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Indefinite numerical integration can be approximated by a randomized algorithm uniformly over
Monte Carlo method x € [0, 11¢ with the same rate n~!+1/mn®.2) 35 the optimal rate for
Smolyak algorithm asingle integral, where n is the number of samples. We present two
Lower bounds algorithms, one being of optimal order, the other up to logarithmic

factors. We also prove lower bounds and discuss the dependence
of the constants in the error estimates on the dimension.
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1. Introduction

It is well-known that optimal randomized algorithms for the integration of Ly ([0, 119) functions
with n samples have an error rate n~!71/min(-2) [14 4]. In this paper we show that the same rate can
be obtained for the simultaneous computation of all integrals

fde
[0.x]
uniformly over x € [0, 1]¢. Thus, we want to approximate the indefinite integral, the anti-derivative.
While numerous papers study the complexity of definite integrals, the case of indefinite integration
has not been considered so far.

We propose and analyze two algorithms and prove lower bounds. The first algorithm is the simple
sampling algorithm — a function valued version of the standard Monte Carlo method. The second one
is a combination of the Smolyak algorithm with simultaneous Monte Carlo sampling. Both algorithms
need @ (n) function values and produce an approximation which is a linear combination of ©(n)
functions.
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The first one is of optimal order for all 1 < p < oo and, moreover, the constants in the
error estimates depend polynomially on the dimension. Thus, it proves polynomial tractability of
the problem in the randomized setting. This is noteworthy since so far only very few unweighted
problems (i.e., all dimensions play the same role) are known to share polynomial tractability (see,
e.g., the comment at the top of page 39 of [17]).

The second algorithm is of optimal order for 2 < p < oo, while for 1 < p < 2 additional log-
arithmic factors occur. The second algorithm, however, has the advantage that once the approxima-
tion is established, any value of it can be computed in only ® (1) operations for 2 < p < oo and in
O ((logn)?~") for 1 < p < 2, while in the case of the first algorithm this takes & (n). The simple sam-
pling algorithm, on the other hand, can be made more efficient for d fixed (and small), see Section 6.2.
Still, for 2 < p < oo the Smolyak-Monte Carlo algorithm has better efficiency estimates, see the
discussion at the end of Section 6.2.

We also present a sharp in n and dimension independent lower bound. Furthermore, for p > 1,
we prove lower bounds which show that for fixed ¢ > 0 the dependence of the minimal number of
samples of an algorithm with error <e on the dimension is linear.

Let us note that the rate of deterministic algorithms is ® (1) for all p with 1 < p < oo, thus there
is no convergence to zero at all, see Section 6.1. For comparison, the optimal rate for randomized
algorithms, is n=1+1/min®.2) sg it is n=1/2 for 2 < p < oo, but in the interval 1 < p < 2 the exponent
goes to zero as p approaches 1. Finally, for p = 1 the rate of convergence of randomized algorithms is
O (1), as well.

The paper is organized in the following way: Section 2 contains notation and preliminaries,
the simple sampling algorithm is described and analyzed in Section 3, the Smolyak-Monte Carlo
algorithm in Section 4. Lower bounds are presented in Section 5, and in Section 6 we comment on the
deterministic setting, present an efficient way of computing point evaluations for the simple sampling
algorithm, and discuss measurability issues.

2. Notation and preliminaries

We write N = {1,2,...} and Ny = {0, 1, 2, ...}. The logarithm log is always meant as log,. All
functions and Banach spaces considered in this paper are assumed to be defined over the same field of
scalars K € {R, C}. For a Banach space X we denote the unit ball by 8x and the dual space by X*. Given
Banach spaces X, Y, the space of all bounded linear operators from X to Y is denoted by .#(X, Y), and,
ifX =Y,by 2(X).

letd € N,Q = [0,1]¢, let C(Q) denote the space of continuous functions on Q and, for
1 < p < oo, let L,(Q) be the space of (equivalence classes of) p-th power integrable with respect
to the Lebesgue measure functions, both equipped with their usual norm. Let ¥ (Q) denote the linear
space of all functions on Q and let B4(Q) be the space of all bounded Lebesgue measurable functions
(not equivalence classes) on Q with supremum norm.

