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Abstract

In this paper we study d-Koszul algebras which were introduced by Berger. We show that
when d¿ 3, these are classi:ed by the Ext-algebra being generated in degrees 0, 1, and 2.
We show the Ext-algebra, after regrading, is a Koszul algebra and present the structure of the
Ext-algebra.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In [2], Roland Berger introduced what he called “generalized” Koszul algebras. He
became interested in this class of algebras since Artin-Schelter regular algebras of
global dimension 3 which are generated in degree 1 are such algebras. The generalized
Koszul algebras are graded algebras A = K ⊕ A1 ⊕ A2 ⊕ · · · which are generated in
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degrees 0 and 1 such that there is a graded projective resolution of K for which the
nth projective in the resolution is generated in degree �(n) where

�(n) =




n
2
d if n is even;

n − 1
2

d+ 1 if n is odd;
for some d:

We generalize this de:nition to the nonlocal case, i.e., K is replaced by a semisimple
K-algebra and we call this class of algebras d-Koszul algebras. We give a formal
de:nition in Section 4.
The paper begins with a section on notation. Section 3 provides some general tools

to study when the Yoneda product map ExtnA(A0; A0) ⊗ HomA(M;A0) → Extn(M;A0)
is surjective where A = A0 ⊕ A1 ⊕ · · · is a graded algebra and M is a graded left
A-module. We introduce d-Koszul algebras in Section 4 and prove (Theorem 4.1)
that an algebra with generating relations in degree d is d-Koszul if and only if the
Ext-algebra E(A)=

⊕
n¿0 Ext

n
A(A0; A0) is generated in degrees 0, 1, and 2. In Section 5,

we de:ne d-Koszul modules and show that other than projective and simple modules,
then second syzygy of d-Koszul module (shifted) is a d-Koszul module. In this section,
we also show that the :rst syzygy of rM is d-Koszul (shifted), where M is a d-Koszul
module and r is the graded Jacobson radical of A.
In sections 6 and 7 we prove that the even Ext-algebra of a d-Koszul algebra is

a Koszul algebra and the whole Ext-algebra of a d-Koszul algebra, after a regrading,
is also a Koszul algebra (Theorems 6.1 and 7.1). It is also shown that the Ext of a
d-Koszul module is a Koszul module over the regraded Ext-algebra. In Section 8, we
provide a new proof Berger’s result that there is a generalized Koszul complex which
is exact if and only if the algebra is a d-Koszul algebra (Theorem 8.3).
Section 9 gives a description of the Ext-algebra of a d-Koszul algebra by generators

and relations. In particular, we show how the Ext-algebra can be described using the
dual algebra A!. The :nal section of the paper shows that algebras with relations
generated in a :xed degree d of global dimension 2 are d-Koszul. A classi:cation of
monomial algebras which are d-Koszul is also given in this :nal section.

2. Notation

Let K be a commutative ring and A= A0 ⊕ A1 ⊕ A2 ⊕ · · · be an associative graded
K-algebra where the direct sum is as K-modules. Note that K → A has image contained
in the center of A. Assume that A is generated in degrees 0 and 1; that is, Ai · Aj=Ai+j

for all 06 i; j ¡∞. Let Gr(A) denote the category of graded A-modules and degree
0 homomorphisms and Mod(A) denote the category of left A-modules. We denote by
gr(A) and mod(A) the full subcategories of Gr(A) and Mod(A), respectively, consisting
of :nitely generated modules. Let F : Gr(A) → Mod(A) denote the forgetful functor
and Gr0(A) (respectively, gr0(A)) be the full subcategory of Gr(A) whose objects are
the graded modules (respectively, :nitely generated modules) generated in degree 0.
We assume A0 is a semisimple Artin algebra. The graded Jacobson radical of A,

which we denote by rA, or simply r, when no confusion can arise, is A1 ⊕ A2 ⊕ · · ·.
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Since A is generated in degrees 0 and 1, it follows that ri = Ai ⊕ Ai+1 ⊕ · · ·. For the
remainder of this paper, we :x a minimal graded projective resolution of A0,

P• : · · · → Pn → · · · → P1 → P0 → A0 → 0;

where A0 is viewed as a graded A-module generated in degree 0. (Here “minimal
graded” means that the image of Pi → Pi−1 is contained in rPi−1 and, since A0 is
semisimple, minimal graded resolutions of graded modules exist in Gr(A).)
Note E(A)=

∐
n¿0 Ext

n
A(F(A0); F(A0)) is a graded algebra using the canonical grad-

ing; that is, E(A)n = ExtnA(F(A0); F(A0)).
In this paper, there will be a number of diPerent gradings occurring and we will

be careful about which grading we are using. The grading described above for the
Ext-algebra E(A) will be called the ext-grading and the degree of an element will be
called the ext-degree.
If M =

∐
i Mi is a graded A-module, we denote the nth-shift of M by M [n] where

M [n] is the graded A-module X =
∐

i Xi where Xi =Mi−n. Thus, if M is generated in
degree d, M [−d] is generated in degree 0 and if M ∈Gr0(A), then riM [− i]∈Gr0(A).
Let M =

∐
i Mi and N =

∐
i Ni be graded A-modules. If M is :nitely generated, then

we may grade the abelian group HomA(F(M); F(N )) by setting HomA(F(M); F(N ))i=
HomGr(A)(M;N [i]). This grading will be called the hom-grading. More generally, if Q• :
· · · → Qn → · · · → Q1 → Q0 → M → 0 is a graded projective resolution of M , we may
apply the ith-shift to the resolution Q•. Thus, we get a graded resolution Q•[i] : · · · →
Q1[i] → Q0[i] → M [i] → 0. If Qn is :nitely generated, we grade ExtAn (F(M); F(N ))
as follows. We now assume each Qn is :nitely generated for all n¿ 0. For each
i∈Z, consider the complex induced by applying HomGr(A)(−; N [i]) to Q•. De:ne
ExtnA(F(M); F(N ))i=Ext

n
Gr(A)(M;N [i]), which is the homology of the complex obtained

by applying HomGr(A)(−; N [i]) to Q•. We call this grading on Extn(F(M); F(N )) the
shift-grading. It is routine to check that the shift-grading grades ExtnA(F(M); F(N )) as
a K-module.
We have the following useful result. The proof relies on the semisimplicity of N

and is left to the reader.

Proposition 2.1. Let Q• be a minimal graded projective resolution of a graded A-
module M. Assume that Qn is 9nitely generated. Suppose that N is a graded A-module
such that rN = (0). Then

ExtnA(F(M); F(N ))i �HomGr(A)(�n(M); N [i])

�HomGr(A)(�n(M)[− i]; N );

where �n(M) denotes the nth syzygy of M with respect to the resolution Q•.

If J is a subset of the nonnegative integers, then we say a graded module M is
supported in J if Mi = 0 whenever i 	∈ J. Note that if M is generated in degree d
then M is supported in {i | i¿d}.
To simplify notation, we will omit the functor F in the ExtA and HomA notation.
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3. Fundamental results

In this section, we provide results, Proposition 3.5 and its consequence, Proposition
3.6, which are fundamental in what follows. These results, when applicable, provide
necessary and suScient conditions for a Yoneda product map to be surjective.

