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Abstract 

The increasing availability of very high resolution (VHR) remote sensing images has been leading to new 
opportunities for the cartography of landslides in risk management and disaster response.  Object-oriented image 
analysis has become one of the key-concepts to better exploit additional spatial, spectral and contextual information. 
The multitude of additional object attributes calls for the use of advanced data mining and machine learning tools to 
identify the most suitable features and handle the non-linear classification task. In this study we used the Random 
Forest algorithm for the selection of useful features and object classification in the context of landslide mapping. A 
workflow for image segmentation, feature extraction, feature selection and classification was developed and tested 
with multi-sensor optical imagery from four different test sites. Due to class imbalance and class overlap between 
landslide and non-landslide areas the classifier can be heavily biased towards over- and under-prediction of the 
affected areas. This is a common issue for many real-world applications and a procedure to estimate a well-adjusted 
class ratio from the training samples was designed and tested.  A number of potentially useful object metrics was 
evaluated and it was demonstrated that topographically guided texture measures provide significant enhancements. 
Employing 20 % of the image objects for training accuracies between 73.3 % and 87.1 % were achieved at four 
different test sites.  
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1. Introduction

Comprehensive landslide inventories are the most commonly used source for quantitative landslide 
hazard and risk assessment at regional scales (van Westen et al. 2006). Manual interpretation of aerial 
photographs and field work to date remains the most frequently followed approach for the elaboration of 
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inventory maps in scientific studies and by administrative bodies. Despite its time-consuming and “labor- 
intensive” nature, however, results still include a large degree of subjectivity and may vary considerably 
among different experts (e.g. Galli et al. 2008). 

A number of recent events in China (2008), Italy (2009), Haiti (2010), and Brazil (2011) illustrate the 
short-term availability of comprehensive VHR satellite images and strongly contrast the lack of reliable 
machine-aided mapping workflows. Previously proposed workflows for the analysis of optical data 
largely focused on the signals of individual pixel (e.g. Borghuis et al. 2007; Nichol and Wong 2005). 
More advanced object-oriented methods can make use of a manifold of additional image features such as 
texture, shape, topography and spatial context but proposed approaches rely on a the manual selection of 
suitable features and hard coded thresholds for object classification (Barlow et al. 2006; Lu et al. in press; 
Martha et al. 2010).  Based on samples, image segmentation and the Random Forest (RF) (Breiman 2001) 
algorithm this study targeted the elaboration and testing of a workflow for feature selection and classifier 
training for landslide mapping on images from variety of state-of-the-art optical sensors. 

2. Data and Methods 

The analysed VHR imagery comprised an aerial 
photograph, IKONOS, Quickbird and Geoeye-1 of 
recently affected sites at Haiti, China, Italy and and 
France, respectively (Figure 1). Topographic datasets 
were available from various sources and resampled 
to a resolution of 10m to ensure consistency. 
Reference data were available through landslide 
inventories obtained from a careful interpretation the 
VHR remote sensing datasets by experts and all 
except the Haiti inventory were validated through in 
the field.  

The multi-resolution segmentation algorithm 
(Baatz and Schäpe 2000) in eCognition 8.64 was 
used for image segmentation. An increase in the 
algorithm’s scale factor corresponds to coarser image 
segmentation with larger, more heterogeneous 
objects and we tested 15 scale factors between 10 
and 100. At each scale 96 object attributes, including 
color, texture, shape and topographic derivatives, 
were calculated. An initial screening for generally 
useful object-metrics was carried out taking into 
account all landslide objects (OLS) and an equal amount of randomly sampled non-landslide objects 
(ONLS). For each test site and scale the respective populations were analysed in a RF-based feature 
selection approach described in Diaz-Uriarte and Alvarez de Andres (2006). 

