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Abstract

Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport
equation is di&erent from the traditional heat di&usion equation since a second-order derivative of temperature
with respect to time and a third-order mixed derivative of temperature with respect to space and time are
introduced. In this study, we develop a %nite di&erence scheme with two levels in time for the 3D heat
transport equation in a sub-microscale thin %lm. It is shown by the discrete energy method that the scheme is
unconditionally stable. The 3D implicit scheme is then solved by using a preconditioned Richardson iteration,
so that only a tridiagonal linear system is solved for each iteration. The numerical procedure is employed
to obtain the temperature rise in a gold sub-microscale thin %lm. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Heat transport through thin %lms is of vital importance in microtechnology applications [9,10].
For instance, thin %lms of metals, of dielectrics such as SiO2, or Si semiconductors are important
components of microelectronic devices. The reduction of the device size to microscale has the
advantage of enhancing the switching speed of the device. On the other hand, size reduction increases
the rate of heat generation which leads to a high thermal load on the microdevice. Heat transfer
at the microscale is also important for the processing of materials with a pulsed-laser [12,13].
Examples in metal processing are laser micromachining, laser patterning, laser processing of diamond
%lms from carbon ion implanted copper substrates, and laser surface hardening. Hence, studying the
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thermal behavior of thin %lms or of microobjects is essential for predicting the performance of a
microelectronic device or for obtaining the desired microstructure [10]. The heat transport equations
used to describe the thermal behavior of microstructures are expressed as [15]

−∇ · q̃ + Q = �Cp
@T
@t

; (1)

q̃(x; y; z; t + �q) = −k∇T (x; y; z; t + �T ); (2)

where q̃ = (q1; q2; q3) is heat Gux, T is temperature, k is conductivity, Cp is speci%c heat, � is
density, Q is a heat source, �q and �T are positive constants, which are the time lags of the heat
Gux and temperature gradient, respectively. In the classical theory of di&usion, the heat Gux vector
(̃q) and the temperature gradient (∇T ) across a material volume are assumed to occur at the same
instant of time. They satisfy the Fourier’s law of heat conduction:

q̃(x; y; z; t) = −k∇T (x; y; z; t): (3)

However, if the scale in one direction is at the sub-microscale, i.e., the order of 0:1 �m (1 �m =
10−6 m) then the heat Gux and temperature gradient in this direction will occur at di&erent times, as
shown in Eq. (2) [15]. The signi%cance of the heat transfer equations (1) and (2) as opposed to the
classical heat transfer equations has been discussed in [15] (see pp. 127–128). In Fig. 5:9 (see p. 128
in [15]) the author shows that for �T = 90 ps and �q = 8:5 ps the predicted change in IT=ITmax

over time gave an excellent %t to the data and was signi%cantly di&erent from that predicted by the
classical heat transfer equations.

Using Taylor series expansion, the %rst-order approximation of Eq. (2) gives [15]

q̃ + �q
@̃q
@t

= −k
[
∇T + �T

@
@t

[∇T ]
]
: (4)

Tzou et al. [14,15] considered Eqs. (1) and (4) in one dimension, and eliminated the heat Gux q̃ to
obtain a dimensionless heat transport equation as follows:

A
@T
@t

+ D
@2T
@t2

=
@2T
@x2 + B

@3T
@x2@t

+ G: (5)

They studied the lagging behavior by solving the above heat transport equation (5) in a semi-in%nite
interval, [0;+∞). The solution was obtained by using the Laplace transform method and the
Riemann-sum approximation for the inversion [1]. Recently, we have developed a two level %nite
di&erence scheme of the Crank–Nicholson type by introducing an intermediate function for solving
Eq. (5) in a %nite interval [2]. It is shown by the discrete energy method [11] that the scheme is
unconditionally stable. Further, the scheme has been generalized to a 3D thin %lm case where the
thickness is at sub-microscale [3].

