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Abstract

For any finite Coxeter system(W, S) we construct a certain noncommutative algebra, the
so-calledbracket algebra, together with a family of commuting elements, the so-calledDunkl
elements. The Dunkl elements conjecturally generate an algebra which is canonically isomorphic
to the coinvariant algebra of the Coxeter groupW . We prove this conjecture for classical Coxeter
groups andI2(m). We define a “quantization” and a multiparameter deformation of our construction
and show that for Lie groups of classical type andG2, the algebra generated by Dunkl’s elements in
the quantized bracket algebra is canonically isomorphic to the small quantum cohomology ring of the
corresponding flag variety, as described by B. Kim. For crystallographic Coxeter systems we define
the so-calledquantum Bruhat representation of the corresponding bracket algebra. We study in more
detail the structure of the relations inBn-, Dn- and G2-bracket algebras, and as an application,
discovera Pieri-type formula in the Bn-bracket algebra. As a corollary, we obtain a Pieri-type
formula for multiplication of an arbitraryBn-Schubert class by some special ones. Our Pieri-type
formula is a generalization of Pieri’s formulas obtained by A. Lascoux and M.-P. Sch¨utzenberger
for flag varieties of typeA. We also introduce a super-version of the bracket algebra together
with a family of pairwise anticommutative elements, the so-calledflat connections with constant
coefficients, which describes “a noncommutative differential geometry on a finite Coxeter group” in
the sense of S. Majid.
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0. Introduction

The study of the small quantum cohomology ring of flag varieties of typeA was
initiated by Di Francesco and Itzykson [5], and completed by Givental and Kim [11]. Later,
results of [11] were generalized by Kim [14] to the case of flag varieties corresponding
to any finite-dimensional semi-simple Lie group. A more “geometric” approach to a
description of the small quantum cohomology ring of flag varieties was developed in as yet
unpublished lectures by Peterson [21]. A pure algebraic approach to the study of a small
quantum cohomology ring of flag varieties of typeA was developed in [7, 16]. A new
point of view on both classical and quantum cohomology rings of flag varieties of type
A has been developed in [8]. Namely, the cohomology rings in question were realized as
certain commutative subalgebras in some (noncommutative) quadratic algebras. The latter
quadratic algebra corresponding to the classical cohomology ring of flag variety of typeA,
has many interesting combinatorial and algebraic properties, e.g. it appears to be a braided
Hopf algebra over a symmetric group, see, e.g., [1, 18, 20]; its commutative quotient is
isomorphic to the algebra of Heaviside’s functions of hyperplane arrangements of typeA,
see, e.g., [15] and the literature quoted therein; the value of Schubert polynomials on Dunkl
elements in theAn-bracket algebra can be used to describe the structural constants for the
product of Schubert classes in the cohomology ring of the flag variety of typeAn [8].
The main algebraic problem related with the latter quadratic algebra is the following: Is
this quadratic algebra finite dimensional or not? The main combinatorial problem related
with the bracket algebraB E(An) is to find a combinatorial description, i.e. a “positive
expression” in the algebraB E(An), for the Schubert polynomials evaluated at the Dunkl
elements. It seems natural to raise a question: Does there exist for any Coxeter groupW a
certain algebra with properties similar to those for the algebraB E(An)?

In the present paper we are going to present partial answers to the questions stated
above. We introduce and study a generalization of the quadratic algebras from [8] to the
case of any finite Coxeter system(W, S). Our starting point is a remarkable result by Dunkl
[6] that the algebra generated by “truncated Dunkl operators” [6] is canonically isomorphic
to the coinvariant algebra of the Coxeter groupW . It is an attempt to construct a “quantum
coinvariant algebra” of a finite Coxeter group and find a “quantum” analog of Dunkl’s
result mentioned above, that were the main motivation for the present paper.

Let us say a few words about the content of our paper.
In Section 2we present a definition of bracket algebraB E(W, S), as well as that

of its super-versionB E+(W, S), corresponding to any finite Coxeter system(W, S). If
(W, S) is the Coxeter system of typeAn , the bracket algebraB E(W, S) coincides with the
quadratic algebraEn+1 introduced and studied in [8, 15], while the algebraB E+(W, S)

coincides with the quadratic algebraΛquadof [18], see also [1, 20]. We note that the algebra
B E(W, S), as well as thatB E+(W, S), is a quadratic one only if the Coxeter groupW
corresponds to a simply-laced semi-simple Lie group. In the case of a crystallographic
Coxeter system(W, S), exceptG2, we introduce a Hopf algebra structure on the twisted
group ring B E(W, S){W } of the algebraB E(W, S), and show that the latter algebra
satisfies a “factorization property”, seeLemma 2.1. As a corollary, for a crystallographic
Coxeter system(W, S), exceptG2, we obtain a decomposition of the bracket algebra
B E(W, S) into the tensor product of certain algebras corresponding to the connected
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components of the Dynkin diagram of the Coxeter system(W, S) after removing all the
simple edges. Our results may be considered as a partial generalization of the results
obtained in [9] for An-quadratic algebras.

In Section 3we describe two basic representations of the algebraB E(W, S), namely,
Calogero–Moser’s and Bruhat’s representations. The latter is a bridge between the algebra
B E(W, S) and the Schubert calculus on the Coxeter system(W, S).

In Section 4for any s ∈ S, we introduce Dunkl elements in the algebraB E(W, S),
denoted byθs , and prove that they commute with each other, seeTheorem 4.1. The
commutative subalgebra generated by Dunkl elements is the main object of our study.
We also remark that in the algebraB E+(W, S) the corresponding elementsθs , s ∈ S, are
pairwise anticommutative.

In Section 5we state a “classical version” of one of the main results of our paper,
namely, that for classical Coxeter groups andI2(m), the algebra generated by the Dunkl
elements is canonically isomorphic to the coinvariant algebra of the corresponding Coxeter
group, seeTheorem 5.1. We believe that the same result holds for any finite Coxeter
system. Our proof ofTheorem 5.1is based on explicit calculations in the corresponding
bracket algebras, and we hope to improve our techniques to cover other cases. More
specifically, using the defining relations in the algebraB E(Bn), we show that all power
sumsp2m := θ2m

1 + · · · + θ2m
n , m > 0, are equal to zero. Note that to show the equality

p4 = 0 in the algebraB E(Bn), n ≥ 2, we have to use the 4-term relations of degree four in
the algebraB E(Bn). However, in the algebraB E(Dn), n ≥ 4, the equalityp4 = 0 follows
only from quadratic relations.

In Section 6we construct a quantizationq B E(W, S) of our bracket algebraB E(W, S).
From Section 7we will assume that the Coxeter system(W, S) is a crystallographic

one. Under the assumption that(W, S) is a crystallographic, we construct a representation
of the quantized bracket algebraq B E(W, S) in the group ring ofW , Theorem 7.1. The
main reason why we made such an assumption on the Coxeter system(W, S) is that the
quantum Bruhat representation of the quantized bracket algebraq B E(W, S), as defined in
Section 7, does not work for general noncrystallographic groups, e.g. forI2(m), if m ≥ 9.
In Section 7we also state one of the main results of the paper,Theorem 7.2, namely, that
under the same assumptions as inTheorem 5.1, the subalgebra generated by the Dunkl
elements in the quantized bracket algebraq B E(W, S) is canonically isomorphic to the
small quantum cohomology ring of the corresponding flag variety.

In Section 8we state the “quantum Chevalley formula” and prove it for classical Lie
groups as a corollary of the existence of the quantum Bruhat representation and our
Theorem 7.2.

