

Discrete Mathematics 192 (1998) 273-279

## DISCRETE MATHEMATICS

# Embedding a set of rational points in lower dimensions

Hiroshi Maehara

Ryukyu University, College of Education, Nishihara, Okinawa, Japan

Received 18 September 1996; revised 15 May 1997; accepted 10 June 1997

#### Abstract

Let  $X^n$  be a set of rational points lying on an *n*-dimensional flat in a Euclidean space. We prove that for  $n \ge 2$ ,  $X^n$  is congruent to a set of rational points in  $\mathbb{R}^{2n+1}$ , and that for  $n \ge 3$ ,  $X^n$  is similar to a set of rational points in  $\mathbb{R}^{2n-1}$ . © 1998 Elsevier Science B.V. All rights reserved

## 1. Introduction

Let  $\mathbb{Q}^n$  denote the subset of Euclidean space  $\mathbb{R}^n$  consisting of all rational points. A point-set X of a Euclidean space is called a  $\sqrt{\mathbb{Q}}$ -set [3] if the square-distances among the points in X are all rationals. Every subset of  $\mathbb{Q}^n$  is clearly a  $\sqrt{\mathbb{Q}}$ -set, and it was proved in [2] that any  $\sqrt{\mathbb{Q}}$ -set lying on an *n*-dimensional flat in a (possibly, very high dimensional) Euclidean space is congruent to a subset of  $\mathbb{Q}^{3n+1}$ . It was then asked whether there is a 3-point  $\sqrt{\mathbb{Q}}$ -set that is not congruent to a subset of  $\mathbb{Q}^6$ . We are going to prove the following theorem, answering this question.

Let  $X^n$  denote an arbitrary set of rational points lying on an *n*-dimensional flat in a Euclidean space.

**Theorem 1.** For  $n \ge 2$ ,  $X^n$  is congruent to a subset of  $\mathbb{Q}^{2n+1}$ . If n is even and  $\ge 4$  then  $X^n$  is congruent to a subset of  $\mathbb{Q}^{2n}$ .

Thus, any 3-point  $\sqrt{\mathbb{Q}}$ -set is congruent to a subset of  $\mathbb{Q}^5$ . Since the vertex-set of the triangle with sides  $1, \sqrt{7}, \sqrt{8}$  is never congruent to a subset of  $\mathbb{Q}^4$  (Lemma 5), the dimension 5 is the least possible for  $\sqrt{\mathbb{Q}}$ -triples.

Since a pair of points with mutual distance  $\sqrt{7}$  is not congruent to any subset of  $\mathbb{Q}^3$ , we cannot drop the condition  $n \ge 2$  in the above theorem.

Any two point-sets X and Y are called *similar* if there is a real  $\lambda > 0$  such that  $\lambda X := \{\lambda x: x \in X\}$  is congruent to Y.

0012-365X/98/\$19.00 Copyright © 1998 Elsevier Science B.V. All rights reserved *PII* S0012-365X(98)00075-2

**Theorem 2.** For  $n \ge 3$ ,  $X^n$  is similar to a subset of  $\mathbb{Q}^{2n-1}$ .

A lattice point is a point whose coordinates are all integers. A lattice tetrahedron is a tetrahedron whose vertices are lattice points in some  $\mathbb{R}^N$ . By the above theorem, any lattice tetrahedron is similar to a tetrahedron with vertices in  $\mathbb{Q}^5$ . Then, by dilating suitably, we can deduce that any lattice tetrahedron is similar to a lattice tetrahedron in  $\mathbb{R}^5$ . This answers the second question (Problem 2) in [2].

**Problem.** Is there a constant c such that every  $X^n$  is congruent to a subset in  $\mathbb{Q}^{n+c}$ ?

#### 2. The three- and four-square theorems

First, let us recall the following two theorems.

(1) (The four-square theorem). Every positive integer can be represented as the sum of the squares of four integers.

(2) (The three-square theorem). A positive integer can be represented as the sum of three integral squares if and only if it is not of the form  $4^{i}(8m + 7)$  for some integers *i*, *m*.

For the proof of the four-square theorem, see Niven-Zuckerman [5] or Pach [6], and for the three-square theorem, see Narkiewicz [4].