In this article, we extend our research to a 3D case and consider the domain to be a sub-microscale
thin %lm, i.e., 06 x; y6L1 and 06 z6L2, where L1 and L2 are of order of 0:1 �m, as shown in
Fig. 1. To this end, we %rst eliminate the heat Gux q̃ in Eqs. (1) and (4) and obtain a single
3D heat transport equation for the temperature T . We then develop a two level %nite di&erence
scheme for the 3D heat transport equation in the sub-microscale thin %lm. Using the discrete energy
method [11], we show that the scheme is unconditionally stable. To solve the 3D implicit scheme,
a preconditioned Richardson iteration is developed based on the idea in our previous papers [4–7],
so that only a tridiagonal linear systems is solved for each iteration. The method is then applied to
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Fig. 1. Three dimensional con%guration of a sub-microscale thin %lm.

obtain the temperature rise and the change of temperature on the surface of gold, where the length
and width are assumed to 0:5 �m while the thickness is 0:05 �m. It should be pointed out that
predictions of temperature rise and temperature distribution in the thin %lm are essential to predict
the thermal behavior in a nanophase structure.

2. Finite di�erence scheme

To develop a %nite di&erence scheme, we %rst rewrite the heat transport equation (4) as follows:

q1 + �q
@q1

@t
= −k

[
@T
@x

+ �T
@
@t

(
@T
@x

)]
; (6)

q2 + �q
@q2

@t
= −k

[
@T
@y

+ �T
@
@t

(
@T
@y

)]
; (7)

q3 + �q
@q3

@t
= −k

[
@T
@z

+ �T
@
@t

(
@T
@z

)]
: (8)

Di&erentiating Eqs. (6)–(8) with respect to x; y, and z, respectively, and then substituting them into
Eq. (1), we obtain

@T
@t

+ A
@2T
@t2

= B∇2T + C
@
@t
∇2T + G; (9)

where A= �q; B= k=�Cp; C = k�T =�Cp, and G = (1=�Cp)(Q+ �q(@Q=@t)). It should pointed out that
A; B and C are positive constants. The initial condition is assumed to be

T (x; y; z; 0) = T0(x; y; z);
@T (x; y; z; 0)

@t
= T1(x; y; z): (10)

For simplifying the proof for stability in Section 3, the boundary conditions are assumed to be

T (0; y; z; t) = T2; T (L1; y; z; t) = T3; T (x; 0; z; t) = T4; (11)

T (x; L1; z; t) = T5; T (x; y; 0; t) = T6; T (x; y; L2; t) = T7; (12)
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where T2 to T7 are assumed to be constants. We also assume that the solution of the above initial
and boundary value problem is smooth. Since the exact solution is diMcult to obtain in general, our
motivation is to develop a %nite di&erence scheme for solving the above initial and boundary value
problem. It is noted that if Eq. (9) is discretized directly using a Crank–Nicholson type of %nite
di&erence and a second-order central di&erence in time, then the scheme is three levels in time.
Furthermore, the scheme may not be unconditionally stable. Unconditional stability is particularly
important so that there are no restrictions on the mesh ratio, since the grid size in the x; y; and
z directions of the solution domain is very small compared with the time increment. In this study,
our goal is to obtain a scheme with two levels in time, second-order accuracy and unconditional
stability. To this end, we let

u = T + A
@T
@t

: (13)

In Theorem 1 (to be discussed in Section 3), we can show that our scheme is unconditionally stable
for two cases, (1) AB−C¿ 0, and (2) AB−C¡ 0. Since AB−C = (k=�CP)(�q − �T ); AB−C¿ 0
implies that �q¿ �T while AB−C¡ 0 implies that �q ¡�T . For case 1, we obtain @T=@t=(1=A)(u−T )
from Eq. (13). Substituting the @T=@t expression into Eq. (9) gives

@u
@t

=
(

@2

@x2 +
@2

@y2 +
@2

@z2

)((
B− C

A

)
T +

C
A
u
)

+ G: (14)

For case 2, we obtain T = u− A(@T=@t). Substituting the T value into Eq. (9) gives

@u
@t

=
(

@2

@x2 +
@2

@y2 +
@2

@z2

)(
Bu + (C − AB)

@T
@t

)
+ G: (15)

