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The spatial restriction of phosphorylated phosphoinositides generated downstream activated mem-
brane receptors is critical for proper cell response to environmental cues. The a isoform of class II
PI3Ks, PI3K-C2a, has emerged as a modulator of receptor localization, acting both in the control
of receptor endocytosis and resensitization. This unexpectedly versatile enzyme was found to differ-
entially produce two distinct 3-phosphorylated phosphoinositides and to selectively control distinct
steps of vesicular traffic such as endocytosis and recycling. This review focuses on the latest discov-
eries regarding PI3K-C2a function in vesicle trafficking and its impact on cell biology and mam-
malian embryonic development.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Class II PI3Ks: PI3K family members emerging from neglect

Phosphoinositide-3-kinases (PI3Ks) are lipid kinases involved in
a large set of biological processes, including membrane receptor
signaling, cytoskeletal organization and vesicle trafficking [1].
PI3Ks catalyze the phosphorylation of phosphoinositides (PtdIns),
lipid moieties derived from the modification of phosphatidylinosi-
tol, a basic constituent of plasma and internal membranes that can
be reversibly phosphorylated at positions 3, 4 and 5 of its inositol
ring. The combination of these modifications results in the gener-
ation of seven phosphoinositide species, each specifically enriched
in a different cellular compartment and selectively involved in
determination of membrane identity and propagation of intracel-
lular signals [2].

The conserved family of PI3Ks counts 8 isoforms, each one able
to phosphorylate the 3rd position of the inositol ring. Within the
PI3K family, 3 different classes (named class I, II and III) can be rec-
ognized. Grouping is based on protein homology and enzyme affin-
ity for specific phosphoinositide substrates. PI3Ks catalyze 3
reactions: PtdIns ? PtdIns(3)P; PtdIns(4)P ? PtdIns(3,4)P2 and
PtdIns(4,5)P2 ? PtdIns(3,4,5)P3, but each class has preferential
substrates due to structural differences in the lipid binding domain
of the catalytic pocket (Fig. 1) [3,4]. Class I PI3Ks (PI3Ka, PI3Kb,
PI3Kc and PI3Kd) catalyze the production of PtdIns(3,4)P2 and
PtdIns(3,4,5)P3 in vivo. These lipids are known as crucial second
messengers activating signal transduction of extracellular stimuli
upon engagement of both tyrosine kinase and G-protein coupled
receptors at the cell membrane. Class II PI3Ks (namely, PI3K-C2a,
PI3K-C2b, PI3K-C2c) are able to generate PtdIns(3)P and
PtdIns(3,4)P2 in vivo and to take part in both signal transduction
and vesicle trafficking [4]. Finally, the unique member of class III,
PI3KC3, has been recognized as the major source of PtdIns(3)P in
the cell, controlling the endosomal sorting of internalized receptors
and autophagy [5]. In general, class I and III PI3K play an essential
role in regulating tissue homeostasis and are implicated different
pathologies including cancer, inflammation, diabetes, Alzheimer’s
disease [5–8]. However, recent work highlights the important
function of class II PI3K in mouse development and angiogenesis
[9,10] identifying a non-redundant role for these proteins during
embryogenesis.

The three class II PI3Ks paralogues found in mammals evolved
from a primordial ancestor appearing in Caenorhabditis elegans
and Drosophila [11–13]. PI3K-C2a and PI3K-C2b show ubiquitous
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expression in mammalian tissues, while PI3K-C2c is restricted to
liver, pancreas and kidney [14,15]. Class II PI3Ks are involved in a
multitude of different, and apparently unrelated, processes and
their specific function in the cell is still incompletely understood.
However, recent genetics and biochemical studies have pointed
out non-redundant roles of the a isoform of class II PI3Ks
[9,10,16]. These studies show that PI3K-C2a is involved in different
signaling pathways and is required for the production of PtdIns3P
and PtdIns(3,4)P2 in specific subcellular compartments. These
products are critical regulators of membrane dynamics and such
findings start to shed light on how PI3K-C2a influences vesicle
dynamics and consequent compartmentalization of signaling com-
plexes [9,10,17,18]. This review thus provides an overview of the
different functions of PI3K-C2a, particularly focusing on the
involvement of this enzyme in membrane trafficking events
(Fig. 1).