By the four-square theorem, every positive rational number is represented by the sum of four squares of rationals. Let us call a positive rational number 3-square-type if it can be represented as the sum of three squares of rationals, otherwise, it is called 4-square-type. By the three-square theorem, a positive rational  $\alpha$  is 4-square-type if and only if  $n^2\alpha = 4^i(8m + 7)$  for some integers n, i, m.

**Remark.** If  $\alpha$  is of 4-square-type, then since  $(2\ell + 1)^2 = 8\ell(\ell + 1)/2 + 1 \equiv 1 \pmod{8}$ ,  $k^2\alpha$  is also of 4-square-type for any integer  $k \neq 0$ .

Since  $7^2 = 49 \equiv 1 \pmod{8}$ , the next lemma follows.

**Lemma 1.** If two positive rationals  $\alpha$ ,  $\beta$  are both of 4-square-type, then the product  $\alpha\beta$  is of 3-square-type.

**Lemma 2.** For any three positive rationals  $\alpha$ ,  $\beta$ ,  $\gamma$ , there are four rational numbers u, v, w, x such that  $\alpha = \beta(u^2 + v^2 + w^2) + \gamma x^2$ .

**Proof.** (1) If  $\alpha/\beta$  is of 3-square-type, then  $\alpha = \beta(u^2 + v^2 + w^2)$  for some rationals u, v, w.

(2) Suppose that  $\alpha/\beta$  is of 4-square-type. There are positive integers k, n such that  $k^2(\gamma/\beta) = 4^i n$  where  $n \equiv 2$  or 4 (mod 8). Using Remark, we can choose two integers

a, b so that  $a^2(\alpha/\beta) = 4^{i+j}(8m+7)$  and  $b^2(\gamma/\beta) = 4^{i+j}n$  where i, j, m, n are integers,  $n \equiv 2$  or  $4 \pmod{8}$ , and 8m+7 > n. Then

$$a^{2}(\alpha/\beta) - b^{2}(\gamma/\beta) = 4^{i+j}(8m+7-n),$$

and since 8m - n is even and not divisible by 8,  $a^2(\alpha/\beta) - b^2(\gamma/\beta)$  is of 3-square-type. The Lemma now follows easily.  $\Box$ 

### 3. Inner product spaces over Q

By an *inner product space over*  $\mathbb{Q}$ , we mean a subset V of a Euclidean space such that V constitutes a vector space over the rational field  $\mathbb{Q}$ , and for any  $u, v \in V$ , the inner product (u, v) is a rational. Let us denote by  $V^n$  an n-dimensional inner product space over  $\mathbb{Q}$ . From any basis  $\{v_1, v_2, \ldots, v_n\}$  of  $V^n$ , we can get an orthogonal basis  $\{a_1, a_2, \ldots, a_n\}$  by Schmidt orthogonalization (without normalization). That is,

$$a_{1} = v_{1},$$

$$a_{2} = v_{2} - \frac{(v_{2}, a_{1})}{(a_{1}, a_{1})}a_{1},$$

$$a_{3} = v_{3} - \frac{(v_{3}, a_{1})}{(a_{1}, a_{1})}a_{1} - \frac{(v_{3}, a_{2})}{(a_{2}, a_{2})}a_{2},$$
...

Note that the coefficients appearing in the above orthogonalization are all rational numbers.

A Q-linear map  $\varphi: V^n \to \mathbb{Q}^m$  that satisfies  $(\varphi(u), \varphi(v)) = (u, v)$  for every  $u, v \in V^n$  is called an *embedding* of  $V^n$  in  $\mathbb{Q}^m$ . If there is an embedding of  $V^n$  in  $\mathbb{Q}^m$ , then  $V^n$  is said to be *embeddable* in  $\mathbb{Q}^m$ .

**Lemma 3.** If  $V^n \subset V^{n+1}$ , and  $V^n$  is embeddable in  $\mathbb{Q}^m$ , m > n, then  $V^{n+1}$  is embeddable in  $\mathbb{Q}^{m+3}$ .