Lemma 3.1. Let M be a graded A-module supported in {i | i¿ k} and Q• be a min-
imal graded projective resolution of M. Then, for each n¿ 0, (Qn)i = 0, for all
i¡ k + n.

Proof. If f : Q0 → M → 0 is a graded projective cover, then fk : Q0k → Mk is an
isomorphism. Hence, �1(M) is supported in {i | i¿ k +1}. The result now follows by
induction.

Recall that P• is a :xed minimal graded projective resolution of A0, where A0 is
viewed as a graded A-module that has support in {0}.

Lemma 3.2. Let M ∈Gr(A) supported in {j¿ 0} with minimal graded projective res-
olution Q∗. Let n¿ 1. Assume that Pn is supported in {j | j¿ s}. Then Qn is sup-
ported in {j | j¿ s}.

Proof. Let M =
∐

i¿0Mi and let M¿t denote the submodule
∐

i¿t Mi. We have a short
exact sequence 0 → M¿s+1 → M → M=M¿s+1 → 0. Note that M=M¿s+1 is supported
in {0; 1; : : : ; s}. There is a projective resolution R• obtained from the minimal projective
resolutions of M¿s+1 and M=M¿s+1. Since Q• is a summand of R•, if we show the
result for R•, we will be done. Next, note that the projective modules generated in
degree 6 s in R∗ are obtained only from the projective modules in the projective
resolution of M=M¿s+1.
Thus, to prove the result, we can assume that M is supported in {0; 1; : : : ; s}. We

proceed by induction on the cardinality of the support of M . If M is supported in
exactly one degree, then M is a semisimple module and the result easily follows.
Assume the cardinality of the support of M is greater than 1. We can assume M0 	= 0
since, if not, we can replace M by M [− i] for an appropriate i. Consider M¿1. Since
the cardinality of the support of M¿1 is less than the cardinality of the support of M ,
by induction, the result holds for M¿1. Again we have a short exact sequence 0 →
M¿1 → M → M=M¿1 → 0. The result holds for the minimal projective resolutions of
the two end modules and hence, holds for the projective resolution of M obtained from
these two resolutions. Hence the result holds for the minimal projective resolution of
M and we are done.

We have the following immediate consequence.

Corollary 3.3. Let M ∈Gr0(A) with minimal graded projective resolution Q•. Assume
that Pn is generated in degree s and Qn is generated in degree t. Then t¿ s.
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If M1; M2; M3 are A-modules, we let

Ym;n : ExtmA (M2; M3)
⊗
K

ExtnA(M1; M2) → Extm+n
A (M1; M3)

be the Yoneda product. We will usually write Ym;n as Y when no confusion can arise.
Furthermore, we will denote the image of Y in Extm+n

A (M1; M3) by ExtmA (M2; M3) ·
ExtnA(M1; M2).

Lemma 3.4. In the commutative diagram

ExtnA(A0; A0)
⊗
K

HomA(M=rM;A0) −−−−−→ ExtnA(M=rM;A0)

	
	

ExtnA(A0; A0)
⊗
K

HomA(M;A0) −−−−−→ ExtnA(M;A0)

the left vertical map is a bijection and the upper horizontal map is a surjection.

Proof. This is clear since rA0 = 0 and M=rM is a summand of a :nite sum of copies
of A0.

Note that if (Q•) is a graded projective resolution of a graded module M such that
Qn is :nitely generated and is supported in J, then ExtnA(M;A0), in the shift-grading,
is supported in J; that is, Extn(M;A0)i = 0 for i 	∈ J. This is a consequence of

ExtnA(M;A0) = HomA(�n(M); A0)

= HomA(�n(M)=r�n(M); A0) = HomA(Qn=rQn; A0):

The next proposition is of fundamental importance in that it has many important
consequences in what follows.

Proposition 3.5. Let M ∈Gr0(A) be 9nitely generated with minimal graded projective
resolution (Q•). Assume that Pn is generated in degree s and Qn is 9nitely generated.
Then Qn is generated in degree s if and only if ExtnA(A0; A0)

⊗
K HomA(M;A0) →

ExtnA(M;A0) is surjective; that is, ExtnA(A0; A0) · HomA(M;A0) = ExtnA(M;A0).

Proof. Consider the graded short exact sequence

0 → rM → M → M=rM → 0:

Apply the functor HomA(−; A0), we obtain an exact sequence

ExtnA(M=rM;A0) → ExtnA(M;A0) → ExtnA(rM;A0):

By Lemma 3.2 and the remarks before the proposition, since rM [ − 1]∈Gr0(A), we
see that, in the shift-grading, ExtnA(rM;A0) is supported in {i | i¿ s+1}. In particular,
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Extn(rM;A0)s=0. Since M=rM is semisimple and supported in {0}, ExtnA(M=rM;A0) is
supported in {s}. It follows that ExtnA(M=rM;A0)s → ExtnA(M;A0)s is surjective. Clearly,
ExtnA(A0; A0)

⊗
K HomA(M;A0) → ExtnA(M;A0) factors through ExtnA(M=rM;A0).

Now ExtnA(M=rM;A0) is supported in {s}. Next we note that Qn is generated in
degree s if and only if ExtnA(M;A0) is supported in {s}. Hence, Qn is generated in
degree s if and only if ExtnA(M=rM;A0) → ExtnA(M;A0) is surjective. The result now
follows from Lemma 3.4.

We apply the above proposition to get a result that will play an important role in
what follows.

Proposition 3.6. Suppose that Pi is 9nitely generated with generators in degree di,
for i = �; �; �+ �. Assume that

d�+� = d� + d�:

Then the Yoneda map

Ext�A(A0; A0)
⊗
K

Ext�A(A0; A0) → Ext�+�
A (A0; A0)

is surjective. Thus,

Ext�+�
A (A0; A0) = Ext�A(A0; A0) · Ext�A(A0A0)

= Ext�A(A0; A0) · Ext�A(A0; A0):

Proof. By hypothesis, ��(A0) is generated in degree d�. Applying Proposition 3.5
to M = ��(A0)[ − d�], we conclude that Ext�A(A0; A0)

⊗
K HomA(��(A0); A0) →

Ext�A(�
�A0; A0) is a surjection. Since Ext

�
A(A0; A0) � HomA(��(A0); A0) and Ext

�+�
A

(A0; A0) � Ext�A(��(A0); A0), we have shown the desired surjection.

We conclude this section with an application of Proposition 3.5 and, although it
is not needed in the remainder of the paper, it is of some independent interest.
Let � : {0; 1; 2; : : :} → {0; 1; 2; : : :}. We say a graded A-module M ∈Gr0(A) has a
�-homogeneous resolution if M has a graded projective resolution (Q•; d•) such that
Qn is generated in degree �(n) for n¿ 0. If A0 has a �-homogeneous resolution, we
say a graded A-module M is relatively Koszul if M has a �-homogeneous resolution.

