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Abstract

Tutte [W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15-20] conjectured that every
bridgeless Petersen-minor free graph admits a nowhere-zero 4-flow. Let (Pyg);; be the graph obtained from the Petersen graph
by contracting u edges from a perfect matching. In this paper we prove that every bridgeless (Py)3-minor free graph admits a
nowhere-zero 4-flow.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Integer flow; 4-flow; Edge-3-coloring; Petersen minor; Almost Petersen-minor free graphs

1. Introduction

The concept of integer flow was introduced by Tutte as a generalization of map coloring problem. The following
conjecture is one of the major open problems in graph theory.

Conjecture 1.1 (Tutte [14]). Every bridgeless graph without a Petersen minor admits a nowhere-zero 4-flow.

For planar graphs, admitting a nowhere-zero 4-flow is equivalent to having a face 4-coloring. Hence, by the 4-
Color Theorem [1-3,10], Conjecture 1.1 has been verified for all planar graphs. Furthermore, it was also announced
that Conjecture 1.1 was verified for all cubic graphs [11,12]. By the Kuratowski Theorem, a graph is planar if and
only if it contains neither Ks-minor nor K3 3-minor. By applying the 4-Color Theorem, Conjecture 1.1 was further
verified for K3 3-minor free graphs [15], Ks-minor free graphs [7], and P,,-minor free graphs [13]. Each of these
families contains the family of all planar graphs and may not necessarily be cubic. Graphs K5, K33, Pjo and P/, are
illustrated in Figs. 1-5.

Let Pjq be the Petersen graph with the exterior pentagon 1'2'3’4’5"l’, interior pentagon 1”3”5”2”4”1” and a perfect

y

matching M = {¢; = i'i" : i = 1,2,3,4,5}. Let (P19); be the graph obtained from Pjo by contracting F, where
F CMand|F| = pu.
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Remark. It is not hard to see that if M and M’ are two perfect matchings of Pyg, F € M, F/ € M' and |F| = |F'|,
then Pjo/F = P10/ F'. Hence (Pyo); is well defined.

The following is our main theorem.
Theorem 1.2. Let G be a bridgeless graph. If G does not have a (Po)3-minor, then G admits a nowhere-zero 4-flow.
2. Notation and terminologies

For terms that are not defined here, readers can refer to textbooks [4,8,16] (for flows).

Let G = (V, E) be a graph with vertex set V and edge set E and let D be an orientation of G. For a vertex v €
V(G), let E*(v) (or E~ (v)) be the set of all arcs of D(G) with their tails (or heads, respectively) at the vertex v. G is
said to admit a nowhere-zero k-flow if there exists an ordered pair (D, f), where f : E(G) — {1, £2,...£(k—1)},
such that

Yo flo= ) fl

ecEt(v) ecE~(v)

for every vertex v € V(G). A graph G is a 4-flow snark if it is bridgeless and does not admit a nowhere-zero 4-flow.
Let G and H be two graphs. If G contains a subgraph which is contractible to H, then H is a minor of G and we
say G contains an H-minor. A 4-flow snark G is minor-prime if no proper minor of G is a 4-flow snark. With the
definitions above, Conjecture 1.1 can be restated as follows.

Conjecture 2.1. The Petersen graph is the only minor-prime 4-flow snark.

Let H be a minor of a connected graph G. Then there is an onto mapping f : V(G) + V(H) such that f~!(v)
induces a connected subgraph G[f ! (v)] of G for every v € V(H) and H can be obtained from a spanning subgraph
of G by contracting the edges of G[f~'(v)] for all v € V(H). Here f is called a minor mapping and f~'(v) is
called a v-domain of f. A k-separator of a graph G is an ordered triple (Hy, Hy; T) such that H; U H, = G and
V(H; N Hy) = T, where T is a vertex subset of G and |T| = k. Sometimes we say T is a k-separator if there is no
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Petersen graph Pyy

Fig. 4.
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Fig. 5.
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X is {{1,2},{3,4}}-splittable

Fig. 6.

confusion. A k-separator (Hy, H»; T') of G is trivial if one of H| and H>, say Hj, is acyclic. G is quasi-k-connected
if G is 3-connected and every t-separator of G with ¢ < k is trivial. Let x be a vertex of G. The vertex x separates G
into ¢ parts Hy, ..., H, if G = H{ U---U H, and V(H; N H;) = {x} for every pair of i # j.