**Proof.** Let  $\varphi: V^n \to \mathbb{Q}^m$  be an embedding. Since m > n, there is a nonzero vector  $c = (c_1, \ldots, c_m) \in \mathbb{Q}^m$  orthogonal to  $\varphi(V^n)$ . Let  $a \in V^{n+1}$  be a nonzero vector orthogonal to  $V^n$ , and let  $\alpha = (a, a), \gamma = (c, c)$ . By Lemma 2, there are four rational numbers u, v, w, x such that

$$\alpha = u^2 + v^2 + w^2 + \gamma x^2.$$

Let  $\psi: V^n \to \mathbb{Q}^{m+3}$  be the linear map defined by  $\psi(v) = (\varphi(v), 0, 0, 0)$ , and let

$$\psi(a) = (xc_1, \ldots, xc_m, 0, 0, 0) + (0, \ldots, 0, u, v, w) \in \mathbb{Q}^{m+3}.$$

Then  $(\psi(a), \psi(a)) = u^2 + v^2 + w^2 + \gamma x^2 = \alpha$ , and  $\psi(a)$  is orthogonal to  $\psi(V^n)$ . Hence the linear map  $V^{n+1} \to \mathbb{Q}^{n+3}$  determined by  $\psi$  preserves the inner product, and hence  $V^{n+1}$  is embeddable in  $\mathbb{Q}^{m+3}$ .  $\Box$ 

**Lemma 4.** If  $V^n \subset V^{n+2}$ , and  $V^n$  is embeddable in  $\mathbb{Q}^m, m > n$ , then  $V^{n+2}$  is embeddable in  $\mathbb{Q}^{m+4}$ .

Since  $V^0$  is embeddable in  $\mathbb{Q}^1$ ,  $V^2$  is embeddable in  $\mathbb{Q}^5$ .

**Proof.** Let  $\varphi: V^n \to \mathbb{Q}^m$  be an embedding. Since m > n, there is a nonzero vector  $c = (c_1, \ldots, c_m) \in \mathbb{Q}^m$  orthogonal to  $\varphi(V^n)$ . Let  $a, b \in V^{n+2}$  be two mutually orthogonal nonzero vectors, each orthogonal to  $V^n$ , and let  $\alpha = (a, a), \beta = (b, b), \gamma = (c, c)$ . By Lemma 2, there are four rational numbers u, v, w, x such that

$$\alpha = \beta(u^2 + v^2 + w^3) + \gamma x^2.$$

Now, by the four squares theorem, there are four rationals p,q,r,s such that  $\beta = p^2 + q^2 + r^2 + s^2$ . Let  $\psi: V^n \to \mathbb{Q}^{m+4}$  be the linear map defined by  $\psi(v) = (\varphi(v), 0, 0, 0, 0)$ . Define  $\psi(b), \psi(a) \in \mathbb{Q}^{m+4}$  by

$$\psi(\mathbf{b}) = (0, \dots, 0, p, q, r, s),$$
  

$$\psi(\mathbf{a}) = u(0, \dots, 0, -q, p, -s, r) + v(0, \dots, 0, r, -s, -p, q)$$
  

$$+ w(0, \dots, 0, s, r, -q, -p) + x(c_1, \dots, c_m, 0, 0, 0, 0).$$

Then  $\psi(\boldsymbol{b}), \psi(\boldsymbol{a})$  are both orthogonal to  $\psi(V^n)$ . Since five vectors

$$(0,\ldots,0, p,q,r,s), (0,\ldots,0,-q, p,-s,r), (0,\ldots,0,r,-s,-p,q),$$
  
 $(0,\ldots,0,s,r,-q,-p), (c_1,\ldots,c_m,0,0,0,0)$ 

are mutually orthogonal, we have  $(\psi(a), \psi(b)) = 0$  and  $(\psi(b), \psi(b)) = \beta$ ,  $(\psi(a), \psi(a)) = \alpha$ . Hence the linear map  $V^{n+2} \to \mathbb{Q}^{m+4}$  determined by  $\psi$  preserves the inner product, and hence  $V^{n+2}$  is embeddable in  $\mathbb{Q}^{m+4}$ .  $\Box$ 

**Lemma 5.** Let  $\{a, b\}$  be any orthonormal basis of  $V^2$ , and let  $\alpha = (a, a)$ ,  $\beta = (b, b)$ . Then  $V^2$  is embeddable in  $\mathbb{Q}^4$  if and only if  $\alpha\beta$  is of 3-square-type.

**Proof.** Suppose that  $\alpha\beta$  is of 3-square-type. Then  $\beta/\alpha = x^2 + y^2 + z^2$  for some rationals x, y, z. Let  $\alpha = p^2 + q^2 + r^2 + s^2$ ,  $p, q, r, s \in \mathbb{Q}$ . The linear map  $\varphi: V^2 \to \mathbb{Q}^4$  determined by

 $\varphi(a) = (p,q,r,s),$  $\varphi(b) = x(-q, p, -s, r) + y(r, -s, -p, q) + z(s, r, -q, -p)$ 

is an embedding of  $V^2$  in  $\mathbb{Q}^4$ .