Theorem 3.7. Let A=A0+A1+A2+· · · be a graded K-algebra where K is a commuta-
tive ring and � : {0; 1; 2; : : :} → {0; 1; 2; : : :}. Assume that A0 is a semisimple K-algebra
with a �-homogeneous resolution. Then a graded A-module M is relatively Koszul
if and only if, as an E(A)-module, Ext∗A(M;A0) =

⊕
n¿0 Ext

n
A(M;A0) is generated in

degree 0.

Of course, if A is either a Koszul algebra or a d-Koszul algebra, then A0 has a
�-homogeneous resolution for some �.
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4. d -Koszul algebras

Let A = A0 + A1 + A2 + · · · be a graded K-algebra generated in degrees 0 and 1
where K is a commutative noetherian ring. Assume that A0 is a :nitely generated
semisimple K-algebra, A1 is a :nitely generated K-module and that P• is a minimal
graded A-projective resolution of A0. We say that A is a d-Koszul algebra if, for each
n¿ 0, Pn can be generated in exactly one degree, �(n), and

�(n) =




n
2
d if n is even;(
n − 1
2

d
)
+ 1 if n is odd:

(1)

By our assumption that A is generated in degrees 0 and 1, we see that A is a
quotient of the tensor algebra TA0 (A) = A0 + A1 + (A1

⊗
A0 A1) + (

⊗3
A0 A1) + · · ·. If

A = TA0 (A1)=I is a d-Koszul algebra, we see that I is :nitely generated and can be
generated by elements in

⊗d
A0 A1 since P2 can be generated in degree d. Furthermore,

the :niteness assumptions on A0 and A1 and that K is noetherian imply that each Pn

is :nitely generated.
We note that if d = 2, then A is a Koszul algebra since A0 has linear projective

resolution [4]. For d¿ 3, A is not a Koszul algebra. We now :x a representation of A
as a quotient of the tensor algebra TA0 (A1). Let A=TA0 (A1)=I where I ⊂∑j¿2

⊗j
A0 A1.

We now present a characterization of d-Koszul algebras.

Theorem 4.1. Let A=TA0 (A1)=I where I can be generated by elements of
⊗d

A0 A1 for
some d¿ 2. Then A is a d-Koszul algebra if and only if the Ext-algebra E(A) can
be generated in degrees 0, 1, and 2 in the ext-degree grading.

Proof. First assume that A is a d-Koszul algebra. We proceed by induction on n, to
show that ExtnA(A0; A0) is generated by Ext

i
A0 (A0; A0) for i=0,1,2. For n=0,1,2, the result

is trivial. Assume true for n6 k and consider Extk+1A (A0; A0). If k+1=2m is even, then
�(2)+�(m−2)=d+((m−2)=2)d=(m=2)d=�(2m). Thus we may apply Proposition
3.6 with � = 2 and � = m − 2. We have that Ext2A(A0; A0)

⊗
K Ext

m−2
A (A0; A0) →

Extk+1A (A0; A0) is surjective. By induction, Extm−2
A (A0; A0) is generated by Exti(A0; A0)

for i = 0,1,2 and we conclude that Extk+1A (A0; A0) is generated by Exti(A0; A0) for
i = 0,1,2. If k + 1 = 2m+ 1, then �(1) + �(2m) = 1 + (m=2)d= �(2m+ 1). Again we
apply Proposition 3.6 with �=1 and �=2m this time to conclude that Extk+1A (A0; A0)
is generated by Exti(A0; A0) for i=0,1,2 and the proof of the only if part is complete.
Now assume that E(A) is generated in degrees 0,1,2 in the ext-degree grading. We

begin with case d=2. Then P1 is generated in degree 1 and P2 is generated in degree 2.
Applying Proposition 3.6 with �=�=1, we conclude that Ext1A(A0; A0)

⊗
K Ext

1
A(A0; A0)

→ Ext2A(A0; A0) is surjective. Hence, E(A) can be generated in degrees 0,1. It follows
by [4] that A is a Koszul algebra and hence a 2-Koszul algebra. Now assume that
d¿ 2. First, we note that since P1 is generated in degree 1, and since Ext1A(A0; A0) �
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HomA(P1; A0), every extension in Ext1A(A0; A0) is of the form 0 → A0[ − 1] → E →
A0 → 0 as a short exact sequence of graded modules. If 0 → A0[−1] → E′ → A0 → 0
is another short exact sequence, then we may shift the sequence by −1 to get 0 →
A0[−2] → E′[−1] → A0[−1] → 0. Pasting the sequences together gives 0 → A0[−2] →
E′[ − 1] → E → A0 → 0. It follows that the image of Ext1A(A0; A0) ⊗ Ext1A(A0; A0) →
Ext2A(A0; A0) lies in Ext

2
A(A0; A0)2. But by hypothesis, Ext

2
A(A0; A0)=Ext

2
A(A0; A0)d (the

shift-grading) and d¿ 2. Thus, Ext1A(A0; A0)
2 = 0. Now Ext3A(A0; A0) is generated by

Ext2A(A0; A0) Ext
1
A(A0; A0)+Ext

1
A(A0; A0) Ext

2
A(A0; A0). Since Ext

2
A(A0; A0)=Ext

2
A(A0; A0)d

and Ext1A(A0; A0)=Ext
1
A(A0; A0)1, it follows that Ext

3
A(A0; A0)=Ext

3
A(A0; A0)d+1. Hence,

P3 must be generated in degree d+1. But now we may apply Proposition 3.6 to �=1
and � = 2, to see that

Ext3A(A0; A0) = Ext
2
A(A0; A0) Ext

1
A(A0; A0)

= Ext1A(A0; A0) Ext
2
A(A0; A0): (2)

Now consider Ext4A(A0; A0). Since (Ext
1
A(A0; A0))

2 = 0, by (2), and by our hypothesis,
we see that Ext4A(A0; A0)=(Ext

2
A(A0; A0))

2. As above, we conclude that P4 is generated
in degree 2d. For Ext5A(A0; A0), using that (Ext

1
A(A0; A0))

2 = 0 and (2), we conclude
that

Ext5A(A0; A0) = Ext
1
A(A0; A0) Ext

2
A(A0; A0) Ext

2
A(A0; A0)

= Ext2A(A0; A0) Ext
1
A(A0; A0) Ext

2
A(A0; A0)

= Ext2A(A0; A0) Ext
2
A(A0; A0) Ext

1
A(A0; A0):

It follows that P5 is generated in degree 2d+ 1.
Continuing in this fashion, the result follows.

From the proof of the above theorem, we get the following important result.

Corollary 4.2. If A is a d-Koszul algebra, with d¿ 2, then

Ext2m+1A (A0; A0) · Ext2n+1A (A0; A0) = (0);

for all n; m¿ 0.

