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The voltage graph construction of Gross is extended to the case where the base graph
is non-orientably embedded. An easily applied criterion is established for determining
the orientability character of the derived embedding. These methods are then applied to
derive both orientable and non-orientable genus embeddings for some families of com-
plete tripartite graphs.

1. The general theory

The graph-theoretical terminology of this paper agrees with that of
[12] and {3]. In particular, a pseudograph admits loops and multiple
edges and the vertex and edge sets of the pseudograph G are denoted
by V(G) and E(G) respectively. With each edge uv of G we associate
two directed edges ¢ = (u,u) and e~ ! = (v,u) of G. The set of directed
edges of G is denoted by D(G).

A voltage pseudograph is a triple (G,¢,I"), where G is a pseudograph,
I' is a group, and the map ¢ : D(G) ~ T is subject to the unique restric-
tion

le)] ! =p(e~!) foralle€ D(G).

Given a voltage graph (G,¢.T'), the covering pseudograph G X , [ is de-
fined as follows: its vertex set is ¥(G) X I" and each edge e = uv of G
generates the edges (u,g) (v.gy(e)) of 7 X o I', where g ranges over all
the elements of the group I'. t is easy to see that if pseudographs are
regarded as tepological spaces, then G X, T is in fact a covering space
of G. Moreover, the authors of [10] assert that every regular covering

* The first author’s contribution to this paper constitutes a portion of his docteral dissertation
written at Western Michigan University under the second author’s supervisic 1. The second
author’s contribution to this paper is based on a portion of his dissertation written at
Michigan State University under the supervision of E.A. Nordhaus.
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space of G can be obtained in this manner. For more details the reader
is referred to [6], where this construction originated.

Given a voltage pseudograph (G.¢, ") and awalk c: ¢, ¢,, ..., e, ata
vertex v of G, we define

n
wle) = nl wle;) .
=1

The local group at v, denoted by I',,, is defined as
I = {¥c): cis a closed walk at v} forallve V(G).

It is sasily verified that I',, is in fact a subgroup of I'. Moreover, if # and
v are two vertices that belong to the same component of G, then [, and
I, are conjugate subgroups of I'; for if ¢ is a u—v walk, then T, =
[w(c))~ ! I, [e(c)]. Thus the index of T, in I' is independent of v if the
pseudograph G is connected. The following theorem, which reiates the
index of I', to the components of G X, T, is the voltage version of a
theorem originally proved for current graphs in [8]. As the proof of

the original version is easily modified to apply to voltage pseudograpbs,
no details are given nere.

Theorem 1.1. Given a connected voltage pseudograph (G.¢.T"), the num-
ber of components of the covering graph G X , I equals the index of T,
in I for any vertex v of .

For the defini*ior. of an embedding of a pseudograph, as well as other
related concepts, the reader is referred to [21] and [18]. The latt s iy
particularly recommended for a discussion of embeddings that are not
necessarily orientable. The orientable (non-orientabie) genus of a psendo-
graph G is defined as the least integer » such that G can be 2-cell em~
bedded on the orientable (non-orientable) closed surface of genus ».
These parameters are denoted by y(G) and F(G) respectively. The onent-
able annd non-orientable closed surfaces of genus n (n > 0) are denotad
by S, and 5, respectively. We adopt here the convention that Sy =3, =
the sphere.

It is shown in [21] that every crientable 2-cell embedding of the graph
G can be described in terms of a rotation system P which assigns to every
vertex v of G a cyelic permutation P, of the vertices adjacent to v, Since
our sukject matter here is pseudographs, we modify this system slightly
by defining P to be a cyclic permutation of all the directed edges of G
whose terminal (head) vertex is v. Thus, if ... —e; —e, is a sequence of
directed edges which describes the boundary of some region R, and if
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¢y = uv, then the next directed edge on the boundary of R is e; =
(P ,(€2)] L

