
JOURNAL OF COMPLEXITY 13, 353–383 (1997)
ARTICLE NO. CM970451

Linear Complexity Profiles: Hausdorff Dimensions for Almost
Perfect Profiles and Measures for General Profiles

Harald Niederreiter* and Michael Vielhaber

Institute of Information Processing, Austrian Academy of Sciences,
Sonnenfelsgasse 19, A-1010 Vienna, Austria

Received February 28, 1997

Stream ciphers usually employ some sort of pseudorandomly generated bit strings to
be added to the plaintext. The cryptographic properties of such a sequencea can be stated
in terms of the so-called linear complexity profile (l.c.p.),La(t), t ∈ . If the l.c.p. is
La(t) = t/2+O(1), it is called (almost)perfect. This paper examines first those subsets
A
(q)
d of ∞

q where for fixedd ∈ the l.c.p. satisfies|2 · La(t)− t | ≤ d for all t ∈ . It
turns out that (after suitably mappingA(q)

d on [0, 1] ⊂ ) the Hausdorff dimension is

1+ logq ϕ
(q)
d

2
,

whereϕ(q)d is the largest real root ofxd = (q − 1) ·∑d−1
i=0 xi . The second part deals with

nondecreasing boundsd: → . Sinced(t)→∞ as t → ∞ always leads to a Haus-
dorff dimension 1, here we consider the measure of the setA

(q)
d . © 1997 Academic Press

1. INTRODUCTION

The theory of stream ciphers (see Rueppel, 1986, 1992) deals with generating
long pseudorandom sequences from short seeds (keys). These sequences
should be indistinguishable from truly random sequences when judged by any
complexity measure. A well-known complexity measure in the theory of stream
ciphers is the global linear complexity, which for a periodic sequence of elements
of the finite field q is defined as the shortest length of a linear feedback shift
register (LFSR) generating the sequence (the global linear complexity of the zero
sequence is defined to be zero). A more refined notion is thelinear complexity
profile (l.c.p.) of an arbitrary sequencea = (ai )

∞
i=1 from the sequence space∞q

over q. The l.c.p. ofa is the sequence(La(t))∞t=1, where for eacht (consider
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t as describing a “time” evolution) the nonnegative integerLa(t) is the shortest
length of an LFSR generating the initial string (a1, . . . , at ), with La(t) = 0 if
(a1, . . . , at ) is the zero string. Roughly, the l.c.p. of a random sequencea will
grow with the lengtht like La(t) ≈ t /2. Deviations from this “ideal” median
should occur, but only of moderate size (see Niederreiter, 1988b).

Rueppel (1986) introduced the notion of a sequencea with perfect linear
complexity profile, requiringLa(t) = dt/2e for all t ≥ 1, and Niederreiter
(1988a) generalized it to thed-almost perfect linear complexity profile ford ∈ .
This characterizes sequencesa with |2 · La(t) − t | ≤ d for every lengtht. In
order to avoid the repeated writing of “sequences with ad-almost perfect linear
complexity profile,” we call themd-perfect. Then 1-perfect corresponds to a
perfect l.c.p. in the sense of Rueppel.

For anyd ∈ , the set of alld-perfect sequences overq has uncountably
many elements. On the other hand, it follows from Theorem 10 in Niederreiter
(1988b) that the set ofd-perfect sequences from∞q has measure zero in the
space (∞q , µ∞) of all sequences, whereµ is the equidistribution measure on

q (given byu(k) = 1/q for all k ∈ q) andµ∞ its product measure on∞q .
As the d-perfect sequences are too many to be counted and too few to be

measured, the natural thing to study is the Hausdorff dimension of that set after
it has been mapped in a canonical way to the interval [0, 1]. This is done in
the first part of the paper, Sections 2–7. We shall see, in particular, that in the
above sense the set of 1-perfect binary sequences has Hausdorff dimension 0.5
and for higherd the d-perfect sequences (over anyq) form sets of higher and
higher Hausdorff dimension, though never reaching 1. Thus, although all these
sets have measure zero in∞q , a sharper distinction can be made by looking
at their Hausdorff dimension. As a byproduct a formula for the number ofd-
perfect sequences of lengtht, for all d andt, is given for all finite fields q (see
Theorem 17). We note that partial results in this direction for the binary caseq
= 2 have been presented in our earlier paper (Niederreiter and Vielhaber, 1995).

In the second part of the paper, Sections 8–11, the condition|2·La(t)−t | ≤ d
is relaxed to|2 · La(t) − t | ≤ d(t) for all t, whered is now a nondecreasing
function on the positive integers. It will turn out (as was already shown in
Theorems 8 and 9 of Niederreiter, 1988b, in the setting of dynamical systems
theory) thatd(t) = 1+ (1+ ε) · logq(t), with logq being the logarithm to the
baseq, gives the threshold between measure zero (ε = 0) and positive measure
(ε > 0). If lim t→∞ d(t) = ∞, the Hausdorff dimension is 1 in any case.

2. LINEAR COMPLEXITY DEVIATION

For any sequencea ∈ ∞
q we have 0≤ La(t) ≤ t and La(t) ≤ La(t + 1) for

all t. As La(t) is typically close tot/2, it merits the introduction of the following
concept.
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DEFINITION 1. Let a = (ai )
N
i=1 ∈ N

q , N ∈ ∪ {∞}, be a given sequence,
(La(i ))Ni=1 its l.c.p.; then thelinear complexity deviationof a at t is defined as

ma(t) :=2 · La(t)− t ∈ .

The l.c.p. can be computed by the Berlekamp–Massey algorithm (Rueppel,
1986; Lidl and Niederreiter, 1994). The following result recalls the dynamic
behavior ofLa(t) and derives that ofma(t) from it.

PROPOSITION2.

(i) If L a(t) > t/2, then La(t + 1)= La(t).
(ii) If L a(t) ≤ t/2, then there exists a unique a∈ q with

L(a1, ..., at , a)(t + 1)= La(t).

For all b 6= a in q we have

L(a1, ..., at , b)(t + 1)= t + 1− La(t).

(iii) If ma(t) > 0, then ma(t + 1)= ma(t)− 1.
(iv) If ma(t) ≤ 0, then there exists a unique a∈ q with

m(a1, ...,at ,a)(t + 1)= m(a1, ..., at )(t)− 1.

For all b 6= a in q we have

m(a1, ..., at , b)(t + 1)= 1−m(a1, ..., at )(t).

Proof. (i, ii) See Rueppel (1986, p. 34).

(iii) By (i) we havema(t+1)= 2· La(t+1)− t−1= (2· La(t)− t)−1=
ma(t)− 1.

(iv) The first part follows from the first part of (ii). Forb ≠ a the second
part of (ii) yieldsma(t+1)= 2· La(t+1)− t−1= 2· (t+1− La(t))− t−1=
1+ t − 2 · La(t) = 1−ma(t).

Remark3. When working over 2, the caseb ≠ a obviously boils down to
b = a = a+ 1.

Niederreiter (1988a, 1988b), as well as Dai and Zeng (1990), has shown
the intimate connection between the l.c.p. of(ai )

∞
i=1 and the continued fraction

expansion of the generating function
∑∞

i=1 ai x−i in the field of a formal Laurent
series over q. Hence, a jump byk in the l.c.p. is equivalent to a partial quotient
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of degreek in the continued fraction expansion, andd-perfect sequences lead to
partial quotients that are all of degree at mostd.

DEFINITION 4. Let (q)
d ⊂ ∞

q be the set of all sequencesa with |ma(t)| ≤ d

for all t ∈ . Thus, (q)
d contains thed-perfect infinite sequences overq.

3. TRANSLATION THEOREM

As a simple consequence of Proposition 2 we obtain the following translation
theorem.