Let X be a connected subgraph of G and Y7, Y», Y3, Y4 be four disjoint connected subgraphs of G — V(X) and
XNNY;) #0@fori = 1,2,3,4 where N(Y;) denotes the set of neighbors of Y;. Let J = {Y1, Y, Y3, Y4}. For
each 2 x 2-partition P = {{a, b}, {c, d}} of {1,2, 3,4}, X is P-splittable if X contains two disjoint paths Q and Q’
such that Q joins X N N(Y,) and X N N(Yp), Q' joins X N N(Y,) and X N N(Yyp), i € {a, b, ¢, d}. An example of a
{{1, 2}, {3, 4}}-splittable subgraph is illustrated in Fig. 6. X is k-splittable with respect to J if there are k distinct 2 x 2
partitions Py, ..., Py of {1, 2,3, 4} such that X is P;-splittable foreachi =1, ..., k. (Remark: k < 3.) An example
of a 2-splittable subgraph is illustrated in Fig. 7.

3. Lemmas

Lemma 3.1 (Catlin [5]). If G is a minor-prime 4-flow snark, then the girth of G is at least 5.

Lemma 3.2 (Lai, Li and Poon [7]). If a bridgeless graph G does not admit a nowhere-zero 4-flow, then G has a
Ks-minor.
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Lemma 3.3 (Thomas and Thomson, Lemma 4.4 of [13]). If G is a minor-prime 4-flow snark, then G is quasi-4-
connected (that is, every k-separator of G is trivial for each k < 3).

Obviously, Lemma 3.3 generalizes Lemma 3.1 and Theorem 3.7.15 of [16].

Proposition 3.4. Let X be a connected subgraph of G and Y1, Y2, Y3, Y4 be four disjoint connected subgraphs of

G — V(X)where V(X)NN(Y;) # @ fori =1,2,3,4. Let k be the greatest integer such that X is k-splittable with

respectto J = {Y1, Y2, Y3, Y4}.

W) If £ < 1, say, X is {{1,2},{3,4}}-splittable or O-splittable, then X has a 1-separator (Hy, Hy; {x}) such that
V(X)N[N(Y1) UN(Y2)] € V(H) and V(X) N[N(Y3) UN(Ya)] € V(Hp).

(i) If k = O, then there exists a cut vertex x of X that separates X into four parts Hy, Hy, H3, Hy such that
V(X)NN(Y;) € V(H;) foreachi.

Proof. (i) Let G be the graph induced by X U Y] UY, UY3U Y4. Let G; be the graph obtained from G by contracting
each Y; into a single vertex y; fori = 1,2, 3, 4, and deleting all edges between y; and y; for all {7, j} C {1, 2, 3, 4}.
Note that G is connected since V(X) N N(Y;) # @ fori = 1,2, 3,4.

Since X is neither {{1,3},{2,4}}-splittable nor {{1,4},{2,3}}-splittable, it is impossible that there is a pair of disjoint
paths joining {y, y2} and {y3, y4}. By Menger’s theorem, there is a cut vertex x € V(G3) that separates {y;, y»} and
{3, ya4}. It is obvious that x € V(X). That is, X has a 1-separator (H;, H>; x) that Ng,(y1) U Ng,(y2) € V(H) and
NG, (y3) U Ng,(y4) € V(Hz).