5. d -Koszul modules

Throughout this section, A = A0 + A1 + · · · will denote a d-Koszul algebra. We
say a left graded A-module M is a d-Koszul module if there is a graded A-projective
resolution · · · → Q2 → Q1 → Q0 → M → 0 such that Qn is generated in degree �(n)
where

�(n) =




n
2
d if n is even;(
n − 1
2

d
)
+ 1 if n is odd:
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If M is a d-Koszul module then M ∈Gr0(A) since Q0 is generated in degree 0. Note
that if d = 2, then a module is d-Koszul if and only if it has a linear projective
resolution. Thus, in this case, being a d-Koszul module coincides with being a Koszul
module.
We begin by showing that if M is a d-Koszul module, then there are exact sequences

of the form

0 → �t(M) → �t(M=rM) → �t−1(rM) → 0;

for t¿ 1. Assume that M is a d-Koszul module. Then, in degree 0, we have an
isomorphism M0 → (M=rM)0 induced from the canonical surjection M → M=rM .
Hence, the graded projective cover Q0 → M , when composed with M → M=rM , is
also a graded projective cover. From these observations, we see that we have an exact
commutative diagram

0 0�
�

0 −−−−−→ rM −−−−−→ M −−−−−→ M=rM −−−−−→ 0�
�

0 −−−−−→ Q0 Q0 −−−−−→ 0�
�

0 −−−−−→ �1A(M) −−−−−→ �1A(M=rM) −−−−−→ rM −−−−−→ 0�
�

0 0

By assumption, A is a d-Koszul algebra and it follows that M=rM , being a semisimple
A=r-module, is a d-Koszul module. Hence, �1A(M=rM) is generated in degree 1. Hence
rM is generated in degree 1. We now have a short exact sequence 0 → �1(M) →
�1(M=rM) → rM → 0 where each module is generated in degree 1. It follows that
if Q1 → �1(M) and L0 → rM are graded projective covers then we get an exact
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commutative diagram
0 0 0�

�
�

0 −−−−−→ �1(M) −−−−−→ �1(M=rM) −−−−−→ rM −−−−−→ 0�
�

�
0 −−−−−→ Q1 −−−−−→ Q1 ⊕ L0 −−−−−→ L0 −−−−−→ 0�

�
�

0 −−−−−→ �2(M) −−−−−→ �2(M=rM) −−−−−→ �1(rM) −−−−−→ 0�
�

�
0 0 0

Since the top row of the diagram is composed of modules, all generated in degree 1, we
see that Q1⊕L0 → �1(M=rM) is a projective cover. Since M and M=rM are d-Koszul
modules, both �2(M) and �2(M=rM) are generated in degree d. It follows that �1(rM)
is generated in degree d. Proceeding by induction, we obtain exact sequences

0 → �t(M) → �t(M=rM) → �t−1(rM) → 0; (3)

for t¿ 1 and that each of the modules is generated in degree �(t).
We apply the above result in the following proposition.

Proposition 5.1. Let A be a d-Koszul algebra and M a left A-module which is
d-Koszul. Then, for n¿ 1, we have exact sequences

0 → Extn−1A (rM;A0) → ExtnA(M=rM;A0) → ExtnA(M;A0) → 0:

In the shift-grading, Extn−1A (rM;A0), ExtnA(M=rM;A0), and ExtnA(M;A0) have support
in degree �(n).

Proof. We have seen that under the hypothesis of the proposition, we have exact
sequences

0 → �n(M) → �n(M=rM) → �n−1(rM) → 0;

for n¿ 1 and that each of the modules is generated in degree �(n). It follows that,
applying HomA(−; A0) to sequences, we obtain short exact sequences

0→HomA(�n−1(rM); A0) → HomA(�n(M=rM); A0)

→HomA(�n(M); A0) → 0:
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The result now follows.

The next result provides a method for constructing new d-Koszul modules from
known ones. For t¿ 0, we use the formula

(∗) �(t + 2) = �(t) + d;

whose proof we leave to the reader.

Proposition 5.2. Let A be a d-Koszul algebra and M a d-Koszul module. Then
�2(M)[− d] and �1(rM)[− d] are both d-Koszul A-modules.

Proof. Let M be a d-Koszul module. Then �2(M) is generated degree �(n+2)−d=
�(n) and we conclude that �1(rM)[ − d] is a d-Koszul module. This completes the
proof.

We end this section with a result for modules analogous to Theorem 4.1. If M is
a left A-module, let E(M) denote the left E(A)-module

⊕
n¿0 Ext

n(M;A0), where the
module structure is given by the Yoneda product.

Theorem 5.3. Let A= A0 + A1 + · · · be a d-Koszul algebra with d¿ 3 and let M be
a graded left A-module. Then M is a d-Koszul module if and only if E(M) can be
generated in degree 0. Moreover, if M is a d-Koszul module, then Ext2n+1(A0; A0) ·
Ext2m+1(M;A0) = (0) for all n; m¿ 0.

Proof. Applying Proposition 3.5, we see that

Extn(A0; A0) · HomA(M;A0) = ExtnA(M;A0)

for each n if and only if M is a d-Koszul module. Using this and Corollary 4.2, we
conclude that Ext2n+1(A0; A0) · Ext2m+1(M;A0) = (0) for all n; m¿ 0.

6. The even Ext of modules

In this section, we investigate the properties of the even Ext-algebra E(A) of a
d-Koszul algebra. We show that this algebra is a Koszul algebra after a regrading. We
also show that the even Ext of a d-Koszul module is a Koszul module over the even
Ext algebra. For the remainder of the section, assume that A is a d-Koszul algebra.
Let M be a left d-Koszul A-module. We let

Eev(A) =
⊕
n¿0

Ext2n(A0; A0)

and

Eev(M) =
⊕
n¿0

Ext2n(M;A0):
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We grade Eev(A) by Eev(A)n =Ext2n(A0; A0) and view Eev(M) as a graded Eev(A)-
module where Eev(M)n = Ext2nA (M;A0). We call this the even-grading.
The following result is the main result of this section.

Theorem 6.1. Let A= A0 + A1 + · · · be a d-Koszul algebra and M a d-Koszul mod-
ule. Then, in the even-grading, Eev(A) is a Koszul algebra and Eev(M) is a Koszul
Eev(A)-module.

Proof. Let M be a d-Koszul A-module. We begin by showing that Eev(M) is generated
in degree 0 (in the even-grading). Now Eev(A)n. E(M)0 = Ext2n(A0; A0) · Hom(M;A0)
and E(M)n = Ext2n(M;A0). By Proposition 3.5 we see that Eev(A)n · E(M)0 = E(M)n
and we conclude that E(M) is generated in degree 0.
Next we show that Eev(M) has a linear Eev(A)-projective resolution in the even-

grading. By Proposition 5.1, we have exact sequences

0 → Extn−1A (rM;A0) → ExtnA(M=rM;A0) → ExtnA(M;A0) → 0:

In the shift-grading, Extn−1A (rM;A0);ExtnA(M=rM;A0), and ExtnA(M;A0) have support in
degree �(n).
Now Eev(M=rM) is a projective Eev(A)-module generated in degree 0. Thus, we have

a projective cover Eev(M=rM) → Eev(M). The :rst syzygy
⊕

n¿1 Ext
2n−1
A (rM;A0) =⊕

n¿0 Ext
2n−2(�1(rM); A0). We have seen that �1(rM) is generated in degree d. By

Proposition 5.2, �1(r; M)[− d] is a d-Koszul A-module. We have just seen that if X
is a d-Koszul module then E(X ) is generated in degree 0. Thus Eev(�1(rM)[ − d])
is generated in degree 0 (in the even-grading). In the shift-grading Eev(�1(rM)
[− d]) is generated in degree d. But degree 1 in the even-grading is degree d in the
shift-grading. Hence the :rst syzygy of Eev(M), as an Eev(A)-module, is Eev(�1(rM))
and is generated in degree 1. Furthermore, �1(rM)[ − d] is a d-Koszul module and
we now may repeat the above argument to show that the second syzygy of Eev(M) is
generated in degree 2 (in the even-grading) and is of the form Eev(N ) where N [−2d]
is a d-Koszul module. Continuing in this fashion, we see that Eev(M) has a linear
Eev(A)-projective resolution in the even-grading.
Since Eev(A)=Eev(A0), we see that Eev(A) has a linear graded projective resolution

(in the even-grading). Hence Eev(A) is a Koszul algebra. This competes the proof.

