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GENUS EMBEDDINGS FOR SOME COMPLETE TRIPARTITE 
GRAPIHS * 

Received 17 February 1975 

The vu&age graph construction of Gross is extenSccf to the case where the baw graph 
is non-orkntably embedded. An easily applied criterion is established for determining 
the orientability character of the derived embedding. These methods are then applied to 
derive both orientable ijnd non-orientabte genus embeddings for some families of com- 
plete tripartite graphs. 

I. e general theory 

The graph~theoretical terminology of this paper agrees with that of 
[ 121 and [ 31. In particular, a pseudogr~ph admits loops and multiple 
edges and the vertex and edge sets of the pseudograph G are denoted 
by V(G) :u?d E(G) respectively. With each edge uu of G we associate 
two directed edges C* = (u,u) and e- 1 = (u,tl) af C. The set of directed 
edges of C 15 denoted by D(G). 

A voltage pseudrrgraph is a triple (G,qJ’), where G is a pseudograph, 
I”’ is a group, and the map 9 : D(C) + I’ is subject to the unique restric- 
tion 

l&91 -!l =g(d) foralleED(G). 

Given a voltage graph (G,g,I’), the covering pseudo~raph G X cp ii7 is de- 
fined as follows: it.s vertex set is V(G) X r and each edge e = uu of G 
generates the edges ( where g ranges otter all 
the elements of the that if pseudograqphs are 

is in fact a covering space 
at every regu 
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spa= sf G can be Gbtained in this manner. For more details tk reader 
is referred ts [ 61, rvhere this ccmtmctim ori&ated. 

iven a voltage pseudograph (C,cp, r) and a walk C: ~1, ~“2, . ..) en at a 
vertex u of G, we define 

# 
tic) = II t&et) l 

i=f 

e hrcal gmtrp at u, denoted by r,, is defined as 

rU = {tic): c is a closed walk at uj for al? u cz V(G). 

It is ~~r~~ily verified that I”,, is in fact a subgroup of I’. Moreover, if u and 
u are Iwo vertices that belong to the same component of G, then fip and 
& are conjugate subgroups of r; for if c is a U-U walk, then rV = 

[q(c)]. Thus the index of & in r is independent of II if she 
G is connected. The followtig theorem, which r&&s the 

irxkx of r. to the components of G X, I’, is the v&age version of it 
theoITem or@inally proved for current graphs in [ 81. As the proof af 
the o.ri&nrd version is easily modified to apply ta voltage pseudographs, 
no details are given here. 

For the defirG*ior,, of an ePrahe&~~g of a pseudograph, as welJ as other 
related concepts, the reader is referred to [ 2 1 J and [ 181. The WJ is 

icularly recommended for a discussion of embeddings that are not 
cessarily orientable. The on’enta,!~Ze (non~~~~enta~~~) genus of a psetldo- 

raph G is deCned as the least i.ntegeTrz such that G can be 2~~Al ~JII~ 
edded on the (orientable (non-cbtientab/e) closed surface of gersus II. 

These parameters are denoted by r(G) and y(G) respectively. The: orient- 
ar!d non-orientable cl 

ribed in terms sf a r 



p2 = uu, then the next directed edge cm the boundary of R is e3 == 
V”le2 )I- * - 

In a series of papers [4-- 1 S] Gross et al. have shown that many inter- 
&z?&? &!z??be&&ngs CZH? %Sz? CQfiS?mCte& 2?y YPX~&5 C?&RX?&ff~ CQY§~cr- 
dographs to their covering pseudographs. Suppose (G,g,l?) is a voltage * 
pseu~ogragh with Yaluesin x‘, If e is m arc of G at u, tkm k3r any g E r 
we denote the lift of e at (u,g) by e”9. For any rotation system P of G 
we define the lift P’ of P to G X, I? by specifying that if P,(e) =f, thtn 