In Section 9we describe in more detail the bracket algebras for Lie groups of type
Bn, Dn and G2. In Section 9.2we are going to make use of an algebraic structure of
relations in the algebraB E(Bn) to the study of the so-calledPieri problem in the Schubert
calculus. Remember that Pieri’s problem for a finite Coxeter pair(W, S) means to find a
generalization of the Chevalley formula, seeSection 5, for multiplication of an arbitrary
Schubert classXw, w ∈ W , by the Schubert classXs corresponding to a simple reflection
s ∈ S, to the case of multiplication of an arbitrary Schubert classXw by the Schubert
classXu corresponding to an elementu ∈ W which has aunique reduced decomposition.
For the Coxeter group of typeA, the solution to Pieri’s problem is well known, see
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e.g. [17, 22, 24], and is given by the so-calledPieri formula. The latter formula may
be interpreted as an explicit computation of the elementaryek(Xm), and the complete
hk(Xm), symmetric polynomials in the bracket algebraB E(An) after the substitution of
the variablesXm = (x1, . . . , xm) by theAn-Dunkl elements, see e.g. [8, 22]. In Section 9.2
we give a partial answer to theBn-Pieri problem stated above, namely, we give an
explicit (if complicated) combinatorial formula for the value of the elementary symmetric
polynomials of an arbitrary degree and the complete symmetric polynomials of degree
at most two in the bracket algebraB E(Bn) after the substitution of the variables by the
Bn-Dunkl elements. Let us observe that if we specialize all the generators[i ] ∈ B E(Bn) to
zero, we obtain aDn-analog of Pieri’s formula. If we further specialize all the generators
[i, j ] ∈ B E(Bn) to zero, we will come to the Pieri rule of typeAn. It is known that
for Coxeter groups of classical type, the condition that an elementu ∈ W has a unique
reduced decomposition is equivalent to the condition that modulo the ideal generated by
the fundamental invariant polynomials, the Schubert classXu is equal to eitherek(Xm)

or hk(Xm) for somek and m ≤ n, up to multiplication by some power of 2. Let us
remark that ourTheorem 9.1describes Pieri’s formula in the algebraB E(Bn). In order
to obtain a Pieri-type formula in the corresponding (quantum) cohomology ring one has
to apply the (quantum) Bruhat representation, seeTheorems 3.2and7.1. Since both the
classical and the quantum Bruhat representations have a huge kernel, it is not obvious
how to deduce the Pieri-type formulas of [2, 23] from the Bn-type Pieri formulas of this
paper.

It seems a very interesting problem to extend our results to the cases of the Grothendieck
ring and (quantum) equivariant cohomology ring of flag varieties. We will consider these
problems in subsequent publications.

We expect that for simply laced Coxeter systems(W, S) the algebraB E(W, S) is
a finite-dimensional braided Hopf algebra overW . However, our algebraB E(D4) is
different from the pointed Hopf algebra overD4 constructed in [20]. Surprisingly, the
latter Hopf algebra appears to be isomorphic to a certain quotient of the algebraB E+(B2),
seeSection 9.1. For nonsimply laced Coxeter systems(W, S) the algebraB E(W, S) turns
out to be infinite dimensional, but it seems plausible that a certain finite-dimensional
quotient of the algebraB E(W, S) has a natural structure of a pointed Hopf algebra, and the
algebra generated by the images of Dunkl’s elements is isomorphic to that in the algebra
B E(W, S).

The main motivation for introducing our bracket algebra and its quantization is an
intimate connection of the former and latter with classical and quantum Schubert calculi for
finite Coxeter groups [3, 12]. For Coxeter systems of typeA, combinatorial and algebraic
study of Schubert polynomials was initiated and developed in great detail by Lascoux and
Schützenberger [17]. It is our pleasure to express deep gratitude to Lascoux from whom
we have learned a lot about this beautiful and deep branch of Mathematics.

1. Coxeter groups

Most part of this section can be found in Humphreys [13].
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Definition 1.1. A Coxeter system is a pair(W, S) of a groupW and a set of generators
S ⊂ W , subject to relations

(ss′)m(s,s ′) = 1,

wherem(s, s) = 1 andm(s, s′) = m(s′, s) ≥ 2 for s �= s′ ∈ S. The groupW is called a
Coxeter group.

Definition 1.2. Let (W, S) be a Coxeter system. For an elementw ∈ W , the number

l(w) = min{r | w = s1 · · · sr , si ∈ S}
is called the length ofw. We say the expressionw = s1 · · · sr (si ∈ S) is reduced if
r = l(w). The set of all reduced expressions of an elementw ∈ W is denoted byR(w).

We assumeS to be finite. LetV be anR-vector space with a basisΣ = {αs | s ∈ S} and
symmetric bilinear form( , ) such that

(αs , αs ′) = −cos
π

m(s, s′)
.

Consider the linear actionσ of W on V defined by

σ(s)λ = λ − 2(αs, λ)αs .

The representationσ : W → GL(V ) is called the geometric representation ofW .

Definition 1.3. We define the root system∆ of W to be the set of the all images ofαs

under the action ofW .

Any elementγ ∈ ∆ can be expressed in the form

γ =
∑
s∈S

csαs (cs ∈ R).

Call γ positive (resp. negative) and writeγ > 0 (resp.γ < 0) if all cs ≥ 0 (resp.cs ≤ 0).
Write ∆+ (resp.∆−) for the set of positive (resp. negative) roots. Note that∆ = −∆ and
∆ = ∆+ � ∆−.

Lemma 1.1. The representation σ : W → GL(V ) is faithful.

For a given rootγ = w(αs) (w ∈ W , s ∈ S), the elementwsw−1 depends only onγ
and it acts onV as a reflection sendingγ to −γ . We denote it bysγ .

Lemma 1.2. Let w ∈ W and γ ∈ ∆+. Then l(wsγ ) > l(w) if and only if w(γ ) > 0.

Definition 1.4. The Coxeter system(W, S) is called crystallographic when its root system
∆ can be normalized to satisfy the condition

2(γ, γ ′)
(γ, γ )

∈ Z

for all γ, γ ′ ∈ ∆.
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In our paper, the crystallographic systems are always normalized to satisfy the condition
above.

2. Bracket algebra of Coxeter group

2.1. Definition of the bracket algebra

Definition 2.1. Let (W, S) be a Coxeter system and assumeW to be finite. We define the
bracket algebraB E(W, S) as an associative algebra overR with generators[γ ], γ ∈ ∆,
subject to the following relations:

(i) For anyγ ∈ ∆,

[−γ ] = −[γ ].
(ii) For anyγ ∈ ∆,

[γ ]2 = 0. (1)

(iii) (Quadratic relations). Let∆′ = {γ0, . . . , γm−1} ⊂ ∆+ be a set of positive roots such
thatR≥0〈γi , γi+1〉 ∩ ∆+ = {γi , γi+1} for all i = 0, . . . , m − 2. If ∆′ forms a root
system of typeI2(m)(m ≥ 2), then

m∑
i=0

[γi ][γi+k] = 0 (2)

for 1 ≤ k ≤ m/2, where we set by definitionγ j+m = −γ j .
(iv) (4-Term relations for subsystems of typeI2(m)). Let ∆′ ⊂ ∆+ be a set of positive

roots as in (iii). If∆′ forms a root system of typeI2(m), m ≥ 4, andk = [m/2] − 1,
then

[γk] · [γ0][γ1] · · · [γ2k] + [γ0][γ1] · · · [γ2k] · [γk]
+ [γk] · [γ2k][γ2k−1] · · · [γ0] + [γ2k][γ2k−1] · · · [γ0] · [γk] = 0.

Remark 2.1. (1) The defining ideal generated by the relations (i), (ii), (iii) and (iv) is
stable with respect to the action of the Weyl groupW . In other words, the algebra
B E(W, S) is aW -module.

(2) If (W, S) is a Coxeter system of typeAn, then the bracket algebraB E(W, S)

coincides with the quadratic algebraEn+1 introduced in [8], see also [15].
(3) All the defining relations above come from the subsystems of rank two. As for

explicit descriptions of these relations in the case of typeB2, D2 andG2, as well
as forBn andDn types, seeSection 9.

(4) Algebra B E(W, S) has a natural grading, if we consider the generators[γ ] as
elements of degree one.

Problem 2.1. Find the Hilbert series of the bracket algebraB E(W, S).

We expect that the algebraB E(W, S) is finite dimensional for simply laced Coxeter
groups.
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Problem 2.2. Describe the algebraB E(W, S) as aW -module, find its character, and/or
the graded multiplicities of its irreducible components.

Remark 2.2. We can define the super-versionB E+(W, S) of the bracket algebra by using
the relation[γ ] = [−γ ] (γ ∈ ∆) instead of (i) inDefinition 2.1. If (W, S) is of type
An, the algebraB E+(W, S) coincides with the algebraΛquad of [18], see also [1, 20]. For
crystallographic groups, one can show that the left-invariant Woronowicz exterior algebra
Λw [25] for some special choice of a differential structure onW , see [18], is a quotient of
the algebraB E+(W, S). However, in a nonsimply laced case, the algebraΛw is a proper
quotient of our algebraB E+(W, S).

2.2. Hopf algebra structure on the twisted group algebra

Since the bracket algebraB E(W, S) has aW -module structure, one can construct the
twisted group algebraB E(W, S){W } = {∑w∈W cw · w | cw ∈ B E(W, S)} by putting
commutation relationsw[γ ] = [w(γ )]w for w ∈ W and[γ ] ∈ B E(W, S).