We let unijk denote u(iIx; jIy; kIz; nIt), where Ix; Iy; Iz and It are the x; y; and z di-
rectional spatial and temporal mesh sizes, respectively, 06 i; j; k = 0; 1; : : : ; N and NIx = NIy =
L1; NIz = L2. We use the following di&erence operators:

∇xunijk =
uni+1jk − unijk

Ix
; ∇ Nxunijk =

unijk − uni−1jk

Ix
;

�2
xu

n
ijk =

1
Ix2 (uni+1jk − 2unijk + uni−1jk)

and so on. It can be seen that �2
xu

n
ijk = ∇ Nx · ∇xunijk :

We now discretize Eqs. (14) and (15) using a Crank–Nicholson type of %nite di&erence to obtain

un+1
ijk − unijk

It
=

C
2A

(�2
x + �2

y + �2
z) (un+1

ijk + unijk)

+
1
2

(
B− C

A

)
(�2

x + �2
y + �2

z) (Tn+1
ijk + Tn

ijk) + Gn+1=2
ijk (16)

if AB− C¿ 0, and

un+1
ijk − unijk

It
=

1
2
B(�2

x + �2
y + �2

z) (un+1
ijk + unijk)

+
1

It
(C − AB) (�2

x + �2
y + �2

z) (Tn+1
ijk − Tn

ijk) + Gn+1=2
ijk (17)
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if AB− C¡ 0. On the other hand, Eq. (13) is discretized using the trapezoidal method

A
Tn+1
ijk − Tn

ijk

It
= −1

2
(Tn+1

ijk + Tn
ijk) +

1
2

(un+1
ijk + unijk): (18)

We now simplify Eq. (16) to obtain an equation for un+1
ijk . To this end, we solve for Tn+1

ijk from
Eq. (18) to obtain(

A +
It
2

)
Tn+1
ijk =

(
A− It

2

)
Tn
ijk +

It
2

(un+1
ijk + unijk)

and hence

1
2

(
A +

It
2

)
(Tn+1

ijk + Tn
ijk) = ATn

ijk +
It
4

(un+1
ijk + unijk):

Substituting Tn+1
ijk + Tn

ijk into Eq. (16), we obtain(
A +

It
2

) un+1
ijk − unijk

It
=

1
2

(
A +

It
2

)
C
A

(�2
x + �2

y + �2
z) (un+1

ijk + unijk)

+
(
B− C

A

)
(�2

x + �2
y + �2

z)
[
ATn

ijk +
It
4

(un+1
ijk + unijk)

]

+
(
A +

It
2

)
Gn+1=2

ijk

=
1
2

(
C +

It
2
B
)

(�2
x + �2

y + �2
z) (un+1

ijk + unijk)

+ (AB− C) (�2
x + �2

y + �2
z)T

n
ijk +

(
A +

It
2

)
Gn+1=2

ijk : (19)

The same equation may be obtained by substituting Tn+1
ijk into Eq. (17). The initial and boundary

conditions are:

T 0
ijk = (T0)ijk ; u0

ijk = (T0)ijk + A(T1)ijk ; (20)

Tn
0jk = un0jk = T2; T n

Njk = unNjk = T3; (21)

Tn
i0k = uni0k = T4; T n

iNk = uniNk = T5; (22)

Tn
ij0 = unij0 = T6; T n

ijN = unijN = T7: (23)

Hence, one may use Eq. (19) to obtain un+1
ijk and then use Eq. (18) to obtain Tn+1

ijk . Both equa-
tions are only two levels in time. Since we employ a Crank–Nicholson type of %nite di&erence
and the trapezoidal method, it can be seen that the truncation errors of Eqs. (16)–(18) at point
(iIx; jIy; kIz; (n + 1

2 )It) are second-order accurate.
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3. Stability

We will employ the discrete energy method [11] to show the stability of the scheme, Eqs. (16) and
(18), with initial and boundary conditions (20)–(23). To this end, we %rst introduce the de%nition of
the inner product and norm between the mesh functions unijk and vnijk . Let Sh be a set of {un ={unijk};
with un0jk = unNjk = uni0k = uniNk = unij0 = unijN = 0}. For any un; vn ∈ Sh; the inner product and norm are
de%ned as follows:

(un; vn) = IxIyIz
N−1∑
i=1

N−1∑
j=1

N−1∑
k=1

unijkv
n
ijk ; ‖un‖2 = (un; un);

‖∇xun‖2
1 = (∇xun;∇xun)1 = IxIyIz

N−1∑
i=0

N−1∑
j=1

N−1∑
k=1

(∇xunijk)2

and similarly for the y and z directions.

