Generalized Quasi-Variational Inequalities in Locally Convex Topological Vector Spaces*

MAU-HSIANG SHIH

Department of Mathematics, Chung Yuan University, Chung-Li, Taiwan

AND

KOK-KEONG TAN

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia B3H 4H8, Canada

Submitted by Ky Fan

Let E be a Hausdorff topological vector space and $X \subseteq E$ an arbitrary nonempty set. Denote by E' the dual space of E and the pairing between E' and E by $\langle w, x \rangle$ for $w \in E'$ and $x \in E$. Given a point-to-set map $S: X \rightarrow 2^X$ and a point-to-set map $T: X \rightarrow E'$, the generalized quasi-variational inequality problem (GQVI) is to find a point $\hat{y} \in S(\hat{y})$ and a point $u \in T(\hat{y})$ such that $\text{Re}(\langle u, \hat{y} - x \rangle) \leq 0$ for all $x \in S(\hat{y})$. By using the Ky Fan minimax principle or its generalized version as a tool, some general theorems on solutions of the GQVI in locally convex Hausdorff topological vector spaces are obtained which include a fixed point theorem due to Ky Fan and I. L. Glicksberg, and two different multivalued versions of the Hartman-Stam-pacchia variational inequality. © 1985 Academic Press, Inc.

1

Let E be a Hausdorff topological vector space, $X \subseteq E$ an arbitrary nonempty set and 2^X the collection of all subsets of X. We shall denote by E' the dual space of E (i.e., the vector space of all continuous linear functionals on E). We denote the pairing between E' and E by $\langle w, x \rangle$ for $w \in E'$ and $x \in E$. Given a (point-to-set) map $S: X \rightarrow 2^X$ and a (point-to-point) map $T: X \rightarrow E'$, the quasi-variational inequality problem (QVI) is to find a point $\hat{y} \in S(\hat{y})$ such that $\text{Re}(\langle T(\hat{y}), \hat{y} - x \rangle) \leq 0$ for all $x \in S(\hat{y})$. The QVI was introduced by Bensoussan and Lions in 1973 (see, e.g., [3]) in

* This work was partially supported by NSERC of Canada under Grant A-8096.
connection with impulse control. A recent work concerning the QVI may be found in Mosco [11]. If we consider a point-to-set map \(T: X \to 2^E \), then the generalized quasi-variational inequality problem (GQVI) is to find a point \(\hat{y} \in S(\hat{y}) \) and a point \(\hat{u} \in T(\hat{y}) \) such that \(\text{Re} \langle \hat{u}, \hat{y} - x \rangle \leq 0 \) for all \(x \in S(\hat{y}) \) (see [5]).

In the present paper we shall give some general theorems on solutions of the GQVI. Our basic tool is the Ky Fan minimax principle [7] or the following generalized version due to Yen [15].

Theorem A. Let \(X \) be a nonempty compact convex set in a Hausdorff topological vector space \(E \). Let \(\phi \) and \(\psi \) be two real-valued functions on \(X \times X \) having the following properties:

1. \(\phi \leq \psi \) on \(X \times X \) and \(\psi(x, x) < 0 \) for all \(x \in X \);
2. For each fixed \(x \in X \), \(\phi(x, y) \) is a lower semicontinuous function of \(y \) on \(X \);
3. For each fixed \(y \in X \), \(\psi(x, y) \) is a quasi-concave function of \(x \) on \(X \).

Then there exists a point \(\hat{y} \in X \) such that \(\phi(x, \hat{y}) \leq 0 \) for all \(x \in X \).

Here, a real-valued function \(\psi \) defined on a convex set \(X \) is said to be quasi-concave if for every real number \(\lambda \), the set \(\{ x \in X : \psi(x) > \lambda \} \) is convex.

Let \(X \) be any nonempty subset of a Hausdorff topological vector space \(E \). A set-valued map \(T: X \to 2^E \) is said to be monotone on \(X \) [4, p. 79] if for all \(x \) and \(y \) in \(X \), each \(u \) in \(T(x) \), and each \(w \) in \(T(y) \), \(\text{Re} \langle w - u, y - x \rangle \geq 0 \).

