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Stream ciphers usually employ some sort of pseudorandomly generated bit strings to
be added to the plaintext. The cryptographic properties of such a secauennée stated
in terms of the so-called linear complexity profile (l.c.dh(t), t € N. If the l.c.p. is
La(t) =t/2+ O(), itis called @lmost)perfect. This papeF examines first those subsets
A of 3 where for fixedd € N the L.c.p. satisfieg2- Lo(t) —t| <d forallt e N. It
turns out that (after suitably mapping.” on [0, 1] 0 R) the Hausdorff dimension is

1+ logy o
5 )
whereg!? is the largest real root of? = (q — 1)- "> x'. The second part deals with

nondecreasing bounds N — N. Sinced(t) — oo ast — oo always leads to a Haus-
dorff dimension 1, here we consider the measure of thed§8t © 1997 Academic Press

1. INTRODUCTION

The theory of stream ciphers (see Rueppel, 1986, 1992) deals with genera
long pseudorandom sequences from short seeds (keys). These seque
should be indistinguishable from truly random sequences when judged by
complexity measure. A well-known complexity measure in the theory of stree
ciphers is the global linear complexity, which for a periodic sequence of eleme
of the finite fieldFq is defined as the shortest length of a linear feedback sh
register (LFSR) generating the sequence (the global linear complexity of the z
sequence is defined to be zero). A more refined notion iditear complexity
profile (l.c.p.) of an arbitrary sequenee= (&;);2, from the sequence spaktg”
overFq. The l.c.p. ofa is the sequencéla(t));,, where for each (consider
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354 NIEDERREITER AND VIELHABER

t as describing a “time” evolution) the nonnegative integg(t) is the shortest
length of an LFSR generating the initial stringi(a. ., a), with La(t) = 0 if
(as, ..., a) is the zero string. Roughly, the I.c.p. of a random sequenasl|
grow with the lengtht like La(t) ~ t/2. Deviations from this “ideal” median
should occur, but only of moderate size (see Niederreiter, 1988b).

Rueppel (1986) introduced the notion of a sequeaceith perfect linear
complexity profile, requiringLa(t) = [t/2] for all t = 1, and Niederreiter
(1988a) generalized it to thiealmost perfect linear complexity profile fdre N.

This characterizes sequenca@swith |2 - La(t) —t| < d for every lengtht. In
order to avoid the repeated writing of “sequences withamost perfect linear
complexity profile,” we call thend-perfect. Then 1-perfect corresponds to a
perfect l.c.p. in the sense of Rueppel.

For anyd € N, the set of alld-perfect sequences ovEg has uncountably
many elements. On the other hand, it follows from Theorem 10 in Niederreite
(1988b) that the set od-perfect sequences froffy” has measure zero in the
space kg, 1) of all sequences, where is the equidistribution measure on
Fq (given byu(k) = 1/q for all k € Fq) and u* its product measure olﬁgo.

As the d-perfect sequences are too many to be counted and too few to t
measured, the natural thing to study is the Hausdorff dimension of that set aft
it has been mapped in a canonical way to the interval [0, 1]. This is done i
the first part of the paper, Sections 2—7. We shall see, in particular, that in tt
above sense the set of 1-perfect binary sequences has Hausdorff dimension
and for higherd the d-perfect sequences (over ahy) form sets of higher and
higher Hausdorff dimension, though never reaching 1. Thus, although all thes
sets have measure zero [§°, a sharper distinction can be made by looking
at their Hausdorff dimension. As a byproduct a formula for the numbei- of
perfect sequences of lengthfor all d andt, is given for all finite fieldd-q (see
Theorem 17). We note that partial results in this direction for the binary gase
= 2 have been presented in our earlier paper (Niederreiter and Vielhaber, 199

In the second part of the paper, Sections 8—11, the condidry (t)—t| < d
is relaxed 0|2 - La(t) —t| < d(t) for all t, whered is now a nondecreasing
function on the positive integers. It will turn out (as was already shown in
Theorems 8 and 9 of Niederreiter, 1988b, in the setting of dynamical systen
theory) thatd(t) = 1+ (1+ ¢) - log,(t), with logq being the logarithm to the
baseq, gives the threshold between measure zers Q) and positive measure
(e > 0). If lim{_, o d(t) = 0o, the Hausdorff dimension is 1 in any case.

2. LINEAR COMPLEXITY DEVIATION

For any sequenca € Fg° we have O< La(t) <t andLa(t) < La(t +1) for
allt. As La(t) is typically close ta/2, it merits the introduction of the following
concept.
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DEFINITION 1. Leta = (ai)i’\‘:1 € [Fq’\‘, N € NU {o0}, be a given sequence,
(La( ))iN:l its I.c.p.; then thdinear complexity deviatiornf a att is defined as

The l.c.p. can be computed by the Berlekamp—Massey algorithm (Ruepp
1986; Lidl and Niederreiter, 1994). The following result recalls the dynami
behavior ofL4(t) and derives that ofng(t) from it.

PROPOSITION2.
(i) IfLa(t)>t/2 then La(t + 1) = La(t).
(i) If La(t) <t/2, then there exists a uniquealrq with
Lag,..a,at+1) = Lg(t)-

For all b # a in Fq we have

(i) 1fma(t) > O, then my(t + 1) = ma(t) — 1.
(iv) Ifma(t) <0, then there exists a uniqueaalFq with

My, ....a, 2t +1) =M@, . an ) — 1.

For all b # a in Fq we have

My, ... a, bt +1)=1—me@g, . a)t).

Proof. (i, ii) See Rueppel (1986, p. 34).

(i) By (i) we havema(t+1)=2-La(t+1)—t—1=2-Lat)—-t)—1=
ma(t) — 1. - B B
~ (iv) The first part follows from the first part of (ii). Fdv # a the second
part of (ii) yieldsma(t+1) =2-Lat+1)—t—-1=2-(t+1—-La(t))—t—1=
I+t—2-La®)=1—mat). W -

Remark3. When working oveifF2, the caseb # a obviously boils down to
b=a=a+1.

Niederreiter (1988a, 1988b), as well as Dai and Zeng (1990), has sho
the intimate connection between the l.c.p.(af)i2; and the continued fraction
expansion of the generating functidn’~, aix~" in the field of a formal Laurent
series ovef~q. Hence, a jump bk in the l.c.p. is equivalent to a partial quotient
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of degreek in the continued fraction expansion, adgberfect sequences lead to
partial quotients that are all of degree at mdst

DEFINITION 4. LetAff) - [Fgo be the set of all sequencaswvith [my(t)| < d
for all t € N. Thus,AEf') contains thed-perfect infinite sequences ovEy.