Let 1 < p < co.We study S € #(L,(Q), C(Q)) given by

SN = [ foOd, x=(,...,x) €Q),
[0,x]
where [0, x] = [0, x{] x - -+ x [0, X4]. Note that
IS@: L, (Q) = C(Q)Il =1 (1)

(the problem is normalized).

Throughout the paper the symbols c, ¢y, c1, . . . denote positive constants which are either absolute
or may depend only on p and p;. Constants which may also depend on d are denoted by c(d), ¢y (d), etc.
The same symbol may denote different constants (also when they appear in a sequence of relations).

3. The simple sampling algorithm

We have
(SOf) () = f Xow (OF (L.

(0,11
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We introduce the simple sampling algorithm as follows: Let n € N and let (&), be independent,
uniformly distributed on Q = [0, 1]¢ random variables on some probability space (£2, X, P). We
assume without loss of generality that (§2, ¥, P) is complete, meaning that D C D, € X and P(D)
= 0imply D € X (if (2, ¥, P) is not complete, we replace it by its completion). Then we approximate
forf e L,(Q)

SOf ~ Alf,

with Alf given by
1 n
WX = - xoaEf E) (X e Q). (2)
i=1
We have
1 n
Af = ;f(so Xie 11> (3)
where
1=(@1,1,...,1).
———
d
Since

D)) = f FOx0de (e (0,11,
[0,1]

the algorithm can be considered as a function-valued version of the standard Monte Carlo method for
integration. Let us mention that the simple sampling algorithm produces discontinuous in x functions,
so we consider it as mapping into By(Q) and as an approximation to @ : L,(Q) — Bo(Q), where
we identify C(Q) in the canonical way with a subspace of By(Q). Furthermore, note that A; is lacking
certain measurability properties, see the beginning of Sections 5 and 6.3 for details. Nevertheless the
mapping

d 1
= [|SOf — AL, fllzo@)

is X -measurable, where we write

-1 n
Arof ==Y FE@) A1 (@€ 2) (4)
i=1

to emphasize the dependence on w € £2. Indeed, this follows from
ISOf — A} o flgg =  sup  |SPHE) — AL HE)| (0 eR)
xe[0,119NQd
(with Q the rationals), which, in turn, is a simple consequence of (4). Thus it makes sense to consider

the p;-st moment E||S”f — ALf|[}! o, for suitable T < p; < 00, as we will do below.

We also introduce a slight modification of this algorithm, which has values in C([0, 1]%) and
possesses the desired measurability properties. For this purpose we introduce for [ € N the function

oV € c([0, 1) by
1 ift <x
_ 1
g01(1)()6’0: 1—1t—%) 1fx<t<x—|—7 (5)

1
0 le‘l-TSt
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Define go,(d) € C([0, 11%%) by setting for x = (X1, ...,Xg) and t = (t1, ..., tg)
d Lo
o x.0) =[] ol" . ). (6)
j=1
Now we put
1< d
Aof = = 3ol B ). )
i=1

Let us first consider the cost of computing Alf and Afl,,f . Each of them needs dn independent
uniformly distributed on [0, 1] random variables and n function values to determine the respective
representation (3) and (7). Next we have a look at computing (A}f) (x) and (A2 f) (x) for any given
x € Q. Since the supports of the involved functions can overlap in an arbitrary way, we need cdn
operations to compute term after term in (3), and similarly in (7). More efficient approaches for fixed
(small) d are discussed in Section 6.2.

Now we pass to the error analysis. For m € N let I, be the equidistant grid on Q = [0, 1]¢ with
mesh-size 1/m. We need the following (bracketing) lemma.

Lemma3.l. let 1 < p < ooom € Noandf € L,(Q) withf > 0. Let & > 0 and assume { :
[0, 11 — R s a measurable function satisfying the following: For each x € [0, 1]¢ there exist y, z € I,
with

y <z, (8)
[0, z]| — I[0, ¥]| < &0, 9)
Xiog1 () < Y, 0) < xo0) (€ €0, 11%. (10)

Then the following holds P-almost surely:

sup

xeQ |J[0,x]

-1 n
fode——% v saf(a-)‘
i=1

1 K
<& If @ + sup , (11)
Xe

m

1 n
fode — ; Xio.a EDf (&)

[0.x]
where p* isgiven by 1/p + 1/p* = 1.