If A is a d-Koszul algebra, and M is a d-Koszul A-module let Eodd(M) =⊕
n¿0 Ext

2n+1(M;A0). We view this as a graded object by Eodd(M)n=Ext2n+1(M;A0).
We note that

Ext2m(A0; A0) · Ext2n+1(M;A0) = Ext2m(A0; A0) · Hom(�2n+1(M); A0)
= Ext2m(�2n+1(M); A0) = Ext2(n+m)+1(M;A0);

where the second equality follows from Proposition 3.6. Thus, Eodd(M) is a graded
Eev(A)-module and is generated in degree 0 (in the even-grading). If M is a d-Koszul
module, it is open whether or not Eodd(M) is a Koszul module.
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7. Ext of d -Koszul algebras and modules

In this section we show that the Ext-algebra of a d-Koszul algebra is a Koszul
algebra after regrading. Furthermore, we show that the Ext of a d-Koszul module is
a Koszul module over the Ext-algebra after regrading. If A is a Koszul algebra, then
these results are well-known [5]. Throughout this section, let A be a d-Koszul algebra
where d¿ 3. We begin by describing the new grading.
We let Ê(A) be the Ext-algebra E(A) graded as follows. Ê(A)0 = Ext0A(A0; A0),

Ê(A)1 =Ext1A(A0; A0)⊕Ext2A(A0; A0), Ê(A)2 =Ext3(A0; A0)⊕Ext4(A0; A0). In general, if
n¿ 1,

Ê(A)n = Ext2n−1A (A0; A0)⊕ Ext2nA (A0; A0):
This is a well-de:ned grading by Corollary 4.2.
If M is a d-Koszul A-module, we de:ne Ê(M) to be E(M) with grading given as

follows. If n¿ 0,

Ê(M)n = Ext2n−1A (M;A0)⊕ Ext2nA (M;A0);

where Ext−1(M;A0)=(0). By Theorem 5.3 we see that Ê(M) is a graded Ê(A)-module.
We will call this grading the hat-grading and the degree is call the hat-degree. We
now state and prove the main result of this section.

Theorem 7.1. Let A = A0 + A1 + · · · be a d-Koszul algebra with d¿ 3. Let M
be a d-Koszul A-module. Then Ê(A) is a Koszul algebra and Ê(M) is a Koszul
Ê(A)-module.

Proof. We begin by showing that (graded) semisimple Ê(A)-modules have linear pre-
sentations. First consider 0 → L → Ê(A) → Ê(A)0 → 0. By Theorem 4.1, we see that
L, which is

∐
n¿1 Ext

n
A(A0; A0), is generated in hat-degree 1. If W is a graded semisim-

ple module with support in hat-degree 0, then W is a summand of a direct sum of
copies of Ê(A)0. It follows that W has a linear presentations as an Ê(A)-module.
Next we show that Ê(M) has a linear presentation. By Theorem 5.3 Ê(M) is gen-

erated in degree 0 as a Ê(A)-module. Applying Proposition 5.1, we see that we have
a short exact sequence of Ê(A)-modules

0 → N → Ê(M=rM) → Ê(M) → 0;

where N=
∐

n¿0 Ext
n
A(rM;A0) with Extn(rM;A0) in ext-degree n−1. In hat-degree, Nn=

Extn−1(rM;A0)+Extn(rM;A0). Thus, N ′=
∐

n¿0 Ext
n(�1(rM)); A0) is E(A)-submodule

of N . We have the following short exact sequence:

0 → N ′ → N → HomA(rM;A0) → 0: (4)

Grading N ′ by N ′
1 = Ext

0(�1(rM); A0) and, for n¿ 2,

N ′
n = Ext

2n−3(�1(rM); A0) + Ext2n−2(�1(rM); A0)

and grading HomA(rM;A0) to have support in degree 1, we see that (4) is a short exact
sequence of hat-graded Ê(A)-modules. But Ê(�1(rM)[ − d])[1] = N ′ where the shift
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−d is as graded A-modules and the shift 1 is in the hat-grading. But �1(rM)[ − d])
is a d-Koszul A-module by Proposition 5.2. Thus, N ′ is an Ê(A)-module generated in
degree 1. We conclude that N is generated in degree 1 and hence Ê(M) has a linear
presentation.
Consider (4) again. We have seen that this is an exact sequence of Ê(A)-modules all

generated in degree 1. Furthermore, HomA(rM;A0) is a semisimple Ê(A)-module and
N is of the form Ê(M ′)[1] for a d-Koszul module M ′. But both HomA(rM;A0) and
Ê(M ′) have linear presentations by our work above. We will show that a semisimple
Ê(A)-module supported in degree 0 has :rst syzygy U such that there is a short exact
sequence of graded Ê(A)-modules all generated in hat-degree 1,

0 → Ê(M ′) → U → V → 0;

where V is semisimple and M ′ is d-Koszul. From this, by a standard induction argu-
ment, conclude that Ê(M) has a linear Ê(A)-projective resolution.
We need to show that a semisimple Ê(A)-module has :rst syzygy U such that there

is a short exact sequence of graded Ê(A)-modules, generated in hat-degree 1

0 → Ê(M ′) → U → V → 0;

where V is semisimple and M ′ is d-Koszul. Let W be a semisimple Ê(A)-module
supported in degree 0. There is a semisimple A-module S such that HomA(S; A0)=W .
Consider the short exact sequence

0 →
∐
n¿1

ExtnA(r
⊗
A0

S; A0) → Ê(A
⊗
A0

S) → W → 0:

Then, in a similar fashion to our investigation of N above, we get a short exact
sequence of graded Ê(A)-modules

0 → Ê(�1(r
⊗
A0

S; A0)[− d])[1] → Ê(A
⊗
A0

S) → HomA(S; A0) → 0:

It follows that Ê(�1(r
⊗

A0 S)[−d])[1] has hat-degree 1, �1(r
⊗

A0 S)[−d]=�2(S)[−d]
is a d-Koszul module and HomA(r

⊗
A0 S; A0) is a semisimple Ê(A)-module supported

in hat-degree 1. This is the desired result.
Finally, to show that Ê(A) is a Koszul algebra, we note that Ê(A)0=Ê(A) and hence

Ê(A)0 has a linear projective resolution in the hat-grading. It follows that Ê(A) is a
Koszul algebra and the proof is complete.