Proposition 2.1. Let (W, S) be a crystallographic Coxeter system, except G2, the twisted
group algebra B E(W, S){W } has a natural Hopf algebra structure with the coproduct ∆,
the antipode S and the counit ε defined by the following formulas:

∆([γ ]) = [γ ] ⊗ 1 + sγ ⊗ [γ ], ∆(w) = w ⊗ w,

S([γ ]) = sγ [γ ], S(w) = w−1,

ε([γ ]) = 0, ε(w) = 1,

for [γ ] ∈ B E(W, S) and w ∈ W.

Such a Hopf algebra structure was invented and studied in [9] for An-quadratic algebras.
The Hopf algebraB E(W, S){W } acts on itself by the adjoint action

w: x �→ wxw−1, w ∈ W,

[γ ]: x �→ [γ ]x − sγ (x)[γ ].
The subalgebraB E(W, S) is invariant under the adjoint action ofB E(W, S){W }. The
element[γ ] ∈ B E(W, S) acts onB E(W, S) by a twisted derivation

Dγ (x) = [γ ]x − sγ (x)[γ ],
which satisfies the twisted Leibniz rule

Dγ (xy) = Dγ (x)y + sγ (x)Dγ (y).

Lemma 2.1. Let (W ′, S′) be a parabolic subsystem of (W, S) and ∆′ the set of roots
corresponding to (W ′, S′). Denote by A(∆\∆′) the subalgebra of B E(W, S) generated by
the elements [γ ], γ ∈ ∆\∆′. Assume that S\S′ = {t} and m(s, t) ≤ 3 for any s ∈ S′. Then
the subalgebra A(∆\∆′) is invariant under the adjoint action of algebra B E(W ′, S′), and
the multiplication map

[γ ′′] ⊗ [γ ′] �→ [γ ′′][γ ′], [γ ′] ∈ B E(W ′, S′), [γ ′′] ∈ A(∆\∆′)
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defines a B E(W ′, S′)-linear isomorphism of algebras

A(∆\∆′) ⊗ B E(W ′, S′) ∼= B E(W, S),

where B E(W ′, S′)-module structure on the tensor product A(∆\∆′) ⊗ B E(W ′, S′) is
given by

[γ ](a ⊗ b) = Dγ (a) ⊗ b + sγ ⊗ [γ ]b.

It follows from Lemma 2.1that the Hilbert series of algebraB E(W ′, S′) divides that
of algebraB E(W, S). We give a few more examples of application ofLemma 2.1in
Section 9.

Remark 2.3. It is not difficult to see that the algebraB E(W, S) is a braided group in the
category ofW -crossed modules with braidingΨ ([γ1] ⊗ [γ2]) = sγ1[γ2] ⊗ [γ1]. The Hopf
algebraB E(W, S){W } is obtained as its biproduct bosonization in the sense of Majid. For
Coxeter groups of typeA these results have been shown originally by Majid, see [18] and
the literature quoted therein.

3. Representations of bracket algebra

In this section we are going to construct two basic representations of the algebra
B E(W, S).

3.1. Calogero–Moser representation

Given the geometric representationσ : W → GL(V ), it induces the natural action ofW
on the ring of polynomial functionsS(V ∗). For any positive rootγ , the divided difference
operator∂γ , or Demazure’s operator [4], acting on the ringS(V ∗) is defined by

∂γ = 1 − sγ

γ
.

Theorem 3.1. A map [γ ] �→ ∂γ defines a representation of the algebra B E(W, S).

Proof. Compatibility with the relation (iv) is clear. As for the compatibility with the
relation (iii), we may restrict our consideration to subsystems of rank two. It is easy to
check the compatibility forA2, B2 andI2(m). �

3.2. Bruhat representation

Let us define a linear operatorsγ acting on the group ringR〈W 〉 by the rule

sγ · w =
{
wsγ , if l(wsγ ) = l(w) + 1,

0, otherwise.

Theorem 3.2. A map [γ ] �→ sγ defines a representation of the algebra B E(W, S).

Proof. It is enough to show the compatibility with the relation (iii). We use only linear
relations among the roots in the subsystem of rank two containingα and β. We may
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assume thatα and β generate a root system of typeI2(m) (m ≥ 2). Let ai =
(cos(iπ/m), sin(iπ/m)) ∈ R2, i = 0, . . . , m − 1. Then∆+ = {a0, . . . , am−1} and we
have to check

m−1∑
i=m−k

[ai+k−m ][ai ]w =
m−k−1∑

i=0

[ai+k ][ai ]w,

for 1 ≤ k ≤ (m − 1)/2. From now on, we putk = 1 for simplicity, but the following
argument works well for allk. If sai+1sai w = wsai sai+1, thenl(w) = l(wsai ) − 1 and
l(wsai ) = l(wsai sai+1)−1 FromLemma 1.2, w(ai ) > 0 andwsai (ai+1) = −w(ai−1) > 0.
So we have thatw(am−1) > 0 andwsam−1(a0) = w(am−2) < 0, and thatw(a j ) and
w(a j−1) are both positive or both negative forj �= i . Hence, ifsai+1sai w = wsai sai+1,
thensa j+1sa j w = 0 for j �= i andsa0sam−1w = wsam−1sa0. Conversely, ifsa0sam−1w =
wsam−1sa0, then there is only onei such thatsai+1sai w = wsai sai+1 andsa j+1sa j w = 0 for
j �= i . �
Problem 3.1. Does there exist a finite-dimensional faithful representation of the algebra
B E(W, S)?

4. Chevalley and Dunkl elements

Definition 4.1. For eachs ∈ S, the Chevalley elementηs in the algebraB E(W, S) is
defined by

ηs =
∑

γ∈∆+
〈ωs , γ

∨〉[γ ], (3)

whereωs is the fundamental dominant weight corresponding toαs andγ ∨ = 2γ /(γ, γ ).

Definition 4.2. For eachs ∈ S, the Dunkl elementθs in the algebraB E(W, S) is defined
by

θs =
∑
s ′∈S

cs,s ′ηs ′,

where the coefficientscs,s ′ are defined bycs,s ′ = (αs , αs ′).

Theorem 4.1. The Dunkl elements θs(s ∈ S) commute pairwise.

Proof. It is enough to show that the Chevalley elements commute pairwise. First of all,
let us observe that the elementηsη

′
s − η′

sηs can be decomposed as a sum of contributions
from root subsystems of rank two. Thus, we may assume that the root system∆ is of type
I2(m). Let S = {a0, am−1} and

ai = λ−1
1 λi+1a0 + λ−1

1 λi am−1, λi = sin
i

m
π, 0 ≤ i ≤ m − 1.

Then∆ = {a0, a1, . . . , am−1}. We have to show thatη1 andη2 commute, where

η1 =
m−1∑
i=0

λi+1[ai ], η2 =
m−1∑
i=0

λi [ai ].
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We have

2(η1η2 − η2η1) =
m−1∑
i, j=0

(
cos

i − j + 1

m
π + cos

i + j + 1

m
π

)
([ai ][a j ] − [a j ][ai ]).

Here, cos((i + j + 1)π/m) is symmetric oni and j , so∑
i, j

(
cos

i + j + 1

m
π

)
([ai ][a j ] − [a j ][ai ]) = 0.

Note thatsai sa j = sap saq if and only if i − j ≡ p − q mod m. Hence the relations in
Definition 2.1(iii) imply that∑

k

∑
i− j≡k (m)

(
cos

k + 1

m
π

) ([ai ][a j ] − [a j ][ai ]
) = 0. �

Remark 4.1. For the commutativity of the Dunkl elementsθs it is enough to assume the
validity of quadratic relations (iii) inDefinition 2.1only.

Remark 4.2. In a similar fashion one can check that the elementsθs , s ∈ S, defined
as in Definition 4.2 in the super-versionB E+(W, S) of the bracket algebraB E(W, S)

are pairwiseanticommutative. It is a challenging problem to describe the subalgebra in
B E+(W, S) generated by the elementsθs, s ∈ S.

5. Algebra generated by Dunkl elements

Let |S| = n. In case whenW is a finite reflection group, it is known that the subalgebra
S(V ∗)W ⊂ S(V ∗) of W -invariant polynomials is generated overR by n homogeneous,
algebraically independent polynomialsf1, . . . , fn of positive degree. We denote byIW ⊂
S(V ∗) the ideal generated byf1, . . . , fn . The quotient ringSW := S(V ∗)/IW is called the
coinvariant algebra ofW .