THEOREM 5. Let α = (α1, . . . , αk) andβ = (β1, . . . , βl ) be given strings
with mα(k) = mβ(l ). For any length t≥ 0 and deviation d∈ , we have

card{a ∈ k+t
q | ai = αi for 1≤ i ≤ k, ma(k+ t) = d}

= card{b ∈ l+t
q | bi = βi for 1≤ i ≤ l , mb(l + t) = d}.

Proof. Induction on t starts for t = 0 with both cardinalities being 1 for
d = mα(k) and 0 otherwise by assumption. The stept → t + 1 follows by
Proposition 2(iii, iv).

In other words, this translation theorem says that the distribution of l.c.
deviationsm on all suffixes of a given finite initial string depends only on
m at the end of that string, but not on the length or the elements of the initial
string.

Remark6. The Translation Theorem already states some self-similarity
within ∞

q or (q)
d . Every prefix of lengthn with m(n) = 0 defines a cylinder set

of continuations with the samem-distribution as the whole∞q or (q)
d (which

can be seen as the cylinder set ofε, the empty word).

4. SOME COUNTING FORMULAE

In the course of Theorems 8 through 17 we shall see that asymptotically
there areϕ t d-perfect initial sequences of lengtht for some real numberϕ ≥ 1
depending onq and the boundd. Obviously,ϕ = q describes the unrestricted
case, which corresponds to formally puttingd = ∞.

DEFINITION 7. Let d ∈ and m ∈ . For t ∈ define A(q)m|d(t) as the
number of sequencesa ∈ t

q of length t with ma(t) = m and |ma(τ )| ≤ d for
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1 ≤ τ ≤ t. For t = 0 setA(q)0|d(0) = 1 (the empty sequenceε) and A(q)m|d(0) = 0 for

m ≠ 0. For t ∈ , t < 0, setA(q)m|d(t) = 0.

We shall first obtain in Theorem 8 the behavior of sequence counts while
adding another symbol fromq and thus increasing the length fromt to t + 1.
This behavior is an immediate consequence of Proposition 2.

THEOREM 8. For t ∈ and d∈ we have:

(i) A(q)m|d(t + 1)

(ii) A(q)0|d(t + 1)

(iii) A(q)m|d(t + 1)

(iv) A(q)m|d(t)

(v) A(q)m|d(t)

= A(q)m+1|d(t)

=
{

q · A(q)1|d(t), t 6= −1,
1, t = −1.

=q · A(q)m+1|d(t)+ (q − 1) · A(q)−m+1|d(t)

=0

=0

for −d ≤ m< 0.

for 0< m ≤ d.

for |m| > d.

for m 6≡ t (2).

Proof. All properties are trivial fort ≤ 0, so we can assumet ≥ 1. By
Proposition 2(iii), sequences of lengtht with m(t) > 0 produceq successors of
length t + 1 andm(t + 1)= m(t)− 1. This gives us part (ii) and the first term
of part (iii) (which is zero form = d).

A sequence withm(t) ≤ 0 splits its successors: one (thea case) ends up with
m(t+1)= m(t)−1. This is part (i), wherem(t) ≤ 0. All other q − 1 cases (for
all b ≠ a) lead to a jump tom(t + 1) = 1− m(t) > 0. This yields the second
term in part (iii).

Finally, parts (iv) and (v) belong to impossible cases. By Definition 7, |m| must
not exceedd, and the parity ofm and t must be the same by Definition 1.

EXAMPLE 9. Let d = 3, then we get forA(2)m|3(t):

m t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

3 1 2 8 32 112 416
2 1 4 12 48 176 640
1 1 4 16 56 208 768 2816
0 1 2 8 32 112 416 1536
−1 1 2 8 32 112 416 1536
−2 1 2 8 32 112 416
−3 1 2 8 32 112 416

The next theorem links theA(q)m|d(t) to just theA(q)0|d(t). The above example
may serve to illustrate the theorem.
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THEOREM 10. For t ∈ and d∈ , every A(q)m|d(t) can be expressed in terms

of A(q)0|d(t − τ ) as follows:

(i) A(q)m|d(t)

(ii) A(q)d|d(t)

(iii) A(q)m|d(t)

= A(q)0|d(t +m)

= (q − 1) · A(q)0|d(t − d).

= (q − 1) ·
d−m∑
k=0

qk · A(q)0|d(t −m− 2k)

for −d ≤ m ≤ 0.

for 1 ≤ m ≤ d − 1.

Proof.

(i) This is trivial for t ≤ 0. Fort ≥ 1 it follows by induction from Theorem
8(i).

(ii) This is obtained from (i) and

A(q)d|d(t) = (q − 1) · A(q)−d|d(t) for all t,

where this identity follows from Theorem 8(i, iii).
(iii) For 1 ≤ m ≤ d − 1 we get by Theorem 8(iii) that

A(q)m|d(t) = q · A(q)m+1|d(t − 1)+ (q − 1) · A(q)−m+1|d(t − 1).

Next, by induction onk = 1, . . ., d − m and Theorem 8(iii), we obtain

A(q)m|d(t) = qk · A(q)m+k|d(t − k)+ (q − 1) ·
k∑

i=1

qi−1 · A(q)−m−i+2|d(t − i ).

In particular, puttingk = d − m this yields

A(q)m|d(t) =qd−m · A(q)d|d(t − d +m)+ (q − 1) ·
d−m∑
i=1

qi−1 · A(q)−m+2−i |d(t − i )

= (q − 1) · qd−m · A(q)0|d(t − 2d+m)

+ (q − 1) ·
d−m−1∑

i=0

qi · A(q)0|d(t − 2i −m)

= (q − 1) ·
d−m∑
i=0

qi · A(q)0|d(t − 2i −m),

where (i) and (ii) were used in the penultimate step.
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DEFINITION 11. Ford ∈ , t ∈ , andq the order of the underlying field
we definegeneralized Fibonacci numbersby

Fib(q)d (t) =


0, t < 0,
1, t = 0,

(q − 1) ·
d∑

k=1

Fib(q)d (t − k), t > 0.

Remark12. Definition 11 readily implies that Fib(q)d (t) = (q− 1) · qt−1 for
1 ≤ t ≤ d. The usual Fibonacci numbers 1, 1, 2, 3, 5. . . are obtained withq =
2 andd = 2.

DEFINITION 13. The number of sequences leaving the bound |m|≤ d at time
t by leading tom(t) = d+1 or m(t) = −d−1 is defined fort ∈ andd ∈ as

O(q)
d (t) :=q · A(q)−d|d(t − 1)= q · A(q)0|d(t − d − 1).

THEOREM 14. Let d∈ . Then

(i) A(q)0|d(t) = (q − 1) ·∑d
i=1 qi · A(q)0|d(t − 2i ) for all t ∈

(ii) A(q)0|d(2t) = qt · Fib(q)d (t) for all t ∈ .
(iii) For t ∈ we have

O(q)
d (t) =


0, t ≡ d(2),

q(t−d+1)/2 · Fib(q)d

(
t − d − 1

2

)
, t 6≡ d(2).

Proof.

(i) We have

A(q)0|d(t) =q · A(q)1|d(t − 1)

=q · (q − 1) ·
d−1∑
i=0

qi · A(q)0|d(t − 2− 2i )

= (q − 1) ·
d∑

i=1

qi · A(q)0|d(t − 2i ),

where we used Theorem 8(ii) in the first step and Theorem 10(ii, iii) in the
second step.
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(ii) The result is trivial fort < 0, and fort ≥ 0 we proceed by induction.
Note thatA(q)0|d(0) = 1 by definition counts just the empty wordε. For t ≥ 1 we
first use (i) and then the induction hypothesis to obtain

A(q)0|d(2t) = (q − 1) ·
d∑

i=1

qi · A(q)0|d(2t − 2i )

= (q − 1) ·
d∑

i=1

qi · qt−i · Fib(q)d (t − i )

= (q − 1) · qt ·
d∑

i=1

Fib(q)d (t − i )

=qt · Fib(q)d (t).