In a subsequent step a scenario with 20% of the data available for training was simulated in order to 
investigate the achievable classification accuracies. Due to the combined effects of class-overlap and 
class-imbalance classifiers can be heavily biased toward one of the classes (e.g. Denil and Trappenberg 
2010). In the present study this would have caused an undesirable under- or over-estimation of the 
affected areas, if the original class-balance or an equally resampled class- balance would have been used, 
respectively. To account for such effects a procedure for the iterative estimation of class errors from 
subsets of the training sample was implemented and tested. Initially 20% of the data were sampled for 

Figure 1: Analysed subsets at the different test sites. a)
Momance River (Haiti) b) Wenchuan (China), c) Messina
area, (Italy) d) Barcelonnette basin (France). White outlines
indicate the landslide areas. 
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training from the entire populations. This training sample (Tr) was then again split repeatedly into 
training (Trsub) and testing subsets (Tesub) with iteratively increasing class-imbalances. In each cycle 20% 
of the OLS and a stepwise increasing portion of ONLS is sampled randomly and with replacement from Tr 
into Trsub. Starting from a Trsub with a balanced ratio of OLS and ONLS ( i =1) a RF is trained and tested on 
the remainder subset Tesub. In each following the ratio i was increased ( i +0.1) by sampling more ONLS 
into Trsub. The underlying assumption was that a class ratio that provides a balanced error rate among 
subsets of the training data (further termed n) would also enhance the error balance for the entire 
population. To test the efficiency of this approach ONLS in the original training sample Tr was 
undersampled according to n, the adjusted sample was used to train a RF and the classification error was 
assessed on the previously unseen 80% of the data. In an additional step entire training sets Tr were 
repeatedly sampled with altering class-balances to investigate if the estimated classification accuracies 
and learning curves were representative were representative for different subsets of the data. 
 
3. Results and discussion 

3.1. Feature selection 

 Color, topographic variables and topographically guided versions 
of Haralick’s original texture measures (Haralick 1973) were 
ranked with a high variable importance at all test sites and 
segmentation scales. On average only about one third of the pre-
selected metrics were detected as useful. The ranking of less 
important features, and especially the overall selected number, 
varied considerably among the different test sites and 
segmentation scales (Figure 2). The inclusion of shape metrics 
yielded very little accuracy enhancements. At larger segmentation 
scales they added some discriminant power but could not 
compensate a loss of fidelity that was observable for other 
features such as topographic variables. A RF classifier trained 
with 20% of all OLS and an equal number of ONLS yielded higher 
accuracies in the classification of unseen image objects if a 
reduced feature space was adopted (results not shown here). This 
was observed for all test sites and a representative subset of tested 
segmentation scales. 

 
3.2. Estimates of optimal class-balance n  from the training 
samples Tr 

 
For all cases we observed a strong over-prediction of landslide 
areas if a class-balanced training sample ( i=1) was employed, 
and a strong under-prediction if the natural class-balance was 
used for the training. The iterative procedure described in section 
2 was useful to monitor the effects of the changing i on the 
user’s and producer’s accuracies that the RF achieved with 
subsets (Trsub, Tesub) of the training data (Figure 3). Subsequently, 
Tr (20% of all objects) was adjusted according to the estimated n 
by under-sampling the ONLS. Although, n estimates did not solve 

Figure 2: Feature selection history at the four
test sites with the smallest segmentation scale.
The out-of-bag (OOB) error is an error
estimate intrinsic to the Random Forest
approach (see Breiman 2001).  The black dot
indicates the variable combination with the
smallest OOB error. Boxplots indicate the
variability of the number of selected features
among all 15 segmentation scales.
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the problem entirely they provided a significantly better balance between user’s and producer’s accuracies 
(Table 1) than could have been achieved with the natural class distribution or equally balanced training 
samples. The overall accuracy in terms of area and the balance of error rates was generally better with 
smaller scale factors leading to a finer segmentation. 