The relatianship between the embeddings defined by P’ and P is an ex- 
ample of a branched covering projection. For Our purposes here it is 
sufficient to say that the map p : ?? + S is a brurrched covering projec- 
tikm if free *tis& a &~scr&c sef _B 01 JxG..Ms 03 S 223& K&G j)re ~22sL&- 
tian 

is 8 c~veringpr~jection. The points ofB are the brarzch points. If b is a 
b=aclt point, then f6r same sufficient& tjnidi open nei&barhiood u of 
h, the restricted map p : i7-b CL {b) is n-fold, where n is mm cardinal and 

i? is a clsrnponent of p-- I( U - $1) in 3! We refer to w as the mdtiplicity 
of‘bmuWzg at b. For example, the map z + z3 defines a branched cover- 
ing projection of the extended complex plane onto itself with tile branch 
points 0 a& 00; Ithe mutGpl;icity QE branchirq is 3 at both rjrafich pointS. 
For mm details the reader is referred to [ 1 f and [ 3 3 ]* The following 
notation will prove helpful in trying to describe the location of branch 
pa&. (f R is a rq?&n oc t&z embedd~~g oe G on s Gs&.Xce~ by t&e+ ruG&- 
tian system P, arad ‘9 is a voltage assignment from G to l?, then /RI, is 
the order of g(c) in I?, where c is the closed walk in C consisting of the 
boundary of R. it is easily verified that I&$, is independent of the sge- 
cific srientation of R emd of the initial vertex of C. The foIlowing thea- 
rem summarizes information in 16,751 and shows that the regions of 
C XW f‘ are in fact easlilv computed. 



lized embedding schemes which describe graph embtzddings 
n surfaecs which are not necessarily orientable have keen anounced 

m 2h.e fairly recent past by several mathematicians [2,1 I ,M,lsJ. While 
the ~)roof techniques used to justify these algorithms vary considerably, 
the schemes themselves are very much alike. Using the terminology of 

bedding scheme is a pair (PJ) where P is a conventional 
monds type roration system, and X : D(G) --* 2, defines a 

ph. The regions of this embedding are computed 
ay as is done in the orientable case, with exe excep- 

tion - sometimes P;- l(u) must be used instead of B,(u). 
ecifically , if . . . - u -- u - w is the portion of the boundary of 

on, and if w = p”(u) (6 E f 1) - I)), then the vertex folIowing 
boundary is P:fv), where E = Ei 2&A(vw). It is canvf!nient 

ts present such embedding schemes by meant of a plane drawing 
@EL The rotations are to be read off the diagram in the 

o&wise sense and a cc,‘9 marks those edges for which i = i. 

3 represents an embeddin_g of K4 in which X(e) = I iff e .‘= 

= (v, u, x) ) Pa; = (w, v, u) . 

ding, schemes as weli. Again ( 
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Pra‘lf~ Let p1 : -+ S and p2 : $* -+ S@ be twofold orientable covering 
projections. Then there ist liftllzd orientable embeddings of G X, 
and (G X, I’) X&Q ii!!? on and !?P &espectivefy. A voltage assignment 
z:D(GX,Z&+risd ned b-y setting z(z) = p(e) wheneverz is the 
lifeofanarceofG.LetE:S+ 3 be the branched covering projection 
whose existence is guaranteed by Theorem 1.2 (here the voltage pseudo- 
graph is (G X, 2, ,&r>,. Thus we have ;UI orientable embedding of 
G, = (G X, 2,) X; I”” on g and an orientabl 
(G X, I‘) X k* Z2 on TV. However, these tw 

bedding of G, = 
udographs have an ob- 

vious isomorphism + which carries a vertex ((u,i)& of G, into the ver- 
tex ((u.g),i) of G, (see Fig. 1). ?l”his isomorphism, moreover, co~~forms 
with their embeddings on !? and 39. To see this we note that bs,th em- 