(iii) Apply (ii) to the definition.

The combination of Theorems 10 and 14 leads to the following general
formula for A(q)m|d(t).

THEOREM 15. Let t ∈ and d∈ . Then

A(q)m|d(t) =

0, |m| > d or t 6≡ m(2),

q(t+m)/2 · Fib(q)d

(
t +m

2

)
, −d ≤ m ≤ 0, t ≡ m(2),

(q − 1) · q(t−m)/2 ·
d−m∑
k=0

Fib(q)d

(
t −m

2
− k

)
, 1≤ m ≤ d, t ≡ m(2).

DEFINITION 16. Fort ∈ 0 andd ∈ let

A(q)∗|d(t) :=
d∑

m=−d

A(q)m|d(t)

be the overall number ofd-bound sequences of lengtht over q.

THEOREM 17. For t ∈ 0 and d∈ we have

A(q)∗|d(t) =
1

q − 1
· qb(t−d)/2c+1 · Fib(q)d (b(t + d + 1)/2c).
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Proof. We proceed by induction ont. For t = 0 we haveA(q)∗|d(0) = 1, which
agrees with the right-hand side of the formula in the theorem in view of Remark
12. For the step fromt to t + 1 we distinguish two cases.

(a) t ≡ d(2): ThenO(q)
d (t+1)= q(t−d+2)/2·Fib(q)d ((t−d)/2) by Theorem

14(iii), and thus

A(q)∗|d(t + 1)=q · A(q)∗|d(t)− O(q)
d (t + 1)

= 1

q − 1
· q(t−d)/2+2 · Fib(q)d

(
t + d

2

)
− q(t−d)/2+1 · Fib(q)d

(
t − d

2

)
=q(t−d)/2+1 ·

(
Fib(q)d

(
t + d

2

)
+

d∑
i=1

Fib(q)d

(
t + d

2
− i

)

− Fib(q)d

(
t − d

2

))

=q(t−d)/2+1 ·
d∑

i=1

Fib(q)d

(
t + d

2
+ 1− i

)
= 1

q − 1
· q(t−d)/2+1 · Fib(q)d

(
t + d

2
+ 1

)
.

(b) t 6≡ d(2): ThenO(q)
d (t + 1) = 0 by Theorem 14(iii), and thus

A(q)∗|d(t + 1)=q · A(q)∗|d(t)
= 1

q − 1
· qb(t−d)/2c+2 · Fib(q)d (b(t + d + 1)/2c)

= 1

q − 1
· qb(t+1−d)/2c+1 · Fib(q)d (b(t + d + 2)/2c).

Remark18. This finishes the combinatorics ofd-perfect sequences. Theorem
17 can be stated asA(q)∗|d(t) = O(qt/2 · Fib(q)d (b(t + d + 1)/2c)). This will lead

to the Hausdorff dimension ofι( (q)
d ).

We need another technical lemma, bounding the generalized Fibonacci
numbers in terms of some algebraic numbersϕ.

DEFINITION 19. Letϕd :=ϕ(q)d be the largest real root of

xd = (q − 1) ·
d−1∑
i=0

xi .
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LEMMA 20. For all q and d∈ we have

(i) q − q

qd
≤ ϕ(q)d < q − q − 1

qd
,

(ii)
q − 1

q
· (ϕ(q)d )t < Fib(q)d (t) ≤ (ϕ(q)d )t for all t ∈ 0.

Proof.

(i) For d = 1 we haveϕ(q)1 = q − 1, hence the result. Ford ≥ 2 (thus
ϕ
(q)
d ≠ 1) we setϕ :=ϕ(q)d . Then

ϕd

⇔ϕd+1− ϕd

⇔ϕd+1

⇔ϕ

= (q − 1) ·
d−1∑
i=0

ϕi

= (q − 1) · ϕ
d − 1

ϕ − 1

= (q − 1) · ϕd − (q − 1)

=ϕd · q − (q − 1)

=q − q − 1

ϕd
.

Sinceϕ < q, we haveϕ < q − (q − 1)/qd, and thus the upper bound is proven.
To show the lower bound ford ≥ 2, we examine the functionf (x) =

x − q + (q − 1)/xd, which satisfiesf (ϕ) = 0. We have

f

(
q − q

qd

)
=−q−d+1+ (q − 1)/(qd(1− q−d)d)

<−q−d+1+ (q − 1)/(qd − d)

= (d · q1−d − 1)/(qd − d) ≤ 0

for d ≥ 2, q ≥ 2. Thus f (q − q/qd) < f (ϕ), and from

f ′(x) = 1− d(q − 1)

xd+1 > 0 for x ≥ q − 1

2

we may concludeq−q/qd < ϕ.
(ii) t = 0 is trivial. For 1≤ t ≤ d we have in view of (i) and Remark 12,

q − 1

q
· (ϕ(q)d )t <

q − 1

q
· qt = (q − 1) · qt−1 = Fib(q)d (t)

=qt − qt−1

≤qt − t · qt−1 · q−d+1 ≤ (q − q−d+1)t ≤ (ϕ(q)d )t .
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The result now follows by induction ont as (ϕ(q)d )t and Fib(q)d (t) satisfy the
same recursion.

5. THE STEADY STATE

The formulae forA(q)m|d(t) and A(q)∗|d(t) in the limit t→∞ give the proportion
of sequences with deviationm.

DEFINITION 21. Let

p(q)d (m) := lim
t→∞

t≡m(2)

A(q)m|d(t)

A(q)∗|d(t)

for d ∈ andm ∈ with |m|≤ d. There is an obvious analog ford = ∞.

THEOREM 22. (i) Withε = (m+d)mod 2andϕ :=ϕ(q)d we obtain for d∈
and−d ≤ m≤ 0:

p(q)d (m) = (q − 1) · q(m+d+ε)/2−1 · ϕ−(d−m+ε)/2,

and for1≤ m≤ d,

p(q)d (m) = (q − 1)2 · q(d−m+ε)/2−1 ·
d−m∑
k=0

ϕ−((d+m+ε)/2+k).

(ii) For d = ∞ we obtain

p(q)∞ (m) = (q − 1) · qm−1 for m ≤ 0

and

p(q)∞ (m) = (q − 1) · q−m for m> 0.

Proof. (i) From the form of the polynomial equation in Definition 19 it is
easily seen that all roots of this equation different fromϕ(q)d are less thanϕ(q)d in
absolute value. Since(ϕ(q)d )t and Fib(q)d (t) satisfy the same recursion, we obtain

lim
t→∞

Fib(q)d (t + 1)

Fib(q)d (t)
= ϕ(q)d .

The desired formulae now follow from Theorems 15 and 17.
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(ii) For d = ∞ we replaceϕ by limd→∞ ϕ(q)d = q.

Remark23. Even and oddm are normalized separately to measure 1. Thus∑d
m=−d p(q)d (m) = 2.

6. BACKGROUND ON HAUSDORFF DIMENSION

We follow the introduction of the Hausdorff dimension given in Chapter 2 of
Falconer (1990) for a subset of the reals. Set

hs
ε( ) = inf

∞∑
i=1

|Ui |s for s≥ 0, ε > 0,

where the infimum runs over all covers= {U1, U2, . . . } of with intervals
Ui of length |Ui| ≤ ε, and lettingε → 0:

hs( ) := lim
ε→0+ hs

ε( ).

Then

hs( ) =
{

0, s> DH ( )

∞, s< DH ( )

for a certain real numberDH ( ) (hDH ( )( ) may assume any value in [0,∞]).