 

 
3.3. Stability of the classification accuracy and impacts of scale, sample-balance and sample-size 

 
To this point we already demonstrated that, with small segmentation scales and 20% of labeled data, the 
RF classifier can efficiently distinguish objects representing landslide affected areas. Furthermore, 
through an iterative resampling of the training data it is possible to approximate balanced errors of 
commission and omission. To further explore the limits of the proposed method a second experiment was 
conducted. Unlike previously not only one, but several sets training set Tr were repeatedly sampled form 

 
Scale n ( o) 

user's
accuracy

producer's
accuracy

Farea Fobj n-adjusted training sample

 OLS O LS   
%  all 
objects 

Haiti 
10 3.0 (5.8)  0.888 0.857 0.871 0.897 4512 13536 11.7 
30 2.3 (4.2) 0.828 0.871 0.849 0.883 564 1297 12.8 
70 2.6 (4.0) 0.885 0.724 0.796 0.885 149 387 14.3 

Wenchuan 
10 2.7 (3.4) 0.813 0.811 0.812 0.805 6535 17645 17.0 
30 2.5 (3.0) 0.812 0.771 0.791 0.803 570 1425 17.4 
70 2.0 (2.6) 0.777 0.753 0.765 0.799 125 250 16.5 

Messina
10 1.8 (4.2) 0.729 0.746 0.737 0.730 6135 11043 10.8 
30 1.9 (4.1) 0.690 0.609 0.647 0.592 663 1260 11.3 
70 1.9 (3.7) 0.643 0.598 0.620 0.605 125 238 11.9 

Barcelonnette 
10 4.7 (9.5) 0.778 0.780 0.779 0.765 1810 8507 10.8 
30 5.5 (11.5) 0.747 0.759 0.752 0.674 237 1304 10.1 
70 4.9 (12.1) 0.633 0.886 0.733 0.653 46 226 8.9 

Figure 3: Estimates of the class balance ( n)
that lead to a balance of the mean user’s
(dashed black line) and mean producer’s
accuracies (solid black line) from iterative
resampling of Tr into subsets. For each ratio
value  the resampling of Tr into Trsub and
Tesub was repeated ten times. Each time a RF
classifier was trained and tested and the
mean accuracies for each  were calculate as
the average over all replication runs (n=10).
The grey margins show the corresponding
standard deviations. For learning curves with
high variance (Barcelonnette at a scale 30,
all at a scale of 70) additional figures from
250 replicate runs (n=250) are presented. 

Table 1: Accuracy assessment for all test sites at three exemplary segmentation scales. RFs (ntrees = 500), trained with 20% of the 
landslide objects (OLS) and n -fold amount of non-landslide objects (O LS  ) were tested. The mean accuracies from 50 replicated 
runs are provided. o indicates the natural distribution of the classes. The F-measure is commonly defined as the harmonic mean 
of user’s and producer’s accuracy and can be calculated in terms of correctly classified objects (Fobjects) or area (Farea).  
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the entire population. For each Tr 20% of all OLS and a stepwise increasing -fold amount of ONLS were 
sampled from the entire population. Because each of the resulting training sets included different subsets, 
class-balances and overall numbers of objects (depending on class balance and scale) they could be used 
to analyze the overall sensitivity of the RF classifier to combined effects of those changes. 

The graphs in Figure 4 show the results of all simulations with increasing class-imbalances and hence 
overall object number in the training sample. For a small scale factor (10) the learning curves for the 
entire population are shown and reproduce the same -ratios as previously estimated on the training data 
(Figure 3). However, at larger scales the n-estimates increasingly deviated from the ratios that would 
have actually led to balanced error rates. The increasing uncertainties must be attributed to the strongly 
reduced amount of the training objects at larger scales (resulting from an increased object size). For the 
Barcelonnette dataset for example a scale of 70 corresponds to an overall number of 3066 objects, 
consequently a training set of 613 objects, and hence training subsets of only about 18-75 for the 
estimation of . 