(i1) Continue from (i). Assume that there is a path P; joining y; and y, in the graph G, — {x} (without passing
through x). Note that x is a cut vertex that separates {y, y2} and {y3, y4}. Thus, this path P; is contained in the
induced subgraph G,[V (H; — x) U {y1, y2}] and there is another path P, joining y3 and y4 in the induced subgraph
Go[Hz U {y3, ya}] since Hj is connected. This contradicts that X is O-splittable. So every path from y; to y, must go
through x. Symmetrically, every path from y3 to y4 must go through x as well. That implies each component of X — x
is adjacent to at most one of {y, y2, y3, y4}. W

4. Proof of the main theorem

Let G be a minor-prime 4-flow snark. By Lemma 3.3, G is quasi-4-connected. By Lemma 3.2, K’5 is a minor of G.
Let V(K5) = {v1, v2, v3, v4, v5}, and f : V(G) — V(K5) be a minor mapping.

If G does not contain a (Pyo);-minor, then v,-domain f ~1(v,) is at most O-splittable with respect to { f~! (vi;)
Jj = 1,2,3,4} for every {a, i1, iz, i3,ia} = {1, 2,3,4,5}. By Proposition 3.4(ii), each f_l(va) has a cut vertex
v’ that separates N(f_l(v,-j)) for j = 1,2, 3, 4. Hence {v], U;} is a 2-separator of G. Since G # Ks, there exist
{i, j} < {1,2,3,4,5} such that {vf, v;f} is a non-trivial 2-separator. This contradicts the fact that G is quasi-4-

connected. Hence G contains (Pig); as a minor.!

Let f : V(G) — (P1o); be a minor mapping where the vertex set of (P1g); is {vy/, vi7, v2, v3, v4, Us}, the
contraction of the edge vy vy» yields a K5, vy is adjacent to vy and vs, and vy» is adjacent to vz and v4. Let
U = f ') fori € {1',1”7,2,3,4,5} (see Fig. 8). Define Uy = Up U Uy and choose a minor mapping f
such that |U1] is as small as possible. Now assume that G does not contain a (P10)3-minor.

L1t was suggested by a referee that this part of the proof can be obtained directly by applying the Splitter Theorem (see [6,9]). Here, for the
purpose of completeness, we include this short proof.
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Us is {{1',3}, {4,5}}-splittable

Fig. 9.

Claim 1. |Uy| = |Uy| = L.

Proof. It is clear that [U/| > 1 and |U»| > 1.

Let e = uypuy» be an edge between Uy and Uy» where upy € Uy, uyr € Uyr. Since each of Uy and Uy is
connected, there are spanning trees 77 and 7> of Uy and Uy», respectively. Let T = T; U T> U {e}. T is a spanning
tree of Uj.

Assume there exist wy € N(Uz) N Uy and ws € N(Us) N Uy such that wy # ws. Since 77 is a spanning tree of
Uy, there is a unique path P, from uy to wy in 77, and a path Ps from u to ws in 77. Without loss of generality,
we may assume that P, is not shorter than Ps. Since wy # ws, Ps does not contain wy. Let C» be the set of vertices
of the component of 77 \ Ps that contains w;. Now we define a new minor mapping f1 by ffl (v)) = f~Y(v;) for
i=1"3,4,5 f7 (1) = f~'(w1)\ C2and f; ' (v2) = £ (v2) U C,. We call this operation moving w, from Uy
to Us.

L o U T el = 17 ) U T o)) = 16l < 17 ) U ).

That contradicts the choice of f. So we have N(Uy) N Uy = N(Us) N Uy = {u} for some u. Similarly,
NU3) NUypr = NUy) NUpr = {v} for some v.

Since G is quasi-4-connected, if {u, v} is a 2-separator, then |U;| = 2. If |U;| > 3, then {u, v} is not a 2-separator
and there exists w € Uj \ {u, v} such that w € N(U;) for some i = 2, 3,4,5. Without loss of generality, we can
assume w € N(U»).