DEFINITION 24. The Hausdorff dimension of a set is defined as

DH ( ) = inf {s|hs( ) = 0}
= sup{s|hs( ) = ∞}.

Remark25. The definition ofhs
ε( ) and thus ofhs( ) involves an infimum.

Thus, an upper bound for the Hausdorff dimension is considerably easier to
obtain than a lower bound, for the former one essentially defines a sequence
of covers (k) = {U (k)

1 , U (k)
2 , . . . }, where |U (k)

i | ≤ εk and εk → 0. If then∑∞
i=1 |U (k)

i |s remains bounded for every cover of the sequence, the infimum
cannot be infinity. Hence the candidates actually is an upper bound.

On the contrary, ifs is below the Hausdorff dimension, it will lead to a
sum

∑∞
i=1 |U (k)

i |s = ∞ for each and every cover, and so the infimum cannot be
determined in this way. Here we have to apply an analog of the Mass Distribution
Principle (see Theorem 4.2 in Falconer, 1990). Other special techniques to get
lower bounds are given in Chapter 4 of that monograph.
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LEMMA 26. Let ν be a mass distribution on some set A⊆ [0, 1] ⊂ . We
assume that for a given s there exist two real numbers c> 0 andδ > 0 such that

ν(U ) ≤ c · |U |s

for all intervals U⊆ [0, 1] with |U | ≤ δ. Then DH (A) ≥ s.

Proof. Let 0 < ε ≤ δ. Let = {Ui } be any cover ofA by intervalsUi ⊆ [0,
1] of length |Ui| ≤ ε ≤ δ. Then

0< ν(A) = ν
(⋃

i

Ui

)
≤
∑

i

ν(Ui ) ≤ c ·
∑

i

|Ui |s,

hence

∑
i

|Ui |s ≥ ν(A)
c
.

It follows that the infimum over all gives

hs
ε(A) ≥

ν(A)

c
for all ε ≤ δ,

and sohs(A) ≥ ν(A)/c > 0, hences ≤ DH (A).

DEFINITION 27. AnN-ary intervalof degreek, N ∈ , k ∈ 0, is an interval
of the form [r · N−k, (r + 1) · N−k), 0 ≤ r ≤ Nk − 2, r ∈ 0, or [1 − N−k, 1].

LEMMA 28. Consider a nonempty subset A⊆ [0, 1] ⊂ of the reals and N-
ary intervals with N≥ 2. Let there be a natural number S≤ N such that for each
k ∈ 0 we have: If an N-ary interval I of degree k has nonempty intersection
with A, then exactly S of the N-ary subintervals of I of degree k+ 1 also have
nonempty intersection with A. In this case

DH (A) ≥ log S

log N
.

Proof. Each intervalU ⊂ [0, 1] with |U | < 1 satisfies an inequalityN−k−1

≤ |U| < N−k for a certaink ∈ 0. Thus, U can intersect at most twoN-ary
intervals of degreek.

Define a mass distributionν on A such that each of theSk N-ary intervals of
degreek (of lengthN−k) that intersectA contains a mass ofS−k. The mass that
is covered byU can thus be bounded byν(U ) ≤ 2 · S−k.
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For s := (log S)/(log N) we thus obtain

ν(U ) ≤ 2 · S−k = 2 · (N−k)s = 2 · Ns · (N−k−1)s

≤ 2 · Ns · |U |s
≤ 2 · N · |U |s,

where we used that 0≤ s ≤ 1. Now we can apply Lemma 26.

EXAMPLE 29. LetN = 3 andS= 2. This describes the Cantor set, and indeed
(log 2)/(log 3) is its Hausdorff dimension.

7. THE HAUSDORFF DIMENSION OF THEd-PERFECT SEQUENCES

DEFINITION 30. The space∞q of all infinite sequences can be mapped onto
the unit interval [0, 1] by

ι := ιq: ∞
q 3 (ai )

∞
i=1 7→

∞∑
i=1

ψ(ai )q
−i ∈ [0, 1] ⊂ ,

whereψ is a fixed bijection from q to {0, 1, . . . , q − 1}.
If (q)

d ⊂ ∞
q is the set in Definition 4, then we study the subset

(q)
d := ι( (q)

d ) of [0, 1].

THEOREM 31. For all d ∈ and q we have

DH (
(q)
d ) = 1+ logq ϕ

(q)
d

2
,

wherelogq denotes the logarithm to the base q andϕ(q)d is as in Definition 19.

Proof. We work over some fixed q and setϕd :=ϕ(q)d . We first show an
upper bound for the Hausdorff dimension. For fixedt ≥ 1, consider the set of
all initial strings a of length t with |ma(τ)| ≤ d for 1 ≤ τ ≤ t. The cardinality

of this set isA(q)∗|d(t). By Theorem 17 and Lemma 20(ii) we have

A(q)∗|d(t) ≤
1

q − 1
· q(t−d )/2+1 · ϕ(t+d+1)/2

d ≤ C · (q · ϕd)
t/2

with a constantC > 0 depending only ond andq. Each initial stringa of length
t defines a cylinder set in∞q consisting of all infinite continuations of this
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string. The image of each such cylinder set under the mapι is a closed interval
of lengthq−t in [0, 1]. Thus, (q)

d can be covered byA(q)∗|d(t) intervals of length
q−t. With ε t = q−t it follows that

hs
εt
(
(q)
d ) ≤ A(q)∗|d(t) · q−ts ≤ C ·

(√
q · ϕd

qs

)t

.

For anys > 1
2(1 + logqϕd) we haveqs >

√
q · ϕd. Thus, lettingt → ∞ (hence

ε t → 0), we get

hs(
(q)
d ) = 0.

By the definition ofDH (
(q)
d ) it follows that DH (

(q)
d ) ≤ s. Sinces > 1

2(1 +
logq ϕd) is arbitrary, we obtain

DH (
(q)
d ) ≤ 1

2
(1+ logq ϕd).

Thus, the upper bound is shown.
To prove the lower bound, we define forr ∈ ,

(q)
d (r ) :={a ∈ (q)

d |ma(2r · n) = 0 for all n ∈ }, (q)
d (r ) := ι( (q)

d (r )).

(q)
d (r ) containsS := A(q)0|d(2r ) initial strings (prefixes) of length 2rthat end at

m(2r) = 0. By Theorem 5 (or Proposition 2(iii, iv)) we can iterate this process
to obtainSn prefixes of length 2r · n with m(2r · j ) = 0, 1 ≤ j ≤ n. By the map-
ping ι( (q)

d (r )) = (q)
d (r ) we thus obtain a subset of [0, 1] for which we can

apply Lemma 28 withN := q2r (note that sequences in∞q that are ultimately

constant cannot belong to(q)d , and so no problems with endpoints ofN-ary in-
tervals can arise). AsS≥ (q−1)/q ·qr ·ϕr

d ≥ (1/q) ·qr ·ϕr
d by Theorem 14(ii)

and Lemma 20(ii), we obtain

DH (
(q)
d (r )) ≥ logq S

logq (q2r )
≥ logq(q

r · ϕr
d · q−1)

2r
= 1+ logq ϕd

2
− 1

2r
.

The last inequality is valid for allr ∈ and we have (q)
d ⊇ (q)

d (r ) and thus
(q)
d ⊇ (q)

d (r ). Hence the Hausdorff dimension of(q)d is bounded from below
by

DH (
(q)
d ) ≥ 1+ logq ϕd

2
− 1

2r
for all r ∈ ,
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and together with the upper bound we finally arrive at

DH (
(q)
d ) = 1+ logq ϕd

2
.

Remark32. The valuesϕ(q)d and DH (
(q)
d ) may be estimated for larged by

ϕ
(q)
d ≈q − q−d+1,

logq (ϕ
(q)
d ) ≈1− 1/(qd · log q),

s(q)d := DH (
(q)
d ) ≈1− 1/(2 · qd · log q).