276

Conversely, suppose that there is an embedding  $\varphi: V^2 \to \mathbb{Q}^4$ . Let  $(p,q,r,s) = \varphi(a)$ . Then, since four vectors

$$(p,q,r,s), (-q, p, -s, r), (r, -s, -p, q), (s, r, -q, -p)$$

form an orthogonal basis of  $\mathbb{Q}^4$ , we can write  $\varphi(\boldsymbol{b}) = x(-q, p, -s, r) + y(r, -s, -p, q) + z(s, r, -q, -p), x, y, z \in \mathbb{Q}$ . Then  $\beta = (\varphi(\boldsymbol{b}), \varphi(\boldsymbol{b})) = \alpha(x^2 + y^2 + z^2)$ . Hence  $\beta/\alpha$  is of 3-square-type, and hence  $\alpha\beta$  is of 3-square-type.  $\Box$ 

**Problem.** Characterize those  $V^2$  that are embeddable in  $\mathbb{Q}^3$ .

**Lemma 6.** Any  $V^3$  contains a two-dimensional subspace that is embeddable in  $\mathbb{Q}^4$ .

**Proof.** Let  $\{a, b, c\}$  be an orthogonal basis of  $V^3$ , and let

 $\alpha = (\boldsymbol{a}, \boldsymbol{a}), \quad \beta = (\boldsymbol{b}, \boldsymbol{b}), \quad \gamma = (\boldsymbol{c}, \boldsymbol{c}).$ 

By Lemma 5, it is enough to show that one of  $\alpha\beta$ ,  $\alpha\gamma$ ,  $\beta\gamma$  is of 3-square-type. If both  $\alpha\beta$ ,  $\alpha\gamma$  are of 4-square-type, then  $\alpha\beta\alpha\gamma = \alpha^2\beta\gamma$  is of 3-square-type by Lemma 1, and hence  $\beta\gamma$  is of 3-square-type.  $\Box$ 

**Corollary 1.**  $V^3$  is embeddable in  $\mathbb{Q}^7$ .

**Proof.** Since there is a two-dimensional subspace W of  $V^3$  that is embeddable in  $\mathbb{Q}^4$ ,  $V^3$  is embeddable in  $\mathbb{Q}^{4+3}$  by Lemma 3.  $\Box$ 

Using Lemma 4 instead of Lemma 3, we have the next corollary.

**Corollary 2.**  $V^4$  is embeddable in  $\mathbb{Q}^8$ .

### 4. Similar embeddings

For a positive rational number  $\lambda$  and a  $V^n$ , let  $\sqrt{\lambda}V^n$  denote the *dilation* of  $V^n$  by  $\sqrt{\lambda}$ , that is,

 $\sqrt{\lambda}V^n = \{\sqrt{\lambda}v: v \in V^n\}.$ 

Note that  $\sqrt{\lambda} V^n$  is also an inner product space over  $\mathbb{Q}$ .

If  $\sqrt{\lambda}V^n$  is embeddable in  $\mathbb{Q}^m$  for some positive rational  $\lambda$ , then  $V^n$  is said to be similarly embeddable (or s-embeddable) in  $\mathbb{Q}^m$ .

**Lemma 7.** For any positive rational  $\lambda$ ,  $\sqrt{\lambda}\mathbb{Q}^{4m}$  is embeddable in  $\mathbb{Q}^{4m}$ .

**Proof.** Express  $\lambda$  as  $\lambda = x^2 + y^2 + z^2 + w^2$   $(x, y, z, w \in \mathbb{Q})$ . Let M be the  $4m \times 4m$ -matrix

$$M = \begin{pmatrix} A & & 0 \\ & \ddots & & \\ & & \ddots & \\ 0 & & A \end{pmatrix},$$

where

$$A = \begin{pmatrix} x & -y & z & w \\ y & x & -w & z \\ z & -w & -x & -y \\ w & z & y & -x \end{pmatrix}$$