Proof. We assume that the values f (§;), 1 < i < n, are defined, which is the case P-almost surely. Let
x € Q and choose y, z € I, satisfying (8)-(10). Then

1< 1
fOdt — = Y (x &) (E) < / foyde+ [ fodt— =" xonEf &
L 0.21\[0.y] n ‘=

[0,x] [0,y]

Similarly

1 ¢ 1
— tydt + — 2 & ,-5/ tdt—/ t)ydt + — AENf(E).
/[.O,x]f( ) n Z w(x E)f(f) [O.Z]\[O,y]f( ) [0,z]f( ) n ;X[O J(E )f(é;')

i=1
Thus,

1 n
fode -~ (x, &)f (80
A;] ”Z;wx ‘

-l n
< Ddt + / fdt — - el ,
/[.o,z]\[o,y]f( M [O,u]f( ) n ; o (5 (& )‘ (12)
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Moreover,

f FOdt < (10211 — 0.1 W0 < e I I, 0)- (13)
[0,z1\[0,y]

Combining (12) and (13) yields (11). O

Next we recall some facts on Banach space valued random variables which will be needed in the
subsequent analysis. Let X and Y be Banach spaces and let T € (X, Y). Given p with 1 < p < 2, the
type p constant 7, (T) of the operator T is the smallest ¢ with 0 < ¢ < +o00, such that for all n and all
sequences (x;)i_; C X,

n p n
E|Y aTu| <Y lxlP, (14)

i=1 i=1
where (g;) denotes a sequence of independent symmetric Bernoulli random variables on some
probability space (£2, X, P), ie, Ple; = 1} = Plgg = —1} = % The operator T is said to be of

type p if 7,(T) < oo. Each operator is of type 1. A Banach space X is of type p iff the identity operator
of X is of type p. We refer to [11], Ch. 9 for definitions and basic facts on the type of Banach spaces.
The operator analogues are straightforward.

We will use the following result. The Banach space case of it with p; = p is contained in Proposition
9.11 of [11]. The proof given there easily extends to the case of general p;, as shown in Lemma 2.1 of [8].
Here we note that the operator version of this lemma has literally the same proof, so we omit it.

Lemma 3.2. et 1 < p < 2,p < p; < o0. Then there is a constant ¢ > 0 such that for all Banach spaces

X, Y, each operator T € (X, Y) of type p, each n € N and each sequence of independent, mean zero
X-valued random variables (n;)i_, with E||n;||P? < oo (1 <i < n) the following holds:

" p1\ 1/p1 . . 1/p
(E L ) scrp(T><Z(E||m||'“) ) .
i=1

i=1
The next lemma provides the key estimate for the simple sampling algorithm.

Lemma3.3. et 1 <p <00, 1=<p; <00 p; <p,and p = min(p, 2). Then there is a constant ¢ > 0
such that foralld,m,n e N, f € L,(Q)

E sup
xelm

Proof. We can assume that p; > p, for smaller p; the result follows from Hélder’s inequality. Let X,
be the o -algebra generated by the collection of sets {[0, x] : x € I';;,} and let M(Q, X;) be the Banach
space of signed measures on X,;, with the total variation norm. Consider the operator

IJm :M(Q, i) = Loo(In), Jnit = ([0, X))xerp, -

By a result of Pisier, see Theorem1 and Remark 6 of [ 19], there is a constant ¢ > 0 depending only on
p such that the type p constant of J,, see (14), satisfies

p1\ 1/P1
1-1/p.,—1+1/p
) <cd VP Pf L)
[0,x]

1 n
fode — ; Xio.a EDf (&)

5 (Jm) < cd' "' (15)

(this uses the fact that the Vapnik-Cervonenkis dimension of the family of sets {[0, x] : x € [0, 1]%} is
d, see, e.g., [3], Cor. 9.2.15). Now let f € L,(Q). We define M(Q, Xy,)-valued random variables (n;),
by setting

ni(B) = / FO)dt — @ E) B e Sn).
B
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The 7; are independent and of zero mean. Moreover,

(||P1 1/p1 < . P1 o <
Ell%g 50" < (B( [ 1r©1de + @) < 20f -
Q

pl) 1/p1

By Lemma 3.2 and relation (15) we get

-1 n
(IE surp f®)de — - Z X101 (DS (&)
XElm i=1
Z]m’?i
i=1

p1 1/p1
- ({5, )
Loo(I'm)
n

1
) p/p1
< cd" Vg (Z(EHW”E(Q,EW) )

i=1

[0,x]