Some values forq = 2:

ϕ
(2)
1 =1

s(2)1 =0.5

ϕ
(2)
2 =1.618 . . .

s(2)2 =0.8471 . . .

ϕ
(2)
3 =1.839 . . .

s(2)3 =0.9396 . . .

ϕ
(2)
4 =1.928 . . .

s(2)4 =0.9734 . . .

(ϕ(2)2 is the well-known “Golden ratio”).

Remark33. Now that we know DH (
(q)
d ), what is its meaning in the

information-theoretic sense? Consider an information source over the alphabet
q. This source emits a data stream of some sort. If it is independent and

identically distributed, the information rate is log2 q bits per time unit or oneq-
ary digit per time unit. A lower information rate leads to a somewhat predictable
symbol sequence. Not allqt sequences of lengtht are then equally likely. And
this is where ourDH (

(q)
d ) comes into play. Assume the source emits any (a

priori unknown) sequence from (q)
d . Then the information rate isDH (

(q)
d ) q-

ary digits per symbol, or stated in terms of message space versus symbol space,

of all qt sequences of lengtht only qt ·DH (
(q)
d ) are possible (in the limitt →

∞). Thus,DH (
(q)
d ) describes the entropy or information rate of an(q)d -source.

By an unpublished result of Wang and Massey (see Niederreiter, 1988a, for a
published proof and also the related work of Baum and Sweet, 1977), 1-perfect
binary sequences consist of bits that are alternatingly fixed by internal relations
(a1 = 1, a2k+1 = a2k ⊕ ak) or can be chosen arbitrarily (thea2k). Thus, the
entropy is1

2 = DH (
(2)
1 ).

Remark34. The survey paper by Shallit (1992) treats real numbers with
bounded partial quotients in their continued fraction expansion. This is the real
analog ofd-perfect sequences in∞q (compare with Section 2). In the metric
is not ultrametric, rendering the case much more difficult, as can already be
seen from the Hausdorff dimension of the set2 of all numbers in [0, 1] with
partial quotients from {1, 2}, namely

0.53128049· · · < DH ( 2) < 0.53128051· · · .
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The closed form forDH ( 2) is DH ( 2) = limn→∞ σn, whereσn is the real
root of ∑

1≤a1, ..., an≤2

Q(a1, . . . , an)
−2σn = 1

and theQ polynomials (Euler’s continuants) are defined recursively byQ() = 1,
Q(a1) = a1, Q(a1, . . . , an) = an · Q(a1, . . . , an−1)+ Q(a1, . . . , an−2).

8. GENERALIZATION TO TIME-DEPENDENT BOUNDS

Up to now we have dealt with a fixed boundd for the allowed linear
complexity deviation. Under these circumstances we will always obtain a set
of measure zero. In the remaining part of the paper we will allow the boundd
to be dependent ont, that is,d: → to be a nondecreasing function oft. We
say thatm is bounded by thefence d(t).

If d(t) → d′ < ∞ as t → ∞, then we obtain the Hausdorff dimension
belonging to the constant boundd′ (the initial part d < d′ amounts to some
constant that may be put into theC in the proof of Theorem 31 andC does
not affect the Hausdorff dimension). On the other hand,d(t)→∞ as t → ∞
leads to a Hausdorff dimension 1, and everyd other than the unrestricting case
d(t) ≥ t leads to a measure less than 1. Thus, the important threshold here is
measure zero versus positive measure.

We shall obtain upper and lower bounds for the measure, depending ond(t).
The lower bound here will be zero only if the upper bound and hence the
measure is zero as well. We shall first obtain an even more general recursion
for the A(q)0|d(2t) (d now a function oft). Then theA(q)∗|d(2t) will be bounded

by sums ofA(q)0|d(2t) and the latter ones by products ofϕ(q)d . Finally, we obtain
from

µ∞( (q)
d ) = lim

t→∞
A(q)∗|d(2t)

q2t

effectively computable bounds for the measure.
For binary sequences we shall obtain that the fenced(t) = 1+ blog2 (t)c

encloses a set of measure zero, whereasd(t) = 1+ 2 · blog2 (t)c leads to a
positive measure.

9. EFFECTIVE AND CANONICAL FENCES

DEFINITION 35. Letd: → be a function with:
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(i) d(1) = 1.
(ii) d(t) ≤ d(t + 1)≤ d(t)+ 1 for all t ∈ .
(iii) If d(t) < d(t + 1) and d(t + 1) = d(t + 2k) for somet ∈ and

k ∈ , then d(t + 1) = d(t + 2k + 1). For all k ∈ , if d(2k) = 1 then
d(2k+ 1)= 1.

Thend is called aneffective fence.

An effective fence thus starts with width 1, does not jump over a width, and
stays at each width for an odd number of time steps (unless it remains constant
on that level).

LEMMA 36. If d is an effective fence and d(t+1)= d(t)+1 for some t∈ ,
then the sum t+ d(t) is even.

Proof. For d(1) = 1 as the first occurrence of width 1 the sum 1 +d(1) is
even. Until the next larger width by Definition 35(iii) there is an odd number
of steps, and together with the increase by 1 of the width,t + d(t) is even by
induction on the widths.

LEMMA 37. To every nondecreasing function d:→ we can assign an
effective fence� such that1(t) ≤ d(t) for all t ∈ and for all effective fences
1 the inequality1(t) ≤ 1(t) ≤ d(t) for all t ∈ already implies1 = 1.

Proof. Construct a fence� by setting�(1) = 1 and

1(t + 1)=
{
1(t), if d(t + 1)= 1(t) or t +1(t) odd,
1(t)+ 1, if d(t + 1) > 1(t) and t +1(t) even.

By construction, no other effective fence gets nearer tod from below.

DEFINITION 38. The effective fence� in Lemma 37 is called thecanonical
fenceof the functiond. We emphasize this by writingdcan := �.

Remark39. As every effective fence is its own canonical fence, we have
an equivalence relation on the set of all nondecreasing functions, and every
equivalence class has a unique effective fence as the canonical fence of each of
its members. The set of equivalence classes, or as well the set of effective fences,
forms a lattice whered(t) = 1 is the infimum andd(t) = t is the supremum,
leading to (q)

1 and ∞
q , respectively.

THEOREM 40. For every nondecreasing function d: → we have

(q)
d :={a ∈ ∞

q | |ma(t)| ≤ d(t) for all t }
= (q)

dcan
:={a ∈ ∞

q | |ma(t)| ≤ dcan(t) for all t }.
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Proof. Since (q)
dcan
⊆ (q)

d is trivial, it suffices to show that for alla ∈ (q)
d

we have

|ma(t)| ≤ dcan(t) for all t ∈ .

This inequality is established by induction ont, with the caset = 1 being triv-
ial. In the step fromt to t + 1, the casedcan(t + 1) = d(t + 1) is obvious. If
dcan(t + 1)= dcan(t)+ 1, then by Proposition 2(iii, iv),

|ma(t + 1)| ≤ |ma(t)| + 1≤ dcan(t)+ 1= dcan(t + 1).

In the remaining case, we havedcan(t + 1) = dcan(t) < d(t + 1). By the con-
struction ofdcan in the proof of Lemma 37,t + dcan(t) is odd, hencedcan(t) + 1 ≡ t
mod 2. On the other hand, we have|ma(t+1)| ≤ dcan(t)+1 as before, and from
Definition 1 we have|ma(t +1)| ≡ t +1 mod 2, thus|ma(t +1)| 6= dcan(t)+1.
Now |ma(t + 1)| ≤ dcan(t) = dcan(t + 1) follows.

From now on, we assume that a given fence is already reduced to the canonical
one. As an example, (q)d=const.would be defined by

dcan(t) =
{

t, if t ≤ d,
d, if t > d.