3. TRANSLATION THEOREM

As a simple consequence of Proposition 2 we obtain the following translatio
theorem.

THEOREM 5. Leta = (a1, ..., ax) and B = (B, ..., fi) be given strings
with my (k) = mg(l). For any length t> 0 and deviation de Z, we have

cardfae FE™ g =oi  forl<i <k, mak+t)=d}
=card{be Fy' |bi=p  for 1<i<l, my(l+1t)=d}.

Proof. Induction ont starts fort = 0 with both cardinalities being 1 for
d = my(k) and O otherwise by assumption. The step> t + 1 follows by
Proposition 2(iii, iv). W

In other words, this translation theorem says that the distribution of I.c
deviationsm on all suffixes of a given finite initial string depends only on

m at the end of that string, but not on the length or the elements of the initia
string.

Remark6. The Translation Theorem already states some self-similarity
within Fg° or Aqu). Every prefix of lengttn with m(n) = 0 defines a cylinder set

of continuations with the samm-distribution as the wholeg® or A((f) (which
can be seen as the cylinder setepthe empty word).

4. SOME COUNTING FORMULAE

In the course of Theorems 8 through 17 we shall see that asymptoticall
there arept d-perfect initial sequences of lengthor some real numbep = 1
depending org and the boundl. Obviously,¢ = g describes the unrestricted
case, which corresponds to formally puttidg- co.

DEFINITION 7. Letd e Nandm € Z. Fort € N define Aﬁgl)d(t) as the
number of sequences e [F}4 of lengtht with ma(t) = m and|my(7)| < d for
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l<r<t Fort=0 setA0 (0) 1 (the empty sequencg and Afﬂl)d (0) =0 for

m#0. Fort € Z, t <0, setA(q‘)d(t) =

We shall first obtain in Theorem 8 the behavior of sequence counts whi
adding another symbol frofiy and thus increasing the length frantio t + 1.
This behavior is an immediate consequence of Proposition 2.

THEOREM 8. Fort € Z and d e N we have:

(i) At +1) =AY 1|d(t) for —.d <m < 0.
(i) AGA(t+1) = { AT, : f _i'
(ii)) Ayt +1) = A(q) e+ @=1)-AD g for0<m<d.
(v) Ayt =0 for |m| > d.

) Aﬁgfd ® =0 for m # t(2).

Proof. All properties are trivial fort < 0, so we can assume= 1. By
Proposition 2(iii), sequences of lengthvith m(t) > 0 produceq successors of
lengtht + 1 andm(t 4+ 1) = m(t) — 1. This gives us part (ii) and the first term
of part (iii) (which is zero form = d).

A sequence witim(t) < O splits its successors: one (thease) ends up with
m(t +1) = m(t) — 1. This is part (i), wheren(t) < 0. All otherq — 1 cases (for
all b # a) lead to a jump tan(t + 1) = 1 — m(t) > 0. This yields the second
term in part (iii).

Finally, parts (iv) and (v) belong to impossible cases. By Definitiom] npust
not exceedl, and the parity ofn andt must be the same by Definition 11

ExampLE 9. Letd = 3, then we get fomfﬁl)g(t):

m t=0 1 2 3 4 5 6 7 8 9 10 11 12 13

3 1 2 8 32 112 416
2 1 4 12 48 176 640
1 1 4 16 56 208 768 2816
0 1 2 8 32 112 416 1536
-1 1 2 8 32 112 416 1536
-2 1 2 8 32 112 416
-3 1 2 8 32 112 416

The next theorem links thar(ﬂ‘)d(t) to just theAO (t). The above example
may serve to illustrate the theorem.
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THEOREM10. Fort € Zandde N, every /-ﬁr?l)d (t) can be expressed in terms
of Afli(t — 7) as follows:

i) A ®) =AFE+m) for —d <m < 0.

m|d

(i) AG® =@—1)- Ayt —d).

d—m
(iii) Afﬁ‘)d(t) =@-1-) g~ Agfé(t —m-—2Kk) forl<m<d-1.
k=0

Proof.

(i) Thisis trivial fort < 0. Fort = 1 it follows by induction from Theorem

8(i).
(i) This is obtained from (i) and

Aﬁﬂéﬂ) =@-1- A%d(t) for all t,

where this identity follows from Theorem 8(i, iii).
(i) For 1 <m<d -1 we get by Theorem 8(iii) that

Am® =a - At =D+ (@ = 1)+ A%yt = 1),
Next, by induction ork = 1, ..., d - m and Theorem 8(iii), we obtain

K
AL = ARt -k +@—-1- > gt A9 ot —i).
i—1

In particular, puttingk = d — m this yields
d—m

Amg® =™ At —d+m +@—1- Y gAY, D
i=1
=@-1-q"™ At —2d+m)
d-m-1

+@-1- Y d - Aght—2i—m)
i=0
d—mll
=@-1- Y d At -2 —m),
i=0

where (i) and (ii) were used in the penultimate stell
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DerFINITION 11. Ford € N, t € Z, andq the order of the underlying field
we definegeneralized Fibonacci numbebsy

0, t <0,
1, t - 01
Fib{" (t) =

q-1)- ZFlb(Q) k), t>O0.
k=1

Remarkl2. Definition 11 readily implies that FEB) tH=@-12)- qt‘1 for
1 <t < d. The usual Fibonacci numbers 1, 1, 2, 3,.5are obtained withg =
2 andd = 2.

DerFINITION 13.  The number of sequences leaving the boumc |d at time
t by leading tom(t) = d+1 orm(t) = —d—1 is defined fot € N andd € N as

O :=q- AY t—1 =g ALt —d—1).

THEOREM 14. Letde N. Then

N AO=@-1-Yd At -2) foralteN
(i)  Agh@h =qt - Fib{’ () forall t € Z.
(i)  Fort e N we have

0, t =d(2),
(@
2 K

Proof.