An explicit construction of a linear basis ofSW is given by Bernstein et al. [3], and Hiller
[12]. Let w = si1 . . . sil (si1, . . . , sil ∈ S) be a reduced decomposition ofw ∈ W . We define
the operator∂w acting on the algebra of polynomial functionsS(V ∗) by ∂w = ∂αsi1

· · · ∂αsil
,

where∂αsi1
, . . . , ∂αsil

are divided difference operators defined inSection 3. The definition

of the operator∂w is independent of the choice of a reduced decomposition ofw.
For any polynomialf ∈ S(V ∗), one can define an element[ f ] ∈ B E(W, S) as an

image of f by the algebra homomorphism obtained by the substitutionωs �→ ηs .

Definition 5.1 (cf. [3, 12]). We define the polynomialsXw ∈ S(V ∗), w ∈ W , by the
following formulas:

Xw0 = |W |−1
∏

γ∈∆+
γ,

Xw = ∂w−1w0
Xw0,

wherew0 ∈ W is the element of maximal length.
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It is known [3, 12] that the images of the polynomials{Xw} in the coinvariant algebraSW

form a linear basis and satisfy theChevalley formula

Xs Xw =
∑

(ωs , γ
∨)Xwsγ mod IW ,

where the sum is taken over the positive rootsγ such thatl(wsγ ) = l(w) + 1. It is
useful to note that one can obtain the Chevalley formula above by applying the Bruhat
representation, seeTheorem 3.2, to the equality[Xs] = ηs in the algebraB E(W, S).

We have the following statement from the Chevalley formula.

Lemma 5.1. There exists a surjective homomorphism from SW to the subalgebra
generated by the Chevalley elements R[ηs | s ∈ S] ⊂ B E(W, S), which maps Xs to ηs .

Theorem 5.1. For Coxeter groups of classical type and I2(m), the subalgebra
R[θs | s ∈ S] in B E(W, S) generated by Dunkl elements is canonically isomorphic to the
coinvariant algebra of the group W, i.e.

R[θs | s ∈ S] ∼= SW .

We postpone a proof untilSection 9.

Conjecture 5.1. The statement of Theorem 5.1 is valid for any finite Coxeter group.

Conjecture 5.2. Let (W, S) be a crystallographic Coxeter system, then there exists a
monomial basis {bµ}µ in the algebra B E(W, S), such that for any w ∈ W the polynomial
[Xw] can be expressed as a linear combination of bµ’s with non-negative coefficients.

6. Quantization of bracket algebra

We consider the group of characters

C = Hom(V ∗, S1),

and its elementsqs = exp(2π
√−1〈·, α∨

s 〉) for s ∈ S. For γ ∨ = ∑
s∈S nsα

∨
s , we set

qγ ∨ = ∏
s qns

s .

Definition 6.1. The quantized bracket algebraq B E(W, S) is the associative algebra over
the ringR[qs | s ∈ S] with generators[γ ], γ ∈ ∆, subject to the relations:

(i)′ For anyγ ∈ ∆,

[−γ ] = −[γ ].
(ii) ′ Forγ ∈ ∆+,

[γ ]2 = qγ , if γ ∈ Σ ,

[γ ]2 = 0, otherwise.

(iii) ′ The same relations as inDefinition 2.1(iii).
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(iv)′ Under the same assumptions as inDefinition 2.1(iv), if in addition the following
inequalityl(sγk ) �= 2(ρ, γ ∨

k ) − 1 holds, then

[γk] · [γ0][γ1] · · · [γ2k] + [γ0][γ1] · · · [γ2k] · [γk]
+ [γk] · [γ2k][γ2k−1] · · · [γ0] + [γ2k][γ2k−1] · · · [γ0] · [γk] = 0.

Definition 6.2. The Chevalley elements̃ηs and the Dunkl elements̃θs , s ∈ S, in the algebra
q B E(W, S) are defined by the same formulas as inDefinitions 4.1and4.2.

Theorem 6.1. The Dunkl elements θ̃s , s ∈ S, commute pairwise.

Proof. The proof can be performed in the same manner as that ofTheorem 3.1. �

Remark 6.1. It is natural to consider a multiparameter deformation of the algebra
B E(W, S) which is generated by elements[γ ], γ ∈ ∆, with defining relations (i)′, (iii) ′,
(iv)′ and the additional one

(ii) ′′ [γ ]2 = Qγ , if γ ∈ ∆+,

whereQγ ’s are independent central parameters indexed byγ ∈ ∆+. The commutative
algebra generated by Dunkl elements in this case may be considered as a “multiparameter”
deformation of the coinvariant algebra of the Coxeter system(W, S).

Remark 6.2. In a similar fashion one can define a quantizationq B E+(W, S) of the
super-versionB E+(W, S) of the bracket algebraB E(W, S) and a family of elements
θ̃s ∈ q B E+(W, S). SeeRemark 2.2for the definition of the algebraB E+(W, S). It is a
challenging problem to describe the subalgebra inq B E+(W, S) generated by the pairwise
anticommutative elements̃θs , s ∈ S.

7. Extended Bruhat graph and quantum Bruhat representation

Starting from this section, we assume that the Coxeter system(W, S) is a
crystallographic one. Let us denote byρ the half-sum of all positive roots, i.e.

ρ = 1
2

∑
γ∈∆+

γ.

If γ ∨ = ∑
s∈S nsα

∨
s , then

(ρ, γ ∨) =
∑
s∈S

ns .

Lemma 7.1. Let γ be a positive root, then

2(ρ, γ ∨) − 1 ≥ l(sγ ).

Proof. Forγ ∈ ∆+, definer as the minimal number of simple reflectionss0, s1, . . . , sr−1
such thatsγ = sr−1 · · · s1s0s1 · · · sr−1. Then, we can conclude thatl(sγ ) = 2r − 1. Hence,
by induction onr , we have 2(ρ, γ ∨) − 1 ≥ 2r − 1 = l(sγ ). �
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7.1. Extended Bruhat graph

Definition 7.1. The extended Bruhat graphΓ (W, S) is a graph whose vertices are

elements ofW with arrowsv → w in the Bruhat ordering and additional arrowsv
γ→e w

which mean thatw = vsγ (γ ∈ ∆+) andl(w) = l(v) − 2(ρ, γ ∨) + 1.

Lemma 7.2. Let (W, S) be a crystallographic Coxeter system and (W ′, S′) its parabolic
subsystem. Then the extended Bruhat graph Γ (W ′, S′) is a subgraph of Γ (W, S) by the
map induced by the inclusion W ′ → W. Moreover, if there exists an arrow v →e w with
v,w ∈ W ′ in Γ (W, S), then the arrow v →e w belongs to Γ (W ′, S′).

This follows immediately fromLemmas 1.2and7.1.

Remark 7.1. Definition 7.1andLemma 7.2were discovered originally by Peterson [21].

7.2. Quantum Bruhat representation

Let us define an operators̃γ (γ ∈ ∆+) acting on the group ringQ[qs | s ∈ S]〈W 〉, by
the rule

s̃γ · w =



wsγ , if l(w) = l(wsγ ) − 1,

qγ ∨wsγ , if l(w) = l(wsγ ) + 2(ρ, γ ∨) − 1,

0, otherwise.

Theorem 7.1. A map [γ ] �→ s̃γ defines a representation of the quantized bracket algebra
q B E(W, S).

Proof. The compatibility with the relations (ii)′ in Definition 6.1is clear. We check the
compatibility with the relations (iii)′ and (iv)′. Let ∆′ be as inDefinition 2.1(iii). We are
considering only crystallographic root systems, so we may assume that∆′ is of typeI2(m)

with m = 3, 4, 6. Take an arbitrary elementw ∈ W . If l(wsβsα) = l(w) + 2, then relation

[γ0][γm−1]w =
∑

i

[γi ][γi+1]w

follows from the same argument as in the proof ofTheorem 3.2.
Let α = γ0, β = γm−1 and A(α, β) = {(γi , γi+1) | i = 0, . . . , m − 2}. We consider

the casel(wsβ sα) ≤ l(w). Note that(ρ, γ ∨
i ) ≥ (ρ, α∨) and (ρ, γ ∨

i+1) ≥ (ρ, β∨) for
i = 0, . . . , m − 2. For(γ1, γ2), (δ1, δ2) ∈ A(α, β), (ρ, γ ∨

j ) = (ρ, δ∨
j ) holds if and only if

(γ1, γ2) = (δ1, δ2). Hence, if there exists a pathΓ of typew
γ→e ∗ δ→e wsβsα , then we

have

l(w) = l(wsβsα) + 2(ρ, γ ∨) + 2(ρ, δ∨) − 2 ≥ l(wsβsα) + l(sα) + l(sβ). (∗)

This means thatl(w) = l(wsβsα) + l(sα) + l(sβ), and(γ, δ) = (β, α). In this case, we
can see that there exists unique pair(γ1, γ2) ∈ A(α, β) such that if[γ1][γ2]w �= 0 and (∗)

holds. Similarly, if there exists a pathΓ of typew
β→e ∗ α→ wsβsα or w

β→ ∗ α→e wsβsα ,
we can find unique pair(γ1, γ2) ∈ A(α, β) such that[γ1][γ2]w �= 0. �
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Remark 7.2. It follows from our proof that in the extended Bruhat graph corresponding
to a crystallographic Coxeter group, there exist exactly two paths connecting two vertices
v1, v2 such thatl(v1) − l(v2) ≡ 0 (mod2). This property does not hold in general for
noncrystallographic Coxeter systems.