2. Localization and activation of PI3K-C2a

Modulation of PI3K-C2a localization and activation has been
reported to depend on a plethora of different receptors including
tyrosine kinase receptors, such as Insulin Receptor (IR) [19,20],
EGFR [21], TGFbR [17], VEGFR [10], as well as G-protein coupled
receptors such as, S1-P [22], and CXCR2 [23]. PI3K-C2a subcellular
distribution is accordingly widespread and with the enzyme being
found not only on the plasma membrane but also on the Golgi and
on different endosomes ranging from early endosomes to vesicles
of the recycling compartment. Such broad distribution pattern
likely arises from a modular protein structure, containing multiple
domains involved in protein–protein and protein–lipid interac-
tions, such as the N-terminal clathrin-binding, the Ras-binding,
two C2, one helical, one kinase and one C-terminal PX domain
(Fig. 2) [9,10].

Different studies highlight the function of specific domains in
PI3K-C2a recruitment to the plasma membrane. For example, the
N-terminal unstructured region shows sequence similarities with
the clathrin interactor protein AP-3 b3A [24]. Accordingly, the first
144 aminoacids of the protein are able to directly interact with
RBD C2 HelicalCBR

Fig. 2. PI3K-C2a domains composition. Schematic representation of PI3K-C2a and
clathrin [24]. However, deletion of the same region does not com-
pletely suppress PI3K-C2a binding to clathrin, indicating the pres-
ence of other motifs contributing to this interaction [25]. Notably,
PI3K-C2a/clathrin binding modifies PI3K-C2a substrate preference,
increasing the ability of this enzyme to generate PtdIns(3,4)P2 and
PtdIns(3,4,5)P3 [24]. However, the same phenomenon cannot be
observed in vivo [26] and, at the moment, the unique products
identified for PI3K-C2a are PtdIns(3)P and PtdIns(3,4)P2 [9,10,16].

At the C-terminal region, PI3K-C2a presents a PX-domain. This
is a phosphoinositide-binding domain involved in targeting of pro-
teins to cell membranes [27]. The crystal structure of the PI3K-C2a
PX domain shows that membrane binding is initiated by
non-specific electrostatic interactions with the lipid moiety fol-
lowed by membrane penetration of hydrophobic residues [28].
This insertion is enhanced in presence of PtdIns(4,5)P2, the most
abundant phosphoinositide of the plasma membrane [2].
Whether PI3K-C2a binding to PtdIns(4,5)P2 has an impact on the
regulation of protein localization to plasma membrane or enzy-
matic activity in vivo remains to be addressed.

Although the function of the Ras binding, C2 and helical
domains of PI3K-C2a have not been elucidated yet, some aspects
of the biological functions of these regions can be inferred by the
analyses of other PI3K family members. The Ras binding domain
is a common feature of class I and class II PI3Ks [1]. In class I
PI3Ks the Ras binding domain recognizes the activated form of
Ras and allows the plasma membrane recruitment and activation
of PI3Ks after stimulation [29,30]. While class I are considered
Ras effectors, the Ras binding domain of PI3K-C2b was observed
to bind the nucleotide-free form of Ras. This interaction results
in the inhibition of PI3K-C2b lipid kinase activity, indicating that
class II PI3Ks cannot be considered downstream effectors of Ras
[31]. Nonetheless, binding of PI3Ks to small GTPases is observed
in multiple contexts [32]. For example, PI3K-Cb and PI3K-C3 are
Rab5 effectors, which are recruited and activated in endosomes
[33,34]. In addition, the Drosophila homologue of PI3K-C2a inter-
acts with Rab21 [35]. These studies, together with the finding that
PI3K-C2a localizes to internal membranes like Golgi or recycling
compartments, suggests that members of the Rab protein family
are critical determinants of PI3K-C2a localization.