We need the following two kinds of continuity for set-valued maps. Let \(M \) and \(N \) be topological spaces, and let \(\Gamma: M \to 2^N \) be a set-valued map. We say that \(\Gamma \) is upper semicontinuous at \(x_0 \in M \) [2, p. 109] if for each open set \(G \) with \(\Gamma(x_0) \subseteq G \) there exists a neighborhood \(N(x_0) \) of \(x_0 \) such that if \(x \in N(x_0) \), then \(\Gamma(x) \subseteq G \); \(\Gamma \) is upper semicontinuous on \(M \) if it is upper semicontinuous at each point of \(M \). Also, \(\Gamma \) is lower semicontinuous at \(x_0 \in M \) [2, p. 109] if for each open set \(G \) with \(\Gamma(x_0) \cap G \neq \emptyset \) there is a neighborhood \(N(x_0) \) of \(x_0 \) such that if \(x \in N(x_0) \), then \(\Gamma(x) \cap G \neq \emptyset \); \(\Gamma \) is lower semicontinuous on \(M \) if it is lower semicontinuous at each point of \(M \). Moreover, \(\Gamma \) is said to be continuous on \(M \) if it is both upper semicontinuous and lower semicontinuous on \(M \).

Our proofs of Theorems 1 and 3 require the following lemma.

Lemma 1. Let \(E \) be a Hausdorff topological vector space, \(X \subseteq E \) be nonempty and \(S: X \to 2^E \) be upper semicontinuous such that for each \(x \in X \), \(S(x) \)
is nonempty and bounded. Then for \(p \in E' \) the map \(f_p : X \to \mathbb{R} \) defined by

\[
f_p(y) := \sup_{x \in S(y)} \text{Re}\langle p, x \rangle
\]

is upper semicontinuous. \(\text{Re}\langle p, x \rangle \)

Proof. Let \(y_0 \in X \) and \(\varepsilon > 0 \) be given. Let

\[
U_\varepsilon := \{ x \in E : |\langle p, x \rangle| < \varepsilon/2 \};
\]

then \(U_\varepsilon \) is an open neighborhood of 0. As \(S(y_0) + U_\varepsilon \) is an open set containing \(S(y_0) \), by upper semicontinuity of \(S \) at \(y_0 \), there exists a neighborhood \(N(y_0) \) of \(y_0 \) in \(X \) such that if \(y \in N(y_0) \) then \(S(y) \subseteq S(y_0) + U_\varepsilon \). Thus, for each \(y \in N(y_0) \),

\[
f_p(y) = \sup_{x \in S(y)} \text{Re}\langle p, x \rangle
\leq \sup_{x \in S(y_0) + U_\varepsilon} \text{Re}\langle p, x \rangle
\leq \sup_{x \in S(y_0)} \text{Re}\langle p, x \rangle + \sup_{x \in U_\varepsilon} \text{Re}\langle p, x \rangle
\leq f_p(y_0) + \varepsilon.
\]

Hence \(f_p \) is upper semicontinuous and the proof is completed. \(\square \)

THEOREM 1. Let \(E \) be a locally convex Hausdorff topological vector space and \(X \) be a nonempty compact convex subset of \(E \). Let \(S : X \to 2^X \) be upper semicontinuous such that for each \(x \in X \), \(S(x) \) is a nonempty closed convex subset of \(X \), and let \(T : X \to 2^{E'} \) be monotone such that for all \(x \in X \), \(T(x) \) is a nonempty subset of \(E' \) and for each one-dimensional flat \(L \subset E \), \(T \mid L \cap X \) is lower semicontinuous from the topology of \(E \) to the weak*-topology \(\sigma(E', E) \) of \(E' \). Suppose further that the set \(\Sigma_1 := \{ y \in X : \sup_{x \in S(y)} \text{Re}\langle u, y - x \rangle > 0 \} \) is open in \(X \). Then there exists a point \(\hat{y} \in X \) such that

(i) \(\hat{y} \in S(\hat{y}) \) and
(ii) \(\sup_{w \in T(\hat{y})} \text{Re}\langle w, \hat{y} - x \rangle \leq 0 \) for all \(x \in S(\hat{y}) \).

