vi j ) :

j = 1, 2, 3, 4} for every {a, i1, i2, i3, i4} = {1, 2, 3, 4, 5}. By Proposition 3.4(ii), each f −1(va) has a cut vertex
v∗a that separates N ( f −1(vi j )) for j = 1, 2, 3, 4. Hence {v∗i , v

∗

j } is a 2-separator of G. Since G 6= K5, there exist
{i, j} ⊆ {1, 2, 3, 4, 5} such that {v∗i , v

∗

j } is a non-trivial 2-separator. This contradicts the fact that G is quasi-4-

connected. Hence G contains (P10)4̄ as a minor.1

Let f : V (G) → (P10)4̄ be a minor mapping where the vertex set of (P10)4̄ is {v1′ , v1′′ , v2, v3, v4, v5}, the
contraction of the edge v1′v1′′ yields a K5, v1′ is adjacent to v2 and v5, and v1′′ is adjacent to v3 and v4. Let
Ui = f −1(vi ) for i ∈ {1′, 1′′, 2, 3, 4, 5} (see Fig. 8). Define U1 = U1′ ∪ U1′′ and choose a minor mapping f
such that |U1| is as small as possible. Now assume that G does not contain a (P10)3̄-minor.

1 It was suggested by a referee that this part of the proof can be obtained directly by applying the Splitter Theorem (see [6,9]). Here, for the
purpose of completeness, we include this short proof.
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Fig. 8.

Fig. 9.

Claim 1. |U1′ | = |U1′′ | = 1.

Proof. It is clear that |U1′ | ≥ 1 and |U1′′ | ≥ 1.
Let e = u1′u1′′ be an edge between U1′ and U1′′ where u1′ ∈ U1′ , u1′′ ∈ U1′′ . Since each of U1′ and U1′′ is

connected, there are spanning trees T1 and T2 of U1′ and U1′′ , respectively. Let T = T1 ∪ T2 ∪ {e}. T is a spanning
tree of U1.

Assume there exist w2 ∈ N (U2) ∩ U1′ and w5 ∈ N (U5) ∩ U1′ such that w2 6= w5. Since T1 is a spanning tree of
U1′ , there is a unique path P2 from u1′ to w2 in T1, and a path P5 from u1′ to w5 in T1. Without loss of generality,
we may assume that P2 is not shorter than P5. Since w2 6= w5, P5 does not contain w2. Let C2 be the set of vertices
of the component of T1 \ P5 that contains w2. Now we define a new minor mapping f1 by f −1

1 (vi ) = f −1(vi ) for
i = 1′′, 3, 4, 5, f −1

1 (v1′) = f −1(v1′) \ C2 and f −1
1 (v2) = f −1(v2) ∪ C2. We call this operation moving w2 from U1′

to U2.

| f −1
1 (v1′) ∪ f −1

1 (v1′′)| = | f
−1(v1′) ∪ f −1(v1′′)| − |C2| < | f

−1(v1′) ∪ f −1(v1′′)|.

That contradicts the choice of f . So we have N (U2) ∩ U1′ = N (U5) ∩ U1′ = {u} for some u. Similarly,
N (U3) ∩U1′′ = N (U4) ∩U1′′ = {v} for some v.

Since G is quasi-4-connected, if {u, v} is a 2-separator, then |U1| = 2. If |U1| ≥ 3, then {u, v} is not a 2-separator
and there exists w ∈ U1 \ {u, v} such that w ∈ N (Ui ) for some i = 2, 3, 4, 5. Without loss of generality, we can
assume w ∈ N (U2).

Since N (U2) ∩ U1′ = {u}, w 6∈ U1′ . If the path P from u to v in T passes through w, then we can move w from
U1′′ to U1′ , which contradicts w 6∈ U1′ . If P does not pass through w, then we can move w from U1′′ to U2, which
contradicts the choice of f . �

From Claim 1, we can let U1′ = {u1′} and U1′′ = {u1′′}.

Claim 2. U2 is at most 1-splittable with respect to J = {1′, 3, 4, 5} with a possible partition {{1′, 5}, {3, 4}}.

Proof. U2 is neither {{1′, 3}, {4, 5}}-splittable nor {{1′, 4}, {3, 5}}-splittable. Otherwise we can have the (P10)3̄-minors
illustrated in Figs. 9 and 10, respectively. �
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Fig. 10.

Fig. 11.

Fig. 12.

By Proposition 3.4(i), U2 has a 1-separator (A2, B2; x2) such that [N (U1′) ∪ N (U5)] ∩ U2 ⊆ A2 and [N (U3) ∪

N (U4)] ∩U2 ⊆ B2, as we can see in Fig. 11.
Symmetrically, we have the following conclusions (as shown in Fig. 12):

(i) U5 is at most 1-splittable with respect to J = {1′, 2, 3, 4} with the only possible (2× 2)-partition {{1′, 2}, {3, 4}}
and it has a 1-separator (A5, B5; x5) such that [N (U1′)∪ N (U2)] ∩U5 ⊆ A5, and [N (U3)∪ N (U4)] ∩U5 ⊆ B5.