() We have
AG(D) = A&‘ﬂé(t—l)

=q-(q- 1)Zq - AGh(t —2— 20)

i=0

=@-1- Zq Ayt — 20),
i=1

where we used Theorem 8(ii) in the first step and Theorem 210(ii, iii) in th
second step.
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(i) The result is trivial fort < 0, and fort = 0 we proceed by induction.
Note thatA0 (0) = 1 by definition counts just the empty woed Fort > 1 we
first use (i) and then the induction hypothesis to obtain

Ag(2h =(@q—1)- Zq 2t — 2i)

i=1

d
—(q— 1).2 q -q - Fib{ t —i)

=@-1-q"- ZF|b<q> —i)

i=1
=q' - Fib{" (t).

(iii) Apply (ii) to the definition. W

The combination of Theorems 10 and 14 leads to the following genera
formula for Aﬁgl)d ®).

THEOREM 15. Lette Z and de N. Then

AL =
0, Im| > d or t Z m(2),
t+m
qt+m/2. Fip{? (—z ) : —~d<m<0, t=mQ),

d—m
(q—1)-qt-m/2. Z F|b@ <_m - k) , l<m<d, t=mQ).
k=0 2

DEFINITION 16. Fort e Ng andd € N let

d
()} . @
Ay = Z A ®)

m=—d

be the overall number af-bound sequences of lengtlover .

THEOREM 17. Fort € Ng and de N we have

‘d(t)— : 7 AU FibP (Lt + d + 1)/2)).
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Proof. We proceed by induction on Fort = 0 we haveA( 4(0) =1, which
agrees with the right-hand side of the formula in the theorem in view of Rema
12. For the step fromto t + 1 we distinguish two cases.

(@) t = d(2): ThenOP (t+1) = qt-9+2/2.Fib{Y ((t —d)/2) by Theorem
14(iii), and thus

Al t+1=q-A%® -0t +1)

1 t+d
(t-0)/2+2 | i@
“q-1 1 g ( 2 )

_ q(tfd)/2+l. Flb((jq) <t _2d>
d
_t—dy241 (@ (t1d G (t+d .
=qt=9/ ~(F|bd <—2 >+Z Fiby (—2 —i

()

d
. t+d .
_ gt=d)/2+1 Fip@ 1—i
q igﬂ 104 N +

1 . t+d
=)

(b) t % d(2): ThenO{¥(t + 1) = 0 by Theorem 14(iii), and thus

ANt +1=q- A%w®
=a-1 f QU2 Eib® (|t 4 d + 1)/2))
~a-1 f 7L FiRP (t +d + 2)/2). =

Remarkl8. This finishes the combinatorics dfperfect sequences. Theorem
17 can be stated a&i?c)j (t) = O@"/2 - Fib{" ([t 4+ d 4 1)/2])). This will lead

to the Hausdorff dimension O(AéQ)).

We need another technical lemma, bounding the generalized Fibona
numbers in terms of some algebraic numbgrs

(@)

DEFINITION 19. Letpq:=¢4" be the largest real root of

d-1 .
=@-1-) x.
i=0
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LEMMA 20. For all g and d e N we have

- q @ q-1
)g—— < <qQ-—,
()q qd_(pd q qd

(ii) qT_l @Mt < FibP(t) < (")t forallt e Np.

Proof.

() Ford=1 we havep\” = q - 1, hence the result. Fat > 2 (thus
o # 1) we setp =g Then

¢’ =@-D-) ¢
d__
7
—(@-1
=Q—-21- )
Sttt =@q-1)- wd—(CI—l)
& @it =¢?q-@-1
q-—1
7

Sinceg < g, we havep < q - (q — 1)/qd, and thus the upper bound is proven.
To show the lower bound fod > 2, we examine the functiorf (x) =
X —q+ (q — 1)/x9, which satisfiesf (¢) = 0. We have

f (q — (?—d) =—q 9" 4+ @-D/@%1-q 99

<—q 1 (@q-1/@" -d
=d-qr9-1)/@"-d) <0

ford=>2,q=2. Thusf(g—q/q% < f(¢), and from

dg-1)

1
NGRS >0 forxzq—é

f'x)=1-

we may conclude—q/f < ¢.
(i) t=0is trivial. For 1<t < d we have in view of (i) and Remark 12,

qT (g < qT q'=@-1-q"" =Fib{’ t)
—qt —qt?

<q' —t-g"t. g <@g ¥ <

< ((p(Q))t
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The result now follows by induction o as (¢")t and Fit{’(t) satisfy the
same recursion. l

5. THE STEADY STATE

The formulae forAfT?l)d(t) and A(‘d(t) in the limitt — oo give the proportion

of sequences with deviatiam.

DEFINITION 21. Let

for d e N andm € Z with |[m|< d. There is an obvious analog fdr= co

THEOREM22. (i) Withe = (m+d) mod 2andg : —goéq) we obtain for de N
and—d <m<0:

péq)(m) — (q _ 1) . q(m+d+£)/2—1 . (p—(d—m+a)/2’
andforl<m<d,
d—m

(Q)(m) q- 1)2 . q(d—m+8)/2—1 . Z (p—((d+m+s)/2+k)_
k=0

(i) For d = co we obtain

pPPm=@q-1-q™' form=<0
and
pPPm=@-1)-q" for m > 0.

Proof. (i) From the form of the polynomial equation in Definition 19 it is
easily seen that all roots of this equation different fr(oﬁl) are less tha@écn in

absolute value. Sinc@oéq))t and Fili,q)(t) satisfy the same recursion, we obtain

o R+ D
t—o00 n (@ =% -
Fiby" (1)

The desired formulae now follow from Theorems 15 and 17.
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(i) For d = oo we replacep by limg_cc o’ =q. W

Remark23. Even and oddn are normalized separately to measure 1. Thus
Sinea PG (M) = 2

6. BACKGROUND ON HAUSDORFF DIMENSION

We follow the introduction of the Hausdorff dimension given in Chapter 2 of
Falconer (1990) for a subset of the reals. Set

[o,0]
h3(A) =inf > |Ui|*  fors>0, >0,

where the infimum runs over all coveté= {U1, U, ...} of A with intervals
U; of length |U| < ¢, and lettinge — 0:

ho(A):= lim hS(A).
e—>0+
Then

[0, s> D4
hs('A)_{oo, s < Dy (A4)

for a certain real numbeb (A) (hPH ) (4) may assume any value in [6]).

DEFINITION 24. The Hausdorff dimension of a sdtis defined as

Du (A) = inf {s|hS(A4) = 0}
= sup{s|h®(A4) = oo}.