In a series of papers [4--10] Gross et al. have shown that many inter-
CSRNE CMOEELGS Can Ve consiructed vy “Ulting” emeddings of pseu-
dographs to their covering pseudographs. Suppose (G,¢.T") is a voltage
pseudograph with valuesinI". If e is an arc of G at v, then foranyge T
we denote the lift of e at (v,g) by €. For any rotation system P of G
we define the lift P of P to G X, T by specifying that if P, (e) = f, then

¥ 8 ::Ng
P(v’g) (e8)=f&,

The relationship between the embeddings defined by P¥ and P is an ex-
ample of a branched covering projection. For our purposes here it is
sufficient to say that the map p : § - S is a branched covering projec-
rion 1§ Yhere exisis a d'serete se3 B of poinds 0f S sueb $has she ressris-
tion

p:S-piB~>S—-B

is a covering projection. The points of B are the branch points. If b is a
branch paiat, then (or some sufficiently small open neighborhood ¢/ of
b, the restricted map p: U~ U- {b} is n-fold, where n is some cardinal and
U is a component of p~ I(U —~ {b}) in S. We refer to n as the multiplicity
of branching at b. For example, the map z - z3 defines a branched cover-
ing projection of the extended complex plane onto itself with tiie branch
points @ aind oo; the multiplicity of branching is 3 at both branch points.
For more details the reader is referred to [1] and [13]. The following
notation will prove helpful in trying to describe the location of branch
patats. {€ R & 3 region of the embedding of ¢ on § {nduced by the rata-
tion system P, and g is a voltage assignment from G to I', then IRi, is

the order of p(c) in I, where ¢ is the closed walk in G consisting of the
boundary of R. It is easily verified that |X] o 18 independent of the spe-
cific orientation of R and of the initial vertex of ¢. The following theo-
rem summarizes information in {6,7,9] and shows that the regions of

7 X, I"are in fact easily computed.

Theorem 1.2. (Gross and Alpert). Let (G,.I") be a voltage pseudo-
graph wWith a rotarnion sysiem £, and fef #P¥de e fijiof Fro G X o {. fer
P and PY determine embeddings of G and G X . I'on S and S? respectiv-
efy. Then There exisss a dranched covering projeciton p . 5¢ - Ssuch
that



*J
-]
(]

S. Stahl, A.T. White [ Genus cf some tripartite graphs

@p '(G)=¢C X, I

(byifbisa branch point of p of multwlzcztv n, then b is in the inter-
ior of a region R such that |R|,

(¢c)ifRisaregionof G whzch isa k-gon then p- W(R) has !I‘UIRI
components, each of which is a k|R| -gon.

Generalized embedding schemes which describe graph embeddings
on surfaces which are not necessarily orientable have teen anounced
in the fairly recent past by several mathematicians {2,11,16,18]. While

-

» nroof techniques used to mthfv theqe alnonthms vary considerably,
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tion — sometimes ”u (1) must oe used instead of P, {u).

Specifically, if ... — u -- v — w is the portion of the boundary of
some region, and u w=Pw)be {i, —1}), then the vertex following
w on this boundary is £ (v), wheree =8  25A(uw). It is convenient
to present such embedding schemes by means of a plane drawing
of the graphs. The rotations are to be read off the diagram in the
counterclockwise sense and a “~" marks those edges for which: = 1.
Thus Fig. 3 represents an embedding of K, in which M(e) = 1 iff e =
uv or vw, and
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We now show that the construction of Theorem 1.2 can be extended
to generalized embedding schemes as well. Again (G,¢,I') is a voltage
pseudograph with the generalized embedding scheme (P, A). Let P¥ be
the iftof Pto G X, I'. In addition, define X\¥ : D(G X, l‘) - Z, bv set-
ting A¢(€) = Me) for any Lft € of an arc e of (‘ We def
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that the “raison d’étr Qf A is that if (P, )) dee.mes an embedding of G
ont §, then there ex_is,ts a two sheeted covering nroiection p,
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fS’ G X. Z-Y+ (SG). where S is orientable
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alized embedding scheme (P,\), and let (P¥, X\?) denote the 1i;t of
(P,N) to G X, T. If (#, N) and (P*,N¥) determine ¢mbeddings of
Gand G X, T on S and S¥ respectively, then there exists a branched
covering projection p . S¥ = 8§ such that

@p-1(6) =G X, T;

(bYif b is a branch point of multiplicity n, then b is in the interior of
a region R such that \R|, = n;

(c) if R is a region of G which is a k-gon, then p~Y(R) has IT'l/IR|,,
components each of which is a kiR| -gon.