Then the map  $\varphi: \sqrt{\lambda}\mathbb{Q}^{4m} \to \mathbb{Q}^{4m}$  defined by  $\varphi(\sqrt{\lambda}v) = vM$  is an embedding of  $\sqrt{\lambda}\mathbb{Q}^{4m}$ in  $\mathbb{Q}^{4m}$ . Indeed, for any  $\sqrt{\lambda}u, \sqrt{\lambda}v \in \sqrt{\lambda}\mathbb{Q}^{4m}$ ,

$$(\varphi(\sqrt{\lambda}u),\varphi(\sqrt{\lambda}v)) = (uM,vM) = (uMM^t,v) = \lambda(u,v) = (\sqrt{\lambda}u,\sqrt{\lambda}v). \qquad \Box$$

**Lemma 8.** Let W be a subspace of  $V^n$ . Suppose that  $\sqrt{\lambda}W$  is embeddable in  $\mathbb{Q}^j$  for any rational  $\lambda > 0$ , and that the orthogonal complement  $W^{\perp}$  is similarly embeddable in  $\mathbb{Q}^k$ . Then  $V^n$  is similarly embeddable in  $\mathbb{Q}^{j+k}$ .

**Proof.** Suppose that  $\sqrt{\alpha}W^{\perp}$  is embeddable in  $\mathbb{Q}^k$ . Since  $\sqrt{\alpha}W$  is embeddable in  $\mathbb{Q}^j$  by the assumption, we can deduce that  $\sqrt{\alpha}V^n = \sqrt{\alpha}(W \oplus W^{\perp})$  is embeddable in  $\mathbb{Q}^{j+k}$ . Hence  $V^n$  is similarly embeddable in  $\mathbb{Q}^{j+k}$ .  $\Box$ 

**Corollary 3.**  $V^3$  is similarly embeddable in  $\mathbb{Q}^5$ .

**Proof.** Let W be a two-dimensional subspace of  $V^3$  that is embeddable in  $\mathbb{Q}^4$ . Then by Lemma 7, for any rational  $\lambda > 0$ ,  $\sqrt{\lambda}W$  is embeddable in  $\mathbb{Q}^4$ . Since any onedimensional subspace of  $V^3$  is similarly embeddable in  $\mathbb{Q}^1$ ,  $V^3$  is similarly embeddable in  $\mathbb{Q}^5$  by Lemma 8.  $\Box$ 

## 5. Proofs of Theorems 1 and 2

**Proof of Theorem 1.** By adding a rational vector if necessary, we may suppose that  $X^n$  lies on an *n*-dimensional subspace  $V^n \subset \mathbb{Q}^N$ . Hence it will be enough to show the theorem for  $X^n = V^n$ . By Lemma 4,  $V^2$  is embeddable in  $\mathbb{Q}^5$ , and by Corollary 1,  $V^3$  is embeddable in  $\mathbb{Q}^7$ . Hence  $V^n$  is embeddable in  $\mathbb{Q}^{2n+1}$  by Lemmas 3, 4. For even  $n \ge 4$ ,  $V^n$  is embeddable in  $\mathbb{Q}^{2n}$  by Corollary 2 and Lemma 4.  $\square$ 

278

**Proof of Theorem 2.** It will be enough to show that for  $n \ge 3$ ,  $V^n$  is similarly embeddable in  $\mathbb{Q}^{2n-1}$ . By Corollary 3,  $V^3$  is similarly embeddable in  $\mathbb{Q}^5$ . By Corollary 2,  $V^4$  is embeddable in  $\mathbb{Q}^8$ . It is known [2] that if  $V^n$  is embeddable in  $\mathbb{Q}^{4m}$ , then  $V^n$  is similarly embeddable in  $\mathbb{Q}^{4m-1}$ . Hence,  $V^4$  is similarly embeddable in  $\mathbb{Q}^7$ . Now the theorem follows by applying Lemma 4.  $\Box$ 

## References

- [1] M.J. Beeson, Triangles with vertices on lattice points, Amer. Math. Monthly 99 (1992) 243-252.
- [2] H. Maehara, Embedding a polytope in a lattice, Discrete Comput. Geom. 13 (1995) 585-592.
- [3] H. Maehara, On  $\sqrt{\mathbb{Q}}$ -distances, Europ. J. Combin. 17 (1996) 271–277.
- [4] W. Narkiewicz, Classical Problems in Number Theory, PWN-Polish Scientific Publishers, Warszawa, 1986.
- [5] I. Niven, H.S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New York, 1972.
- [6] J. Pach, P.K. Agarwal, Combinatorial Geometry, Wiley, New York, 1995.