8. Generalized Koszul complexes

As mentioned in the introduction, Berger introduced d-Koszul algebras and general-
ized Koszul complexes. We brieVy summarize some of his results in [2] and provide
a new proof of one of his main results. We also extend the de:nitions to the nonlocal
case.
We begin with some notation and conventions. Recall that we have A = TA0 (A1)=I

where I is generated by elements of degree d. Let R = I ∩ (⊗d
A0 A1). Note that R is
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an A0-A0-submodule of
⊗d

A0 A1. We now assume K is a :eld and that A0 is not only
semisimple, but, as a ring, A0 is K × K × · · · × K . Let T = TA0 (A1) and if x∈T , let Wx
denote &(x) where & : T → A is the canonical surjection. In this case, T is isomorphic
to a path algebra K' for some quiver '. Let {v1; : : : ; vn} be the arrows of '. Then
the vi’s are a full set of orthogonal idempotents. We say a nonzero element x∈T is
left uniform if there exists a vertex vi such that x = vix. If x is left uniform, we let
o(x) = vi if x = vix.
We de:ne the generalized Koszul complex of R as follows. Let H0 = A0, H1 = A1,

and, for n¿d,

Hn =
⋂

i+j+d=n

(
i⊗
A0

A1

)⊗
A0

R
⊗
A0

( j⊗
A0

A1

)
:

As usual, we let

�(n) =




n
2
d if n is even;(
n − 1
2

d
)
+ 1 if n is odd:

We de:ne Qn = A
⊗

A0 H�(n) and note that Qn is a projective left A-module for n¿ 0.
We wish to de:ne maps dn : Qn → Qn−1 for n¿ 1. For this we need the following

lemma which relates to the condition (ec) in Berger’s work. To simplify notation, we
will denote

⊗i
A0 A1 as simply Ai

1 and write
⊗

A0 as simply ⊗.

Lemma 8.1. Keeping the above notation, if A is d-Koszul then, for 26 i¡d,

(R ⊗ Ai
1) ∩ (Ai

1 ⊗ R) ⊆ Ai−1
1 ⊗ R ⊗ A1:

Proof. To prove this result, we use the results in [6]. Since we are considering left
modules in this paper, we switch their notation from right modules to left modules. It
is shown in [6] that, for each n¿ 0, there are subsets of left uniform elements of T ,
{gn

i }i∈Un ; {g∗n
i }i∈Vn , and {hn;n−1

i; j }i∈Un; j∈Un−1 such that

(i) (
⊕

i∈Un−1
Tgn−1

i ) ∩ (⊕i∈Un−2
Ign−2

i ) = (
⊕

i∈Un
Tgn

i )⊕ (⊕i∈Vn Tg∗n
i ).

(ii) For i∈Un; gn
i 	∈⊕i∈Un−1

Ign−1
i .

(iii) For i∈Vn; g ∗n
i ∈⊕i∈Un−1

Ign−1
i .

(iv) For i∈Un; gn
i =

∑
j∈Un−1

hn;n−1
i; j gn−1

j .

(v) Setting Ln =
⊕

i∈Un
Ao(gn

i ), then {Ln; dn} is a minimal A-projective resolution of
A0 where

dn(o(gn
i )) =

∑
j∈Un−1

hn;n−1
i; j o(gn−1

j ):

Since A is a graded d-Koszul algebra, we may assume that the gn
s ’s are homo-

geneous left uniform elements of degree �(n). Furthermore, A1 =
⊕

s∈U1 A0g
1
s and

R =
⊕

s∈U2 A0g
2
s . Note that the g1s are just the arrows of Q and are of degree 1.
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The element g2s are homogeneous of degree d and the elements g3s are homogeneous
of degree d+ 1.
Now, from the above, we see that

(Ai
1 ⊗ R) =

⊕
s∈U2

Ai
1 ⊗ A0g2s = (

⊕
s∈U2

Tg2s )d+i ;

where the last subscript denotes the elements of (
⊕

s∈U2 Tg
2
s ) of degree d+ i.

We see that R⊗Ai
1 ⊆⊕s∈U1 Ig

1
s since i¿ 2 and R ⊂ I . We also have that Ai

1⊗R ⊂⊕
s∈U2 Tg

2
s . Hence

(R ⊗ Ai
1) ∩ (Ai

1 ⊗ R) ⊂ (
⊕
s∈U2

Tg2s ) ∩ (
⊕
s∈U1

Ig1s ):

By (i) above,

(R ⊗ Ai
1) ∩ (Ai

1 ⊗ R) ⊂ (
⊕
s∈U3

Tg3s )⊕ (
⊕
s∈V3

Tg∗3s ):

The left-hand side are elements of degree d+ i. Noting that each g ∗3s ∈⊕t Ig
2
t and I

is generated in degree d, we see that the g∗3s are degree at least 2d. But, i is assumed
to be less that d. Hence we conclude that

(R ⊗ Ai
1) ∩ (Ai

1 ⊗ R) ⊂ (
⊕
s∈U3

Tg3s ): (5)

Now each g3s is degree d+1 since A is d-Koszul. By (iv) above, g3s ∈⊕t Ig
1
t . It follows

by degree that each g3s =
∑

t; u ct;ug2t g
1
u where ct;u ∈K . Hence g3s ∈R ⊗ A1. Thus, from

(5) and degree, that

(R ⊗ Ai
1) ∩ (Ai

1 ⊗ R) ⊂ Ai−1
1 ⊗ R ⊗ A1:

The proof is complete.

The following result is an immediate consequence of the above lemma and we leave
the proof to the reader.

Corollary 8.2. Keeping the notation of this section, for n¿ 0,

Hdn+1 = (R ⊗ A(n−1)d+11 ) ∩ (A1 ⊗ R ⊗ A(n−1)d1 )

∩ (Ad
1 ⊗ R ⊗ A(n−2)d+11 ) ∩ (Ad+1

1 ⊗ R ⊗ A(n−1)d1 )

...

∩ (A(n−1)d1 ⊗ R ⊗ A1) ∩ (Ad+1
1 ⊗ R);
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and

Hdn = (R ⊗ A(n−1)d1 )

∩ (Ad−1
1 ⊗ R ⊗ A(n−2)d+11 ) ∩ Ad

1 ⊗ (R ⊗ A(n−2)d1 )

∩ (Ad
1 ⊗ R ⊗ A(n−2)d+11 ) ∩ (Ad+1

1 ⊗ R ⊗ A(n−1)d1 )

...

∩ (A(n−1)d−1
1 ⊗ R ⊗ A1) ∩ (A(n−1)d1 ⊗ R):

Using the result of the corollary we now de:ne dm : Qm → Qm−1. Recall that
Qm = A ⊗ H�(m). From the de:nition and that R ⊂ Ad

1 , we note that H�(m) ⊂ A�(m)
1 . We

write elements of H�(m) as x1 ⊗ · · · ⊗ x�(m) where the xi are in A1. If m= 2n, de:ne

dm(a ⊗ x1 ⊗ · · · ⊗ xdn) = ax1x2 · · · xd−1 ⊗ xd ⊗ · · · ⊗ xdn:

If m= 2n+ 1, de:ne

dm(a ⊗ x1 ⊗ · · · ⊗ xnd+1) = ax1 ⊗ x2 ⊗ · · · ⊗ xnd+1:

It is writing H�(n) in the form of the corollary that shows that the maps are well-de:ned.
We now can state one of Berger’s main results.