* (--yp\)) --- (+ypl)) - (--‘(~‘?I)) -- (--‘(pq) - (+‘(plP) - (-q 

( (+“( p4)) A- (-‘(~%)) -- (+‘fpl)) - (+q&‘M)) - (--‘( pq) -- (+“~~‘~O) 

sa~npunuq qqNI $J uu suu t w 

(f-fn) - (p) - (pi) - (pj - (p) -(p) - 4fp) 

s 



The map W ’ maps these regions to the following regiorns of g: 

((II.$“).O) .- ((IA -),l ) -. ((W),3 $ -- m4f),3 - m.L--),3 - W,+h 1) 7 

((u,--MI) - ((u.+L 1 ) --- ((w--- ),3) - (.(l+),2j -- ((~,-1-),3) - ((~,-),1 J . 

these regions onto the regions of $: 

(la,+) -- (v,-) -- (w,+) and (u,--) -- (v,+ j -. (w,-) , 

Finally, the effect of ps is to map both of these regions onto the region 
tl qW v n+ rt’ Of G‘ On 22 

Thus the map E) is well defined. That p does indeed possess properties 
(a), (b) and (c) follows from the fact that p possesseti the analogous pro- 
perties for the orientable case. This too s well illustrated by the above 
exanqAe.T?nis concl ides the proof of the theorem. 

The surfxe Sg need not be non-orientable. FolkMng a definition we 
give 3 rule for determining the orientabilit y character of PP. Given a vol- 
tage graph ( C, 71, r), we say that the closed walk c of (rI is q-fri~+iti% if Q(C) 
is the identity element of TY 

rouf. Wt: know from ( 18, Theorem 3.41 hat S9 is orientable if and 
only if every closed walk of G Y, r is h-trivial. Now, suppose S9 is 
orientable, and let c be a q-trivial c;~..c ‘qk -3d walk of G. Then c’ lifts to a 
circuit c+, of t e same length 3s cs in G X, I’. Since P is orientable, it 
follows that (8’~ must be W-~riviat. Consequently, ~8 itself must be X- 
trivial. The converse is proved in a similar manner. 



ns (by Theorem 1.3). In fact, it is easily veeified that the 
ence of vertices along the boundary of exh region of G X, Z, is 

Ii] - . . . - (WI - 1). Thus the boundary of each region of 
isI a harniltonim cycle in the sem+- t a$ it contains eat $1 vertex 

exactly once here are (;i m); ==; m such regions in Ale der- 
n. Now place a new vertex in the interior of 

by non-intersecting edge3 to all the vertices on 
its b~u~d~l~~ and delete all the originaJ edges of G x, Za. The result is 

uadrilaterat embedding of K(m,n). This device sriginates 
p1 k even and each arc of G ies a v&age of a 1 E 

~r~~v~~r, for each arc of G, A = I E it is clear that every 
walk of C is also h-trivial. Thus ke have obtained an orientable 

drilateral embedding of K(m,n), where n is even and m = 2 (mod 4). 
of course, is not new. The first such embedding was given in [ 141. 



tices or’ degree i and regions w ich are i-gons respec[ively. It is clear that 

F* = F, = I;; = 0, and we mm~~e that likewise = V, = V, = 01. If the 
surface S is orientable, then the Euler- oincare formula asserts that 

Since 

*If = c v. , 
8 i>3 ’ 

it fdiows that 

(1) r(s)= 1 +&(464V-4F)= l+i(X’-- 45/+2&-4F) 

= 1 + g C (i -- 4) (I$ =+ V.) . 
ila3 I 

U 
Similarly. if S is nasn-orientable, then 

(2) 

w specialize to the case where C is a complete tripartite graph. 
aph K@,g,t) has (p + q t r) vertices, whit 



Since there are qa edges oi’ type I, pr edges of type II and pq edges 
of type ItI, the toltal number snf edges is ~5’ = ye + /~‘,r + pq. 

tower bounds fbtr genus formulae are ardinarZy obtained by tlx use 
sf the Euler--Poincar& formulti and certain properties of the graph in 
question. Theorem 2.2 9 which follsws, can be esTablished in this man- 
ner, but a simpler proof is presented which uses Ringel’s results Tar the 

nus of c~rnpkte bipartite graphs in [ 141 and [ 1S]. 