DEFINITION 41. Letd be an effective fence.

(i) Define δ on the even numbers as

δ(t + d(t)) = d(t)

for t ∈ with t + d(t) even (by Definition 35 and Lemma 36,δ is defined on
2 ).

(ii) With δ from part (i) let

r (m) = card{t∈ 2 | δ(t) = m} = 1

2
· (1+ card{t∈ |d(t) = m})

for m ∈ .

DEFINITION 42. Let d be an effective fence andm ∈ . For t ∈ define
A(q)m|d(t) as the number of sequencesa ∈ t

q of length t with ma(t) = m and

|ma(τ )| ≤ d(τ ) for 1 ≤ τ ≤ t. For t = 0 set A(q)0|d(0) = 1 andA(q)m|d(0) = 0 for m

≠ 0. For t ∈ , t < 0, setA(q)m|d(t) = 0.
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Remark43. δ gives the width of the fence that actually influencesA(q)0|d(t)
for event. There arer (k) occurrences at time stepst ≡ k(2) of k as the outer
bound of the fence whenA(q)k|d(t) > 0. Thus, inr (k) − 1 places (wheret 6≡ k(2))
the fence actually has a diminishing effect whiled(t) = k.

EXAMPLE 44. To illustrateδ and r consider this diagram forA(2)m|d(t):

t: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
d(t): 1 1 1 2 3 3 3 4 4 4 4 4 5 5
δ(t): 1 1 2 3 3 4 4
m r(m)

5 ≥ 2 48 —
4 3 4 — 16 — 48 288
3 2 2 — 4 16 48 288
2 1 2 4 24 80 288 1280
1 2 1 — 2 8 24 96 352 1280
0 1 2 4 16 48 192 704 2560
−1 1 2 4 16 48 192 704
−2 2 4 16 48 192 704
−3 2 4 16 48 192
−4 4 16 48 192
−5 48

The two diagonals in boldface show the significance ofδ. The value of
A(2)0|d(10) = 192 depends on the three elements 4, 24, 96 in the diagonal in
addition to elements belowm = 0. Thusδ(10) = 3, as the largestm-value in this
diagonal ism = 3 at timestept − δ(t) = 7, similarly for t = 14 (second diagonal in
boldface). The border elements are connected by hyphens within eachm-value.
The border containsr (m) values on levelm and there arer (m) − 1 hyphens,
places where the fence has a diminishing effect.

10. A(q)m|d FOR GENERAL d(t)

In this section we evaluate the quantityA(q)m|d(t) in Definition 42 for event.

Since A(q)m|d(t) = 0 for oddm, we can assume thatm is even.

THEOREM 45. Let d be an effective fence. Then

A(q)0|d(2t) =


0, t < 0
1, t = 0

(q − 1) ·
δ(2t)∑
τ=1

qτ · A(q)0|d(2t − 2τ ), t > 0.
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Proof. The caset ≤ 0 follows from Definition 42. Fort ≥ 1 we show

A(q)0|d(2t) = qk · A(q)k|d(2t − k)+ (q − 1) ·
k−1∑
τ=1

qτ · A(q)0|d(2t − 2τ )

by induction onk = 1, 2, . . . , δ(2t) + 1. The theorem then follows from
the casek = δ(2t) + 1, since hereA(q)δ(2t)+1|d(2t − δ(2t) − 1) = 0 because
δ(2t) ≥ d(2t − δ(2t)− 1). The casek = 1 is obvious. For the step fromk to k
+ 1 we note that

qk · A(q)k|d(2t − k)

=qk · (q · A(q)k+1|d(2t − k− 1)+ (q − 1) · A(q)−k+1|d(2t − k− 1))

=qk+1 · A(q)k+1|d(2t − (k+ 1))+ (q − 1) · qk · A(q)0|d(2t − 2k),

where in the first identity we used Proposition 2(iii, iv) and the fact that

k ≤ δ(2t) = d(2t − δ(2t)) ≤ d(2t − k) for 1≤ k ≤ δ(2t).

In the second identity we used again Proposition 2(iii, iv) as well as

j ≤ d(u− d(u)+ j ) for 1≤ j ≤ d(u) andu ∈ .

This inequality follows fromd(u− l ) ≥ d(u)− l for all u ∈ , 0≤ l ≤ d(u)−1
(by Definition 35(ii)), and puttingl := d(u) − j.

THEOREM 46. Let d be an effective fence. Then A(q)
0|d(2t) can be computed

iteratively as A(q)0|d(0)= 1, A(q)0|d(2) = q · (q − 1), and

A(q)0|d(2t) =


q2 · A(q)0|d(2t − 2),

for t > 1 andδ(2t) = 1+ δ(2t − 2)
q2 · A(q)0|d(2t − 2)− (q − 1) · qδ(2t)+1 · A(q)0|d(2t − 2(δ(2t)+ 1)),

for t > 1 andδ(2t) = δ(2t − 2)

Proof. The casest = 0 and t = 1 follow from Theorem 45. Fort > 1 and
δ(2t) = 1+ δ(2t − 2) we obtain by Theorem 45,

A(q)0|d(2t) = (q − 1) ·
δ(2t)∑
τ=1

qτ · A(q)0|d(2t − 2τ )

= (q − 1) · q · A(q)0|d(2t − 2)+ (q − 1) · q ·
δ(2t−2)∑
τ ′=1

qτ
′

· A(q)0|d(2t − 2− 2τ ′)

= ((q − 1) · q + q) · A(q)0|d(2t − 2).
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For t > 1 andδ(2t) = δ(2t − 2) we have

A(q)0|d(2t) = (q − 1) ·
δ(2t)∑
τ=1

qτ · A(q)0|d(2t − 2τ )

= (q − 1) · q · A(q)0|d(2t − 2)+ (q − 1) · q ·
δ(2t−2)∑
τ ′=1

qτ
′

· A(q)0|d(2t − 2− 2τ ′)− (q − 1) · q · qδ(2t−2)

· A(q)0|d(2t − 2− 2δ(2t − 2))

=q2 · A(q)0|d(2t − 2)− (q − 1) · qδ(2t)+1 · A(q)0|d(2t − 2(δ(2t)+ 1)).

THEOREM 47. Let d be an effective fence. For even m we have

A(q)m|d(2t) =


A(q)0|d(2t +m), −d(2t) ≤ m ≤ 0

(q − 1) ·
δ(2t+m)−m∑

k=0

qk · A(q)0|d(2t −m− 2k), 2 ≤ m ≤ d(2t).

Proof. This follows as in Theorem 10. In the first case, we also use the
bound

j ≤ d(u− d(u)+ j ) for 1≤ j ≤ d(u) andu ∈

shown in the proof of Theorem 45. In the second case, the upper bound for the
summation indexk is best verified by consulting Example 44: The falling di-
agonal includingA(q)m|d(2t) intersects the linem = 0 at 2t + m. By Definition
41, δ(2t + m) is the largestm-value on this diagonal and replacesd in Theo-
rem 10.

11. THE MEASURE OF (q)
d

For a nondecreasing functiond: → we put, as in Theorem 40,

(q)
d = {a ∈ ∞

q | |ma(t)| ≤ d(t) for all t ∈ }.

In this section we studyµ∞ ( (q)
d ), whereµ∞ is the probability measure on

∞
q defined in Section 1. In view of Theorem 40 it suffices to consider effective



LINEAR COMPLEXITY PROFILES 375

fencesd. Also, since the case where limt→∞ d(t) is finite can be reduced to re-
sults in earlier sections (see Section 8), we will concentrate on the case where
limt→∞ d(t) = ∞.

DEFINITION 48. For an effective fenced and t ∈ define

A(q)∗|d(t) =
d(t)∑

m=−d(t)

A(q)m|d(t).