Proof. We divide the proof into two steps:

Step 1. There exists a point \(\hat{y} \in X \) such that \(\hat{y} \in S(\hat{y}) \) and \(\sup_{u \in T(\hat{y})} \text{Re}\langle u, \hat{y} - x \rangle \leq 0 \) for all \(x \in S(\hat{y}) \).

Suppose the assertion were false. Then for all \(y \in X \), either \(y \notin S(\hat{y}) \) or there exists a point \(x \in S(y) \) such that \(\sup_{u \in T(x)} \text{Re}\langle u, y - x \rangle > 0 \). Observe that whenever \(y \notin S(y) \), there exists \(p \in E' \) such that

\[
\text{Re}\langle p, y \rangle - \sup_{x \in S(y)} \text{Re}\langle p, x \rangle > 0
\]
by applying the Hahn-Banach separation theorem. For each $y \in X$, we set

$$\alpha(y) := \sup_{x \in S(y)} \sup_{u \in T(x)} \Re \langle u, y - x \rangle.$$

Let

$$V_0 := \{ y \in X : \alpha(y) > 0 \}.$$

For each $p \in E'$, we set

$$V(p) := \{ y \in X : \Re \langle p, y \rangle - \sup_{x \in S(y)} \Re \langle p, x \rangle > 0 \}.$$

Then $X = V_0 \cup \bigcup_{p \in E'} V(p)$. By hypothesis, V_0 is open in X. By Lemma 1, $V(p)$ is open in X for each $p \in E'$. Since X is compact, there exist $p_1, \ldots, p_n \in E'$ such that $X = V_0 \cup \bigcup_{i=1}^n V(p_i)$ and a continuous partition of unity $\{ \beta_0, \beta_1, \ldots, \beta_n \}$ subordinated to the covering $\{ V_0, V(p_1), \ldots, V(p_n) \}$, that is, $\beta_0, \beta_1, \ldots, \beta_n$ are continuous nonnegative real-valued functions on X such that β_0 vanishes on $X \setminus V_0$ and for each $1 \leq i \leq n$, β_i vanishes on $X \setminus V(p_i)$ and $\sum_{i=0}^n \beta_i(x) = 1$ for all $x \in X$.

Define $\phi, \psi : X \times X \to \mathbb{R}$ by setting

$$\phi(x, y) := \beta_0(y) \sup_{u \in T(x)} \Re \langle u, y - x \rangle + \sum_{i=1}^n \beta_i(y) \Re \langle p_i, y - x \rangle,$$

$$\psi(x, y) := \beta_0(y) \inf_{w \in T(y)} \Re \langle w, y - x \rangle + \sum_{i=1}^n \beta_i(y) \Re \langle p_i, y - x \rangle.$$

By monotonicity of T, we have

$$\sup_{u \in T(x)} \Re \langle u, y - x \rangle \leq \inf_{w \in T(y)} \Re \langle w, y - x \rangle \quad \text{for all} \ x, y \in X.$$

It follows that $\phi \leq \psi$ on $X \times X$. Clearly $\psi(x, x) = 0$ for all $x \in X$. For each fixed $x \in X$, since $\beta_i(i = 0, 1, \ldots, n)$ are continuous nonnegative functions of y on X and $\sup_{u \in T(x)} \Re \langle u, y - x \rangle, \Re \langle p_i, y - x \rangle (i = 1, \ldots, n)$ are lower semicontinuous functions of y on X, by Lemma 3 in [13, p. 177], $y \mapsto \phi(x, y)$ is lower semicontinuous on X. Furthermore, for each fixed $y \in X$, $x \mapsto \psi(x, y)$ is quasi-concave. Hence, all the conditions of Theorem A are satisfied, so that there exists a point $\hat{y} \in X$ such that $\phi(x, \hat{y}) \leq 0$ for all $x \in X$; that is,