C2 domains of PI3K-C2a present low affinity for phosphoinosi-
tides [28], thus suggesting that these lipids are not their preferen-
tial interactors. Identification of protein-binding partners of
PI3K-C2a C2 domains can be useful to understand PI3K-C2a func-
tion. In agreement, The C2 domain of class I PI3K was shown to
interact with the iSH2 of p85a subunit to negative control the lipid
kinase activity [36]. The same approach can also be used to study
the regulation of PI3K-C2a by the helical domain. For example
the helical domain of class I PI3K was observed to interact with
beta adrenergic receptor kinase (bARK) and to mediate beta adren-
ergic receptor (bAR) sequestration, as well as subsequent receptor
desensitization [37].

PI3K-C2a share sequence similarities in the activation loop of
the kinase domain with class I and III PI3K members, conferring
the ability to generate three different phosphoinositides.
Accordingly PI3K-C2a recognizes Ptdins, Ptdins(4)P and
Ptdins(4,5)P2 as a substrates to generate Ptdins(3)P, Ptdins(3,4)P2

and Ptdins(3,4,5)P3, in vitro [38,39]. Point mutations in the activa-
tion loop of the kinase domain confer substrate selectivity in vitro,
which can be exploited to analyze the in vivo role of the PI3K-C2a
generated lipids [16,39].
PX C2Kinase

its functional domains. CBR Clathrin binding region, RBD Ras Binding domain.



1554 C.C. Campa et al. / FEBS Letters 589 (2015) 1552–1558
3. PI3K-C2a in endocytic traffic

PtdIns(3,4)P2 represents a minor constituent of cell membranes
that is produced through the dephosphorylation of PtdIns(3,4,5)P3

by the lipid phosphatases SHIP, SYNJ and INPP5 or by the phospho-
rylation of PtdIns(4)P by class I and II PI3Ks (Fig. 1). PtdIns(3,4)P2 is
enriched in the plasma membrane but its levels reaches only 2–5%
of those of PtdIns(4,5)P2 [40].

Reduction of PI3K-C2a abundance induces a decrease in
PtdIns(3,4)P2 that causes mislocalization of endocytic route mark-
ers, such as the transferrin receptor [24]. This broad alteration of
endocytic markers underlines a critical role of PI3K-C2a in endocy-
tosis. Accordingly, changes in phosphoinositide membrane compo-
sition are known to represent key events required for regulated
vesicle internalization. In particular, abundant PtdIns(4,5)P2 on
the plasma membrane allows the recruitment of the AP2 complex,
which in turn initiates clathrin basket assembly. However, a com-
plex maturation process is required to condition the membrane of
clathrin-coated vesicles in order to allow homotypic fusion
between early endosomes. During this maturation the majority
of PtdIns(4,5)P2 present on endocytic vesicles is converted into
PtdIns(3)P [41]. This process requires the intervention of several
kinases and phosphatases. A known player is INPP5E, which is able
to convert PtdIns(4,5)P2 into PtdIns(4)P (Fig. 1). Consistently,
depletion of this phosphatase decreases TfR internalization rate
[42]. Similarly, down-modulation of INPP4A (type I a
PtdIns(3,4)P2 4-phosphatase), a Rab5 GTPase effector, controls
the local enrichment of PtdIns(3)P in the nascent endosome [43].
On the base of these findings, a PI3K activity is required to convert
INPP5E-produced PtdIns(4)P into a transient pool of PtdIns(3,4)P2,
which is finally degraded into PtdIns(3)P by INPP4A (Fig. 1).
Time-lapse microscopy shows that PI3K-C2a is recruited to
clathrin-coated pits (CCP) immediately after their formation.
Here, this enzyme produces a PtdIns(3,4)P2 pool necessary to allow
SNX9 binding to the neck of the forming vesicle. This event pro-
motes the formation of a complex containing dynamin, a GTPase
involved in the fission of newly formed vesicles, thus promoting
maturation of CCP into vesicles (Fig. 3). Interestingly, a PI3K-C2a
mutant that has lost the ability to produce PtdIns(3,4)P2, but
retains the capacity to produce PtdIns(3)P, is unable to restore
CCP maturation in cells where the PI3K-C2a gene (Pik3c2a) is
down-regulated by RNA interference. This conclusively demon-
strates that PI3K-C2a-mediated production of PtdIns(3,4)P2 is
needed to recruit the machinery necessary to clathrin dissociation
and maturation of vesicles into early endosomes [16].