Remark25. The definition ofh$(.4) and thus oh®(A) involves an infimum.
Thus, an upper bound for the Hausdorff dimension is considerably easier f
obtain than a lower bound, for the former one essentially defines a sequen
of coversi/® = {U(k) U(k) o h Where|U( )| < g andey — 0. If then
e l|U(k)|s remains bounded for every cover of the sequence, the infimun
cannot be infinity. Hence the candidaactually is an upper bound.

On the contrary, ifs is below the Hausdorff dimension, it will lead to a
sum> 2, |U( )|$ = oo for each and every cover, and so the infimum cannot be
determined in this way. Here we have to apply an analog of the Mass Distributio
Principle (see Theorem 4.2 in Falconer, 1990). Other special techniques to g
lower bounds are given in Chapter 4 of that monograph.
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LEMMA 26. Letv be a mass distribution on some setA[0, 1] ¢ R. We
assume that for a given s there exist two real numberfdands > 0 such that

vU) <c-UP®

for all intervals U C [0, 1] with |U| < 8. Then D4 (A) > s.

Proof. Let 0 <e < 4. Letdd = {U;} be any cover ofA by intervalsU; 0 [0,
1] of length [U| < ¢ < 4. Then

0<v<A>=v<U ui> <Y vUn=<c ) Uil
i i i
hence

YUl = A
i

c
It follows that the infimum over all{ gives

h3(A) > for all ¢ <8,

v(A)
Cc

and soh®(A) > v(A)/c > 0, hences < Dy (A). H

DEFINITION 27.  AnN-ary intervalof degreek, N € N, k € Np, is an interval
oftheformf - N=%, (r +1)- N7, 0<r<Nk-2r eNp, or [1 - Nk, 1].

LEMMA 28. Consider a nonempty subsetf’AJO, 1] O R of the reals and N-
ary intervals with N> 2. Let there be a natural number<sSN such that for each
k € No we have: If an N-ary interval | of degree k has nonempty intersectio
with A, then exactly S of the N-ary subintervals of | of degree kalso have
nonempty intersection with A. In this case

log S

Dy (A .
H( )ZlogN

Proof. Each intervalU 00 [0, 1] with |U| < 1 satisfies an inequaliti 1
< |U| < N=* for a certaink € No. Thus,U can intersect at most twhl-ary
intervals of degred.

Define a mass distribution on A such that each of thg N-ary intervals of
degreek (of lengthN-¥) that intersecfA contains a mass d&*. The mass that
is covered byU can thus be bounded byU) < 2. Sk,
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For s := (log S)/(log N) we thus obtain

pU) <2.-SK=2. (NKS=2.NS. (N8
<2-N®.|U®
<2-N-|UP,

where we used that § s< 1. Now we can apply Lemma 26.1

ExAMPLE 29. LetN =3 andS= 2. This describes the Cantor set, and indeed
(log 2)/(log 3) is its Hausdorff dimension.

7. THE HAUSDORFF DIMENSION OF THHI-PERFECT SEQUENCES

DEFINITION 30.  The spac&g® of all infinite sequences can be mapped onto
the unit interval [0, 1] by

v=1giFE 3 @)~ ) v@)gT €0, 1 CR,
i=1

wherev is a fixed bijection fronfq to {0, 1, ..., g —1}.

If Aé‘” C [FgO is the set in Definition 4, then we study the subset

BV = (A) of [0, 1.
THEOREM 31. For alld € N and g we have
1+ log, ¢'¥
DH (Bg") = ———"——.

wherelog, denotes the logarithm to the base q ap[(ﬁ) is as in Definition 19.

Proof. We work over some fixedq and setpq :=<péq). We first show an

upper bound for the Hausdorff dimension. For fixed 1, consider the set of

all initial stringsa of lengtht with |ma(7)| < d for 1 < r < t. The cardinality

of this set isAi%(t). By Theorem 17 and Lemma 20(ii) we have

1 _ d+1)/2
AT = = L IR < G (g ge)

with a constanC > 0 depending only od andq. Each initial stringa of length
t defines a cylinder set ifrg° consisting of all infinite continuations of this
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string. The image of each such cylinder set under the msm closed interval
of lengthgtin [0, 1]. Thus, B(Q) can be covered bﬁfk?é(t) intervals of length
gt With ¢, = gt it follows that

t
hS (B(q)) < A(ld(t) qitsf C. <\/qqs(pd) )

For anys > %(1 + logqpq) we havegs > /- ¢q. Thus, lettingt — oo (hence
e¢ — 0), we get

h*By") =0

By the definition of Dy (B{") it follows that Dy (B{") < s. Sinces > 1+
logqy @q) is arbitrary, we obtain

1
D (B5") < 5 (1+logy ¢a).

Thus, the upper bound is shown.
To prove the lower bound, we define fore N,

Aéq)(r) ={ac Aéq) [mg(2r -n) =0 for all n e N}, (q)(r) —L(A(q)(r)).

(Q)(r) containss := Aoq) (2r) initial strings (prefixes) of length 2that end at
m(2r) =0. By Theorem 5 (or Proposition 2(iii, iv)) we can iterate this proces
to obtainS" prefixes of length 2. n with m(2r - j) = 0, 1<j < n. By the map-
ping L(Aéq)(r)) = Béq)(r) we thus obtain a subset of [0, 1] for which we can
apply Lemma 28 witiN := g2 (note that sequences kg’ that are ultimately
constant cannot belong mgq>, and so no problems with endpointsigfary in-
tervals can arise). AS> (q—1)/q-q" - ¢ > (1/9)-q" - ¢} by Theorem 14(ii)
and Lemma 20(ii), we obtain

logg S _ logq@" -¢g-a™hH _1410gq ¢a 1

(@ R
D (Bg™ (1) = logg (@) ~ 2 N 2 2’

The last inequality is valid for all € N and we haved("’ > A’ (r) and thus
B 2 B{(r). Hence the Hausdorff dimension 5f" is bounded from below
by

1+logg ed 1

Dy (BY) > — o forallr eN,
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and together with the upper bound we finally arrive at

1+ logy ¢d

Dy (B(Q)) >

Remark32. The valuesp” and Dy (B{") may be estimated for large:by

Q) ~q— qfd+1
log, (go(‘”) ~1-1/@" - log ),
sV :=DpBM) ~1-1/2-9° - log q).