$$\beta_0(\hat{y}) \sup_{u \in T(x)} \Re \langle u, \hat{y} - x \rangle + \sum_{i=1}^n \beta_i(\hat{y}) \Re \langle p_i, \hat{y} - x \rangle \leq 0$$

for all $x \in X$. (*)
Since \(\{\beta_0, \beta_1, \ldots, \beta_n\} \) is a partition of unity, \(\beta_i(\hat{y}) > 0 \) for at least one index \(i \in \{0, 1, \ldots, n\} \). Choose any \(\hat{x} \in S(\hat{y}) \) such that

\[
\sup_{u \in T(\hat{x})} \Re \langle u, \hat{y} - \hat{x} \rangle \geq \frac{\alpha(\hat{y})}{2} \quad \text{whenever } \alpha(\hat{y}) > 0.
\]

If \(\beta_0(\hat{y}) > 0 \), then \(\hat{y} \in V_0 \) so that \(\alpha(\hat{y}) > 0 \). Hence,

\[
\sup_{u \in T(\hat{x})} \Re \langle u, \hat{y} - \hat{x} \rangle \geq \frac{\alpha(\hat{y})}{2} > 0.
\]

If \(\beta_i(\hat{y}) > 0 \) for \(i = 1, \ldots, n \), then \(\hat{y} \in V(p_i) \) and hence

\[
\Re \langle p_i, \hat{y} \rangle > \sup_{x \in S(\hat{y})} \Re \langle p_i, x \rangle \geq \Re \langle p_i, \hat{x} \rangle
\]

so that \(\Re \langle p_i, \hat{y} - \hat{x} \rangle > 0 \). It follows that

\[
\beta_0(\hat{y}) \sup_{u \in T(\hat{x})} \Re \langle u, \hat{y} - \hat{x} \rangle + \sum_{i=1}^{n} \beta_i(\hat{y}) \Re \langle p_i, \hat{y} - \hat{x} \rangle > 0,
\]

contradicting (\(*\)*). This contradiction proves Step 1.

Step 2. \(\sup_{u \in T(\hat{x})} \Re \langle w, \hat{y} - x \rangle \leq 0 \) for all \(x \in S(\hat{y}) \).

Let \(x \in S(\hat{y}) \) be arbitrarily fixed and let \(z_t := tx + (1 - t) \hat{y} - t(\hat{y} - x) \) for \(t \in [0, 1] \). As \(S(\hat{y}) \) is convex, we have \(z_t \in S(\hat{y}) \) for \(t \in [0, 1] \). Therefore by Step 1, we have

\[
\sup_{u \in T(z_t)} \Re \langle u, \hat{y} - z_t \rangle \leq 0 \quad \text{for all } t \in [0, 1],
\]

and it follows that

\[
\sup_{u \in T(z_t)} \Re \langle u, \hat{y} - x \rangle \leq 0 \quad \text{for all } t \in (0, 1]. \quad (**)
\]

Let \(w_0 \in T(\hat{y}) \) be arbitrarily fixed. For each \(\varepsilon > 0 \), let

\[
U_{w_0} := \{ w \in E' : |\langle w_0 - w, \hat{y} - x \rangle| < \varepsilon \};
\]

then \(U_{w_0} \) is a \(\sigma(E', E) \)-neighborhood of \(w_0 \). Since \(T|L \cap X \) is lower semicontinuous, where \(L := \{ z_t : t \in [0, 1] \} \), and \(U_{w_0} \cap T(\hat{y}) \neq \emptyset \), there exists a neighborhood \(N(\hat{y}) \) of \(\hat{y} \) in \(L \) such that if \(z \in N(\hat{y}) \) then \(T(z) \cap U_{w_0} \neq \emptyset \). But then there exists \(\delta \in (0, 1) \) such that \(z_t \in N(\hat{y}) \) for all \(t \in (0, \delta) \). Fix any \(t \in (0, \delta) \) and \(u \in T(z_t) \cap U_{w_0} \), we have

\[
|\langle w_0 - u, \hat{y} - x \rangle| < \varepsilon.
\]
This implies
\[\text{Re}\langle w_0, \hat{y} - x \rangle < \text{Re}\langle u, \hat{y} - x \rangle + \varepsilon. \]