Now we assume that Coxeter system(W, S) comes from a connected simply connected
semi-simple Lie groupG. We denote byB the Borel subgroup ofG. The small quantum
cohomology ring of the flag varietyG/B is isomorphic to the quotient ring of the
polynomial ring S(V ∗) ⊗ R[qs] by the ideal ĨW generated by quantumW -invariant
polynomials, which are explicitly given by Kim [14].

Theorem 7.2. For Coxeter groups of classical type and of type G2, the subalgebra in
q B E(W, S) generated by Dunkl elements, R[qs][θ̃s | s ∈ S], is canonically isomorphic to
the quantum cohomology ring QH ∗(G/B).

A proof ofTheorem 7.2is based on direct computations, seeSection 9. Note that for Lie
algebras of typeA, Theorem 7.2was stated for the first time in [8], and has been proved
later in [22].

Conjecture 7.1. Theorem 7.2holds for any crystallographic finite Coxeter system.

Problem 7.1. For any finite Coxeter system(W, S), describe “a quantum coinvariant
algebra” of the groupW , i.e. to describe the subalgebra inq B E(W, S) generated by the
Dunkl elements̃θs , s ∈ S.

8. Quantum Chevalley formula

For any polynomialf ∈ S(V ∗) ⊗ R[qs], one can define an element[ f ] of q B E(W, S),
using the substitutionωs �→ η̃s . We regard this element[ f ] as an operator acting on the
group ringR[qs]〈W 〉.
Proposition 8.1. Let w ∈ W, there exists a unique polynomial P̃w ∈ S(V ∗) ⊗ R[qs]
characterized by the following conditions:

[P̃w](1) = w,

P̃w = Xw +
∑

l(v)<l(w)

cv Xv (cv ∈ R[qs]),

where Xw are the polynomials defined in Section 5, Definition 5.1.

Proof. If l(w) < 2, then[Xw](1) = w. In general, we have

[Xw](1) = w +
∑

l(v)<l(w)

cvv (cv ∈ R[qs], v ∈ W ). �

Remark 8.1. The polynomialP̃w defined inProposition 8.1coincides with the quantum
Bernstein–Gelfand–Gelfand polynomial introduced in [19].
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It follows from Theorems 7.1and7.2that for classical Coxeter groups andG2 one has
Quantum Chevalley formula ([10, 21]). For s ∈ S andw ∈ W , we have

P̃s P̃w =
∑

w
γ→w′

〈ωs , γ
∨〉P̃w′ +

∑
w

γ→ew′
qγ ∨〈ωs , γ

∨〉P̃w′ mod ĨW ,

where the sums are taken with respect to the positive rootsγ .

Remark 8.2. In Proposition 8.1, we have introduced the polynomial̃Pw satisfying the
condition [P̃w](1) = w. One can consider the action of[P̃w] on any elementu ∈ W
via the quantum Bruhat representation, and obtain an expression

[P̃w](u) =
∑
v∈W

cv
wu(q) · v,

where cv
wu(q) ∈ R[qs] are polynomials whose coefficients are the so-called 3-point

Gromov–Witten invariants of genus zero for the target spaceG/B.

Conjecture 8.1. Let (W, S) be a crystallographic Coxeter system, then there exists a
monomial basis {bµ}µ in the algebra q B E(W, S) such that for any w ∈ W the polynomial
[P̃w] can be written as a linear combination of bµ’s with nonnegative coefficients which
do not depend on qs’s.

9. Examples

Explicit description of relations and the Dunkl elements for quantizedAn-bracket
algebra is given in [8]. In this section we study in more detail the cases ofBn-, Dn- and
G2-bracket algebras.

We fix an orthonormal basise1, . . . , en of n-dimensional Euclidean space.

9.1. Quantized Bn-bracket algebra

The root system of typeBn, n ≥ 2, consists of the elements±ei ± e j and ±ei

(1 ≤ i, j ≤ n), and we fix a set of simple roots

S(Bn) = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en}.
The quantizedBn-bracket algebraq B E(Bn) = q B E(W (Bn), S(Bn)) is generated by the
symbols[i, j ] = [ei − e j ], [i, j ] = [ei + e j ] and[i ] = [ei ] overR[q1, . . . , qn] subject to
the following relations:

(0) [i, j ] = −[ j, i ], [i, j ] = [ j, i ],
(1) [i, i + 1]2 = qi , [n]2 = qn, [i, j ]2 = 0, if |i − j | �= 1; [i ]2 = 0, if i < n; [i, j ]2 = 0,

if i �= j ,
(2) [i, j ][k, l] = [k, l][i, j ], [i, j ][k, l] = [k, l][i, j ], [i, j ][k, l] = [k, l][i, j ], if

{i, j} ∩ {k, l} = φ,
(3) [i ][ j ] = [ j ][i ], [i, j ][i, j ] = [i, j ][i, j ], [i, j ][k] = [k][i, j ], [i, j ][k] = [k][i, j ], if

k �= i, j ,
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(4) [i, j ][ j, k] + [ j, k][k, i ]+ [k, i ][i, j] = 0, [i, k][i, j ] + [ j, i ][ j, k]+ [k, j ][i, k] = 0,
[i, j ][i ] + [ j ][ j, i ] + [i ][i, j ] + [i, j ][ j ] = 0, if all i , j andk are distinct,

(5) [i, j ][i ][i, j ][i ] + [i, j ][i ][i, j ][i ]+ [i ][i, j ][i ][i, j ]+ [i ][i, j ][i ][i, j ] = 0, if i < j .

The Chevalley and Dunkl elements are given byη̃sαi
= θ̃1 + · · · + θ̃i , where

θ̃i := θ̃
Bn
i =

∑
j �=i

([i, j ] + [i, j ]) + 2[i ], 1 ≤ i ≤ n.

The Chevalley elements̃ηsαi
correspond to the Pieri–Chevalley type formula, where as the

Dunkl elements̃θi correspond to the Monk type formula in the cohomology ring of the flag
variety. It is easy to see that in the formula forθ̃i above, one can replace the term 2[i ] by
thatc[i ] for any constantc. The resulting operators still commute pairwise.

Now we define the quantumBn-invariant polynomials following [14]. Let Ei, j ∈
M2n(R) be a matrix such that its(i, j) entry is 1 and other entries are 0. We setti =
Ei,i −Ei+n,i+n , Eα∨

i
= Ei+1,i +Ei+n,i+n+1, E−α∨

i
= Ei,i+1−Ei+n+1,i+n (1 ≤ i ≤ n−1),

Eα∨
n

= −2E2n,n andE−α∨
n

= 2En,2n. Let

X B(e, q) =
∑

i

ei ti +
∑

j

q j E−α∨
j
+
∑

j

Eα∨
j
.

The quantumBn-invariant polynomialsJ B
ν (e, q) = J B

ν (e1, . . . , en; q1, . . . , qn) (1 ≤
ν ≤ n) are coefficients of the characteristic polynomial ofX B(e, q), namely,

det(t I + X B(e, q)) = t2n +
n∑

ν=1

J B
ν (e, q)t2(n−ν).

The quantum cohomology ring ofBn-flag variety is isomorphic to the ring

C[e1, . . . , en, q1, . . . , qn]/(J B
1 , . . . , J B

n ).

Proposition 9.1. In the quantized bracket algebra q B E(Bn) we have the following
identities:

J B
ν (θ̃1, . . . , θ̃n; q) = 0, 1 ≤ ν ≤ n.

Proof ofProposition 9.1is based onLemma 9.1below.
Before stating it, let us introduce a bit of notation.