Proof. Let p, : §~ S and p, : §¥ — S¥ be twofold orientable covering
projections. Then there exist liftzd orientable embeddings of G X, Z,
and (G X, T) X, Z, on S and 3 .espectively. A voltage assignment

¢ : D(G X, Z,)~ I is defined by setting ¢ (¢) = p(e) whenever ¢ is the
lift of an arc e of G. Let p : § = § be the branched covering projection
whose existence is guaranteed by Theorem 1.2 (here the voltage pseudo-
graph is (G X, Z, $,I"). Thus we have an orientable embedding of

G, =(G X, Zy) Xz T on § and an orientable embedding of G, =

(G X, )Xy Z,on S¥. However, these two pseudographs have an ob-
vious isomorphism & which carries a vertex ((v,i),g) of G, into the ver-
tex ((v.g).#) of G, (see Fig. 1). This isomorphism, moreover, conforms
with their embeddings on § and S$¥. To see this we note that both em-

{(v,0),q} (({v.,g).0)

VAN

((wated).gote ™)) (o a(E) . ge(e ) {a.gple™li), A (@) ((w.ap(E 1)), A(E))
v
G
) £
u w
({v,1).9) ({v,9), 1)
"31 GZ
—ts
- (L2 =1, ™
(i) ,gv(e ™)) (w.k(E),gote™h)) (turgete™d) Ale))  ((w.geie™h) X (E)

Fig. 1.
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The map ¢~ ! maps these regions to the following regions of S
((u.+).0) - (v, =), 1) - (O, +),3) - ((u,+),2) = ((v.--),3) — ((w,+),1),
((4,~),0) - ((wAn1D) ~ ((w-),3) — (U, ),2) - ((v,+),3) — ((w,—),1) .
Next, 7 maps these regions onto the regions of S
(u,+) -(v,=)—-(w,*) and (u,~) - (v,+) - (w,~).

Finally, the effect of p; is to map both of these regions onto the region
u~v~wofGonsS

Thus the map p is well defined. That p does indeed possess properties
(a), (b) and (c) follows from the fact that » possesses the analogous pro-
perties for the orientable case. This too is well illustrated by the above
example. This concludes the proof of the theorem.

The surfzce S¥ need not be non-orientable. Following a definition we
give a rule for determining the orientability character of §*. Given a vol-
tage graph (G, n.I"), we say that the closed walk ¢ of G is n-trivial if n(c)
is the identity element of I,

Theorem 1.4. Under the hvpotheses of Theorem 1.3, the derived surface
S¥ is orientable if and onlyv i) every p-trivial closed walk in G is so -
trivial.

Proof. We know trom [ 18, Theorem 3.4] that S¥ is orientable if and
only if every closed walk of G X, " is A-trivial. Now, suppose S¥ is
orientable, and let ¢ be a g-trivial (!osed walk of G. Then ¢ lifts to a
circuit ¢¥, of the same length as ¢, in & X " I". Since S¥ is orientable, it
follows that ¢¥ must be A2-trivial. Consequently, ¢ itself must be A-
trivial. The converse is proved in a similai manner.