Lemma 1. For any un; vn ∈ Sh;

(∇ Nxun; vn) = −(un;∇xvn)

and

(�2
xu

n; vn) = −(∇xun;∇xvn)1:

Similar results can be obtained for the y and z directions.

Proof. The above equations can be easily obtained by using the summation by parts (see [11]).

Theorem 1. Suppose that {unijk ; T n
ijk} and {vnj ; Sn

ijk} are solutions of the scheme; Eqs. (16)–(18); with
the same Dirichlet boundary conditions; and initial values {u0

ijk ; T
0
ijk} and {v0

ijk ; S
0
ijk}; respectively.

Let "n
ijk = unijk − vnijk ; #

n
ijk = Tn

ijk − Sn
ijk . Then {"n

ijk ; #
n
ijk} satisfy

‖"n‖2 + (AB− C)(‖∇x#n‖2
1 + ‖∇y#n‖2

1 + ‖∇z#n‖2
1)

6 ‖"0‖2 + (AB− C)(‖∇x#0‖2
1 + ‖∇y#0‖2

1 + ‖∇z#0‖2
1) (24)

if AB− C¿ 0 and

‖"n‖2 + (C − AB)(‖∇x#n‖2
1 + ‖∇y#n‖2

1 + ‖∇z#n‖2
1)

6 ‖"0‖2 + (C − AB)(‖∇x#0‖2
1 + ‖∇y#0‖2

1 + ‖∇z#0‖2
1 (25)

if AB−C¡ 0 for any n in 06 nIt6 t0. Hence; this scheme is unconditionally stable with respect
to the initial values.

Proof. We %rst rewrite Eq. (16) as follows:

A
un+1
ijk − unijk

It
=

1
2
C(�2

x + �2
y + �2

z) (un+1
ijk + unijk)

+
1
2

(AB− C) (�2
x + �2

y + �2
z) (Tn+1

ijk + Tn
ijk) + AGn+1=2

ijk :
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Since {unijk ; T n
ijk} and {vnj ; Sn

ijk} are solutions of the scheme with the same boundary conditions and
initial values {u0

ijk ; T
0
ijk} and {v0

ijk ; S
0
ijk}; respectively; we let "n

ijk = unijk − vnijk ; #
n
ijk = Tn

ijk − Sn
ijk . Then;

"n; #n ∈ Sh; and satisfy (from the above equation and Eq. (18))

A
"n+1
ijk − "n

ijk

It
=

1
2
C(�2

x + �2
y + �2

z) ("n+1
ijk + "n

ijk) +
1
2

(AB− C) [�2
x + �2

y + �2
z ] (#n+1

ijk + #nijk)

(26)

and

A
#n+1
ijk − #nijk

It
= −1

2
(#n+1

ijk + #nijk) +
1
2

("n+1
ijk + "n

ijk): (27)

Multiplying Eq. (26) by ("n+1
ijk + "n

ijk); then summing i; j; k from 1 to N − 1; one obtains

A
It

(‖"n+1‖2 − ‖"n‖2) =
1
2

(AB− C) (�2
x(#

n+1 + #n); "n+1 + "n)

+
1
2

(AB− C) (�2
y(#n+1 + #n); "n+1 + "n)

+
1
2

(AB− C) (�2
z (#

n+1 + #n); "n+1 + "n)

+
1
2
C(�2

x("
n+1 + "n); "n+1 + "n)

+
1
2
C(�2

y("n+1 + "n); "n+1 + "n)