By (**), we have \(\text{Re}\langle w_0, \hat{y} - x \rangle < \varepsilon. \) Since \(\varepsilon > 0 \) is arbitrary, \(\text{Re}\langle w_0, \hat{y} - x \rangle \leq 0. \) As \(w_0 \in T(\hat{y}) \) is arbitrary,

\[\sup_{w \in T(\hat{y})} \text{Re}\langle w, \hat{y} - x \rangle \leq 0 \quad \text{for all } x \in S(\hat{y}). \]

This concludes the proof of our theorem. \(\square \)

In the first step of our proof, we follow the argument of Aubin [1, pp. 373–374]. In the second step of our proof, we use the argument of Shih and Tan [12] and Tan [14].

When \(T \equiv 0 \), Theorem 1 gives the well-known Fan–Glicksberg fixed point theorem [6, 8].

Corollary 1 (Fan and Glicksberg). Let \(E \) be a locally convex Hausdorff topological vector space and \(X \) a nonempty compact convex set in \(E \). Let \(S: X \to 2^X \) be upper semicontinuous such that for each \(x \in X \), \(S(x) \) is a nonempty closed convex subset of \(X \). Then there exists a point \(\hat{x} \in X \) such that \(\hat{x} \in S(\hat{x}). \)

We shall now observe that in Theorem 1, the interaction between the maps \(S \) and \(T \) (namely, \(\Sigma \) is open in \(X \)) can be achieved by imposing additional continuity conditions on \(S \) and \(T \).

Theorem 2. Let \(E \) be a locally convex Hausdorff topological vector space and \(X \) be a nonempty compact convex subset of \(E \). Let \(S: X \to 2^X \) be continuous such that for each \(x \in X \), \(S(x) \) is a nonempty closed convex subset of \(X \), and \(T: X \to 2^{E'} \) be monotone such that for each \(x \in X \), \(T(x) \) is a nonempty subset of \(E' \) and \(T \) is lower semicontinuous from the relative topology of \(X \) to the strong topology of \(E' \). Then there exists a point \(\hat{y} \in X \) such that

(i) \(\hat{y} \in S(\hat{y}) \) and

(ii) \(\sup_{w \in T(\hat{y})} \text{Re}\langle w, \hat{y} - x \rangle \leq 0 \) for all \(x \in S(\hat{y}). \)

Proof. By virtue of Theorem 1, we need only show that

\[\Sigma_1 := \{ y \in X : \sup_{x \in S(y)} \sup_{u \in T(x)} \text{Re}\langle u, y - x \rangle > 0 \} \]

is open in \(X \). Let \(y_0 \in \Sigma_1 \); then there exist \(x_0 \in S(y_0) \) and \(f_0 \in T(x_0) \) such that

\[x := \text{Re}\langle f_0, y_0 - x_0 \rangle > 0. \]
GENERALIZED QUASI-VARIATIONAL INEQUALITIES

Since f_0 is continuous at x_0 and at y_0, there exist an open neighborhood N_1 of x_0 and an open neighborhood U_1 of y_0 such that

$$
x \in N_1 \Rightarrow |\langle f_0, x_0 \rangle - \langle f_0, x \rangle| < \alpha/6.
$$

$$
y \in U_1 \Rightarrow |\langle f_0, y_0 \rangle - \langle f_0, y \rangle| < \alpha/6.
$$