LEMMA 49. For every effective fence d we have

µ∞( (q)
d ) = lim

t→∞
A(q)∗|d(2t)

q2t
.

Proof. For t ∈ we introduce the cylinder set

(q)
d (t) = {a ∈ ∞

q | |ma(τ )| ≤ d(τ ) for 1≤ τ ≤ t}.

Then (q)
d (1)⊇ (q)

d (2)⊇ · · · and (q)
d = ∩∞t=1

(q)
d (t), thus in particular

µ∞( (q)
d ) = lim

t→∞ µ∞( (q)
d (2t)).

By Definitions 42 and 48 we have

µ∞( (q)
d (2t)) = A(q)∗|d(2t)

q2t
.

LEMMA 50. For limt→∞ d(t) = ∞ we have

lim
t→∞

A(q)∗|d(2t)

A(q)0|d(2t)
= q

q − 1
.

Proof. According to Theorem 22(ii) the unrestricted steady state has

p(q)∞ (0)= q − 1

q
.

Any deviation from the steady state (too high a weight on somem) will lead
(after m steps form ≥ 0 and gradually form ≤ 0) to a proportion too high at
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m = 0. By the translation theorem (Theorem 5) this will diffuse into the steady
state sinced(t)→∞. Thus, fort → ∞ we have

lim
t→∞

A(q)∗|d(2t)

A(q)0|d(2t)
= (p(q)∞ (0))−1 = q

q − 1
.

Remark51. Now we already can compute an upper bound forµ∞ ( (q)
d )

by Theorem 46. Since the sequence A(q)0|d(2t)

q2t

∞
t=1

decreases monotonously, we have

µ∞( (q)
d ) ≤ q

q − 1
· A(q)0|d(2t)

q2t
for all t ∈ .

In Section 4 we have seen that for constantd we asymptotically have

A(q)∗|d(t) ≈ C · qt/2 · (ϕ(q)d )t/2.

For effective fencesd: → we thus will divide the fence into regions of
constantd-values (regardingd as a step function), and then each step will be
bounded as stated above. We shall choose the division into steps according to
the sequenceA(q)0|d which is easier to handle thanA(q)∗|d, thus the length of each
step is determined byδ, not d.

For every widthm, there arer (m) time steps whereδ(2t) = m. For r (m)
> m, the (m + 1)st to r (m)th recursion (in Theorem 45) is given as that of
A(q)0|m(2t) (compare with Theorem 14(i)), thus here the increase is roughly by

a factor
√

q · ϕ(q)m . The first m values require some additional considerations,
though. We start with the division into steps according toδ.

DEFINITION 52. Let d be an effective fence with limt→∞ d(t) = ∞. For
j ∈ we define

1 j :=2 ·max{τ | δ(2τ) = j },

whereδ is from Definition 41(i).
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Thus we haveδ(� j) = j, but δ(� j + 2) = j + 1. Using the functionr from
Definition 41(ii), furthermore

1 j = 2 ·
j∑

k=1

r (k) andr ( j ) = 1

2
· (1 j −1 j−1).

The sequenceA(q)0|d(2 · i ), i ∈ 0, satisfies (by Theorem 45) a recursion and� j

is the largest integer such thatA(q)0|d(1 j ) is computed by a recursion of degree
j. The jth step thus extends from� j−1 + 2 to� j.

The following lemma bounds the increase ofA(q)0|d(2t), t ∈ , in a way which
is independent of previous step lengths.

LEMMA 53. For all effective fences d withlimt→∞ d(t) = ∞ and for all
k ∈ we have

q2− q2−δ(2k+2) ≤ A(q)0|d(2k+ 2)

A(q)0|d(2k)
≤ q2.

Proof. The upper bound follows from Theorem 46. We show the lower
bound by induction onk. For k = 1 we have two cases,d(2) = δ(4) = 1
or d(2)= δ(4) = 2. Note thatA(q)0|d(2)= (q− 1) · q in both cases. By Theorem

46 we haveA(q)0|d(4) = (q − 1)2 · q2 if d(2) = 1 and A(q)0|d(4) = (q − 1) · q3 if
d(2) = 2, and the lower bound follows.

We will now assume that the lower bound holds for 1≤ i < k and let j: =
δ(2k + 2). We can also assume that we are in the second case of Theorem 46,
i.e., thatδ(2k + 2) = δ(2k). In order to apply Theorem 46, we have to bound the
quotient(A(q)0|d(2k))/(A(q)0|d(2k− 2 j )) from below. From Definition 41, we have
δ(2t + 2) ≤ δ(2t) + 1 for all t ∈ and thusδ(2k − 2j) ≥ δ(2k) − j. Hence with
l := δ(2k − 2j), out of the j (double) steps between 2k− 2j and 2kthere arej
− l ≥ 0 steps where the width increases. Here, by the first case of Theorem 46,
the factor is exactlyq2, whereas that factor is at leastq2 − q2−l in the remaining
l steps by the induction hypothesis. The casel = 0 leads to an overall increase
q2j and thus will not yield the minimal value. This leads to

A(q)0|d(2k)

A(q)0|d(2k− 2 j )
≥ min

1≤l≤ j
{q2·( j−l ) · (q2− q2−l )l } = q2 j · min

1≤l≤ j
{(1− q−l )l }.

Now for all q ≥ 2 and l ≥ 1 we have (1− q−l) l ≥ 1 − l · q−l ≥ 1 − q−1,
where the first inequality is obtained by the mean-value theorem. This gives the
lower bound

A(q)0|d(2k) ≥ A(q)0|d(2k− 2 j ) · q2 j−1 · (q − 1).
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We thus have from Theorem 46,

A(q)0|d(2k+ 2)=q2 · A(q)0|d(2k)− (q − 1) · q j+1 · A(q)0|d(2k− 2 j )

≥ A(q)0|d(2k) ·
(

q2− (q − 1) · q j+1 · 1

q2 j−1 · (q − 1)

)
= A(q)0|d(2k) · (q2− q2− j ).

THEOREM 54. For all effective fences d withlimt→∞ d(t) = ∞ and for j ≥
2 we have

qr ( j )+1 · (q − q1− j )min{ j−1,r ( j )−1} · ϕmax{r ( j )− j, 0}
j

≤ A(q)0|d(1 j )

A(q)0|d(1 j−1)

≤ qmin{r ( j )+ j, 2·r ( j )} · ϕmax{r ( j )− j, 0}
j ,

whereϕ j = ϕ(q)j is given by Definition 19.

Proof. For r ( j ) ≤ j the theorem follows from Lemma 53, taking into
account that due to Theorem 46 the first step after� j−1 amounts to a factor
of q2.

We may thus assumer ( j ) > j and we show by induction oni that

A(q)0|d(1 j−1+ 2i )

A(q)0|d(1 j−1)
≥ qi+1 · (q − q1− j ) j−1 · ϕi− j

j for j ≤ i ≤ r ( j ).

The casei = j follows by the argument above. Forj < i ≤ r ( j ) and 1≤ τ ≤ j
we deduce by similar arguments that

A(q)0|d(1 j−1+ 2i − 2τ )

A(q)0|d(1 j−1)
≥qi−τ+1 · (q − q1− j )i−τ−1

=qi−τ+1 · (q − q1− j ) j−1 · (q − q1− j )i−τ− j .