Notation. Let {i, j} denote either generator[i, j ] or [i, j ], and define[i, j ] = [i, j ].
We also define elementsA(a1, . . . , ak), A(a1, . . . , ak) ∈ B E(Bn) for distinct integers
2 ≤ a1, . . . , ak ≤ n as follows:

A(a1, . . . , ak) =
k∑

j=1

(−1) j−1


 k∏

m= j

[1, am]

 · [1] ·


 j∏

m=1

[1, am]

 ,

A(a1, . . . , ak) =
k∑

j=1

(−1)k− j


 k∏

m= j

[1, am]

 · [1] ·


 j∏

m=1

[1, am]

 .



A.N. Kirillov, T. Maeno / European Journal of Combinatorics 25 (2004) 1301–1325 1317

Lemma 9.1. We have the following cyclic relations in the algebra B E(Bn) for distinct
integers 2 ≤ a1, . . . , ak ≤ n:

(1) {1, a1}{1, a2} · · · {1, ak}{1, a1} + (cyclic permutations on indices) = 0;
(2) {1, a1}{1, a2} · · · {1, ak}{1, a1}+{1, a2}{1, a3} · · · {1, ak}{1, a1}{1, a2}+· · ·+{1, ak}

{1, a1} · · · {1, ak−1}{1, ak} = {1, a1}{1, a2} · · · {1, ak}{1, a1}+{1, a2}{1, a3} · · ·
{1, ak}{1, a1}{1, a2} + · · · + {1, ak}{1, a1} · · · {1, ak−1}{1, ak};

(3) [1](A(a1, . . . , ak) + A(a1, . . . , ak)) + (A(a1, . . . , ak) + A(a1, . . . , ak))[1] = 0;
(4) All the relations which are obtained from (1), (2) and (3) by the action of the Weyl

group.

Example 9.1. For k = 3, one can write down the relations inLemma 9.1as follows:

(1) {1, a1}{1, a2}{1, a3}{1, a1}+{1, a2}{1, a3}{1, a1}{1, a2}+{1, a3}{1, a1}{1, a2}{1, a3}
= 0;

(2) {1, a1}{1, a2}{1, a3}{1, a1}+{1, a2}{1, a3}{1, a1}{1, a2}+{1, a3}{1, a1}{1, a2}{1, a3}
= {1, a1}{1, a2}{1, a3}{1, a1} + {1, a2}{1, a3}{1, a1}{1, a2}
+{1, a3}{1, a1}{1, a2}{1, a3};

(3) [1][1, a1][1, a2][1, a3][1][1, a1] − [1][1, a2][1, a3][1][1, a1][1, a2]
+ [1][1, a3][1][1, a1][1, a2][1, a3] + [1][1, a1][1, a2][1, a3][1][1, a1]
− [1][1, a2][1, a3][1][1, a1][1, a2] + [1][1, a3][1][1, a1][1, a2][1, a3]
+ [1, a1][1, a2][1, a3][1][1, a1][1] − [1, a2][1, a3][1][1, a1][1, a2][1]
+ [1, a3][1][1, a1][1, a2][1, a3][1] + [1, a1][1, a2][1, a3][1][1, a1][1]
− [1, a2][1, a3][1][1, a1][1, a2][1] + [1, a3][1][1, a1][1, a2][1, a3][1] = 0.

In the final part of this subsection we consider an application ofLemma 2.1to the case of
Bn-bracket algebra.

Let xi = [i, n], yi = [i, n] for 1 ≤ i ≤ n − 1, andzn = [n] be elements ofB E(Bn).
Denote byAB

n = A(∆(Bn)\∆(Bn−1)) the subalgebra ofB E(Bn) generated byx1, . . . , xn,
y1, . . . , yn andzn .

Proposition 9.2. Action of the twisted derivation D[γ ] on the algebra AB
n is determined

by the following formulas:

D[i, j ](xi) = −xi x j , D[i, j ](x j ) = x j xi , D[i, j ](yi ) = −yi y j ,

D[i, j ](y j ) = y j yi , D[i, j ](xi ) = xi y j , D[i, j ](x j ) = x j yi ,

D[i, j ](yi) = yi x j , D[i, j ](y j ) = y j xi , D[i](xi ) = xi zn − zn yi ,

D[i](yi ) = znxi − yi zn, D[i, j ](zn) = D[i, j ](zn) = D[i](zn) = 0,

for 1 ≤ i �= j ≤ n − 1, and

D{k,l}(xi ) = D{k,l}(yi ) = D[k](xi ) = D[k](yi ) = 0, if i, k, lare all distinct,

and the twisted Leibniz rule, see the definition of the former in Section 2.2.

Therefore, the subalgebraAB
n is invariant under the twisted derivationD[γ ] for any

root γ ∈ ∆(Bn−1). By applying Lemma 2.1successively, we obtain the following
decomposition of the algebraB E(Bn) for n ≥ 2:

B E(Bn) ∼= AB
2 ⊗ · · · ⊗ AB

n .
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Note that the relations inLemma 9.1can be obtained by applying the twisted derivations
successively to the defining relations of the bracket algebra. We do not know whether or
not all the relations in the bracket algebra can be obtained in such a way.

Example 9.2. By applyingD[a2,a3] D[a1,a2] to the 4-term relation

[1][1, a1][1][1, a1] + [1, a1][1][1, a1][1]
+ [1][1, a1][1][1, a1] + [1, a1][1][1, a1][1] = 0,

we obtain the relation (3) inExample 9.1.

We conclude this subsection by a construction of one more representation of the algebra
B E(Bn−1). Denote byF B

n the quotient of the free associative algebra overR generated by
X1, . . . , Xn−1, Y1, . . . , Yn−1 andZn modulo the two-side ideal generated byX2

i , Y 2
i , Z2

n
andZn Xi ZnYi + Xi ZnYi Zn + ZnYi Zn Xi +Yi Zn Xi Zn for 1 ≤ i ≤ n −1. The Weyl group
W (Bn−1) acts on the algebraF B

n by the rule

si j (Xi ) = X j , si j (Yi ) = Y j , si j (Xi ) = −Y j , si j (Yi ) = −X j ,

si (Xi ) = −Yi , si (Yi ) = −Xi , si j (Xk) = si j (Xk) = si (Xk) = Xk,

si j (Yk) = si j (Yk) = si (Yk) = Yk, si j (Zn) = si j (Zn) = si (Zn) = Zn

for distinct i, j, k ∈ {1, . . . , n − 1}. Now define operators∇[i, j ], ∇[i, j ] and∇[i], 1 ≤
i �= j ≤ n − 1, which act on the algebraF B

n by the same formulas as for the operators
D[i, j ], D[i, j ] andD[i] from Proposition 9.2after replacingxi , yi andzn by Xi , Yi andZn

respectively. Then the operators∇[i, j ] and∇[i, j ] and∇[i], 1 ≤ i �= j ≤ n − 1, give rise

to a representation of the algebraB E(Bn−1) in the algebraF B
n , and natural epimorphism

π B
n : F B

n → AB
n is compatible with the action of the algebraB E(Bn−1).

Problem 9.1. Describe the kernel of the epimorphismπ B
n .

9.2. Pieri formula for Bn-bracket algebra

The main goal of this subsection is to describe aBn-analog of Pieri’s formula in
some cases, namely, we give an explicit formula for the value of elementary symmetric
polynomials of arbitrary degree and complete symmetric polynomials of degree two in
the bracket algebraB E(Bn) after the substitution of variables by theBn-Dunkl elements.
Let us observe that if we specialize all the generators[i ] ∈ B E(Bn) to zero, we obtain a
Dn-analog of Pieri’s formula. To state our result, it is convenient to introduce a bit of
notation. LetS = {i1 < i2 < · · · < is := r} be a set of positive integers. Define inductively
a family of elements{Kl(S)}l≥1 in the algebraB E(Br) by the following rules:

(i)
K1(S) =

∑
i∈S

[i ] +
∑

i≤ j,i, j∈S

[i, j ]; Kl(S) = 0, if s < l;

(ii)
Kl(S) = Kl(S\{r}) +

∑
a∈S

([a, r ] + [a, r ])Kl−1(S\{a}) + Kl−1(S\{r})θr,S,

whereθr,S = ∑
a∈S(−[a, r ] + [a, r ]) + 2[r ].
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Theorem 9.1. (1a) Let m ≤ n, then

ek(θ
Bn
1 , . . . , θ Bn

m ) =
∑̃
(∗)

k∏
a=1

{ia, ja}

+ 2
k∑

l=1

∑̃
(∗)

k−l∏
a=1

{ia, ja}Kl({1, . . . , m}\{i1, . . . , ik−l }),

where the symbol
∑̃

means that in the corresponding sums we have to take
only distinct monomials among the products

∏k
a=1{ia, ja} and

∏k−l
a=1{ia, ja}; the

condition (∗) means that 1 ≤ ia ≤ m < ja ≤ n and all indices ia are distinct.
(1b) The elements Kl(S) can be expressed in the algebra B E(Br ) as a linear combination

of monomials in [i ]’s and [i, j ]’s with non-negative integer coefficients.
(1c) If the number of elements in the set S is equal to l, then Kl(S) = 0 after the

specialization [a] = 0 for all a ∈ S.
(1d) K2(S) = (K1(S))2:

K3(S) = K3(S\{r}) +
∑
a∈S

[a, r ]K2(S\{a}) + K2(S\{r})
(∑

a∈S

[a, r ] + 2[r ]
)

+
∑
a∈S

(
[a, r ][a] + [r ][a, r ] +

∑
b∈S

[b, r ][a, b]
)

K1(S\{a})

+ K1(S\{r})
∑
a∈S

(
[a, r ][a] + [r ][a, r ] +

∑
b∈S

[b, r ][a, b]
)

.

