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Abstract 

Let X” be a set of rational points lying on an n-dimensional flat in a Euclidean space. We 
prove that for n 22, X” is congruent to a set of rational points in R2”+‘, and that for n >3, X” 
is similar to a set of rational points in RZn-‘. @ 1998 Elsevier Science B.V. All rights reserved 

1. Introduction 

Let Q” denote the subset of Euclidean space R” consisting of all rational points. 
A point-set X of a Euclidean space is called a &-set [3] if the square-distances 
among the points in X are all rationals. Every subset of Cl?” is clearly a a-set, 
and it was proved in [2] that any a-set lying on an n-dimensional flat in a 
(possibly, very high dimensional) Euclidean space is congruent to a subset of CP~~+‘. 
It was then asked whether there is a 3-point &-set that is not congruent to a 
subset of Q6. We are going to prove the following theorem, answering this 
question. 

Let X” denote an arbitrary set of rational points lying on an n-dimensional flat in a 
Euclidean space. 

Theorem 1. For n>2, X” is congruent to a subset of Cl*“+‘. If n is even and 34 
then X” is congruent to a subset ef Cl*“. 

Thus, any 3-point &-set is congruent to a subset of Q’. Since the vertex-set of 
the triangle with sides 1, J?, fi is never congruent to a subset of Q4 (Lemma 5) the 
dimension 5 is the least possible for v@&iples. 

Since a pair of points with mutual distance J? is not congruent to any subset of 
Q3, we cannot drop the condition n > 2 in the above theorem. 

Any two point-sets X and Y are called similar if there is a real A>0 such that 
ti := {Ax: x EX} is congruent to Y. 
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Theorem 2. For n>3, X” is similar to a subset of Q*+‘. 

A lattice point is a point whose coordinates are all integers. A lattice tetrahedron is 
a tetrahedron whose vertices are lattice points in some !RN. By the above theorem, any 
lattice tetrahedron is similar to a tetrahedron with vertices in Cl?. Then, by dilating 
suitably, we can deduce that any lattice tetrahedron is similar to a lattice tetrahedron 
in [w’. This answers the second question (Problem 2) in [2]. 

Problem. Is there a constant c such that every X” is congruent to a subset in CD”+‘? 

2. The three- and four-square theorems 

First, let us recall the following two theorems. 

(1) (The four-square theorem). Every positive integer can be represented as the 
sum of the squares of four integers. 

(2) (The three-square theorem). A positive integer can be represented as the sum 
of three integral squares if and only if it is not of the form 4’(8m + 7) for some 
integers i, m. 

For the proof of the four-square theorem, see Niven-Zuckerman [5] or Path [6], and 
for the three-square theorem, see Narkiewicz [4]. 

By the four-square theorem, every positive rational number is represented by the 
sum of four squares of rationals. Let us call a positive rational number 3-square-type 
if it can be represented as the sum of three squares of rationals, otherwise, it is called 
4-square-type. By the three-square theorem, a positive rational a is 4-square-type if 
and only if n*a = 4’(8m + 7) for some integers n, i, m. 

Remark. If a is of 4-square-type, then since (2e + 1)’ = 8/(e + 1)/2 + 1~ 1 (mod 8), 
k*a is also of 4-square-type for any integer k # 0. 

Since 7’ = 49 G 1 (mod 8), the next lemma follows. 

Lemma 1. If two positive rationals a, j? are both of 4-square-type, then the product 
a/l is of 3-square-type. 

Lemma 2. For any three positive rationals a, /?, y, there are four rational numbers 
u, v, w,x such that a = /?(u* + v* + w*) + yx2. 

Proof. (1) If a//? is of 3-square-type, then a=fi(u* + v* + w2) for some rationals 
u, v, w. 

(2) Suppose that a//l is of 4-square-type. There are positive integers k,n such that 
k*(y/& =4’n where n E 2 or 4(mod 8). Using Remark, we can choose two integers 
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u, b SO that a2(a/j?) = 4’+i(8m + 7) and b2(y/B) =4’+jn where i, j,m,n are integers, 
n=2 or 4(mod8), and 8m+7>n. Then 

~~(a//?) - b2(y/p) = 4’+j(Sm + 7 - n), 

and since 8m -n is even and not divisible by 8, a2(a/fl) - b2(y/j) is of 3-square-type. 
The Lemma now follows easily. ??