1-1/p,—1+1/p
<cd""Pn +/p||f||L,,1(Q)- U

Theorem 3.4. et 1 <p < 00,1 < p; < 00,p; < p,and p = min(p, 2). Then there is a constant ¢ > 0
such that foralld, n,1 € N,1 > 2dn, f € L,(Q),

1/p1
d 1P
(BISF - A o))
1/
d
(IS — 42 £1%)

1-1/p,.—14+1/p
<cd"PnTTPf L)

Proof. For p = 1 the result follows trivially from the definitions (2) and (7) ofA; and Aﬁ -Soletp > 1.

We can assume f > 0, otherwise we consider positive and negative part of f separately. Put m = 2dn
and observe first that the choice
Y(x,t) = Xpox(t)
needed for A! satisfies the (8)-(10) of Lemma 3.1 with &, = d/m. Indeed, given x € [0, 1]¢ we can
choosey = (y1,...,¥q) € I'yandz = (z4, ..., zq) € I}, so that (10) holds and
1 .
yj—}—— =2z (]: ],...,d).
m

We have

d
0. 21 = 10, Y1l < Y Iy1---¥j1ZZ41 - Za — V1. Yj-1¥jzjsn - - 2al <
j=1

EES

Similarly, for

Y0 =g x0),
see (5)-(6), with | > m, we can choose appropriate y and z with

2 :
y]-+— =2 (]: ],...,d),
m
implying [0, z]| — |[0, ¥]| < 2d/m. We obtain from Lemmas 3.1 and 3.3
1/p1
(E”S(d)f —AJJII’;;(Q)
1/p1
(BISF - 42412 )

IA

—14+1 1-1/p,,—1+1/p
n P ) + cd P TP F )

IA

1-1/p,,—1+1/p
cd'VPn +/p||f||Lp(Q). g
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It follows that for 1 < p < oo the family of problems
(5 : By, 0. — €0, 11%)

is polynomially tractable in the randomized setting, for the absolute and the normalized error
criterion (which in this case is the same, because of (1)), see [17] for the definitions. We note
that most of the polynomially tractable problems considered in [17,18] are weighted problems
(i.e., with decreasing dependence on subsequent dimensions). This way we obtained a new family
of unweighted polynomially tractable problems. Furthermore, most problems analyzed in [17,18] are
defined between Hilbert spaces, while here we study a Banach space situation.

deN

4. The Smolyak-Monte Carlo algorithm

First we introduce the Smolyak algorithm in a form needed for our later purposes. The Smolyak
algorithm is by now a standard technique of treating high-dimensional problems, in particular those
of tensor product form. The basic idea of the algorithm is the balancing of fine approximation in certain
dimensions with rough approximation in others. For further background we refer to [17,18] and the
references therein. For each m € Nwithm > 2 let

(PmDZo C 2(C([0, 1]))

be a sequence of operators of the form

Nm 1
Potf =Y f 1) Vim.Li (17)
i=1
withxp ;€ [0, 1]and ¥ i € C([0, 1]), Ymii 0@ =1, ..., npy, | € Np). We assume w.l.o.g. that
the points {xp,; : i =1, ..., ny,} are pairwise different and ordered increasingly,
Xml1 < Xm12 <" < Xmlny,-

Furthermore, we define x;1.0 = 0 and Xy 1.5, ;.41 = 1.
We assume the following: There are constants c;_4 > 0 such that for allm € Nwithm > 2 and for
alll € Ny

My < ! (18)
max  (Xmpi— Xmpi—1) < Com ™' (19)

1<i<ngm+1

1P, ll 2 ccro, 1) < €3 (20)
sup  |If = Puifllcqopy < cam™7VPL, (21)

T8y 10,1

Here WI}([O, 1]) stands for the space of all functions in L,([0, 1]) whose first derivative, in the
distributional sense, also belongs to L, ([0, 1]), endowed with the norm

_ P P /p
gy = (12, o + 151, 0.1 )

(and the usual modification for p = o0).

Operators with these properties are easily constructed. For example, given m, we let Py be
piecewise linear interpolation, applied to the subdivision of [0, 1] into m' equal length subintervals.
For this choice it is well-known that (18)-(21) hold.