PI3K-C2a activity is also involved in dynamin-independent
endocytosis [44]. However, the underlying mechanism is currently
unknown. Dynamin-independent endocytic processes involve
small GTPases, such as RhoA, CDC42 and Arf6, to regulate mem-
brane invagination, elongation and vesicle scission [45,46]. These
small GTPases exert their function by controlling actin cytoskele-
ton dynamics [45]. Interestingly, the activity of RhoA has been
found to be regulated by PI3K-C2a [10,47]. It is thus tempting to
speculate an involvement of PI3K-C2a in dynamin-independent
endocytosis via small GTPase regulation.

Defects in the endocytic traffic cause reduced internalization of
activated membrane receptors [48]. Consequently, proper receptor
resensitization and signal transduction result impaired [49,50]. In
agreement, PI3K-C2a depletion is associated with multiple dys-
functions in different signaling routes [51]. For some of these, the
link between endocytosis and signaling defects has been revealed.
Several examples have been found in endothelial cells, where
PI3K-C2a appears as a converging point mediating different signal-
ing routes controlling cell viability, differentiation and migration.
PI3K-C2a is required for internalization of vascular endothelial
growth factor (VEGFR2) [10] and sphingosine-1-phosphate (S1P1)
receptors [22]. As a consequence, formation of VEGFR2- and
S1P1-positive signaling endosomes is reduced in
PI3K-C2a-deficient cells with subsequent impairment in endothe-
lial cell response to these stimuli [10,22]. Pik3c2a-silenced cells are
also less sensitive to TGFb stimulation as a consequence of reduced
receptor internalization and association with its downstream
effector Smad anchor for receptor activation (SARA) on early endo-
somes [17]. In this situation, PtdIns(3)P normally accumulates in
early endosomes of Pik3c2a-silenced cells after TGFb stimulation.
On the contrary, TGFb signal transduction is specifically dependent
on PI3K-C2a-mediated production of PtdIns(3,4)P2 at the plasma
membrane (Fig. 3) [17].

A similar involvement of PI3K-C2a-derived PtdIns(3,4)P2 has
been registered in insulin signalling [19]. PI3K-C2a is specifically
engaged downstream of the IRb receptor in pancreatic b cells.
Clustering of PI3K-C2a around insulin-bound IRb results in local
production of PtdIns(3,4)P2 and activation of a specific pool of
Akt (Akt1), which in turn propagates the insulin transduction cas-
cade [19]. Although this work does not address the effect of
PI3K-C2a activity on IRb internalization, it provides evidence for
membrane compartmentalization as a mechanism ensuing
isoform-specific roles of different PI3Ks in insulin signaling. The
involvement of PI3K-C2a in many other signaling pathways has
been still elusive, but is possible that PI3K-C2a-dependent mecha-
nisms of receptor internalization may allow the control of a broad
range of signaling pathways involved in cellular responses.

4. PI3K-C2a in exocytic traffic

Despite the mentioned evidence for PI3K-C2a-mediated
PtdIns(3,4)P2 production, depletion of Pik3c2a also induces reduc-
tion of PtdIns(3)P level in cells [10,52]. PtdIns(3)P is the main
determinant of endosomal compartment identity [2]. This lipid
specifically labels endosomal membranes and works as a platform
to recruit membrane effectors that mediate endosome maturation,
sorting and motility [53].

In addition PtdIns(3)P is a positive and indispensable modulator
of autophagy [54]. To allow efficient degradation and recycling,
damaged or useless cellular components are enclosed into special
membrane compartments called auto-phagosomes before being
processed at the lysosome. Class III PI3K Vps34 is recognized as a
master regulator of autophagosome formation. Nonetheless, class
II PI3Ks a and b play an additive affect in generation of these mem-
brane compartments through PtdIns(3)P production. In particular,
they are responsible of at least half of the residual autophagosome
formation in Vps34-null mouse embryonic fibroblasts (MEFs) [55].
Involvement of class II PI3Ks in this process is supported also by
evidence in C. elegans. Here the class II ortholog, PIK-1, produces
an initial pool of PtdIns(3)P on nascent phagosomes. Vps34 then
intervenes on the same vesicles by producing an additional
amount of PtdIns(3)P which is necessary for further organelle mat-
uration [56].