3. Inner product spaces over Q 

By an inner product space over Q, we mean a subset V of a Euclidean space such 
that V constitutes a vector space over the rational field CD, and for any u, u E V, the 
inner product (u,u) is a rational. Let us denote by V” an n-dimensional inner product 
space over Q. From any basis (~1, ~2,. . . , un} of V”, we can get an orthogonal basis 
{m,a2,..., a,} by Schmidt orthogonalization (without normalization). That is, 

a1 = “I, 

a2 = 02 - (u2,a1) 
-aI 9 
(mYal) 

a3 = u3 - 
(u3,41) 
-aI - 

(“3,a2) 

(a1,a1) 
-a2, 
(a2,a2) 

Note that the coefficients appearing in the above orthogonalization are all rational 
numbers. 

A Q-linear map cp : V” -+ Q” that satisfies (q(u), q(u)) = (u, u) for every U, u E V” 
is called an embedding of V” in am. If there is an embedding of V” in Q”, then V” 
is said to be embeddable in Q”. 

Lemma 3. If V” c Vn+‘, and V” is embeddable in Q”‘, m >n, then P’ is embed- 
dable in CF3. 

Proof. Let cp : V” + Q” be an embedding. Since m >n, there is a nonzero vector 
c=(c, , . . . , c,) E Qm orthogonal to cp( V”). Let u E Vnf’ be a nonzero vector ortho- 
gonal to V”, and let c( = (a, a), y = (c, c). By Lemma 2, there are four rational numbers 
U,V,W,X such that 

lx=u2+v2+w2+yx2. 

Let $ : V” -+ Qm+3 be the linear map defined by e(u) = (q(u), O,O, 0), and let 

$(a) = (w )...) xc,,0,0,0)+(0 )...) 0,U,v,W)EQm+3. 



276 H. MaeharalDiscrete Mathematics 192 (1998) 273-279 

Then ($(a), $(a)) = u2 + v2 + w2 + yx2 = CC, and $(a) is orthogonal to r&P). Hence 
the linear map Vn+’ + CP3 determined by + preserves the inner product, and hence 
Vn+’ is embeddable in Qmf3. 0 

Lemma 4. If V” C Vn+2, and V” is embeddable in CD”, m > n, then Vn+2 is embed- 
dable in Qmf4. 

Since V” is embeddable in Q’ , V2 is embeddable in Q5. 

Proof. Let rp : V” -+ Qm be an embedding. Since m >n, there is a nonzero vector 
c=(c1,... ,c,) E Q” orthogonal to cp( Vn). Let (I, b E W2 be two mutually orthogonal 
nonzero vectors, each orthogonal to V”, and let cr=(a,a), P=(6,b), y = (c,c). By 
Lemma 2, there are four rational numbers U, v, w,x such that 

c? = j3(U2 + v2 + w3) + 1/x2. 

Now, by the four squares theorem, there are four rationals p, q, r,s such that 
j?=p2 + q2 + r2 + s2. Let II/: V” --t Qmf4 be the linear map defined by $(u) = 
(q(u), O,O, 0,O). Define $(b), +(a) E CP4 by 

It/(b) = (0,. . .Y 0, P, 4, r, s), 

l&u) = u(0,. . .) 0, -4, p, -s, r) + NO,. . ., 0, r, -s, -p, 4) 

+ w(0,. . . , ~,~,~,-q,-P)+~(~l,...,~m,~,~,~,~). 

Then $(b), $(a) are both orthogonal to $( V”). Since five vectors 

(0, ’ f. 9 O,p,q,r,s),(O,... ,o, -4, p, -4 r), (0,. . ., 0, r, -s, -p,q), 

(0,. . ., 0, s, r, -4, - p), (~1 ,...,c,,0,0,0,0) 

are mutually orthogonal, we have ($(a), $(b)) = 0 and ($(S), $(6)) = /?, ($(a), $(a)) 
= CC Hence the linear map Vn+2 -+ CP+” determined by tj preserves the inner product, 
and hence V”+* is embeddable in CF4. ??

Lemma 5. Let {u,b} be any orthonormal basis of V2, and let a = (a,~), p= (b,b). 
Then V2 is embeddable in Q4 if and only if u/I is of 3-square-type. 