Some values fog = 2:

o =1 9P =1618... ¢ =1839... ¢ =1928.
s? =05 s =0.8471... s;2> =0.939. .. f) =0.9734. ..

(<p(2) is the well-known “Golden ratio”).

Remark33. Now that we know DH(B(q)) what is its meaning in the
information-theoretic sense? Consider an information source over the alphat
FFq. This source emits a data stream of some sort. If it is independent an
identically distributed, the information rate is lpg bits per time unit or ong-
ary digit per time unit. A lower information rate leads to a somewhat predictable
symbol sequence. Not alft sequences of lengthare then equally likely. And
this is where ourDH(Béq)) comes into play. Assume the source emits any (a
priori unknown) sequence from(q) Then the information rate iBy (B(q)) g-
ary digits per symbol, or stated in terms of message space versus symbol spa

@

of all gt sequences of lengthonly gt"P#%") are possible (in the limit —
00). Thus,Dy (Béc”) describes the entropy or information rate ofAﬁ)-source.
By an unpublished result of Wang and Massey (see Niederreiter, 1988a, for
published proof and also the related work of Baum and Sweet, 1977), 1-perfe
binary sequences consist of bits that are alternatingly fixed by internal relatior
(a1 = 1, agkr1 = agk @ &) or can be chosen arbitrarily (the,). Thus, the
entropy is: = Dy (B?

y |52 H (Bl ).

Remark34. The survey paper by Shallit (1992) treats real numbers with
bounded partial quotients in their continued fraction expansion. This is the re:
analog ofd-perfect sequences ffg” (compare with Section 2). IR the metric
is not ultrametric, rendering the case much more difficult, as can already &
seen from the Hausdorff dimension of the getof all numbers in [0, 1] with
partial quotients from {1, 2}, namely

0.53128049- - < Dy (£2) < 0.5312805% - - .
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The closed form forDy (£2) is DH(E2) = liMn_oso on, Whereo, is the real
root of

Z Q@i ..., an) %=1

1<, ..,an<2

and theQ polynomials (Euler’s continuants) are defined recursivel\Qgy= 1,
Qa1) = a1, Qay, ..., an) =an - Q(ay, ..., an-1) + Q(a, ..., an-2).

8. GENERALIZATION TO TIME-DEPENDENT BOUNDS

Up to now we have dealt with a fixed bourdl for the allowed linear
complexity deviation. Under these circumstances we will always obtain a s
of measure zero. In the remaining part of the paper we will allow the baund
to be dependent oty that is,d: N — N to be a nondecreasing function tofwWe
say thatm is bounded by théence dt).

If d(t) - d’ < c© ast — oo, then we obtain the Hausdorff dimension
belonging to the constant bourd (the initial partd < d’ amounts to some
constant that may be put into th@ in the proof of Theorem 31 an@ does
not affect the Hausdorff dimension). On the other hathd) — oo ast — oo
leads to a Hausdorff dimension 1, and evdrgther than the unrestricting case
d(t) >t leads to a measure less than 1. Thus, the important threshold here
measure zero versus positive measure.

We shall obtain upper and lower bounds for the measure, dependid¢ on
The lower bound here will be zero only if the upper bound and hence tt
measure is zero as well. We shall first obtain an even more general recurs
for the A((J%(Zt) (d now a function oft). Then theAiT()j(Zt) will be bounded

by sums ong"()j(Zt) and the latter ones by products @éq). Finally, we obtain
from
A2
g2t
effectively computable bounds for the measure.
For binary sequences we shall obtain that the fedit¢ = 1 + [log, (t)]

encloses a set of measure zero, wherd$ = 1+ 2 - |log, (t)] leads to a
positive measure.

u® (AP = lim
t—>o0

9. EFFECTIVE AND CANONICAL FENCES

DEFINITION 35. Letd: N — N be a function with:
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@ da@a=1.

@i) dit)<dt+1)=<dit)+1lforallteN.

@ii) If d(t) <dt+ 1) andd(t + 1) = d(t + 2k) for somet € N and
k € N, thend(t +1) = d(t + 2k+ 1). For allk € N, if d(2k) = 1 then
d2k+ 1) = 1.

Thend is called aneffective fence.

An effective fence thus starts with width 1, does not jump over a width, anc
stays at each width for an odd number of time steps (unless it remains conste
on that level).

LEMMA 36. Ifdis an effective fence andith-1) = d(t) + 1 for some te N,
then the sum # d(t) is even.

Proof. Ford(l) = 1 as the first occurrence of width 1 the sum HA) is
even. Until the next larger width by Definition 35(iii) there is an odd number
of steps, and together with the increase by 1 of the witthd(t) is even by
induction on the widths.

LEmMmA 37. To every nondecreasing function 8 — N we can assign an
e_ffective fencé\ such thEtA(t) < d() forallt € N and for all eﬁectivgfences
A the inequalityA(t) < A(t) < d(t) for all t € N already impliesA = A.

Proof. Construct a fencé\ by settingA(1) = 1 and

A(t), if d(t+1)= A(t) ort + A(t) odd,

Alt+1) = { AM)+1, if dit+1) > A(t) andt + A(t) even.

By construction, no other effective fence gets nearest fmom below. W

DEerINITION 38. The effective fencé\ in Lemma 37 is called theanonical
fenceof the functiond. We emphasize this by writind.,, := A.

Remark39. As every effective fence is its own canonical fence, we have
an equivalence relation on the set of all nondecreasing functions, and eve
equivalence class has a unique effective fence as the canonical fence of eact
its members. The set of equivalence classes, or as well the set of effective fenc
forms a lattice wherel(t) = 1 is the infimum andi(t) =t is the supremum,
leading toA(lq) andFg°, respectively.

THEOREM 40. For every nondecreasing function®™ — N we have

Aff) ={aeFg |Ima(®)| < d(t) for all t}
=AY :={aeFy|Ima(D)] < dean(t) for all t}.

can
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Proof. Since Ay < A{Y is trivial, it suffices to show that for ah € AJ"
we have

|m§(t)| < dcan(t) for all t € N.

This inequality is established by induction grwith the case = 1 being triv-
ial. In the step front to t + 1, the cas@lcan(t + 1) = d(t + 1) is obvious. If
dean(t + 1) = dean(t) + 1, then by Proposition 2(iii, iv),

[Ma(t + 1) < IMa(H)] + 1 < dean(t) + 1 = dean(t + 1).