Let

$$
W := \{ f \in E' : \sup_{z_1, z_2 \in X} |\langle f - f_0, z_1 - z_2 \rangle| < \alpha/6 \};
$$

then W is a strongly open neighborhood of f_0 and $W \cap T(x_0) \neq \emptyset$ so that by lower semicontinuity of T at x_0, there exists an open neighborhood N_2 of x_0 such that

$$
x \in N_2 \Rightarrow T(x) \cap W \neq \emptyset.
$$

Let $N := N_1 \cap N_2$; since N is a neighborhood of x_0 and $N \cap S(y_0) \neq \emptyset$, by lower semicontinuity of S at y_0, there exists an open neighborhood U_2 of y_0 such that

$$
y \in U_2 \Rightarrow S(y) \cap N \neq \emptyset.
$$

Let $U := U_1 \cap U_2$; then U is an open neighborhood of y_0. For each $y_1 \in U$, choose $x_1 \in S(y_1) \cap N$ and $f_1 \in T(x_1) \cap W$; it follows that

$$
\alpha = \text{Re} \langle f_0, y_0 - x_0 \rangle
= \text{Re} \langle f_1, y_1 - x_1 \rangle + \text{Re} \langle f_0, y_0 - y_1 \rangle + \text{Re} \langle f_0 - f_1, y_1 - x_1 \rangle
+ \text{Re} \langle f_0, x_1 - x_0 \rangle
< \text{Re} \langle f_1, y_1 - x_1 \rangle + \alpha/2.
$$

Thus, $\text{Re} \langle f_1, y_1 - x_1 \rangle \geq \alpha/2 > 0$ so that $y_1 \in \Sigma_1$ for all $y_1 \in U$. Hence Σ_1 is open in X and the proof is completed.

When $S(x) \equiv X$, Theorem 2 gives a multivalued version of the Hartman–Stampacchia variational inequality [9] as follows.

Corollary 2. Let E be a locally convex Hausdorff topological vector space and X be a nonempty compact convex subset of E. Let $T : X \to 2^E$ be monotone such that for each $x \subset X$, $T(x)$ is a nonempty subset of E' and T is lower semicontinuous from the relative topology of X to the strong topology of E'. Then there exists a point $\hat{y} \in X$ such that

$$
\sup_{w \in T(\hat{y})} \text{Re} \langle w, \hat{y} - x \rangle \leq 0 \quad \text{for all } x \in X.
$$
In Theorems 1 and 2, \(T \) is assumed to be monotone together with some kind of lower semicontinuity. In this section we shall establish results for upper semicontinuous map \(T \) without monotonicity.

Theorem 3. Let \(E \) be a locally convex Hausdorff topological vector space and \(X \) be a nonempty compact convex subset of \(E \). Let \(S: X \to 2^X \) be upper semicontinuous such that for each \(x \in X \), \(S(x) \) is a nonempty closed convex subset of \(X \), and let \(T: X \to 2^{E'} \) be upper semicontinuous from the relative topology of \(X \) to the strong topology of \(E' \) such that for each \(x \in X \), \(T(x) \) is a nonempty compact convex subset of \(E' \). Suppose further that the set \(\Sigma_x := \{ y \in X: \sup_{z \in S(y)} \inf_{z \in T(y)} \Re \langle z, y - x \rangle = 0 \} \) is open in \(X \). Then there exists a point \(j \in X \) such that

(i) \(j \in S(j) \) and

(ii) there exists a point \(\hat{z} \in T(j) \) with \(\Re \langle \hat{z}, \hat{z} - x \rangle \leq 0 \) for all \(x \in S(j) \).

Proof. We divide the proof into two steps:

Step 1. There exists a point \(\hat{y} \in S \) such that \(\hat{y} \in S(\hat{y}) \) and \(\sup_{z \in S(\hat{y})} \inf_{z \in T(\hat{y})} \Re \langle z, \hat{y} - x \rangle \leq 0 \).

Suppose the assertion were false. Then for all \(y \in X \), either \(y \not\in S(y) \) or there exists \(x \in S(y) \) such that \(\inf_{z \in T(y)} \Re \langle z, y - x \rangle > 0 \). Observe that whenever \(y \not\in S(y) \), there exists \(p \in E' \) with

\[
\Re \langle p, y \rangle - \sup_{x \in S(y)} \Re \langle p, x \rangle > 0.
\]

For each \(y \in X \), we set

\[
\alpha(y) := \sup_{x \in S(y)} \inf_{z \in T(y)} \Re \langle z, y - x \rangle.
\]