Theorem 8.3 (Berger [2, Theorem 2.1]). Let A= K'=I where I is an ideal generated
in degree d. The following statements are equivalent.

(i) A is a d-Koszul algebra.
(ii) {Qn; dn} is a minimal A-projective resolution of A0.

Proof. Note that by construction, Qn is generated in degree �(n). Hence, if {Qn; dn}
is a minimal A-projective resolution of A0, then A is a d-Koszul algebra.
Now suppose that A is a d-Koszul algebra. As pointed out, the maps dn are well-

de:ned. The proof of the exactness of dn is similar to the usual proof found in [1]
and we only give a brief sketch. Because of the de:nition of Hm as an intersection,
we note that if a⊗ x1⊗ · · ·⊗ x�(m) ∈Hm then x1x2 · · · xd ∈R. From this, it is immediate

that dm−1dm = 0 for m¿ 2. It is immediate that Q1 d1→Q0 → A0 → 0 is exact.
We now show exactness at P2n, n¿ 1. By the de:nitions, it is not hard to show that

d2n+1(P2n+1) is generated in degree nd+1 in P2n. Similarly, it is not hard to see that
if z=

∑
i ai ⊗x1; i ⊗· · ·⊗xn; i is in the kernel of d2n, then each ai ∈A1⊕A2⊕· · · . Thus,

after rewriting, we may write z =
∑

i biai ⊗ x1; i ⊗ · · · ⊗ xn; i where bi ∈A and ai ∈A1.
We may assume that each ai is left uniform. Considering each degree, we see that∑

i ai⊗x1; i⊗· · ·⊗xn; i is in the kernel of d2n. But then z′=
∑

i o(ai)⊗ai⊗x1; i⊗· · ·⊗xn; i

is in Q2n+1 and d2n+1(
∑

i Wo(ai) ⊗ ai ⊗ x1; i ⊗ · · · ⊗ xn; i) = z′. From this we conclude
that the image of d2n+1 equals the kernel of d2n.
Exactness at P2n+1 is similar and we omit the proof.
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We note that Berger also showed that A is d-Koszul if and only if Aop, the opposite
algebra is d-Koszul. He also studied the Ae-projective resolution of A, where Ae =
A
⊗

K Aop and related this to the Hochschild homology of A.

9. Description of the Ext-algebra

In this section we provide a description of the Ext-algebra E(A) when A is a d-Koszul
algebra with d¿ 2.
We begin with well-known preliminaries. Recall that since A0=

∏n
i=1 K , indecompos-

able A0-A0-bimodules are 1-dimensional over K and of the form A0ei
⊗

K ejA0, where
ei = (0; : : : ; 0; 1; 0; : : : ; 0) with 1 occurring in the ith component. Furthermore, Aop0 = A0
since A0 is a commutative ring. Since A0

⊗
K A0 is a semisimple ring, it follows that

every A0-A0-bimodule is a direct sum of copies of the 1-dimensional simple modules
A0ei

⊗
K ejA0; 16 i; j6 n.

Let V be a :nitely generated A0-A0-bimodule. If W is an A0-A0-submodule of V ,
let W ∗ = HomA0 (W;A0) where the Hom is as left A0-modules. The right A0-module
structure on W gives W ∗ a left A0-module structure. The right A0-module structure on
A0 gives W ∗ an A0-A0-bimodule structure. Note that ∗ is a duality on A0-A0-bimodules
and that if V is a :nitely generated bimodule, then V ∗∗ is naturally isomorphic to V
as bimodules. Let W⊥ = {f∈V ∗|f(W ) = 0}. We see that W⊥ is an A0-A0-bimodule
if W is.
We have the following facts, assuming all modules are :nitely generated A0-A0-

bimodules, which can be proved by adjusting the usual proofs for vector spaces:

(i) If U and W are submodules of V , then (U +W )⊥ = U⊥ ∩ W⊥.
(ii) If U is a submodule of V , then, for each i; j; 16 i; j6 n, dim eiU⊥ej=dim eiVej−

dim eiUej.
(iii) If we identify U ∗∗ with U , (U⊥)⊥ = U .
(iv) If U is a submodule of V and W is a :nitely generated bimodule, then

(U
⊗

A0 W )
⊥ = U⊥⊗

A0 W
∗.

(v) If U is a submodule of V , and W and Z are :nitely generated bimodules, then
(W
⊗

A0 U
⊗

A0 Z)
⊥ = (W ∗⊗

A0 U
⊥⊗

A0 Z).
(vi) (U ∗⊗

A0 V
∗) � (U⊗A0 V )

∗.

We identify A0 and A∗
0 . There is a natural isomorphism between (Ai

1)
∗ = (

i⊗A1)∗

and
i⊗A∗

1 = (A
∗
1)

i, which we view as an identi:cation. Let R⊥ = {f∈ (A∗
1)

d|f(x) =
0 for all x∈R}. Let T ∗ be the tensor algebra TA0 (A

∗
1) = A0 ⊕ A∗

1 ⊕ (A∗
1)
2 ⊕ · · · . The

dual algebra of A is de:ned to be A! = T ∗=〈R⊥〉.
We see that A! is a graded algebra since R⊥ is contained in (A∗

1)
d. Thus A! = A!0 ⊕

A!1⊕A!2⊕· · · . Let B=B0⊕B1⊕B2⊕· · · where Bn=A!�(n) as vector spaces. In the case
d= 2, we recall that �(n) = n and then Bn = A! as graded algebras, see, for example,
[1]. If d¿ 2, we de:ne multiplication as follows: let x∈Bn and y∈Bm, then x · y=0
if both m; n are odd, and as xy where multiplication is in A! if at least one m or n
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is even. It is easy to check that B is a graded K-algebra generated in degrees 0, 1,
and 2.
Our goal is to prove the following result.

Theorem 9.1. If A is a d-Koszul algebra and d¿ 2 then E(A) is isomorphic to B as
graded algebras. In particular, ExtnA(A0; A0) is isomorphic to A!�(n).

Before starting the proof, we review the notations of the previous section and assume
that A is a d-Koszul algebra with d¿ 2. Then (Q•; d•) is a minimal graded A-projective
resolution of A0. Recall that Qn = A ⊗ H�(n), H0 = A0; H1 = A1 and, for n¿d; Hn =⋂

i+d+j=n Ai
1 ⊗ R ⊗ Aj

1 where Ai
1 =

⊗i
A0 A1. Now Hn ⊂ An

1 and we write elements of
Hn as

∑
x1 ⊗ · · · ⊗ xn. The maps dn : Qn → Qn−1 are given by

dn

(∑
a ⊗ x1 ⊗ · · · ⊗ x�(n)

)

=



∑

ax1 ⊗ x2 ⊗ · · · ⊗ x�(n); if n is odd∑
ax1 · · · xd−1 ⊗ xd ⊗ · · · ⊗ x�(n); if n is even:

Since A0 is semisimple, for n¿ 0, there is a natural A0-A0-bimodule isomorphism

ExtnA(A0; A0) � HomA(Qn; A0) = HomA(A
⊗
A0

Hn; A0);

which we view as an identi:cation. When we “multiply” homomorphisms, we will
mean the Yoneda product of the elements viewed as elements in the Exts under this
identi:cation.