We fix any m € N, m > 2. In the sequel m will be an algorithm parameter, and for convenience of
notation we drop the subscript m and write Py, ny, X5, ¥,;.

For the definition of the Smolyak algorithm in the case d > 1 and for the subsequent analysis of
the algorithm we use tensor products. Such an approach is usually applied in the case that both the



S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352-382 359

source and the target space are Hilbert spaces. Here we study a Banach space situation, the source
space being L,(Q) (1 < p < 00), the target space C(Q). For this purpose we use Banach space tensor
norms, as recently done in [20].

The tensor product structure of S in the Banach space case is more subtle than in the Hilbert
case. In particular, we have to consider appropriate tensor norms to relate the spaces C([0, 1]%)
and L, ([0, 119) on the d-dimensional cube to tensor products of the corresponding spaces on the
unit interval. Moreover, these tensor products should have the property that the norm of the tensor
product of operators is equal to the product of the norms of the operators. We present the needed
notation and facts below. Further details and proofs can be found in [2,12].

Let X ® Y be the algebraic tensor product of Banach spaces X and Y. Forz = Z?:1 Xy, eX®Y
define

n

D xi ) i, v)

i=1

AMz) = sup

UEBy*, VEBy*

and for 1 < p < oo, with p* satisfying 1/p + 1/p* =1,

" 1/p n 1/p*
ap(2) = inf (Z ||x,-||P> sup <Z| i, ) |P*)
i=1

VEByx* i—1

(with the usual modification for p* = o0), where the infimum is taken over all representations
z= Z?:1xi®yi.Wehavefor1 <p1<p<occandzeX®Y

M2) < ap(2) <, (2). (22)

For0 € {A, ap (1 < p < 00)}, the tensor product X ®y Y is defined as the completion of X ® Y with
respect to the norm 6.
We use for d > 1 the canonical isometric identifications

([0, 1) ®; ([0, 11" ") = ([0, 11%), (23)
for1<p<oo

Ly ([0, 1]) ®q, Ly ([0, 11*°") = Ly([0, 11%, (24)
and the canonical isometric embedding

Loo([0, 11) ®5 Lo ([0, 1171 C Lo ([0, 11%) (25)

(which is a proper embedding).
Given Banach spaces Xi, X3, Y1, Yo, operators T; € £2(X1, Y1), Th € Z(X3,Y,), and two tensor
norms

01,02 € {A, @p (1 <p <o00)}, 6;>0,
the algebraic tensor product

i : X1®X; > Y1®Y;
extends to a bounded linear operator (we use the same symbol for the extension)

T ®T, € 2(X1 Qg X2, Y1 Qg, Y2) (26)
with

ITi®T; : X1 ®, X2 = Y1, V2l = IT1 : X4 — V1| T2 : Xo — Y2l (27)

Let I© denote the identity operator on C([0, 1]%). In the sense of (23) and (26) we have
j@ — () g @1
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furthermore, taking into account (24), we have for 1 < p < o0,
S@ — g @ 5@
and finally, based on (25), for p = oo,
d d—
S0, @ Lo, 110-1) = SV @S
Now we are ready to define operators PL(d) e 2(C([0, 11%) for L € Ng by induction over d. For
d = 1we put
P =P
For d > 1 we use the identification (23) and set

L

d d—1
PO =" —P_)@P"
1=0

with the convention that P_; := 0. For the sequel we also fix L, which will be another algorithm
parameter. The first step in the construction of our algorithm is the approximation of S@f by P{?S@f.

Next we are going to approximate PL(d) S@F . For this purpose let us take a closer look at the structure
of the operator PL(d). Let for I € Ny

hH=fx;:1<i<m}, Ti=nh,Umn, (28)
where we set I'_; = (. Let the points off“l (I € Np) be denoted in increasing order by
X1 <Xo<-<ZRa, (29)

where fj = |f“,|. Now the operator P, — P,_; can be written as

n n—1
(P —=P))f = Y fup¥iy— Y Fii)Pia

j=1 j=1
fy
=Y G (30)
i=1
withn_; = 0and
. Y if & =x; € [T\ [i-1
Vi = {—Vi-1j ifR; =x_1;€ N1\ I

Yij, — Vi, X=X =x_1j, € .1 N 1.