+
1
2
C(�2

z ("
n+1 + "n); "n+1 + "n):

By Lemma 1; we have

A
It

(‖"n+1‖2 − ‖"n‖2) =−1
2

(AB− C) (∇x(#n+1 + #n);∇x("n+1 + "n))1

− 1
2

(AB− C) (∇y(#n+1 + #n);∇y("n+1 + "n))1

− 1
2

(AB− C) (∇z(#n+1 + #n);∇z("n+1 + "n))1

− 1
2
C‖∇x("n+1 + "n)‖2

1 −
1
2
C‖∇y("n+1 + "n)‖2

1

− 1
2
C‖∇z("n+1 + "n)‖2

1: (28)

Further; we multiply Eq. (27) by �2
x(#

n+1
ijk + #nijk); and sum i; j; k from 1 to N − 1 to obtain

A
It

(#n+1 − #n; �2
x(#

n+1 + #n)) = −1
2

(#n+1 + #n; �2
x(#

n+1 + #n)) +
1
2

("n+1 + "n; �2
x(#

n+1 + #n)):
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By Lemma 1; we have

− A
It

(‖∇x#n+1‖2
1 − ‖∇x#n‖2

1) =
1
2
‖∇x(#n+1 + #n)‖2

1 −
1
2

(∇x(#n+1 + #n);∇x("n+1 + "n))1:

(29)

In a similar manner; we obtain for the y and z directions

− A
It

(‖∇y#n+1‖2
1 − ‖∇y#n‖2

1) =
1
2
‖∇y(#n+1 + #n)‖2

1 −
1
2

(∇y(#n+1 + #n);∇y("n+1 + "n))1

(30)

and

− A
It

(‖∇z#n+1‖2
1 − ‖∇z#n‖2

1) =
1
2
‖∇z(#n+1 + #n)‖2

1 −
1
2

(∇z(#n+1 + #n);∇z("n+1 + "n))1:

(31)

If Eqs. (29)–(31) are multiplied by −(AB− C); respectively; and added to Eq. (28); we obtain
A

It
(‖"n+1‖2 − ‖"n‖2) +

A(AB− C)
It

(‖∇x#n+1‖2
1 − ‖∇x#n‖2

1)

+
A(AB− C)

It
(‖∇y#n+1‖2

1 − ‖∇y#n‖2
1) +

A(AB− C)
It

(‖∇z#n+1‖2
1 − ‖∇z#n‖2

1)

+
1
2
C‖∇x("n+1 + "n)‖2

1 +
1
2
C‖∇y("n+1 + "n)‖2

1 +
1
2
C‖∇z("n+1 + "n)‖2

1

+
1
2

(AB− C)‖∇x(#n+1 + #n)‖2
1 +

1
2

(AB− C)‖∇y(#n+1 + #n)‖2
1

+
1
2

(AB− C)‖∇z(#n+1 + #n)‖2
1 = 0:

Since AB − C¿ 0; one may drop the last six terms on the left-hand side from the above equation
and obtain

A
It

(‖"n+1‖2 − ‖"n‖2) +
A(AB− C)

It
(‖∇x#n+1‖2

1 − ‖∇x#n‖2
1)

+
A(AB− C)

It
(‖∇y#n+1‖2

1 − ‖∇y#n‖2
1) +

A(AB− C)
It

(‖∇z#n+1‖2
1 − ‖∇z#n‖2

1)6 0:

Hence;

‖"n+1‖2 + (AB− C)(‖∇x#n+1‖2
1 + ‖∇y#n+1‖2

1 + ‖∇z#n+1‖2
1)

6 ‖"n‖2 + (AB− C) (‖∇x#n‖2
1 + ‖∇y#n‖2

1 + ‖∇z#n‖2
1): (32)

Summing n from 0 to n; we obtain Eq. (24)

‖"n‖2 + (AB− C)(‖∇x#n‖2
1 + ‖∇y#n‖2

1 + ‖∇z#n‖2
1)