In the remaining case, we hadg,{t + 1) = d.5{t) < d(t + 1). By the con-
struction ofd¢,,in the proof of Lemma 37, + dc.{t) is odd, hencel ,{t) + 1=t
mod 2. On the other hand, we hawe, (t+1)| < dcan(t) +1 as before, and from
Definition 1 we havema(t +1)| =t + 1 mod 2, thugma(t + 1)| # dean(t) + 1.
Now [Ma(t + 1)| < dean(t) = dean(t + 1) follows. W

From now on, we assume that a given fence is already reduced to the canon
one. As an example,ét&q:)const_ would be defined by

tift<d,
dca”(t):{d if t > d.

DEFINITION 41. Letd be an effective fence.

(i) Defines on the even numbers as

St +d) =d()

for t € N with t + d(t) even (by Definition 35 and Lemma 36,is defined on
2N).
(i) With & from part (i) let

r(m) = card{te 2N |§(t) = m} = % - (14 card{te N|d(t) = m})
forme N.

DEFINITION 42. Letd be an effective fence anoh € Z. Fort € N define
Aﬁgl)d(t) as the number of sequencase [F}q of lengtht with ma(t) = m and

[ma(7)] <d(z) forl<z<t Fort=0 setAgTC),(O) =1 andAfﬂl)d(O) =0 form
#0. Fort € Z,t < 0, setATh (1) = 0.
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Remark43. § gives the width of the fence that actually influenoégé(t)
for event. There are (k) occurrences at time steps= k(2) of k as the outer
bound of the fence WheAl(fl‘g (t) > 0. Thus, inr (k) — 1 places (where # k(2))
the fence actually has a diminishing effect whilé) = k.

ExAMPLE 44. To illustrates andr consider this diagram foAfﬁ‘)d(t):

t: 01 2 345 6 7 8 9 10 11 12 13 14
d(t): 1 1 12 33 3 4 4 4 4 4 5 5
8(t): 1 1 2 3 3 4 4

m  r(m)

5 >2 48 —

4 3 4 — 16 — 48 288

3 2 2 — 4 16 48 288

2 1 2 4 24 80 288 1280

1 2 1 — 2 8 24 96 352 1280

0 1 2 4 16 48 192 704 2560

-1 1 2 4 16 48 192 704
-2 2 4 16 48 192 704

-3 2 4 16 48 192

-4 4 16 48 192

-5 48

The two diagonals in boldface show the significanceéofThe value of
Aézlc)j(m) = 192 depends on the three elements 4, 24, 96 in the diagonal |
addition to elements belom = 0. Thusé(10) = 3, as the largesh-value in this
diagonal ism= 3 at timestept — §(t) = 7, similarly fort = 14 (second diagonal in
boldface). The border elements are connected by hyphens withinneaelue.
The border contains(m) values on leveim and there are (m) — 1 hyphens,
places where the fence has a diminishing effect.

10. A%, FOR GENERALd(t)

In this section we evaluate the quantmﬁl)d (t) in Definition 42 for evert.
SinceAfﬂl)d (t) = 0 for oddm, we can assume thatis even.
THEOREM 45. Let d be an effective fence. Then
0, t<O0
t=0

17
@
A (2t) = 52
@-1- Y q°-Afi@—2r), t>0.
=1
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Proof. The casd < 0 follows from Definition 42. Foit = 1 we show

k-1
AR =g Adi@t—k +@-1)- ) q° - At —21)
=1

by induction onk = 1, 2, , 8(20) -|— 1. The theorem then follows from
the casek = §(2t) + 1, since hereAB(zt)Hld(Zt §(2t) — 1) = 0 because
3(2t) > d(2t — §(2t) — 1). The casek = 1 is obvious. For the step frotto k
+ 1 we note that

q“- Af@t—k)
=" (- AY @ -k-D+@-1)- A(_q|2+1|d(2t —k-1)
=g AL @t — k+ D)+ @ - 1) - g Affi2t — 2K),
where in the first identity we used Proposition 2(iii, iv) and the fact that
k<8@2)=d@2t —8@2t) <d@t—k)  for 1<k <s(2t).
In the second identity we used again Proposition 2(iii, iv) as well as
j <du—-d+j) for1<j <d(u) andu e N.

This inequality follows fromd(u—1) > du)—I forallue N, 0 <l <d(u)—1
(by Definition 35(ii)), and puttind :=d(u) —j. W

THEOREM 46. Let d be an effective fence. Thelé%%Zt) can be computed
iteratively as q) 0 =1, A\()q) (2 =q-(q—1), and

q? - Agl(2t —
Af)‘“(zt) _ fort > 1 and8(2t) =1+4(2t—2)
d 2. A2t —2) — (g — 1) - @+ AT 2t — 2(5(20) + 1)),

fort >1 and8(2t) =62t -2

Proof. The caseg = 0 andt = 1 follow from Theorem 45. Fot > 1 and
3(2t) =1+ §(2t — 2) we obtain by Theorem 45,

s(2t)

A =@-1)- > q° - A2t — 20)
=1

5(2t—2)
=@q-1-q-Afj@-2+@-D-q- > q
/=1

AGh @t —2-21)
=(@-D-qg+q- Ao (2t —2).
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Fort > 1 ands§(2t) = §(2t — 2) we have

8(2t)

A =@ —1)- > g7 Aght - 20)

=1
5(2t—2)
=@-1-q-A@-2+@-D-q- > q
/=1

: Aéq) 2t—2-2t)Y—(@q-1)-q-q°@2
Ao 2t —2-25(2t — 2))
2. AR @t -2)— (-1 " @ AD @ — 2620 +1)). m

THEOREM 47. Let d be an effective fence. For even m we have

AE,%(Zt +m, —d@t)<m<0
Asgl)d 2t) = 8(2t4+m)—m
@-1- Y d<-AB@-m-2, 2<m=d@).
k=0

Proof. This follows as in Theorem 10. In the first case, we also use the
bound

j =du—-d)+j) for1<j <d(u) andueN
shown in the proof of Theorem 45. In the second case, the upper bound for t
summation indexX is best verified by consulting Example 44: The falling di-
agonal includingA(q‘d(Zt) intersects the linen = 0 at 2t+ m. By Definition

41, §(2t + m) is the largesm-value on this diagonal and replacgsn Theo-
rem 10. &

11. THE MEASURE OF A

For a nondecreasing functiah N — N we put, as in Theorem 40,
AP = {a e FX [ ma(t)] < d(t) for all t € NJ.