Since N(Uz) N Uy = {u}, w ¢ Uyp. If the path P from u to v in T passes through w, then we can move w from
Uy to Uy, which contradicts w ¢ Uys. If P does not pass through w, then we can move w from Uy~ to U,, which
contradicts the choice of f/. W

From Claim 1, we can let Uy = {uy/} and Uy = {uyr}.
Claim 2. U, is at most 1-splittable with respect to J = {1', 3, 4, 5} with a possible partition {{1’, 5}, {3, 4}}.

Proof. U, is neither {{1’, 3}, {4, 5}}-splittable nor {{1", 4}, {3, 5}}-splittable. Otherwise we can have the (Pjo)3-minors
illustrated in Figs. 9 and 10, respectively. W
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Us is {{1',4}, {3, 5}}-splittable

Fig. 10.

4
U, is at most 1-splittable
wr.t. J={1,3,4,5}

Fig. 11.

Each U; is at most 1-splittable
fori=23,4,5

Fig. 12.

By Proposition 3.4(i), U, has a 1-separator (A, By; x3) such that [N(Uy) U N(Us)] N Ua € Az and [N (Usz) U
N(U4)] N U, € By, as we can see in Fig. 11.

Symmetrically, we have the following conclusions (as shown in Fig. 12):

(i) Us is at most 1-splittable with respect to J = {1, 2, 3, 4} with the only possible (2 x 2)-partition {{1’, 2}, {3, 4}}

and it has a 1-separator (As, Bs; x5) such that [N(Uy) UN(U)]NUs € As,and [N(U3z) UN(Us)]NUs C Bs.

(ii) Uz is at most 1-splittable with respect to J = {1”, 2, 4, 5} with the only possible (2 x 2)-partition {{1”, 4}, {2, 5}}

and it has a 1-separator (A3, B3; x3) such that [N (Uy») U N(Us)]NU3 C A3z, and [N(Up) UN(Us)]N U3z C Bs.

(iii) Uy is at most 1-splittable with respect to J = {1”, 2, 3, 5} with the only possible (2 x 2)-partition {{1”, 3}, {2, 5}}

and it has a 1-separator (A4, Bs; x4) such that [N (Uy») UN(U3)]NUs € Ag, and [N(Uz) UN(Us)]NUs C By.

Claim 3. {N(u17) N Az — {x2}} U (N (u1r) N As — {xs}} # 0.

Proof. Otherwise, T = {uy/, x2, x5} is a non-trivial 3-separator of G that separates G with Ay U A5 U Uy as one part.
By Lemma 3.3, G is quasi-4-connected; therefore, Ay U As U Uy is trivial, but it is not acyclic. H

Similarly, {N (uy/) N Az — {x3}} U {Nuy) N As — {xs}} £ 9.
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when Uy is {{1”,5}, {3.4}}-splittable

Fig. 13.
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Fig. 14. A (Py)3-minor.

Without loss of generality, we assume that

{N(@u) N Az —{x3}} # 0, {N@u1) N Az —{x}} # 0. ey

Claim 4. U, is not {{1”, 5}, {3, 4}}-splittable.
Proof. Otherwise G has a (Py¢)3-minor as in Fig. 13 (note that the edge between Uy and U3 is given by (1)). W
Symmetrically, Us is not {{1”, 2}, {3, 4}}-splittable.

Claim 5. U, is at most O-splittable with respect to J = {1', 3, 4, 5}.

Proof. By way of contradiction, assume U, is not O-splittable with respect to J = {1/, 3,4, 5}. By Claim 2, U, is
{1, 5}, {3, 4}}-splittable.

Let {Py/ 5, P34} be a pair of vertex disjoint paths in U, that P;; joins N(U;) N U; and N(U;) N U, for
i,je{l',3,4,5}.