6 ‖"0‖2 + (AB− C)(‖∇x#0‖2
1 + ‖∇y#0‖2

1 + ‖∇z#0‖2
1):
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For the case of AB−C¡ 0, one may use a similar argument. We %rst obtain from Eqs. (17) and
(18)

"n+1
ijk − "n

ijk

It
=

1
2
B(�2

x + �2
y + �2

z) ["n+1
ijk + "n

ijk] + (C − AB)
1

It
(�2

x + �2
y + �2

z)[#n+1
ijk − #nijk] (33)

and

A
#n+1
ijk − #nijk

It
= −1

2
(#n+1

ijk + #nijk) +
1
2

("n+1
ijk + "n

ijk): (34)

Multiplying Eq. (33) by ("n+1
ijk + "n

ijk) and multiplying Eq. (34) by �2
x(#

n+1
ijk − #nijk); �2

y(#n+1
ijk − #nijk)

and �2
z (#

n+1
ijk − #nijk), respectively, then summing i; j; k from 1 to N − 1, we obtain, by Lemma 1,

1
It

(‖"n+1‖2 − ‖"n‖2) =− 1
It

(C − AB) (∇x(#n+1 − #n);∇x("n+1 + "n))1

− 1
It

(C − AB) (∇y(#n+1 − #n);∇y("n+1 + "n))1

− 1
It

(C − AB) (∇z(#n+1 − #n);∇z("n+1 + "n))1

−1
2
B‖∇x("n+1 + "n)‖2

1 −
1
2
B‖∇y("n+1 + "n)‖2

1

− 1
2
B‖∇z("n+1 + "n)‖2

1 (35)

and

− A
It

‖∇x(#n+1 − #n)‖2
1 =

1
2

(‖∇x#n+1‖2
1 − ‖∇x#n‖2

1) − 1
2

(∇x(#n+1 − #n);∇x("n+1 + "n))1;

(36)

− A
It

‖∇y(#n+1 − #n)‖2
1 =

1
2

(‖∇y#n+1‖2
1 − ‖∇y#n‖2

1) − 1
2

(∇y(#n+1 − #n);∇y("n+1 + "n))1;

(37)

− A
It

‖∇x(#n+1 − #n)‖2
1 =

1
2

(‖∇z#n+1‖2
1 − ‖∇z#n‖2

1) − 1
2

(∇z(#n+1 − #n);∇z("n+1 + "n))1:

(38)

If Eqs. (36)–(38) are multiplied by (−2=It)(C − AB), respectively, and added to Eq. (35), one
obtains

1
It

(‖"n+1‖2 − ‖"n‖2) +
C − AB

It
(‖∇x#n+1‖2

1 − ‖∇x#n‖2
1)

+
C − AB

It
(‖∇y#n+1‖2

1 − ‖∇y#n‖2
1) +

C − AB
It

(‖∇z#n+1‖2
1 − ‖∇z#n‖2

1)

+
1
2
B‖∇x("n+1 + "n)‖2

1 +
1
2
B‖∇y("n+1 + "n)‖2

1 +
1
2
B‖∇z("n+1 + "n)‖2

1
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+
2

It2
A(C − AB)‖∇x(#n+1 + #n)‖2

1 +
2

It2
A(C − AB)‖∇y(#n+1 + #n)‖2

1

+
2

It2
A(C − AB)‖∇z(#n+1 + #n)‖2

1 = 0: (39)

Since AB− C¡ 0, Eq. (39) can be simpli%ed as follows:

1
It

(‖"n+1‖2 − ‖"n‖2) +
(C − AB)

It
(‖∇x#n+1‖2

1 − ‖∇x#n‖2
1)

+
C − AB

It
(‖∇y#n+1‖2

1 − ‖∇y#n‖2
1) +

C − AB
It

(‖∇z#n+1‖2
1 − ‖∇z#n‖2

1)6 0:

Hence, we obtain Eq. (25)

‖"n‖2 + (C − AB) (‖∇x#n‖2
1 + ‖∇y#n‖2

1 + ‖∇z#n‖2
1)

6 ‖"0‖2 + (C − AB)(‖∇x#0‖2
1 + ‖∇y#0‖2

1 + ‖∇z#0‖2
1):