Proof. Consider any orientable genus embedding of KQ2,q.r) in a surface 
S. By the remsvaI of all edges CA’ type I from this embedding. SN~ obtain 
an embedding af K(p.q + 19 in the same ‘surface S.. Hence by King&s 
formula, 

y(#(p,q,r)) = y(S) z y(KQ3.4 + ,))=($(p - 2) i 4 + r -- ‘,‘ )) . 

Similarly, if K@,q,r) has a non-orientable genus embedding on .y, we 
use the formula T(KCp.q + r)) = {l, (p - 2) (q + r - 2 j) to derive tke 
second result. 

uch of the remainder of this paper is dedicakd to showing Wt 
equality holds in the above theorem for several families of graphs, and. 
we conj&ure that it holds for afl complete tripartite graphs. 

y(K(p,q,r))= igp - 2) (q + fy -- 31 + 

gyQj3,q,r)) = {$(p - 2) (4 + r - 2)) a 

The resuPt af Ringel and Youngs [ 171 that r~K@,p,p)j = i(p - !) @I-- 2) 
is seen ts *be consistent with this conjecture. It WBS also showy by White 

191 that T(K(Fw,wI)) = $(mn - 2) (~3 - I), which tikewisc agrees 
conjecture. 
w that equality holds it is sufficient to construct embedciings 



of K(p.y,r) in the surr’aces Sn and srPr, where 11 = {jl(r, - 2) (q + r - 2)) 
and m = {i(p - 2) (4 + r -- 2)). The following lemmas wiI1 assist us in 
hvrrstigating the region distribution of such embeddings. 

Proof. Any 3-cycIe in K(‘JUJJ) must be composed of one edge of each 
of the three types, since otherwise two \rerticcs in the same vertex set 
would be adjacent? a contradiction. Her~e any triangle in an cmbl:d- 
ding of this graph contains one edge 3f each type, and in particular an 
edge of type 1. But there are only 4’ e&es of type 1, and each edlge ap- 
pears in at most two regions in any embedding of the graph. Hence 
FTJ G 2yr. 

Proof. If F3 = 2qrq the qr edges of type 2 each appear in two triangular 
regions. Any other redon must then include only edges of type 111 or of 
type 111. Since the vzrtices of K@,q,r) are partitioned into three sets 
P, Q and R of p, y and I vertices, respectiveiy, the boundary off any non- 
triangular region is a subgraph of the bipartite graph K@,q + r) which 
has its vertex set partitioned into the set:s P and Q u .X Any such sub- 
paph is itself a bipartite graph and hence cannot con ain any odld cycles. 
We observe that a region could contain a given vertex more than once, 
but in this case each cycle formed must be even, implying that the re- 
gion has an even number of sides. 

roof. For the orientable case we use version (1) of the uler-Poincare 



formufa discussed above. In particular, for G = K@,QJ), since V’+,? = v, 
V p+t = (?, and V&F = !I? and since we sue assuming that F3 =L Zqr, *xe 
have. using Lemma 2.5, 

= 1 f $(-2q + @ + q -- 4)rr + @ -I- r - 4)q 

*q(J) - 2)(q+r-2)+~Z) (i.-2)1;;i. 
03 

ffS is non-orientabk, we use version (2) of the Euler--Poincsti formula 
63%~ the second part of the theorem. 

s a result of the above theorem it is possible to show that equztlity w 

hoids in the orientabk part of Theorem 2.2, provided we produce an 
hentable 2&l em.bedding of K@,q,r) for which 4 = 2qr and 

i 
a i 

(i-~2)F~i=i$(p-2)(q-t--2)}-~(p- 2) :q+r-2), 

ral, for then y(K(p,q,rf) % 
f f (y --- 2) 4y + r -- 2) is an integer, 

= 2qr and all other regions qLb:idri- 
see that a non-orientable embedding which satis5es 
is also necessarily a genus embedding. Thus. VW 