In this section we study:* (Aff)), where 1 is the probability measure on
Fg defined in Section 1. In view of Theorem 40 it suffices to consider effective
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fencesd. Also, since the case where lim d(t) is finite can be reduced to re-
sults in earlier sections (see Section 8), we will concentrate on the case wh
liMi o0 d(t) = 00

DEFINITION 48. For an effective fencd andt € N define
de)
A= Y ADw.

m=—d(t)

LEMMA 49. For every effective fence d we have

AQ@
, a(2h)
A = fim, S

Proof. Fort € N we introduce the cylinder set
AP ® ={a e FP|Ima(r)| < d(r) for 1< 7 <.
Then A (1) 2 AP @) 2 - and AL = N2, A (1), thus in particular
PPA) = fim o (AGP 2).
By Definitions 42 and 48 we have

i‘ﬂ&( t)

LEMMA 50. For limi_,  d(t) = co we have

@
| Ai(2t) _q
t—o0 A0|d(2t) q-—1

Proof. According to Theorem 22(ii) the unrestricted steady state has
(Q)
o (0) =
q

Any deviation from the steady state (too high a weight on somewill lead
(after m steps form = 0 and gradually fom < 0) to a proportion too high at



376 NIEDERREITER AND VIELHABER

m = 0. By the translation theorem (Theorem 5) this will diffuse into the steady
state sincal(t) — oo. Thus, fort — oo we have

Al @b

M A@ "
t—o00 A0|d (Zt)

@1 9
= (P (0)) g1

Remark51. Now we already can compute an upper bound {67 (Aff”)
by Theorem 46. Since the sequence

Ag‘?,(zo
q2t

t=1

decreases monotonously, we have

@
@ q  Agd@
(A" < o1 g forall t € N.

In Section 4 we have seen that for constdnte asymptotically have
AfI® ~ C - g2 (gg™) 2.

For effective fencesl: N — N we thus will divide the fence into regions of
constantd-values (regardingl as a step function), and then each step will be
bounded as stated above. We shall choose the division into steps according
the sequence!\g?é which is easier to handle thaAf:l‘é, thus the length of each
step is determined b§, notd.

For every widthm, there are (m) time steps wheré(2t) = m. For r (m)
> m, the (n + 1)st tor (m)th recursion (in Theorem 45) is given as that of

(Ol'r)n(Zt) (compare with Theorem 14(i)), thus here the increase is roughly by

a factory/q - gor(r?). The firstm values require some additional considerations,
though. We start with the division into steps according.to

DEFINITION 52. Letd be an effective fence with lim,,, d(t) = oco. For
j € N we define

Aji=2-max{r |§(27) = j},

wheres is from Definition 41(i).
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Thus we haves(Aj) = j, but§(A; + 2) =] + 1. Using the functiorr from
Definition 41(ii), furthermore

j
. 1
Aj=2. E rk) andr(j) = E-(Aj —Aj_1).
k=1

The sequenceﬁs\0 (2 i), i € Np, satisfies (by Theorem 45) a recursion akgd

is the largest integer such thAé)ld(A,) is computed by a recursion of degree
j- The jth step thus extends from_; + 2 to A;.

The following lemma bounds the increase/kfﬂc),(Zt), t e N, in a way which
is independent of previous step lengths.

LEMMA 53. For all effective fences d withm_, o, d(t) = oo and for all
k € N we have

2-8(2k+2) AO (2k+2) <q2
B Ao|d(2k)

9°-q

Proof. The upper bound follows from Theorem 46. We show the lowe
bound by induction ork. Fork = 1 we have two caseg}(2) = 6(4) =1
ord(2) = §(4) = 2. Note thatAgfc),(Z) = (g —1)-q in both cases. By Theorem
46 we haveroI (4)=(q-172-9g2if d2) =1and Ag?(),(4) =@-1-¢q3
d2) =2, and the lower bound follows.

We will now assume that the lower bound holds fo1 < k and letj: =
3(2k + 2). We can also assume that we are in the second case of Theorem
ie., that8(2k+ 2) = 5(2k) In order to apply Theorem 46, we have to bound the
quotlent(Ao‘d(Zk))/(A0 (2k — 2j)) from below. From Definition 41, we have
d2t+ 2)<§(2t) +1 for allt e N and thuss(2k - 2j) = §(2k) — j. Hence with
I == §(2k - 2j), out of thej (double) steps between 2k2j and 2kthere areg
- | = 0 steps where the width increases. Here, by the first case of Theorem:
the factor is exactly?, whereas that factor is at leagt — g2 in the remaining
| steps by the induction hypothesis. The chse0 leads to an overall increase
g2 and thus will not yield the minimal value. This leads to

AGa(2K) in (g2 0"

G = min (@ —a* M =g¢% - min {(1—-q™)"}.
A0|d(2k_21) 1<<j 1<<j

Now for allg= 2 andl =1 we have (1-g)'=21-1.-qg'=21-q9g7%,
where the first inequality is obtained by the mean-value theorem. This gives t
lower bound

Aok = A2k = 2)) - g7t (g — D).
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We thus have from Theorem 46,

A 2k +2) =02 A2k — (@ — 1)- g/ AT 2k — 2))
1
z AO(\]()i(Zk) ' (q - (q - 1) ' qj+1 : m)
=AN2K - (@2 —g*)). =

THEOREM 54. For all effective fences d witlim_, .. d(t) = oo and for j=
2 we have

. PR h—i.0
qr(J)+1_(q_q1 1)m|n{J 1,r(j) 1}_(pEﬂaX{f(J) i, 0}

Ao (AJ)
AO\d(AJfl)

< qmin{r(j)+j,2-r(j)} ,(p;nax{r(j)fj,O},

wheregpj = (pj(q) is given by Definition 19.