Proof. Suppose that C$ is of 3-square-type. Then /?/E =x2 + y2 +z2 for some rationals 
x,y,z. Let a=p2+q2+r2+s2, p, q, r, s E Cl!. The linear map cp : V2 --) CD4 determined 
by 

V(U) = (p,q,r,s), 

q(b) =x(-q, p, -s, r) + Y(6 -s, -p, q) + z(s, r, -9, -p) 

is an embedding of V2 in Q4. 
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Conversely, suppose that there is an embedding cp : V2 -+ Q4. Let (p, 4, r, s) = q(a). 
Then, since four vectors 

(P>%r,s), (-4, P, -s,r.), (r, -s, -p,q),(s,r, -4, -p> 

form an orthogonal basis of Q4, we can write q(b) =x(-q, p, -s,r)+y(r, -s, -p,q)+ 
z(s,r, -4, -p), x, y,z E Q. Then p = (q(b), q(b)) = a(x2 -t y2 + z2). Hence /3/a is of 
3-square-type, and hence c$ is of 3-square-type. 0 

Problem. Characterize those V2 that are embeddable in Q3. 

Lemma 6. Any V3 contains a two-dimensional subspace that is embeddable in Q4. 

Proof. Let {a, b, c} be an orthogonal basis of V3, and let 

~=(4a>, b=(b,b), y=(c,c). 

By Lemma 5, it is enough to show that one of c+, ay,fly is of 3-square-type. If both 
@, ay are of 4-square-type, then aj?cxy = a2j?y is of 3-square-type by Lemma 1, and 
hence by is of 3-square-type. 0 

Corollary 1. V3 is embeddable in Q7. 

Proof. Since there is a two-dimensional subspace W of V3 that is embeddable in Q4, 
V3 is embeddable in Q4+3 by Lemma 3. 0 

Using Lemma 4 instead of Lemma 3, we have the next corollary. 

Corollary 2. V4 is embeddable in 62”. 

4. Similar embeddings 

For a positive rational number 1 and a V”, let fiVn denote the dilation of V” by 
fi, that is, 

v5V” = {v%: u E V}. 

Note that fiVn is also an inner product space over Q. 
If &V is embeddable in Q” for some positive rational A, then V” is said to be 

similarly embeddable (or s-embeddable) in Q”. 

Lemma 7. For any positive rational I, &Q4”’ is embeddable in Q”” 
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Proof. Express 1 as 1 =x2 +y2 +z* +w2 (x, y,z, w E Q). Let A4 be the 4m x 4m-matrix 

A 0 

. . 
M= . L 4 ‘. 

0 A 

where 

A= 

x -y z w 

y x -w z 

i 1. Z -w -x -y 
w z Y -x 

Then the map cp : &Q4”’ --f Cl”” defined by cp(&u) = uA4 is an embedding of &Q4m 
in Q4m. Indeed, for any fiu, XI’% E x&I!‘~, 

(cp(~u),~(Jsiu))=(uM,vM)=(uMM’,u)=~(u,u)=(J;zu,~u). 0 

Lemma 8. Let W be a subspace of V”. Suppose that fiW is embeddable in Qj for 
any rational ,I> 0, and that the orthogonal complement WI is similarly embeddable 
in Qk. Then V” is similarly embeddable in Qjik. 

Proof. Suppose that @W’ is embeddable in Qk. Since &W is embeddable in Qj 
by the assumption, we can deduce that fi V” = &( W @ W’ ) is embeddable in Qjfk. 
Hence V” is similarly embeddable in Qjfk. 0 

Corollary 3. V3 is similarly embeddable in Q5. 

Proof. Let W be a two-dimensional subspace of V3 that is embeddable in Q4. Then 
by Lemma 7, for any rational 1> 0, fiW is embeddable in Q4. Since any one- 
dimensional subspace of V3 is similarly embeddable in Q’, V3 is similarly embeddable 
in Q5 by Lemma 8. 0 

5. Proofs of Theorems 1 and 2 

Proof of Theorem 1. By adding a rational vector if necessary, we may suppose that 
X” lies on an n-dimensional subspace V” c Q N. Hence it will be enough to show the 
theorem for X” = V”. By Lemma 4, V* is embeddable in Q5, and by Corollary 1, V3 
is embeddable in Q7. Hence V” is embeddable in Q2’+’ by Lemmas 3, 4. For even 
n 2 4, V” is embeddable in Q2n by Corollary 2 and Lemma 4. 0 
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Proof of Theorem 2. It will be enough to show that for n 2 3, V” is similarly embed- 
dable in Q2n-‘. By Corollary 3, V3 is similarly embeddable in Q5. By Corollary 2, 
V4 is embeddable in Q*. It is known [2] that if V” is embeddable in Q’“‘, then V” is 
similarly embeddable in Q 4m-’ Hence, Y4 is similarly embeddable in 4’. Now the . 
theorem follows by applying Lemma 4. ??
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