Example 1.5. Fig. 4 exhibits an embedding of a pseudograph G with
cne vertex and } m loops (#1 = 2 (rmod 4)) in the projective plane (dia-
metrically opposite poiris on the circum{erence of the circle are iden-
tified). It follows from the final discussion in [18] that A = 1 on every
edge of G. Now definc a voltage ¢ of 1 € Z,, (n even) on each arc of

G in the direction indicated by the arrowhead in the figure. Here

7 X, Z, is a graph with the vertices {(v,7): i=0,1, ..., n ~ 1} in which
(0,9) aud (v,i + 1) are joined by }m edge: foreachi=0,1,...,n — 1. For
each region R of G, we have |R| = }n. Hence the regions of G X, Z,,
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Fig. 4.

are all n-gons {(by Theorem 1.3). In fact, it is easily verified that the
sequence of vertices along the boundary of each region of G X, Z,, is
v,0) - (v,1) — ... = (v,n — 1). Thus the boundary of each region of

G X, Z,, is a hamiltonian cycle in the sens~ that it contains eac 1 vertex
of G X, Z, exactly once. There are (3 m)< = m such regions in ‘he der-
ived embedding of G X, Z,,. Now place a new vertex in the interior of
each such region, join it by non-intersecting edges to all the vertices on
its boundary, and delete all the original edges of G X, Z,,. The result is
a quadrilateral embedding of K(m,n). This device originates in [4]. Now,
because n is even and each arc of G carries a voltage of t1 € Z,, and
moreover, for each arc of G, A=1 € Z,, it is clear that every ¢-trwvial
ciosed walk of G is also A-trivial. Thus we have obtained an orientable
quadrilateral embedding of K(m,n), where n is even and m = 2 (mod 4).
This, of course, is not new. The first such embedding was given in [14].

2. Lower bounds

In Section 3 the foregoing disci'ssion will be used to produce some
graph embeddings. This section is (evoted to the construction of the
machinery needed to show that the:e embeddings are in fact genus em-
beddings.

Let the pseudograph G be 2-cell em™edded o~ .he surface S with ¥
vertices, £ edges, and F'regions. Let V; ..a F; denote the number of ver-
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tices oi degree i and regions which are i-gons respectively. It is clear that
Fy=F; = F, =0, and we assume that likewise VO =V, =V,=0.1If the
surface S i

is orientabie, then the Euler—Poincaré formula asserts that
V-E+F=2-2¥%S).

Hence,
YWS)=1-WE-~-V-F).
Since
F=2,F, ¥=XLV,,
i3 i=>3
2E= 24 iF, = 25 iV,,
i=3 i>3
it follows that
(1) NC)K YS) =1+ (4E—-4V - 4F)y= 1+ (2E- 4V+2E -4F)
=1+§(E:V~-4E V.+ 25iF, 4EF)
i>3 i=3 i»3

=1+ 25 (- (F,+V).
U i»3
Similarly. if S is non-orientable, then

(2) Y(G)< 2 +} 233 (i-4)(F,+ V).

We now specialize to the case where G is a complete tripartite graph.
The graph K(p.q.r) has (p + q + r) vertices, which are partitioned
into three sets P, Q and R, containing p, q and r vertices, respectively.

We assume throughout this paper that p > g = r > 1. The edges of
K(p.q.r) are precisely those edges which join a vertex in one of the
three sets to a vertex in one of the other two sets. In order to distin-
guish the three types of edges which ocfur, we make the following
definition.

Definition 2.i. An edge of the graph K(p,q.r) which joins a vertex in
the set R with a vertex in the set Q is called an edge of rype 1. Similar-
ly, an edge joining sets K and P is called an edge of type I/, and one
joining sets Q and P an edge of iype /11



- 288 S. Stahl, A.T. White | Genus of some tripartite graphs

Since there are gr edges of type I, pr edges of type Il and pg edges
of type 111, the total number of edges is £ = qr + pr + pq.

Lower bounds for genus formulae are ordinariiy obtained by th: use
of the Euler--Poincaré formula and certain properties of the graph in
question. Theorem 2.2, which follows, can be established in this man-
ner, but a simpler proof is presented which uses Ringel’s results for the
genus of complete bipartite graphs in [ 14] and [15].

Theorem 2.2. The orientable and non-orientable genera of the graph
Kip.q.r) are boun.ded below by:

YKp.qr))={i(p--D(g+r-2),
YK@.gm = dp-2)(g+r-2)}.