Proof. Forr(j) < j the theorem follows from Lemma 53, taking into
account that due to Theorem 46 the first step after; amounts to a factor
of g2

We may thus assumgj) > j and we show by induction onthat

Al (A, 1+ 20)

AO o qi+1_(q_q1—1)i—1.¢ij*j for j <i <r(j).
j—1

The casd = j follows by the argument above. Fpr i <r(j) and 1< 7 <]
we deduce by similar arguments that

AS(Aj 1 +2i —27)

qu) o > qi7r+l (q— qlfj)ifrfl
d{2j-1

=g @-g" )t @-gth L

Sinceq - gl < ¢; by Lemma 20(j), it follows that foi — ¢ < j we obtain

AO (AJ 1+2i —271)
Ao (AJ 1)

>q @ —gt it
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whereas fori — t = j this inequality holds by induction hypothesis. Hence by
Theorem 45,

Aj1t?2 ' Aj_1+2i -2
M q—1)- Zq ( j-1+2i —27)
(Ajfl) =1 AO (A] 1)
Z(q—l).qu.qI7T+l.(q_qlfj)J—l.(plj—r—]
=1
d-@-gH Tt @-1- Z(p' )
=1

gt @—qthi-t. g

The last step follows from Definition 19. Putumg: r(j) yields the lower bound
in the theorem.

For the upper bound (and stil(j) > j) we first show that
AGA(A - 14+2)
Aoh(Aj-D) T

For 1< i < j this holds by Lemma 53 and the fact that < g according to

Lemma 20(i). Forj <i <r(j) we proceed by induction onand Theorem 45
to obtain

i+j~goij*j for1<i <r(j).

(@ j
(Aj_1+20) i i—j—t
AOJ— (q_l).qu.q'+17T.(/)lj J
AO (AJ 1) =1
=qt ol @-1)- Z‘P
=q*. qv'J y,

where we used Definition 19 in the last step. Putlingr (j) yields the upper
bound in the theorem.l

THEOREM 55. Let d be an effective fence wilim;_, o, d(t) = co. For each
k € N we have

qg-1 0
; qu/2+k n(q ql J)mlnj 1,r(j)—1} (pmax{r(]) i, 0}

Ao J(AK)

q-1 qaw/2 . min{j.r()) , ,maxir(i)=J.0}
< — q "9
] H

j=1

j=1
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Proof. We haveA; = 2-r(1) = 1+ card{t € N|d(t) = 1}, and from
Theorem 14(ii) we get fok = 1,
AGh(A1) = Al (A1) = q*/2 - Fib[V (A1/2) = q*1/2. (q — 1)*1/2

g-1 -1
o .qA1/2+1.(p;-() '

For arbitraryk we proceed by induction and Theorem 548

THEOREM 56. For every effective fence d withm_, . d(t) = oo we have
the following bounds fop:> (A{Y):

max({r (j)—j, 0}
1—[(1 q-iy -1 < 1—[(1 q-hymini-Lr()-1) <9" )
j=1 j=1 q

00 @i max({r (j)—j, 0} 00 1 max({r(j)—j, 0}
< htl ]‘[
~ ( q ) < qJ+1> '

j=1

Proof. From Lemmas 49 and 50 we get

ASH (A

Pl @
(A )_ 1 k—>oo qu

The inner bounds now follow from Theorem 55 by lettikg> oco. The outer
bounds are obtained from Lemma 20(i)ll

LEMMA 57. |If

00 q—1 max({r (j)—j, 0}
u::]‘[(1- qu) >0,

j=1
then

o
L=]]a-gHPt>0
j=1
Proof. First, max{r(j) — j, O} may be replaced bg(j) — 1, since

jfl 0 1 jfl 2200 . H
-2:) i _,(i-1/g’
1>H<l—m) 2H<l—q—]> > e j=1
i=1

2
—e 201" 5 g2,
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Furthermore, folg = 2 andj € N we have

r q_]_ _.)3
1—g HYy=(1=-2—=.9g°!
1-9) < q ¢

y a-1 5 (d-1\° 5 (a-1\° g
=1-— 1432~ 1_3(_) . Pl =) . J
q q q q q q q

qu-(—1+3qq 1—3<qq 1) -q‘>

=q (— -3@- 17 q‘3>

HenceL > (U -e%3>0. W

The following is the main result of this section. Compare this result witl
Theorems 8 and 9 of Niederreiter (1988b), which were shown by the theory
dynamical systems.

THEOREM 58. Let d be an effective fence. Then:

0 Y a<oo & uAD) >0
t=1

(ii) Z q—d(t) PN N M/OO(A((jQ)) -0
t=1

("I) Imt—m)o(d(t) — Q- |qu (t))
> —oo for somex > 1
V) TTMisae(d®) —logg 1) <00 = puXUAP) =0.

u® (AP > 0.

Proof. (i) In view of Lemma 57, any bound from Theorem 56 may be use
to separate the cas@s® (Aéq)) =0 andu (Aéq)) > 0. We use the lower bound

u®(AY) > 0 & log u®(AY) > —c0

@logﬂ(l——k> > —00
k=1 q
> 1
&> 1k —1)- <—$> > —00
k=1

&> @2 rk-1)-9*<oo.
k=1
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Sincer (k) leads to 2r (k) — 1 time steps wherd(t) = k, we obtain

o o (@]
MOO(A((;I)) PN Z Z qfd(t) <00 & qud(t) < .

k=1 t=1 t=1
d(t)=k

(i) is equivalent to (i).

(i) Y2,q790 <C. Y2, g% ® = .32 (1/1%) < oo for some
C > 0. The result follows from (i).

(iv) Y20,0790 >C.y2, g7"%%® = C. Y%, (1/t) = oo for some
C > 0. The result follows from (ii). H

ExAMPLE 59. We shall now obtain measure bounds for the fences defined b
the functiongd(t) = 1+ |log, (t)] andd(t) = 1+2-[log, (t)| < 1+[2-log, (1) ]
in the caseay = 2 (cases (iv) and (iii) in Theorem 58, respectively).

(i) Letd(t) =1+ [log, (t)] with g = 2. Then by Theorem 58(iv)
ueAP) = 0.

(i) Weletd(t) =1+2-|log, (t)] with g = 2. The canonical fence now
contains a widthk for every everk, andk = 1 exactly once, and the odd= 2|
+ 1,k =3, occur 2 -1 times. Thus

2 [’} 1 2i-1_1

oo .

n (Ad)—.,uzl |l<1——22j+1> .
J:

Since log(1—¢) > —¢/(1—¢) and heres < %, we may bound by logl —¢) >
—8 . ¢. Therefore

8 X 2i-1-1 2
)

9nETT L T S
J:

The measure thus is at least?/21 ~ 0.909... > 0.
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