Let

\[
V_0 := \{ y \in X: \alpha(y) > 0 \},
\]

and for each \(p \in E' \), we set

\[
V(p) := \{ y \in X: \Re \langle p, y \rangle - \sup_{x \in S(y)} \Re \langle p, x \rangle > 0 \}.
\]

Then \(X = V_0 \cup \bigcup_{p \in E'} V(p) \). By hypothesis, \(V_0 \) is open in \(X \). By Lemma 1, \(V(p) \) is open in \(X \) for each \(p \in E' \). Since \(X \) is compact, there exist \(p_1, \ldots, p_n \in E' \) such that

\[
X = V_0 \cup \bigcup_{i=1}^n V(p_i).
\]
and a continuous partition of unity \(\{\beta_0, \beta_1, \ldots, \beta_n\} \) subordinated to the covering \(\{V_0, V(p_1), \ldots, V(p_n)\} \).

Define \(\phi: X \times X \to \mathbb{R} \) by setting

\[
\phi(x, y) := -\beta_0(y) \inf_{w \in T(y)} \Re \langle w, y - x \rangle + \sum_{i=1}^{n} \beta_i(y) \Re \langle p_i, y - x \rangle.
\]

Clearly \(\phi(x, x) = 0 \) for each \(x \in X \). Note that for each fixed \(x \in X \),

\[
y \to \inf_{w \in T(y)} \Re \langle w, y - x \rangle
\]

is lower semicontinuous as can be seen within the proof of Theorem 21 in [13], so that \(y \to \phi(x, y) \) is lower semicontinuous. Also it is clear that for each fixed \(y \in X \), \(x \to \phi(x, y) \) is quasi-concave. Hence by the Ky Fan minimax principle (i.e., Theorem A with \(\phi \equiv \psi \)), there exists a point \(\hat{y} \in X \) such that \(\phi(x, \hat{y}) \leq 0 \) for all \(x \in X \). The contradiction that there is a point \(\hat{x} \in X \) with \(\phi(\hat{x}, \hat{y}) > 0 \) can be achieved by using the corresponding proof of Step 1 of Theorem 1.

Step 2. There exists a point \(\hat{y} \in T(\hat{y}) \) such that \(\Re \langle \hat{z}, \hat{y} - x \rangle \leq 0 \) for all \(x \in S(\hat{y}) \).

Indeed, define \(f: S(\hat{y}) \times T(\hat{y}) \to \mathbb{R} \) by

\[
f(x, z) := \Re \langle z, \hat{y} - x \rangle.
\]

Note that for each fixed \(x \in S(\hat{y}) \), \(z \to f(x, z) \) is continuous and affine, and for each \(z \in T(\hat{y}) \), \(x \to f(x, z) \) is affine. Thus by Kneser's minimax theorem [10], we have

\[
\min_{z \in T(\hat{y})} \max_{x \in S(\hat{y})} f(x, z) = \max_{x \in S(\hat{y})} \min_{z \in T(\hat{y})} f(x, z).
\]

Thus

\[
\min_{z \in T(\hat{y})} \max_{x \in S(\hat{y})} \Re \langle z, \hat{y} - x \rangle \leq 0 \quad \text{by Step 1.}
\]

Since \(T(\hat{y}) \) is compact, there exists \(\hat{z} \in T(\hat{y}) \) such that

\[
\Re \langle \hat{z}, \hat{y} - x \rangle \leq 0 \quad \text{for all } x \in S(\hat{y}).
\]

When \(E \) is a normed linear space, by imposing additional lower semicontinuity on \(S \), the interacting set \(\Sigma_2 \) in Theorem 3 is always open:

Theorem 4. Let \(E \) be a normed linear space and \(X \) be a nonempty compact convex subset of \(E \). Let \(S: X \to 2^X \) be continuous such that for each \(x \in X \), \(S(x) \) is a nonempty closed convex subset of \(X \), and let \(T: X \to 2^{E'} \) be upper semicontinuous such that for each \(x \in X \), \(T(x) \) is a nonempty compact convex subset of \(E' \). Then there exists a point \(\hat{y} \in X \) such that
(i) \(\hat{y} \in S(\hat{y}) \) and
(ii) there exists a point \(\hat{z} \in T(\hat{y}) \) with \(\Re \langle \hat{z}, \hat{y} - x \rangle \leq 0 \) for all \(x \in S(\hat{y}) \).