Class II PI3K-dependent PtdIns(3)P has specific functions also in
endosomal sorting towards plasma membrane. The Drosophila
class II member and PI3K-C2a homologue, Pi3k68D, is involved
in protrusion formation in hemocytes, by the endosomal control
of cell remodeling [35,57]. Pi3k68D produces PtdIns(3)P in the
endosomal compartment. This product is dephosphorylated to
PtdIns by the myotubularin phosphatase MTMR13 that is found
in a complex with Sbf, a pseudophosphatase with regulatory func-
tions (Fig. 1). This sequence of modifications is entirely required for
exit of endosomes from the endocytic compartment and sorting
towards the plasma membrane, where they contribute to protru-
sion formation. Among the effectors of this trafficking are Rab21
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and Rab11. Rab21, in particular, is thought to interact not only
with PtdIns(3)P but also with a Pi3k68D/Sbf/MTMR13 complex,
which favors its activation [35].

Intriguingly, PI3K-C2a exerts a similar function in mammals. In
MEFs, PI3K-C2a has been found to regulate Rab11 activation and
polarized trafficking of vesicles directed to the base of the primary
cilium [9]. This is a microtubule-based protrusion of the plasma
membrane that can be found on the apical side of almost all mam-
malian cells, but is absent in invertebrates. The primary cilium is a
compartmentalized organelle specialized in sensory function.
Structural components and signal transduction effectors are traf-
ficked in vesicles from the cytosol and exocyted in proximity of
the ciliary base [58]. Only selected proteins are allowed to enter
the ciliary compartment. Hence, the primary cilium is particularly
enriched for receptors and other components of the signaling
machinery. Since multiple signaling pathways important during
embryonic development rely on cilia for transduction, ciliary dys-
function dramatically affects embryogenesis [59]. Consistent with
a role of PI3K-C2a in this organelle, Pik3c2a-null embryos die at
midgestation and show signs of impaired Hedgehog (Hh) signaling.
This is due to defective accumulation of the Hh signaling effector
Smoothened (Smo) on the membrane of Pik3c2a-null cells. This
process requires the activation of Rab11, because only constitu-
tively active Rab11 is able to restore Hh signaling in
Pik3c2a-silenced cells (Fig. 3) [9].

Smo is a membrane receptor that traffics to the cilium following
different routes [60]. A pool of Smo is internalized from the plasma
membrane and crosses the Rab11 positive recycling compartment
before reaching the cilium [60,61]. Since PI3K-C2a has been shown
to affect internalization of membrane receptors such as TGFb and
VEGFR2 [10,17], it is possible to speculate a similar involvement
in Smo internalization. However two lines of evidence have been
provided against this hypothesis. First, transfection of the mutant
form of PI3K-C2a, able to produce only PtdIns(3)P but not
PtdIns(3,4)P2, in Pik3c2a-silenced cells is able to restore Smo
trafficking and Hh signaling [9]. This shows that
PI3K-C2a-mediated internalization via PtdIns(3,4)P2 is not
required in Hh pathway activation. A second evidence comes from
the use of the synthetic Smo agonist, SAG. SAG stimulation, differ-
ent from the endogenous ligand Sonic Hedgehog, is able to activate
Hh downstream targets without the need of Smo translocation to
cilia [62]. It is thought that Smo-mediated activation of down-
stream effectors takes place in an extra-ciliary location that still
awaits identification, and may involve the signaling endosome.
When Pik3c2a-depleted cells are stimulated with SAG they are able
to activate the Hh pathway even in the absence of Smo ciliary accu-
mulation [62]. The fact that PI3K-C2a exclusively interferes with
cilium-dependent Hh pathway reinforces the hypothesis that the
defect seen in Pik3c2a-deficient cells is due to impaired trafficking
of Smo to cilia. Thus, the role of PI3K-C2a in Hh signal transduction
appears to specifically rely on PtdIns(3)P production and subse-
quent Rab11 activation in the endocytic recycling compartment.
Nonetheless, given the function of the Rab11-positive recycling
compartment in vesicular trafficking of a broad number of cargo
proteins to the cilium, it is envisaged that PI3K-C2a-depletion
affects the ciliary targeting of a large number of ciliary proteins
besides Smo. For example, low levels of PI3K-C2a correlate with
impaired transport of Polycystin-2 to cilia (Franco et al., manu-
script in revision). Defective Rab11-mediated trafficking of struc-
tural ciliary proteins is thus consistent with morphological
defects of cilia observed in Pik3c2a-null cells.