4. Preconditioned Richardson iteration

Since Eq. (19) is a 3D implicit scheme, it involves very heavy computation. To simplify the
computation, we %rst rewrite Eq. (19) as follows:

(un+1
ijk − unijk) =

It
2

(
A +

It
2

)−1 (
C +

It
2
B
)

(�2
x + �2

y + �2
z)(un+1

ijk + unijk)

+It
(
A +

It
2

)−1

(AB− C) (�2
x + �2

y + �2
z)T

n
ijk + ItGn+(1=2)

ijk (40)

We then simplify the linear system (40) into a tridiagonal linear system by simplifying the coeMcients
related to the x and y based on the idea in [4–7] and develop a preconditioned Richardson iteration
as follows:

Lpre(un+1
ijk )(m+1) = Lpre(un+1

ijk )(m) − !
{

[(un+1
ijk )(m) − unijk]

− It
2

(
A +

It
2

)−1 (
C +

It
2
B
)

(�2
x + �2

y + �2
z)[(un+1

ijk )(m) + unijk]

−It
(
A +

It
2

)−1

(AB− C) (�2
x + �2

y + �2
z)T

n
ijk

−ItGn+(1=2)
ijk

}
; m = 0; 1; 2; : : : ; (41)
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where the preconditioner is chosen to be

Lpre = 1 +
(
A +

It
2

)−1 (
C +

It
2
B
)(

2It
Ix2 +

2It
Iy2 − It

2
�2
z

)
: (42)

Here, ! is a relaxation parameter, 06!6 1: Lpre in Eq. (42) is obtained from Eq. (41) by dropping
out the coeMcients of un+1

i−1jk ; u
n+1
i+1jk ; u

n+1
ij−1k and un+1

ij+1k ; selecting the coeMcients of un+1
ijk and doubling

those related to x and y. It can be seen that the method in Eq. (41) is convergent. In fact, let

(Axũn+1)ijk = −It
2

(
A +

It
2

)−1 (
C +

It
2
B
)
�2
xu

n+1
ijk ;

(Ayũn+1)ijk = −It
2

(
A +

It
2

)−1 (
C +

It
2
B
)
�2
yu

n+1
ijk ;

(Azũn+1)ijk = −It
2

(
A +

It
2

)−1 (
C +

It
2
B
)
�2
z u

n+1
ijk ;

where Ax; Ay and Az are matrices, and ũn+1 is a vector consisting of un+1
ijk ; i; j; k = 1; : : : ; N − 1.

Then the system (41) can be written in a vector form:

Lpre(̃un+1)(m+1) = Lpre(̃un+1)(m) − !{(̃un+1)(m) + (Ax + Ay + Az)(̃un+1)(m) − f̃}; (43)

where the preconditioner is chosen as follows:

Lpre =

[
1 +

(
A +

It
2

)−1 (
C +

It
2
B
)(

2It
Ix2 +

2It
Iy2

)]
I + Az

and

(̃f)ijk =

{
1 +

It
2

(
A +

It
2

)−1 (
C +

It
2
B
)

(�2
x + �2

y + �2
z)

}
unijk

+It
(
A +

It
2

)−1

(AB− C) (�2
x + �2

y + �2
z)T

n
ijk + ItGn+(1=2)

ijk :

It should be pointed out that Lpre is a tridiagonal matrix and hence only a tridiagonal linear system
is solved for each iteration. Therefore, the computation is simple. It is well known from numerical
linear algebra that the iteration process converges if the iteration operator

R ≡ I − !L−1
pre [I + Ax + Ay + Az] (44)

has a spectral radius �(R)¡ 1. It can be shown that the eigenvalues of L−1
pre [I+Ax +Ay +Az] have

the form

&ijk =
1 + rx sin2(i(Ix=2) + ry sin2(j(Iy=2) + rz sin2(k(Iz=2)

1 + rx + ry + rz sin2(k(Iz=2)
;
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where rx = 2(It=Ix2)(A + (It=2))−1(C + (It=2)B); ry = 2(It=Iy2)(A + (It=2))−1(C + (It=2)B);
and rz = 2(It=Iz2)(A + (It=2))−1(C + (It=2)B). It is obvious that 0¡&ijk6 1. If one chooses a
relaxation parameter != 1, then from Eq. (44) the spectral radius �(R) will be less than 1. Hence,
we conclude that the iteration method (43) is convergent when ! = 1.