Sinceq − q1−j ≤ ϕ j by Lemma 20(i), it follows that fori − τ < j we obtain

A(q)0|d(1 j−1+ 2i − 2τ )

A(q)0|d(1 j−1)
≥ qi−τ+1 · (q − q1− j ) j−1 · ϕi−τ− j

j ,
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whereas fori − τ ≥ j this inequality holds by induction hypothesis. Hence by
Theorem 45,

A(q)0|d(1 j−1+ 2i )

A(q)0|d(1 j−1)
= (q − 1) ·

j∑
τ=1

qτ · A(q)0|d(1 j−1+ 2i − 2τ )

A(q)0|d(1 j−1)

≥ (q − 1) ·
j∑

τ=1

qτ · qi−τ+1 · (q − q1− j ) j−1 · ϕi−τ− j
j

=qi+1 · (q − q1− j ) j−1 · (q − 1) ·
j∑

τ=1

ϕ
i−τ− j
j

=qi+1 · (q − q1− j ) j−1 · ϕi− j
j .

The last step follows from Definition 19. Puttingi = r ( j ) yields the lower bound
in the theorem.

For the upper bound (and stillr ( j ) > j) we first show that

A(q)0|d(1 j−1 + 2i )

A(q)0|d(1 j−1)
≤ qi+ j · ϕi− j

j for 1≤ i ≤ r ( j ).

For 1 ≤ i ≤ j this holds by Lemma 53 and the fact thatϕ j < q according to
Lemma 20(i). Forj < i ≤ r ( j ) we proceed by induction oni and Theorem 45
to obtain

A(q)0|d(1 j−1+ 2i )

A(q)0|d(1 j−1)
≤ (q − 1) ·

j∑
τ=1

qτ · qi+ j−τ · ϕi− j−τ
j

=qi+ j · ϕ− j
j · (q − 1) ·

j∑
τ=1

ϕi−τ
j

=qi+ j · ϕi− j
j ,

where we used Definition 19 in the last step. Puttingi = r ( j ) yields the upper
bound in the theorem.

THEOREM 55. Let d be an effective fence withlimt→∞ d(t) = ∞. For each
k ∈ we have

q − 1

q
· q1k/2+k ·

k∏
j=1

(q − q1− j )min { j−1,r ( j )−1} · ϕmax{r ( j )− j, 0}
j

≤ A(q)0|d(1k)

≤ q − 1

q
· q1k/2 ·

k∏
j=1

qmin{ j, r ( j )} · ϕmax{r ( j )− j,0}
j .
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Proof. We have11 = 2 · r (1) = 1 + card{t ∈ | d(t) = 1}, and from
Theorem 14(ii) we get fork = 1,

A(q)0|d(11) = A(q)0|1(11) = q11/2 · Fib(q)1 (11/2)= q11/2 · (q − 1)11/2

= q − 1

q
· q11/2+1 · ϕr (1)−1

1 .

For arbitraryk we proceed by induction and Theorem 54.

THEOREM 56. For every effective fence d withlimt→∞ d(t) = ∞ we have
the following bounds forµ∞( (q)

d ):

∞∏
j=1

(1− q− j )r ( j )−1 ≤
∞∏
j=1

(1− q− j )min{ j−1,r ( j )−1} ·
(
ϕ j

q

)max{r ( j )− j, 0}

≤µ∞( (q)
d )

≤
∞∏
j=1

(
ϕ j

q

)max{r ( j )− j,0}
≤
∞∏
j=1

(
1− q − 1

q j+1

)max{r ( j )− j, 0}
.

Proof. From Lemmas 49 and 50 we get

µ∞( (q)
d ) = q

q − 1
· lim

k→∞
A(q)0|d(1k)

q1k
.

The inner bounds now follow from Theorem 55 by lettingk→ ∞. The outer
bounds are obtained from Lemma 20(i).

LEMMA 57. If

U :=
∞∏
j=1

(
1− q − 1

q j+1

)max{r ( j )− j, 0}
> 0,

then

L :=
∞∏
j=1

(1− q− j )r ( j )−1 > 0.

Proof. First, max{r ( j )− j, 0} may be replaced byr ( j ) − 1, since

1>
∞∏
j=1

(
1− q − 1

q j+1

) j−1

≥
∞∏
j=1

(
1− 1

q j

) j−1

> e
−2·∑∞

j=1
( j−1)/q j

=e−2/(q−1)2 ≥ e−2.
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Furthermore, forq ≥ 2 and j ∈ we have

(1− q− j )−
(

1− q − 1

q
· q− j

)3

= 1− q− j − 1+ 3
q − 1

q
· q− j − 3

(
q − 1

q

)2

· q−2 j +
(

q − 1

q

)3

· q−3 j

≥ q− j ·
(
−1+ 3

q − 1

q
− 3

(
q − 1

q

)2

· q− j

)

≥ q− j ·
(

1

2
− 3(q − 1)2 · q−3

)
≥ q− j ·

(
1

2
− 3 · 4

27

)
> 0.

HenceL ≥ (U · e−2)3 > 0.

The following is the main result of this section. Compare this result with
Theorems 8 and 9 of Niederreiter (1988b), which were shown by the theory of
dynamical systems.

THEOREM 58. Let d be an effective fence. Then:

(i)
∞∑

t=1

q−d(t) <∞

(ii)
∞∑

t=1

q−d(t) = ∞

(iii) lim t→∞(d(t)− α · logq (t))

> −∞ for someα > 1

(iv) limt→∞(d(t)− logq (t)) <∞

⇔ µ∞( (q)
d ) > 0.

⇔ µ∞( (q)
d ) = 0.

⇒ µ∞( (q)
d ) > 0.

⇒ µ∞( (q)
d ) = 0.

Proof. (i) In view of Lemma 57, any bound from Theorem 56 may be used
to separate the casesµ∞( (q)

d ) = 0 andµ∞( (q)
d ) > 0. We use the lower bound

µ∞( (q)
d ) > 0 ⇔ log µ∞( (q)

d ) > −∞

⇔ log
∞∏

k=1

(
1− 1

qk

)r (k)−1

> −∞

⇔
∞∑

k=1

(r (k)− 1) ·
(
− 1

qk

)
> −∞

⇔
∞∑

k=1

(2 · r (k)− 1) · q−k <∞.
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Sincer (k) leads to 2· r (k) − 1 time steps whered(t) = k, we obtain

µ∞( (q)
d ) > 0⇔

∞∑
k=1

∞∑
t=1

d(t)=k

q−d(t) <∞⇔
∞∑

t=1

q−d(t) <∞.

(ii) is equivalent to (i).
(iii)

∑∞
t=1 q−d(t) ≤ C ·∑∞t=1 q−α·logq (t) = C ·∑∞t=1(1/t

α) <∞ for some
C > 0. The result follows from (i).

(iv)
∑∞

t=1 q−d(t) ≥ C ·∑∞t=1 q− logq (t) = C ·∑∞t=1(1/t) = ∞ for some
C > 0. The result follows from (ii).

EXAMPLE 59. We shall now obtain measure bounds for the fences defined by
the functionsd(t) = 1+blog2 (t)c andd(t) = 1+2·blog2 (t)c ≤ 1+b2·log2 (t)c
in the caseq = 2 (cases (iv) and (iii) in Theorem 58, respectively).

(i) Let d(t) = 1+ blog2 (t)c with q = 2. Then by Theorem 58(iv)

µ∞( (2)
d ) = 0.

(ii) We let d(t) = 1+ 2 · blog2 (t)c with q = 2. The canonical fence now
contains a widthk for every evenk, andk = 1 exactly once, and the oddk = 2j
+ 1, k ≥ 3, occur 2j − 1 times. Thus

µ∞( (2)
d ) = :µ ≥

∞∏
j=1

(
1− 1

22 j+1

)2 j−1−1

.

Since log(1− ε) ≥ −ε/(1− ε) and hereε ≤ 1
8, we may bound by log(1− ε) ≥

−8
7 · ε. Therefore

log µ ≥ −8

7
·
∞∑
j=1

2 j−1− 1

22 j+1 = − 2

21
.

The measure thus is at leaste−2/21≈ 0.909 . . . > 0.
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