Proof. Consider any orientable genus embedding of K(p.q,7) in a surface
S. By the removal of all edges of type 1 from this embedding, we obtain
- an embedding of K(p,q + r) in the same surface S. Hence by Ringe!’s
formula,

Y KP.g.N)=vS= v K@p.g+ N={(p - Diqg+r-—-)}.

Similarly, if K(p.q.r) has a non-orientable genus embedding on: ¥, we
use the formula Y(K(p.g +r)) ={3(p - 2) (g +r — N} to derive the
second result.

Much of the remainder of this paper is dedicaied to showing *hat
equality holds in the above theorem for several families of graphs, and
we conjecture that it holds for all complete tripartite graphs.

Conjecture 2.3.
YEKP@.g.M=13(p - 2) (g +r-2)},
YK@.qr =4 -2 (q+r-2)}.

The resuit of Ringel and Youngs [17] that xK(p.p.p))=L(p - ) (p-2)
ic seen to be consistent with this conjecture. It was also shown by White
in [ 19§ that ¥(K(mn,n,n)) = 5 (mn — 2) (n — 1), which likewisc agrees
with this conjecture.

To show that equality holds it is sufficient to construct embedcings
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of K(p.q,r) in the surfaces S, and S, where n ={i(p — 2) (¢ +r — 2)}
and m ={}(p - 2) (g +r - 2)}. The following lemmas will assist us in
investigating the region distribution of such embeddings.

Lemma 2.4. In any embedding of K(p.q.r). F3 < 2qr.

Proof. Any 3-cycle in K(p.q.r) must be composed of one edge of each
of the three types, since otherwise two vertices in the same vertex set
would be adjacent, a contradiction. Hence any triangle in an embed-
ding of this graph contains one edge of each type, and in particular an
ecdge of type I. But there are only gr edges of type I, and each edge ap-
pears in at most two regions in any embedding of the graph. Hence

Fy < 2qr.

Lemma 2.5, If any em:bedding of K(p.q.r) has F3 = 2gr, then Fy;,, =0,
fori=2.3, ...

Proof. If F3 = 2qr, the qr edges of tvpe | each appear in two triangular
regions. Any other re:ion must then include only edges of type II or of
type 111 Since the vertices of K(p,q,r) are partitioned into three sets

P, @ and R of p, q and r vertices, respectively, the boundary of any non-
triangular region is a subgraph of the bipartite graph K(p.q +r) which
has its vertex set part:tioned into the sets P and Q U . Any such sub-
graph is itself a bipartite graph and hence cannot con.ain any odd cycles.
We observe that a region could contain a given vertex more than once,
but in this case each cycle formed must be even, implying that the re-
gion has an even number of sides.

Theorem 2.6. If F; = 2qr in a 2-cell embedding of K(p.q.r) in an orient-
able surface S, then

Rl
YK@,g.)<YS)=4p -2 (g +r-2)+; i‘;/3 (i-2)F,,; .
If S is non-orientable, then

YK@.gaM<¥(S)=3p -2 (g+r-2) +%§3 (-2, .

Proof. For the orientable case we use version (1) of the Euler—Poincaré
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formula discussed above. In particular, for G = K(p,q.r), since Vp ="
Voer =q.and Vg, =p, and since we are assuming that Fy = 2qr, we
have, using Lemma 2.5,

Y(K(p.q.r) < ¥(S)
=l +i(-2rg+(ptq-dr+(p+r- 4y

Hgtr-ap)+y L - dF,
>

P =D Hr =D+ L (- DFy,.

If S is non-orientable, we use version (2) of the Euler-Poincaré formula
to derive the second part of the theorem.

As a result of the above theorem it is possible to show that equality -
holds in the orientable part of Theorem 2.2, provided we produce an
orientable 2-cell embedding of K(p,q,r) for which F; = 2qr and

%E (=2Fy=z(p -2 (q+*=-D —4(p-2) g+r-12),

with all other regions being quadrilateral, for then y(K(p.q.7) s

{(p — 22(q +r — 2)}. In particular, if {(p — 2){g +r -- 2) is an integer,
we seek a 2-cell embedding with F5 = 2qr and all other regions quadri-
laterals. It is easy to see that a non-orientable embedding which satisflies
these two conditions is also necessarily a genus embedding. Thus. we
have derived the following corollary.