5. Numerical example

To demonstrate the applicability of the numerical procedure we investigate the temperature rise
in a sub-microscale gold %lm. The thickness for the gold %lm is 0:5 �m, while the length and width
are 0:5 �m, as shown in Fig. 1. The properties of gold are Cp = 129 kJ=kg=K; k = 317 W=m=K;
� = 19300 kg=m3; �q = 8:5 ps (1 ps = 10−12 s) and �T = 90 ps [15,8].

The heat source was chosen to be [15]

Q(x; y; z; t) = 0:94J
[

1 − R
tp�

]
e−(z=�)−a|t−2tp|=tp (45)

where J = 13:7(J=m2); tp = 100 fs (1 fs = 10−15 s); � = 15:3 nm (1 nm = 10−9 m); and R = 0:93.
The initial conditions were chosen as follows:

T (x; y; z; 0) = T∞;
@T
@t

(x; y; z; 0) = 0; (46)

where T∞ = 300 K.
The boundary conditions were assumed to be insulated. Such boundary conditions arise from the

case that the thin %lm is subjected to a short-pulse laser irradiation. Hence, one may assume no heat
losses from the %lm surfaces in the short-time response [15].

We chose a variety of meshes of 20 × 20 × 20; 20 × 20 × 50 and 20 × 20 × 100 with a time
increment of 0:005 ps. To use the preconditioned Richardson iteration (41), we chose ! = 1:0 and
the convergent solution {Tn+1

ijk } was obtained if the convergence criterion

max
i; j; k

|(un+1
ijk )(m+1) − (un+1

ijk )(m)|¡ 10−7

was satis%ed.
Fig. 2 gives the temperature rise along the vertical line x= 0:25 �m and y= 0:25 �m for di&erent

times (t = 0:2; 0:25; and 0:5 ps) for the mash 20 × 20 × 20. It can be seen from the %gure that the
heat is transferred from the top to the bottom.

Fig. 3 shows the change in temperature (IT1=(IT1)Max) on the surface of the gold %lm using
three di&erent meshes. The maximum temperature rise of T1 (i.e., (IT1)Max) on the surface of the
gold %lm is about 10:25 K obtained using a mesh 20 × 20× 20. From this %gure, it is seen that the
temperature rises to a maximum at about 0:275 ps and then goes down. This %gure is similar to that
obtained in [15] for one dimension case (see p. 125 in [15]) except that the temperature rises start
at t = 0. This is because in [15] it appears that the initial time was set equal to 2tp in Eq. (45).

Furthermore, the preconditioned Richardson iteration is fast since the solution converges at most
after a couple of iterations for each time step. The cpu time for a mesh of 20×20×50 and t=0:5 ps
on a SUN workstation is about 6:5 min.
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Fig. 2. Temperature pro%les along the vertical line, x = 0:25 �m and y = 0:25 �m. The mesh is 20 × 20 × 20 with a time
increment of 0:005 ps.

Fig. 3. Temperature change on the surface of the gold layer. The maximum temperature rise (T1 Max = 10:25 K) was
obtained using a grid of 20 × 20 × 20.

6. Conclusion

In this study, we develop a %nite di&erence scheme of the Crank–Nicholson type by introducing
an intermediate function (Eq. 13) to the heat transport equation, Eq. (9). The scheme is two levels
in time. It is shown by the discrete energy method that this scheme is unconditionally stable with
respect to the initial values. To solve the 3D implicit %nite di&erence scheme, a preconditioned
Richardson iteration is developed so that only a tridiagonal linear system is solved for each iteration.
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The numerical procedure is employed to obtain the temperature rise in a gold submicroscale thin
%lm.
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