For example, the multiplicity of the monomial [12][34][56] in e3(θ
B6
1 , θ

B6
2 , . . . , θ

B6
6 )

is equal to 4.
(2) Let m ≤ n, then

h2(θ
Bn
1 , . . . , θ Bn

m ) =
∑̃
(∗∗)

2∏
a=1

{ia, ja}

+ 2
∑

1≤i≤m< j≤n

{i, j}K1({1, . . . , m}\{i})

+ K2({1, . . . , m})
+ 2

∑̃
1≤ia≤m< j≤n

([i1, j ][i2, j ] + [i1, j ][i2, j ])

+ 2
∑

1≤i≤m< j≤n

({i, j}[i ] + [i ]{i, j}) ,

where the condition (∗∗) means that 1 ≤ ia ≤ m < ja ≤ n and all ja’s are distinct.
(3) hk(θ

Bn
1 , . . . , θ

Bn
m ) = 0, if k + m > 2n.

Finally, let us remark that for classical Coxeter groupsW = W (An), W (Bn), andW (Dn),
the condition|R(u)| = 1, u ∈ W , is equivalent to the condition that modulo the idealIW ,
the Schubert classXu is equal to eitherek(Xm) or hk(Xm) for somek andm ≤ n, up to
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multiplication by some power of 2. In the case of symmetric groups, the permutationsw

such that|R(w)| = 1 are exactly the permutations of the following forms:

w = h(a, b) =: (1, 2, . . . , a + b, a, b + 1, b + 2, . . .),

or

w = e(a, b) =:
(1, 2, . . . , a − b, a − b + 2, . . . , a + 1, a − b + 1, a + 2, a + 3, . . .),

see e.g. [24].

9.3. Quantized B2-algebra and quantum cohomology

Here we give an explicit calculation of quantum cohomology ring and certain
polynomial representatives for Schubert classes forB2-flag variety. The bracket algebra
q B E(B2) is generated by the symbols [12],[12], [1] and [2] subject to the following
relations:

(i) [12]2 = q1, [12]2 = 0, [1]2 = 0, [2]2 = q2,
(ii) [12][12] = [12][12], [1][2] = [2][1],

(iii) [12][1]− [2][12]+ [1][12]+ [12][2] = 0, [1][12]− [12][2]+ [12][1]+ [2][12] = 0,
(iv) [12][1][12][1] + [12][1][12][1] + [1][12][1][12]+ [1][12][1][12] = 0.

The Chevalley and Dunkl elements areη̃sα1
= θ̃1 andη̃sα2

= θ̃1 + θ̃2, where

θ̃1 = [12] + [12] + 2[1], θ̃2 = −[12] + [12] + 2[2].
Quantum cohomology ring of theB2-flag variety is isomorphic to the algebra
C[q1, q2][e1, e2]/IB2, where

IB2 = (e2
1 + e2

2 − 2q1 − 4q2, e2
1e2

2 + 2q1e1e2 − 4q2e2
1 + q2

1).

The subalgebra generated byθ̃1, θ̃2 in q B E(B2) ⊗ C is isomorphic to the quantum
cohomology ring. Let us consider the quantum Bruhat representation ofq B E(B2) and
regard the Dunkl elements̃θi as operators acting on the group ringR[q1, . . . , qn]〈W (B2)〉.
Denote bys12 ands2 the simple reflections with respect to the simple rootse1 − e2, ande2
respectively. Then,

θ̃2
1 − q1

2
(id.) = s2s12

θ̃1θ̃2 + q1

2
(id.) = s12s2

θ̃3
1 − 2q1θ̃1 − q1θ̃2

2
(id.) = s12s2s12

θ̃2
1 θ̃2 − θ̃3

1 + 3q1θ̃1 + q1θ̃2

4
(id.) = s2s12s2

θ̃3
1 θ̃2 + q1θ̃

2
1 − q1θ̃1θ̃2 − q2

1 − 4q1q2

4
(id.) = s12s2s12s2.
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Remark 9.1. Both algebrasB E(B2) andB E+(B2) are infinite dimensional, but if we add
the new relation

[1][12][1][12] = [12][1][12][1]
in the algebraB E(B2), and that

[1][12][1][12]+ [12][1][12][1] = 0

in the algebraB E+(B2), the resulting algebras appear to be finite dimensional and have
the same Hilbert polynomial

(1 + t)4(1 + t2)2.

One can check that the pointed Hopf algebra over the Coxeter groupD4 constructed in
[20], is isomorphic to the quotient of the algebraB E+(B2) by the relation of degree 4
defined above.

9.4. Quantized Dn-bracket algebra

In Dn case,n ≥ 2, fix a set of simple roots as

S(Dn) = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en} .

The quantizedDn-bracket algebraq B E(Dn) = q B E(W (Dn), S(Dn)) is generated by the
symbols[i, j ] = [ei −e j ] and[i, j ] = [ei +e j ] overR[q1, . . . , qn] subject to the following
relations:

(0) [i, j ] = −[ j, i ], [i, j ] = [ j, i ],
(1) [i, i + 1]2 = qi , [n − 1, n]2 = qn , [i, j ]2 = 0, if |i − j | �= 1, [i, j ]2 = 0, if

(i, j) �= (n − 1, n), (n, n − 1),
(2) [i, j ][k, l] = [k, l][i, j ], [i, j ][k, l] = [k, l][i, j ], [i, j ][k, l] = [k, l][i, j ], if

{i, j} ∩ {k, l} = φ,
(3) [i, j ][i, j ] = [i, j ][i, j ],
(4) [i, j ][ j, k] + [ j, k][k, i] + [k, i][i, j] = 0, [i, k][i, j ] + [ j, i ][ j, k]+ [k, j ][i, k] = 0,

if all i , j andk are distinct.

Remark 9.2. Our construction of the quantized bracket algebraq B E(Dn) is compatible
with the isomorphisms between the Coxeter systemsD2 ∼= A1 × A1 andD3 ∼= A3. It is
easy to see thatq B E(D2) ∼= q B E(A1) × q B E(A1) andq B E(D3) ∼= q B E(A3).

We set ti = Ei,i − Ei+n,i+n , Eα∨
i

= −Ei+1,i + Ei+n,i+n+1, E−α∨
i

= Ei,i+1 −
Ei+n+1,i+n (1 ≤ i ≤ n − 1), Eα∨

n
= −E2n−1,n + E2n,n−1 andE−α∨

n
= En,2n−1 − En−1,2n.

Let

X (e, q) =
∑

i

ei ti +
∑

j

q j E−α∨
j
+
∑

j

Eα∨
j
.

We define the polynomialsJ D
ν (e, q) using the equation

det(t I + X D(e, q)) = t2n +
n∑

ν=1

J D
ν (e, q)t2(n−ν).
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Then the quantum cohomology ring ofDn-flag variety is isomorphic to the ring

C[e1, . . . , en, q1, . . . , qn]/(J D
1 , . . . , J D

n−1, J D
n ),

whereJ D
n is a polynomial such that(J D

n )2 = J D
n .

The Chevalley and Dunkl elements are given byη̃sαi
= θ̃1 + · · · + θ̃i , where

θ̃i =
∑
j �=i

([i, j ] + [i, j ]), 1 ≤ i ≤ n.