Besides Rab11, PI3K-C2a has been shown to regulate the activ-
ity of several other GTPases involved in endosomal sorting. In
human endothelial cells (HUVEC), PI3K-C2a promotes RhoA, Rac
and Rap activation upon VEGF and S1P stimulation (Fig. 3)
[10,22]. FRET experiments localized RhoA activation in PtdIns(3)P
positive endosomes. In Pik3c2a-silenced cells, this process was
abolished, together with RhoA-dependent targeting of
VE-cadherin to tight junctions. Baso-lateral trafficking of
VE-cadherin is indispensable for endothelial cell maturation,
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tubule formation and vessel integrity. Consistently, loss of the
Pik3c2a gene in mouse has been reported to cause defective vascu-
logenesis that contributes to early embryonic lethality in the
mutant mice [10].

Another molecule that is defectively transported to the plasma
membrane after PI3K-C2a depletion is the glucose receptor GLUT4
[52]. In muscle cells, membrane delivery of GLUT4 occurs in
response to insulin stimulation. PI3K-C2a has been found to be
activated by insulin and to promote GLUT4 transport via
PtdIns(3)P production. Also in this case a small GTPase, TC10, has
been found to participate to the process. However, the small
GTPase TC10 works upstream and not downstream PI3K-C2a and
to promote this enzyme activation upon insulin stimulation [52].
Insulin-evoked pools of PtdIns(3)P on the endocytic compartment
are subsequently phosphorylated to PtdIns(3,5)P2 by the 5-kinase
PIK5 (Fig. 1) [18]. This lipid is necessary to define a subdomain of
the endocytic membrane that favors mTOR activation and, once
again, translocation of the protein complex to the plasma mem-
brane [18]. This is another example of a PI3K-C2a-initiated phos-
phoinositide cascade that finally culminates in
compartmentalized activation of signal transduction.

Finally, PI3K-C2a activity has been described in the late phases of
exocytosis of neurotransmitters [63] and insulin granules [64]. In
particular PI3K-C2a mediates fusion of exocytic vesicles with the
membrane. In neuroendocrine cells, the presence of PI3K-C2a has
been shown on secretory granules. Here, lack of PI3K-C2a-
mediated PtdIns(3)P production prevents the ATP-dependent prim-
ing phase of exocytosis [63]. The effect on exocytosis is due to
PI3K-C2a-dependent regulation of Synaptosomal-associated pro-
tein 25 (SNAP25) mediated vesicle fusion. PI3K-C2a is suggested
to promote correct SNAP25 proteolysis and function. However, if
PI3K-C2a directly participates in vesicle fusion needs further clarifi-
cation [64]. Similarly, whether these effects are a consequence of
reduced endocytosis and recycling is currently unknown.

A final route that is worth mentioning in respect to PI3K-C2a is
the biosynthetic pathway. Newly synthetized proteins cross the
Golgi apparatus and are finally enclosed in vesicles that depart
from the trans-Golgi network (TGN) directed to the plasma mem-
brane. At least two functional interactors of PI3K-C2a have impor-
tant functions in TGN-plasma membrane trafficking route, namely
clathrin and Rab11. Clathrin coated vesicles constantly detach from
the TGN membrane [65]. Interestingly, PI3K-C2a has been reported
at the TGN in a localization that overlaps with that of the clathrin
adaptor complex AP-1 [24,66]. Given the crucial role of PI3K-C2a
in clathrin-coated vesicles biogenesis at the plasma membrane, it
is easy to hypothesize a similar role at the TGN. However, direct
evidence is still lacking, and the presence of PtdIns(3,4)P2 or
PtdIns(3)P has never been reported at the Golgi [67]. On the other
hand, Rab11 localizes at the TGN and specifically drives vesicle
sorting from this location to the plasma membrane [68]. Notably,
this small GTPase has also been reported to orchestrate the traf-
ficking of Golgi proteins to the ciliary base in mammalian cells
[69–71]. Another player in polarized transport to cilia is the
Rab11 downstream effector Rab8 [72], which has also been found
mislocalized in Pik3c2a-null cells [9]. Given the presence of
PI3K-C2a at the Golgi [24,66], it is difficult to imagine that such
a high number of PI3K-C2a-connected processes take place with-
out the involvement of this enzyme. Further analyses are likely
to shed light on the underlying molecular mechanisms.