Proposition 9.2. Let fn ∈HomA(Qn; A0) and fm ∈HomA(Qm; A0). Then, fn · fm = 0 if
both m and n are odd. If at least one of m or n is even, then

(fnfm)
(∑

a ⊗ x1 ⊗ · · · x�(n)+�(m)

)

=fn

(∑
a ⊗ x1 ⊗ · · · x�(n)−1 ⊗ x�(n)fm(1⊗ x�(n)+1 ⊗ · · · ⊗ x�(n)+�(m))

)
:

Proof. Since A is a graded algebra, we have two ring homomorphisms i : A0 → A and
& : A → A0 where the :rst is the inclusion and the second is the canonical surjection.
Also recall that if at least one of m or n is even, then �(n+m)=�(n)+�(m). If both m
and n are odd, then all Yoneda products of elements are 0 by Corollary 4.2. Assume
that either m or n is even. Consider fm : Q m → A0. We lift fm to f0m : Q

m → A by
f0m=i◦fm. We continue lifting fm as follows. Suppose we have fi−1

m : Q m+i−1 → Q i−1.
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We want to :nd fi
m : Q

m+i → Q i such that the following diagram commutes:

Q m+i d m+i

−−−−−→Q m+i−1	 fi
m

	 fi−1
m

Q i d i

−−−−−→Q i−1:

De:ne

fi
m

(∑
a ⊗ x1 ⊗ · · · ⊗ x�(m+i)

)
=
∑

a ⊗ x1 · · · xd−2 ⊗ xd−1 · · · ⊗ x�(i)f0m(1⊗ x�(i)+1 ⊗ x�(i+m)):

The reader can verify that fi−1
m di+m = difi

m.
The Yoneda product fnfm is given by fn ◦ fn

m. The proposition now follows.

We prove Theorem 9.1.

Proof. Now consider Bn. By de:nition, Bn = A!�(n) and A! = TA0 (A
∗
1)=〈R⊥〉. Hence,

Bn =
(A∗
1)

�(n)∑
06i6�(n)(A

∗
1)�(n)−d−i ⊗ R⊥ ⊗ (A∗

1) i
:

Dualizing and using our remarks above, we obtain

B∗
n �

∑
((A∗

1)
�(n)−i−d ⊗ R⊥ ⊗ (A∗

1)
i)⊥ =

⋂
(A�(n)−i−d
1 ⊗ R ⊗ Ai

1) � H�(n):

Next, consider the natural isomorphisms

ExtnA(A0; A0)�HomA(A ⊗ H�(n); A0)

�HomA0 (H�(n);HomA(A; A0))

�HomA0 ((A
!
�(n))

∗;HomA(A0; A0)) � A!�(n) = Bn:

Let  : Bn → HomA(A ⊗ H�(n); A0) given above. A careful analysis of these isomor-
phisms shows that if Wf=f1 ⊗ · · · ⊗ f�(n) ∈Bn then  ( Wf)∈ homA(A⊗H�(n); A0) is given
by

 ( Wf)
(∑

a ⊗ x1 ⊗ · · · ⊗ x�(n)
)
=
∑

f1(x1) · · ·f�(n)(x�(n)) · Wa:

Applying Proposition 9.2, we see that if Wf∈Bn; Wg∈Bm and either n or m is even, then

 ( Wf · Wg) =  ( Wf) ·  ( Wg);
where the product on the right-hand side is given by the Yoneda product of the elements
as in 9.2. This completes the proof.
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10. Concluding results

We end the paper with some examples of d-Koszul algebras with d¿ 2.

Proposition 10.1. Let A0 be a semisimple ring, A1 a 9nitely generated A0-A0-bimodule,
and T = TA0 (A1) the tensor algebra. Suppose that A = T=I where I is an ideal in T
with generators in

⊗d
A0 A1. If the global dimension of A is 2, then A is d-Koszul.

Proof. Since I can be generated by homogeneous elements, A has a grading induced

by An =
n⊗

A1=(I ∩
n⊗

A1). If 0 → Q2 → Q1 → Q0 → A0 → 0 is a minimal graded
A-projective resolution of A0 viewed as a graded module with support in degree 0, it
is clear that Q0 = A, generated in degree 0 and Q1 is generated in degree 1 since the
kernel of A → A0 is A1⊕A2⊕· · · . Since T is hereditary, we see that Q1 is isomorphic
to J=IJ = A

⊗
T J where J = A1 ⊕ A2 ⊕ · · · . The kernel Q1 → J=I is I=IJ , which is

generated in degree d and we are done.

For the remainder of this section, we restrict our attention to quotients of path
algebras. More precisely, let ' be a quiver, which is just a :nite directed multigraph
with loops. Let K be a :eld and we denote the path algebra by K'. It is well-known
that K' is isomorphic to a tensor algebra TA0 (A1) where, for some n, A0 =

∏n
i=1 K

and A1 is a :nitely generated A0-A0-bimodule. If 8 is a :nite set of paths in ' and
I is the ideal generated by 8, we say the quotient algebra, A = K'=I is a monomial
algebra. We give a characterization of monomial d-Koszul algebras. Berger gives such
a classi:cation in the local case [2]. We need I to be generated in degree d so we
assume 8 is a set of paths of length d. We say 8 is d-covering if whenever pq; qr ∈ 8
with q of length at least 1, then every subpath of pqr of length d is in 8.

Theorem 10.2. Let A = K'=I where I is an ideal generated by a set 8 of paths of
length d, d¿ 2. Then A is a d-Koszul algebra if and only if 8 is d-covering.

Proof. In [3], the authors give a construction of a minimal graded projective reso-
lution of A0 of the monomial algebra A. The degrees of generators the projectives
in Pn correspond to the lengths of the admissible n-sequences. It is a straightforward
combinatorial check that if a path p is an admissible n-sequence (see [3] for a de:-
nition) then length of p is �(n). From this we conclude that the nth projective in the
minimal projective resolution is generated in degree �(n) and hence A is a d-Koszul
algebra.

Corollary 10.3. Let A = K'=I where I is the ideal generated by all paths of length
d, for some d¿ 2. Then A is a d-Koszul algebra.

Proof. If 8 is the set of paths of length d, then 8 is clearly d-covering.

Corollary 10.4. Let A=K'=I where I is an ideal generated by some paths of length d,
for some d¿ 2. Suppose the longest path in ' has length d+1. Then A is d-Koszul.
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Proof. Let 8 be a set of path of length d. Since the longest path in ' is of length
d+ 1, it is immediate that 8 is d-covering.
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