2 are also in position to owing character 
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frz - 2) 2r1-guns (the 2 rr-gons lift Ge 2-gons of C). It is easily verified 
that the boundary of each 2mgorr is in fact a hamiltonian cycle of 

jelF 3: thus by placi inside each 2~gon a joining 
- It to the vertices of ain an emheciding of j1,t1,11 -_ 2) 

FY To see that 27 is in tkzt w.m-orientable, c&+yve that if rt is odd 
n the Axed walk x&ich consists of G repetitions of the cycle 

is 2 u is ptrivial but nst btrivial; if rt is even then the circuit 

SO $-trivial but not X-trivial. Thus, in either case Sg is non-orientable. 
Euler--B.Gncar~ formula to derive the genus of ST The 

haas 21 vertices, ~2 edges, and 2rr --- 2 regions on S? 1 

that the detived emb&iing of k’(rl,~l,~ --- 2) has 2r 
OG and that the remaining regions are ‘alf quadril 

2.7 that this is a gent? embedding and hen :e 

slight modification of the above construction yields a non-orient- 
nlis formula fdtr K(n,lr,tl--4) when iz is even. 

e use the same embedding as in the previous theorem but we 
nment ~3 as indicated in Fig. 6 (here nz = # n). 
t R2 and R3 lifts to a single &gon whose 

anian cycle of C X, Z,. Since IRZ$ = lRjl, = 2, 
R !) lift to quadrilaterals on SC This embedding is 

ified itnto an e~~~eddi~ 
e rest of the 



Fig. 6. 

Fig. 7 exhibits a plane embedding of the above multigraph G together 
zz@nment y2 : D(G) + #,. Here C; X, 

has M regiions each of wh:ich i 

, as w3s mention- 

: 
Fig. 7. 



ed above, is of course not new. The authors do believe, however, that 
this construction is the eakst to verify.. 

At this po;kt we digress to cons r some genus embeddings of 
ich an2 not complete tripartite. he above embeddings of 
used to extend some resufts of the genus of 
repeated cart&an product clff K(2 h 2r copies of 

RS for s of these ~mb~ddi~~, and the reverse orientation for the 
ot he rs. Since (s,s) is Lfactorable (see [ 20, Theorem 12.4]), t 

of Thearem f of [ 2d] is applicable, except that here each 
carries 2s edites and 2s quadrilaterals. Now replace the TUI of f 2 
wem 21 by s a.nd apply the proof verbatim. We thus obtain a qua- 
eral embedding for K(s,s)(~‘) (the Cartesian product of: PI copies of 

t modificaGon of this embedding of K(s,Y) yieldls another 
~~~ntab~~ genus furmula for complete tripartite graphs. 

and modify the previous voltage assignmec t as in- 
n Fig. 8. AU the 2-gons except R, and R, lift to 2~gas of 
with hamiltonian bound&es. On the other hand, IR,I, = f&l, = 

IPI quadrilaterals each. Thus the derived em bedding 
= K(n,r~) can be modSed into an embedding of K(rf,r*.rt ‘-- 2) 

guPar and pt qu&rilsRerali regions. That 
is orkntable follows from the fact that we started out 

~~~~tab~~ embedding. Again an application of Corolla 
a is in fac:t a genus embedding, 
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Fig. 9. 

Theorem 3.4. y(K(2~1,2rt,n))_= f (311 - 2) (12 - f )fov n > 1. 

roof. If n is odd then it is possible to list the elements of 

(3) O,l,n+1,rz+2; 2,3,21+3,n+4; . . . n-3,n-2,2r+2, 

the 

t is easily xrified that for n of 
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