It is obvious that P3 4 must contain the cut vertex x, for otherwise A, contains a path joining N (u7) and N (Us).
This contradicts Claim 4. Therefore, N(U) N (Az — x3) # @, N(Us) N (A —x2) # @ and both of them are contained
in the same component of A> — x», called Cy, while N (U;7) N (A2 —x2) is contained in another component of Ay —x5.

Symmetrically, As — x5 has a component Cs that contains N(Uy) N (As — x5) and N(Uz) N (A5 — x5) and is
disjoint with N (Uj~).

Here we have obtained a 3-separator (Hy, Hy; T) with T = {uy, x2, x5} as the cutand H| = CoUCsU{uy/, x2, x5}.
Note that neither H; nor H> is trivial. This contradicts Lemma 3.3. H

Similarly, U is at most 0-splittable with respect to J = {17, 3, 4, 5}.
Final Step:

By Claim 5 and Proposition 3.4(ii), x, separates U, into four parts Uz (1"), Ux(5), U2(4) and U,(3) such that
NU;))NUy C Uy(i) fori € {1, 3,4, 5)}.

By Claim 3, N(uy») N Ay — {x2} # @. Assume that N (u17) N Ay — {x2} € Ux(1’) — xp. Then {uy/, uyr, x2} is a
3-separator of G with U, (1) UU] as a part. Both parts of G separated by {u/, u1~, x2} contain cycles. This contradicts
Lemma 3.3. So, there exists a vertex v € U»(5) N N (uyr) — {x3)} since Ar = U (1") U Ux(5).

Similarly, there is a vertex w € N (u1/)NA3—{x3}, from which we deduce w € U3(4). Now we have a (P1¢)3-minor
as in Fig. 14.



1032 X. Wang et al. / Discrete Mathematics 309 (2009) 1025-1032
Acknowledgements

The second author was partially supported by the National Security Agency under Grant MSPR-03G-023 and a
WV-RCG grant.

References

[1] K. Appel, W. Haken, Every map is four colorable, Part I: Discharging, Illinois J. Math. 21 (1977) 429-490.
[2] K. Appel, W. Haken, J. Koch, Every map is four colorable, Part II: Reducibility, Illinois J. Math. 21 (1977) 491-567.
[3] K. Appel, W. Haken, Every map is four colorable, Contemp. Math. AMS 98 (1989).
[4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976. Elsevier, New York.
[5] P.A. Catlin, Double cycle covers and the Petersen graph, J. Graph Theory 13 (1989) 465-483.
[6] H.-J. Lai, Matroid Theory, Chinese Higher Education Press, ISBN: 7-04-010563-2, 2002 (in Chinese).
[7] H.-J. Lai, X. Li, H. Poon, Nowhere-zero 4-flow in regular matroids, J. Graph Theory 49 (2005) 196-204.
[8] R. Diestel, Graph Theory, 2nd ed., Springer-Verlag, New York, 1997.
[9] J. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[10] N. Robertson, D. Sanders, P.D. Seymour, R. Thomas, The 4-color theorem, J. Combin. Theory Ser. B 70 (1) (1997) 2—44.
[11] N. Robertson, D. Sanders, P.D. Seymour, R. Thomas, Tutte’s edge-colouring conjecture, J. Combin. Theory Ser. B 70 (1) (1997) 166-183.
[12] N. Robertson, D. Sanders, P.D. Seymour, R. Thomas, Personal communication.
[13] R. Thomas, J.M. Thomson, Excluding minors in nonplanar graphs of girth at least five, Combin. Probab. Comput. 9 (2000) 573-585.
[14] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15-20.
[15] P.N. Walton, D.J.A. Welsh, On the chromatic number of binary matroids, Mathematika 27 (1980) 1-9.
[16] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.



	Nowhere-zero 4-flow in almost Petersen-minor free graphs
	Introduction
	Notation and terminologies
	Lemmas
	Proof of the main theorem
	Acknowledgements
	References