The overall accuracy of the classification can be measured in terms of correctly classified objects 
(Table 1, Figure 4, Fobjects ) and correctly classified area (Table 1, Figure 4, Farea ). For the Haiti and 
Wenchuan test sites Figure 4 shows an efficient and relatively stable performance of the RF classifier, 

which is indicated by high Fobjects and relatively little dependencies on the segmentation scale and the 
amount and composition of training data. At both test sites Farea generally decreased for larger scales, 
which has to be attributed to an increasing mismatch of the image segments with the reference 
inventories. On the other hand, at the Messina and Barcelonnette test sites both the classifier performance 
and the areal accuracy decreased with larger scale factors. The decrease in the absolute object number at 

Figure 4: Stability of the 
classification accuracy 
depending on the class-
balance, the percentage of
training data, and the 
segmentation scale. The arrow 
indicates the -value 
previously estimated from the 
training sample. The F-
measure is commonly defined 
as the harmonic mean of user’s 
and producer’s accuracy. The 
vertical scattering of blue dots 
(Fobjects ) provides an indicator 
of the sensitivity of the 
classifier. The brown dots 
indicate the areal (Farea) 
accuracy and combine effects 
of segmentation and 
classification. Due to an 
increasing ratio of ONLS ( ) in 
the training sample the overall 
percentage of data used for 
training increases as well. The 
increase is indicated by the 
increasing bars at the bottom 
of the graphs for the three 
different scales, respectively. 
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with larger scales is similar as for the two other test sites (compare Table 1) and hence, the decreasing 
classifier performance must be rather attributed to a stronger class overlap in Messina and Barcelonnette 
datasets. This is also reflected by generally lower accuracies, and apparently increases with higher intra-
segment heterogeneity at larger scales. 

Unsurprisingly, adding further ONLS to the training sample led in all cases to an increase in the overall 
accuracy. However, the trend saturated relatively quickly after balanced error rates were reached. In a 
real-world scenario the costs for the collection of further ONLS may not be justified beyond that point. In 
summary, the RF classifier provided relatively high accuracies of up to 87% for the Haiti and Wenchuan 
test sites, while in the case of Messina the best model reached an accuracy of 73% (Figure 4, Table 1). 
Small segmentation scales and an availability of labeled training data in the range of 20% of the entire 
dataset led to a stable and efficient classification at all tested sites. Less training data might be sufficient 
as long as color, texture and morphology of the landslides are relatively unique within a given area, but 
for a more complex scene (Barcelonnette, Figure 4) we observed serious degradations of the results of if 
less than 10% of the data was employed for training.   

4. Conclusion and future directions 

Several factors such as the scene characteristics, selected object-metrics, class-imbalance and -overlap 
and the amount of available training data influence the correct recognition of landslide affected areas. We 
found that RF-based feature reduction enhanced the classifier performance in terms of accuracy and 
speed. Additional object-metrics, such as texture and auxiliary topographic data, are capable of 
considerably reducing the confusion among classes. Balanced error rates are desirable for landslide 
inventory mapping because over- or under-prediction of affected areas would lead to systematic over- and 
under-estimation of the hazard. A procedure to estimate the optimal class balance from the training 
sample was proposed in this study and demonstrated to enhance the balance of user’s and producer’s 
accuracy significantly.  

Achieved accuracies are in a similar range as the results of other recent studies on landslide mapping 
from optical imagery (Barlow et al. 2006; Lu et al. in press; Martha et al. 2010). Though the quantities of 
employed samples are not always explicitly mentioned (Barlow et al. 2006; Borghuis et al. 2007; Nichol 
and Wong 2005), most proposed solutions depend on the availability of some sort of training area to 
adjust the method. Once samples are provided, the workflow elaborated in this study has the potential to 
run fully automated with different image types, and liberates the user from the selection of appropriate 
features and thresholds. 

Although the particular performance of the presented supervised framework will vary for different 
ground conditions and input datasets, the robust performance of the workflow in the tested cases raises 
confidence in its utility of landslide mappings on regional scale. One key point for future work in this 
direction is certainly the consideration of user interaction, which should involve techniques such as pre-
clustering and active learning. Recently it has been demonstrated that active learning methods can help to 
reduce significantly the number of necessary training samples (e.g. Tuia et al. 2009), and there is still 
room for an improved consideration of the spatial context in such methods. 

Further observations (not presented here) indicate that the predictive power of different features varies 
depending on the segmentation scale, and hence further improvements might possible by considering 
evidence hierarchically among different scales. The presented technique is especially suitable for high-
dimensional data sets and would certainly benefit from further image features (e.g. steerable filters) and 
additional data (e.g. multi-temporal datasets).  
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