5. Conclusion

PI3K-C2a was first discovered in 1997 [38], but its function is
only now starting to emerge in all its complexity. PI3K-C2a is
involved in multiple roles encompassing primary cilium assembly,
Sonic Hedgehog signaling, angiogenesis and receptor-mediated
endocytosis. Differently from other PI3Ks that usually generate a
single lipid product in vivo, this functional versatility is apparently
achieved through the production, in selected cellular compart-
ments, of at least two distinct 3-phosphorylated phosphoinositide
moieties: PtdIns(3)P at the endosomes and PtdIns(3,4)P2 at the
plasma membrane. Whether the enzyme is indeed able to directly
generate these products is as yet debated. Classical experiments
with HPLC-based analytical methods identify PtdIns(3)P as the
most abundant, if not exclusive, PI3K-C2a product [9,10,16]. In
agreement, cells lacking PI3K-C2a do not evidence general changes
in PtdIns(3,4)P2 that can be detected by HLPC analysis. However,
re-expression in the PI3K-C2a-null background of the PI3K-C2a
mutant mimicking the Class III catalytic pocket, and producing
PtdIns(3)P only, cannot rescue the endocytic defect, indicating
PtdIns(3,4)P2 as a direct but highly localized product. This indicates
that production of PtdIns(3,4)P2 could be rather weak and perhaps
subjected to an intense turnover. However, the rescue experiment
demonstrates that PI3K-C2a is directly producing PtdIns(3,4)P2 at
least at the plasma membrane and that kinases that can produce
PtdIns(3,4)P2 from PtdIns(3)P like PIPKI or III are not involved
[73]. At this point a question remains as to whether PI3K-C2a
directly produces PtdIns(3)P in vivo. The combined action of lipid
kinases and phosphatases such as PI3K-C2a and INNP4, a inositol
polyphosphate 4-phosphatase, can control the generation and
hydrolysis of PtdIns(3,4)P2, and potentially promote PtdIns(3)P
production [74]. While the finding of complexes with a class II
PI3K coupled to PtdIns phosphatases supports this model [35], an
alternative possibility is that products of PI3K-C2a enzymatic
activity are determined by the relative abundance of different sub-
strates in the diverse locations where this protein accumulates. For
example, PtdIns(4)P is highly abundant at the plasma membrane
but scarcely represented in recycling endosomes [75].
Conversely, PtdIns is clearly not present at the plasma membrane
but it is easily detectable in different types of endosomal mem-
branes [75]. If the relative abundance of substrates dictates the
specificity of PI3K-C2a enzymatic activity, targeting of the enzyme
to discrete subcellular locations might result the key in controlling
the versatile functions of PI3K-C2a. The presence in the protein of
multiple and diverse interaction domains supports this view and
suggests that protein–protein and protein–lipid interactions
through the discrete involvement of selected regions of the protein
drive functional diversification. This implies that either membrane
composition or membrane-protein complexes can modulate
PI3K-C2a localization and perhaps its substrate selectivity. In line
with this view, the interaction of PI3K-C2a with clathrin is able
to modify not only the subcellular localization but also enzymatic
activity at least in vitro [24]. Whether this could occur in vivo is as
yet unclear and further cellular and biochemical studies, including
the long sought 3D structure of PI3K-C2a, are likely to solve these
issues and conclusively elucidate the function of this essential
enzyme.
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