Corollary 2.7. An embedding of K(p.q,r) which satisfies the equations
F3 =2qr and Fy = F — F;5 is a genus embedding,

w7

we are also in position to prove the following characterization.

Corollary 2.8. An orientable minimal embedding of K(p,q.r) is triungular
ifand only ifp=gq =r.

Proof. As mentioned above, Ringei and Youngs have showr in [17'] that
K(p.p,p) does indeed possess an orientable triangular embedding. "on-
versely, suppose K(p.q,r) has a triangular embedding. This embedding is
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therefore minimal, bv a result of Youngs [21], and hence is a 2-cell em-
bedding. Then F = F3 = 2qr; and each cdge of type 1 lies in exactly two
triangular regions for this embedding, so that F; > 2gr also. Hence, by
Theorems 2.2 and 2.6, Y(K(p.q.r)) = 3((p — 2) (g +r - 2)). Now, from the
Euler- Poincaré formula,

dqr=F=-V+E+2(1-7)
= -(p+g+r+t(pgtprtqr)+2 -1 --2)(qg+r-2),

so that pqg + pr = 2qr. Since p=> ¢ > r, it foliows that pg = qr aad pr = qr.
It foliows that pg =gr=pr,andsop =q =,

3. Minimal embeddings

We now proceed to construct both orientable and non-orientable em-
beddings of complete tripartite graphs which satisfy the hypotheses of
Corollary 2.7.

Theorem 3.1. Y(K(.n.n —2)) =(n — 2)% for n > 3.

Proof. Let G be the multigraph which consists of n edges joining two
vertices. Suppose G is embedded in the projective plane, as de. ‘ribed

in Fig. § (with diametrically opposed points on the circumference iden-
tified). This embedding clearly consists of (i1 — 2) 2-gons and one qua-
drilateral. Let ¢ : D(G) - Z, be the voltage assignment given in the fi-
gure. It is clear that G X, Z, = K(n,n), and hat for any region R of G
we have |R|, = 1 or n according as R is a quadrilateral or a 2-gon. Thus
the lifted embedding of G X, Z, on S¥ consists of 7 quadrilaterals and




292 S. Stail, A.T. White | Genus of some tripartite graphs

(n — 2) 2n-gons (the 2n-gons it the 2-gons of G). It is easily verified
that the boundary of each 2n-gon is in fact a hamilionian cycle of

G X, Z,,: thus by placing a new vertex inside cach 2n-gon and joining

- it to all the vertices of G X Z, we obtain an embedding of K(n,n.n-2)
on S¥. To see that S¥ is in fact non-orientable, observe that if » is odd
then the closed walk which consists of n repetitions of the cycle

utv v S uis o-trivial but not A-trivial; if # is even then the circuit

3y - - 2
PEUEIES IR LS W Ui Rl
is also p-trivial but not A-trivial. Thus, in either case S¥ is non-orientable.
We apply the Euler--Poincaré formula to derive the genus of §¥. The
graph G X, Z, has 2n vertices, n? edges, and 2n -2 regions on $¥. Hence

2i- 0t A (2n - 2y=2 - H(S¥),
(411
YS¥y=(n- 2.

It is clear that the derived emocading of K(n.n,n —2) has 2n{(n --2) trian-
gular regioi:s and that the remaining regions are all quadrilateral. It fol-
lows from Corollary 2.7 that this is a genv embedding and hen e
Y(K(n,n.n-2))=(n - 2)2,

A slight modification of the above construction yields a non-orient-
able genus formula for K(n,n,n--4) when n is even.

Theorem 3.2. Y(K(n.n.n—4)) =n2 - Sn+ 6 for n > 4 and n even.