(ii) U3 is at most 1-splittable with respect to J = {1′′, 2, 4, 5} with the only possible (2×2)-partition {{1′′, 4}, {2, 5}}
and it has a 1-separator (A3, B3; x3) such that [N (U1′′)∪ N (U4)] ∩U3 ⊆ A3, and [N (U2)∪ N (U5)] ∩U3 ⊆ B3.

(iii) U4 is at most 1-splittable with respect to J = {1′′, 2, 3, 5} with the only possible (2×2)-partition {{1′′, 3}, {2, 5}}
and it has a 1-separator (A4, B4; x4) such that [N (U1′′)∪ N (U3)] ∩U4 ⊆ A4, and [N (U2)∪ N (U5)] ∩U4 ⊆ B4.

Claim 3. {N (u1′′) ∩ A2 − {x2}} ∪ {N (u1′′) ∩ A5 − {x5}} 6= ∅.

Proof. Otherwise, T = {u1′ , x2, x5} is a non-trivial 3-separator of G that separates G with A2 ∪ A5 ∪U1′ as one part.
By Lemma 3.3, G is quasi-4-connected; therefore, A2 ∪ A5 ∪U1′ is trivial, but it is not acyclic. �

Similarly, {N (u1′) ∩ A3 − {x3}} ∪ {N (u1′) ∩ A4 − {x4}} 6= ∅.
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Fig. 13.

Fig. 14. A (P10)3̄-minor.

Without loss of generality, we assume that

{N (u1′) ∩ A3 − {x3}} 6= ∅, {N (u1′′) ∩ A2 − {x2}} 6= ∅. (1)

Claim 4. U2 is not {{1′′, 5}, {3, 4}}-splittable.

Proof. Otherwise G has a (P10)3̄-minor as in Fig. 13 (note that the edge between U1′ and U3 is given by (1)). �

Symmetrically, U5 is not {{1′′, 2}, {3, 4}}-splittable.

Claim 5. U2 is at most 0-splittable with respect to J = {1′, 3, 4, 5}.

Proof. By way of contradiction, assume U2 is not 0-splittable with respect to J = {1′, 3, 4, 5}. By Claim 2, U2 is
{{1′, 5}, {3, 4}}-splittable.

Let {P1′,5, P3,4} be a pair of vertex disjoint paths in U2 that Pi j joins N (Ui ) ∩ U2 and N (U j ) ∩ U2 for
i, j ∈ {1′, 3, 4, 5}.

It is obvious that P3,4 must contain the cut vertex x2 for otherwise A2 contains a path joining N (u1′′) and N (U5).
This contradicts Claim 4. Therefore, N (U1′)∩ (A2− x2) 6= ∅, N (U5)∩ (A2− x2) 6= ∅ and both of them are contained
in the same component of A2−x2, called C2, while N (U1′′)∩(A2−x2) is contained in another component of A2−x2.

Symmetrically, A5 − x5 has a component C5 that contains N (U1′) ∩ (A5 − x5) and N (U2) ∩ (A5 − x5) and is
disjoint with N (U1′′).

Here we have obtained a 3-separator (H1, H2; T )with T = {u1′ , x2, x5} as the cut and H1 = C2∪C5∪{u1′ , x2, x5}.
Note that neither H1 nor H2 is trivial. This contradicts Lemma 3.3. �

Similarly, U3 is at most 0-splittable with respect to J = {1′′, 3, 4, 5}.
Final Step:

By Claim 5 and Proposition 3.4(ii), x2 separates U2 into four parts U2(1′), U2(5), U2(4) and U2(3) such that
N (Ui ) ∩U2 ⊆ U2(i) for i ∈ {1′, 3, 4, 5}.

By Claim 3, N (u1′′) ∩ A2 − {x2} 6= ∅. Assume that N (u1′′) ∩ A2 − {x2} ⊆ U2(1′) − x2. Then {u1′ , u1′′ , x2} is a
3-separator of G with U2(1′)∪U1 as a part. Both parts of G separated by {u1′ , u1′′ , x2} contain cycles. This contradicts
Lemma 3.3. So, there exists a vertex v ∈ U2(5) ∩ N (u1′′)− {x2} since A2 = U2(1′) ∪U2(5).

Similarly, there is a vertexw ∈ N (u1′)∩A3−{x3}, from which we deducew ∈ U3(4). Now we have a (P10)3̄-minor
as in Fig. 14.
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