Proof. By virtue of Theorem 3, we need only show that the set

\[\Sigma_2 := \{ y \in X : \sup_{x \in S(y)} \inf_{z \in T(y)} \Re \langle z, y - x \rangle > 0 \} \]

is open in \(X \). For this purpose, let \(y_0 \in \Sigma_2 \), then there exists \(x_0 \in S(y_0) \) with

\[\alpha = \inf_{z \in T(y_0)} \Re \langle z, y_0 - x_0 \rangle > 0. \]

Let

\[M := \max \{ \text{diam}(x), \sup_{z \in T(y_0)} \| z \| \} \quad \text{and} \quad B := \{ f \in E' : \| f \| < 1 \}. \]

Since \(T \) is upper semicontinuous at \(y_0 \), for \(\eta = \alpha/6(1 + M) > 0 \), there exists \(\delta_1 \in (0, \min \{ 1, \alpha/6(1 + M) \}) \) such that for all \(y \in X, \| y - y_0 \| < \delta_1 \) implies \(T(y) \subset T(y_0) + \eta B \). As \(S \) is lower semicontinuous at \(y_0 \), there exists \(\delta_2 \in (0, \min \{ 1, \alpha/6(1 + M) \}) \) such that for all \(y \in X, \| y - y_0 \| < \delta_2 \) implies

\[S(y) \cap \{ x \in X : \| x - x_0 \| < \eta \} \neq \emptyset. \]

Let \(\delta := \min \{ \delta_1, \delta_2 \} \). Let \(y_1 \in X \) be such that \(\| y_1 - y_0 \| < \delta \). Then \(T(y_1) \subset T(y_0) + \eta B \) and we can choose \(x_1 \in S(y_1) \) with \(\| x_1 - x_0 \| < \eta \). It follows that

\[\inf_{z \in T(y_1)} \Re \langle z, y_1 - x_1 \rangle \]

\[\geq \inf_{z \in T(y_0) + \eta B} \Re \langle z, y_1 - x_1 \rangle \]

\[\geq \inf_{z \in T(y_0)} \Re \langle z, y_1 - x_1 \rangle + \inf_{z \in \eta B} \Re \langle z, y_1 - x_1 \rangle \]

\[\geq \inf_{z \in T(y_0)} \Re \langle z, y_0 \rangle + \inf_{z \in T(y_0)} \Re \langle z, y_0 - x_0 \rangle \]

\[+ \inf_{z \in T(y_0)} \Re \langle z, x_0 - x_1 \rangle - \eta \| y_1 - x_1 \| \]

\[\geq - \sup_{z \in T(y_0)} \| z \| \| y_1 - y_0 \| + \alpha \]

\[- \sup_{z \in T(y_0)} \| z \| \| x_0 - x_1 \| - \alpha/6 \]

\[> \alpha/2 > 0. \]

Thus,

\[\sup_{x \in S(y_1)} \inf_{z \in T(y_1)} \Re \langle z, y_1 - x \rangle > 0 \]
so that \(y_1 \in \Sigma_2 \) whenever \(y_1 \in X \) with \(\| y_1 - y_0 \| < \delta \). This shows that \(\Sigma_2 \) is open in \(X \) and the proof is completed.

When \(S(x) = X \), we obtain another multivalued version of the Hartman–Stampacchia variational inequality as follows.

Corollary 3. Let \(E \) be a normed linear space and \(X \subset E \) a nonempty compact convex subset of \(E \). Let \(T : X \to 2^E \) be upper semicontinuous such that for each \(x \in X \), \(T(x) \) is a nonempty compact convex subset of \(E' \). Then there exist a point \(\hat{y} \in X \) and a point \(\hat{z} \in T(\hat{y}) \) such that

\[
\text{Re} \langle \hat{z}, \hat{y} - x \rangle \leq 0 \quad \text{for all } x \in X.
\]

References