Proof. We use the same embedding as in the previous theorem but we
change the voltage assignment y as indicated in Fig. 6 (here m = 1 n). Each
of the (n — 4) 2-gons but R, and R, lifts to a single 2n-gon whose
boundary is a hamiltonian cycle of ¢ X , Z,. Since iR, = IR;l, = 2,

R, and R3 {a> well as R)) lift to quadrilaterals on $¥. This embedding is
again casily modified into an embedding of K(n,n,n - 4) with 2n(n -4)
triangular and n + {n + }n = 2n quadrilatera’ regions. The rest of the

proof will be omitied here as well as in subssquent theorems, since it

does not differ materially from the conclusion of the proof of the previous
theorem.

We conclude with the construction of several orientable genus embed-
dings. Ail but one of these 1 fact give rise to new genus formulae.
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Fig. 6.

Fig. 7 exhibits a plane embedding of the above multigraph G together
with a voltage assignment ¢ : D(G) > Z,,. Here G X, Z,, = K(n,n) and
the derived embedding has n regions each of which is bounded by a
hamiltonian cycle. Again, this vmbedding is easily modified to produce
a triangular embedding of K(n,n,n). Such an embedding, as was mention-

n=1
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ed above, is of course not new. The authors do believe, however, that
this construction is the easiest to verify.

At this point we digress to consider some genus embeddings of graphs
which are not complete tripartite. The above embeddings of K(n,n) can
be used to extend some results of White in [20] regarding the genus of
the repeated cartesian product of K(2m,2m). Working with 2s copies of
Ki{-.5). embedded as above, we choose one of the two possible orienta-
tions for s of these embeddings, and the reverse orientation for the
others. Since K(s.5) is 1-factorable (see [20, Theorem 12.4}), the con-
struction of Theorem 1 of [20] is applicable, except that here each
tube carries 2s edges and 2s quadrilaterals. Now replace the 2m of [ 20,
Theorem 2] by s and apply the proof verbatim. We thus obtain a qua-
drilareral embedding for K(s,s)) (the cartesian product of n copies of
K{(s.5)) and hence

y(K(s,5)")=142"35"ns ~4) forn=>2ands> 1.

A slight modification of this embedding of K(s,s) yields another
orientable genus formula for complete tripartite graphs.

Theorem 3.3. y(K(n.n,n-23) = i{(n— 2)2 if v is even and n > 2.

Proof. We set m = 3n and modify the previous voltage assignmert as in-
dicated in Fig. 8. All the 2-gons except R, and R, lift to 2n-gons of

G X, Z, w.th hamiltonian 5oundaries. On the other hand, |R;l, = 1.7,
2 and so they lift to m quadrilaterals each. Thus the derived embedding
of G x, Z, = K(n,n) can be modified into an embedding of K(n,i".n ~2)
with (n-—2)2n triangular and n quadrilateral regions. That this embed-
ding is orientable follows from the fact that we started out with an
orientabie embedding. Again an application of Corollary 2.7 shows that
this is in fact a genus embedding.
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Fig. 9.

Theorem 3.4. ¥(K(2n,2n,n)) =3 (3n - 2) (n — 1) forn > 1.

Proof. If n is odd then it is possible to list the elements of Z,,, as:
(3) O ln+l,n+2;, 23n+3.n+4; .. n-3,n-2,2n-2,
2n-1;, n—-1,n.

Again we use the multigraph G with 21 edges joining 2 vertices and em-
bed it in the plane. We assign the eiements v~ Z,, to the arcs of G start-
ing with the first arc on the left, and procee:'ing to the right, and making
the assignments in the order indicated by t1: above sequence. Fig. 9 ex-
hibits this assignment {or the case n = 7. It is easily verified that for n of
the 2-gons we have |R|, = 2n, while for the other n 2-gons we have
IRl, = 2. Hence G X, Z,,, has n regions witl hamiltonian boundaries
and n2 quadrilaterals. This is easily transforined into an embedding of
K(2n,2n,n) with 4n? triangles and n? quadrilaterals. A straightforward
computation shows that the derived surface has *he required genus.

If n is even we replace sequence (3) above by

ol,n+l,n+2;, 23,n+3,n+d; ... n—4,n-3,2n-3,
2n—-2, n-2,n-1,2n-1,n.

From this point the proof proceeds as above.
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