Proposition 9.3. In the quantized bracket algebra q B E(Dn) we have the following
identities:

J D
ν (θ̃1, . . . , θ̃n; q) = 0, 1 ≤ ν ≤ n.

Proof ofProposition 9.2follows from the following lemma.

Lemma 9.2. Relations (1), (2) in Lemma 9.1and all the relations obtained from them by
the action of the Weyl group, hold also in the algebra B E(Dn).

Remark 9.3. The non-quantized bracket algebraB E(Dn) is a quotient ring ofB E(Bn)

obtained by putting[i ] = 0, and the Dunkl elements ofB E(Dn) are images of those of
B E(Bn). Hence the Dunkl elements ofB E(Dn) satisfy the equations coming from theBn

case. However,q B E(Dn) is not a quotient ofq B E(Bn).

Example 9.3. QuantumDn-invariants forn = 4,

J D
1 = −e2

1 − e2
2 − e2

3 − e2
4 + 2q1 + 2q2 + 2q3 + 2q4,

J D
2 = q2

3 + 2q1e1e2 + q2
4 − 2q4e3e4 + 2q2q4 + 2q3e3e4 + q2

2 − 2q3q4 + 2q1q2

+ 4q1q3 + 2q2q3 + q2
1 + 4q1q4 + 2q2e2e3 − 2q1e2

3 − 2q2e2
4 − 2q4e2

1 + e2
1e2

3

− 2q2e2
1 + e2

3e2
4 + e2

1e2
2 − 2q1e2

4 − 2q3e2
1 + e2

1e2
4 + e2

2e2
4 + e2

2e2
3 − 2q4e2

2

− 2q3e2
2,

J D
3 = −2q2q3e2

1 − e2
1e2

3e2
4 − 2q2q4e2

1 + 2q4e2
1e2

2 − 2q1q2e2
4 − e2

2e2
3e2

4 + 2q3e2
1e2

2

+ 2q1e2
3e2

4 − e2
1e2

2e2
4 + 4q1q3e3e4 − 4q1q3q4 + 2q1q2

3 + 2q2e2
1e2

4 − e2
1e2

2e2
3

+ 2q3q4e2
1 + 2q1q2q3 + 2q1q2q4 + 2q3q4e2

2 − q2
1e2

4 − q2
1e2

3 + 2q4q2
1 − q2

4e2
1

+ 2q2
4q1 + 2q3q2

1 − q2
3e2

1 − q2
3e2

2 − q2
2e2

1 − q2
2e2

4 − 2q1q2e1e3 − 2q2q3e2e4

− 2q1e1e2e2
3 + 4q1q4e1e2 + 2q4e2

1e3e4 − 2q2e2
1e2e3 + 4q1q3e1e2

− 4q1q4e3e4 − q2
4e2

2 − 2q3e2
2e3e4 − 2q1e1e2e2

4 + 2q4e2
2e3e4 − 2q3e2

1e3e4

+ 2q2q4e2e4 − 2q2e2e3e2
4,

J D
4 = e1e2e3e4 + q1e3e4 + q2e1e4 + q3e1e2 − q4e1e2 + q1q3 − q1q4.

Remark 9.4. We do not know whether or not the algebraB E(D4) is finite dimensional.
However, the commutative quotient of the algebraB E(D4) is finite dimensional and has
the following Hilbert polynomial:

1 + 12t + 50t2 + 84t3 + 48t4 = (1 + 2t)(1 + 4t)(1 + 6t + 6t2)

= (1 + t)(1 + 3t)2(1 + 5t) + 3t4.
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Let us remark that the polynomial(1 + t)(1 + 3t)2(1 + 5t) coincides with the Hilbert
polynomial of the cohomology ring of the pure braid group of typeD4.

It was a big surprise for us to find that the Hilbert polynomial of the commutative
quotient of the algebraB E(D5) is equal to

1 + 20t + 150t2 + 520t3 + 824t4 + 480t5 = (1 + 2t)(1 + 4t)(1 + 6t)

× (1 + 8t + 10t2).

However, the obvious generalization of the above formulas for the Hilbert polynomial of
the commutative quotient of the algebraB E(Dn) is false.

Similar to the case ofBn-bracket algebra, the subalgebraAD
n = A(∆(Dn)\∆(Dn−1))

generated byxi = [i, n] and yi = [i, n], i = 1, . . . , n − 1, in the algebraB E(Dn)

is invariant under the twisted derivationD[γ ] for any rootγ ∈ ∆(Dn−1). By applying
Lemma 2.1successively, we obtain the following decomposition of the algebraB E(Dn)

for n ≥ 2:

B E(Dn) ∼= AD
2 ⊗ · · · ⊗ AD

n .

9.5. Quantized G2-bracket algebra

Fix a set of positive roots of typeG2 as

{a, b = 3a + f, c = 2a + f, d = 3a + 2 f, e = a + f, f }.
Then quantizedG2-bracket algebra is generated by the symbolsa, b, c, d, e, f with the
following relations:

(1) a2 = q1, f 2 = q2, b2 = c2 = d2 = e2 = 0,
(2) ea = ce + ac, ae = ec + ca, f b = d f + bd, b f = f d + db, eb = be, c f = f c,

ad = da, a f = ba + cb + dc + ed + f e, f a = ab + bc + cd + de + e f ,
(3) bcdef d + dbcdef + f edcbd + d f edcb = 0, f abcdb + bf abcd + dcba f b +

bdcbaf = 0, def abf + f de f ab + ba f ed f + f ba f ed = 0.

The Chevalley elements are defined by

η̃sa = a + 3b + 2c + 3d + e,

η̃s f = b + c + 2d + e + f.

Let θ̃1 = η̃sa − η̃s f andθ̃2 = η̃s f be the corresponding Dunkl elements, then we have the

relationsg2(θ̃1, θ̃2) = g6(θ̃1, θ̃2) = 0 in the algebraq B E(G2), where

g2(ξ1, ξ2) := ξ2
1 + ξ2

2 − ξ1ξ2 − q1 − 3q2,

g6(ξ1, ξ2) := ξ3
1 ξ3

2 − 3q2ξ
2
1ξ2

2 + q1ξ1ξ
3
2 + q1ξ

4
2 + q1q2ξ

2
1 + 3q2(q1 + q2)ξ1ξ2

+ 2q1q2ξ
2
2 + q2

1q2 − 6q1q2
2 − q3

2.

The small quantum cohomology ring ofG2-flag variety is isomorphic to the ring

R[q1, q2][ξ1, ξ2]/(g2, g6).

One can check the latter representation for the small quantum cohomology ring ofG2-flag
variety is equivalent to that given by Kim [14].
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9.6. Dunkl elements and fundamental invariant polynomials for I2(m)

Let ai = µi e1 + λi e2, whereµi = cos(iπ/m) and λi = sin(iπ/m) for i =
0, 1, . . . , m − 1. Then∆+ = {a1, . . . , am−1} forms the set of positive roots of typeI2(m).
The set of simple roots isS = {a0, am−1} and

ai = λ−1
1 λi+1a0 + λ−1

1 λi am−1.

The Chevalley elements are given by

ηsa1
=

m−1∑
i=0

λ−1
1 λi+1[ai ],

ηsam−1
=

m−1∑
i=0

λ−1
1 λi [ai ].

Let θ1 = ηsa0
+ λ1ηsam−1

andθ2 = (λ−1
1 µ1 + 1)ηsa0

+ (λ−1
1 + µ1)ηsam−1

be the Dunkl
elements of typeI2(m). The fundamental invariant polynomials are

f2(ξ1, ξ2) = ξ2
1 + ξ2

2 ,

and

fm(ξ1, ξ2) =
[m/2]∑
i=0

(−1)i
(

m

2i

)
ξ2i
1 ξm−2i

2 ,

whereξ1 andξ2 are variables corresponding to the orthonormal basise1 ande2.

Proposition 9.4. In the algebra B E(I2(m)) one has

f2(θ1, θ2) = 0, fm(θ1, θ2) = 0.

We can check that the algebra generated by the Dunkl elementsθ1 andθ2 in the algebra
B E(I2(m)) is isomorphic to the quotient of the polynomial ringR[ξ1, ξ2]/( f2, fm).

Remark 9.5. In this subsection, all roots are normalized to satisfy the condition
(ai , ai ) = 1. The root systems of typeI2(4) and I2(6) can be identified with the
crystallographic systems of typeB2 andG2, but the choice of the normalization is different.
Hence, the Dunkl elements forI2(4) andI2(6) in this subsection have a different expression
from the ones defined inSections 9.3and9.5.
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