We can split the operator PL(d) as follows:

= ) U (31)
TeNd, flj=L
where forl = (Iy, ..., Iy weset ||| =1; +--- + Iy and
U=P, —P,-)® - Py, —Py,-1)®P,. (32)
Define for [ = (Iy, ..., ls) € N¢
;= (g, ..., Ay, )

Gi=fieN :1<i<my
with componentwise inequalities in the last line. Furthermore, for 0 < i< 1j we set

~ ~ d
Xfﬁ = (xll,ila LRER) xld—1~id—1’ deﬁid) € [05 1] )
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where we define %, o = 0. Moreover, fori e 47 we put
Vi =V ® - ® Vi iy ® Yigig € C([0, 119
Qi = x5, x4 R R
= [Xll,i1—17 xllﬁil] X e X [de_l,id_1—15 de_lﬁid_l] X [xld,id—]7 deaid]'
Combining (23), (17), (30) and (32), we obtain

Uif =) feavii ¢ € €10, 11%), (33)
fEl]
hence
UsOf =3 </ f(t)dt> Vi
fet; \71043]
_ Z(Z / f(r)dt)lm,i.
feq; \igj=i” %j

We are ready to define the Smolyak-Monte Carlo algorithm. Let Sjj(m =1,1<1ic< np) be
independent random variables on a complete probability space (£2, X', P) such that &;; is uniformly
distributed on Q;;. Then we approximate

USDf ~ Vf = Z(Z |Qz,j|f<s,,j>> Vi (34)
fet; \1gj<i
and thus
SOf~As f= > Vf. (35)
TeNg.[1=L
Now we analyze the error, describe an efficient way to compute the needed quantities and estimate
its cost. Let 1 < p; < o0, p; < p. We shall estimate the p;-st moment of the error. By the triangle
inequality, we have
EISVf — Ay FIPY'P < IS — PSS || + @IPOSOf — A7 FIPH VP (36)
In the following result we summarize the tensor product norm estimates which we will use below.
The case p = oo is particularly important, since in this case, according to (25), the tensor product of
the spaces Lo ([0, 1]) and L ([0, 1]%~1) is only a subspace of Lo, ([0, 1]¢). The lemma ensures that we
can still use product norm estimates.
Lemma4.1. For 1 <p <oo,d > 1,andany T; € £(C([0, 1])) and T> € 2(C([0, 119~1)) we have
(T ® T)S' - L,(10, 11%) — C([0, 1])]
=TS = L, ([0, 11) — C([0, DTSV = L, ([0, 11°°") — c ([0, 11" D). (37)

Proof. For 1 < p < oo this follows directly from (22), (27), (23) and (24). For the case p = oo we
note that
Blc (10.11) ;. Loo (10,1101

isdensein 8;_ o 1)) in the normof L; ([0, 119). This is easily deduced from the fact that the linear span
of products of characteristic functions xp, ® xp,, with D; € [0, 1] and D, < [0, 1]9-1 measurable, is

dense in L; ([0, 119). Moreover, S acts continuously from L; ([0, 1]%) to C([0, 1]%). Consequently,
I(T1 ® T2)S : Loo ([0, 11%) — € ([0, 11%)]|
= [T @ T @ S“V) : Lo ([0, 1]) ®; Lo ([0, 117 — €([0, 11|,
from which (37) follows. O
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Now we are ready to estimate the first term on the right-hand side of (36).

Lemma4.2. let 1 < p < ocoandd € N. Then there is a constant c(d) > 0 such that for all m, L € N,
m> 2,

IS — POS@ . ([0, 11%) — ([0, 1)l < c(d)(L + 141~ I-1/PL-d+D. (38)
Proof. First note that

s e 2(1L,([0, 11), W, ([0, 1])),
which, by (21), implies

[aAD — P)sD = L,([0, 1]) — C([0, 1])|| < cm~ =1/ (39)
and hence,
(P, — P_)S™ 2 Ly ([0, 1) — C([0, 1D)]| < cm™ T~ /PED, (40)

To prove (38), we argue by induction over the dimension d. For d = 1 the result is just (39). Now let
d > 1and assume that (38) holds for d — 1. We have

15—~ POSO < 15— L@ IS + (L@ 17D)s @ — P75 (41)
Using Lemma 4.1, (39), and (1), the first term is estimated as
1@ — PL@ ISV = (A = Py @ 147V (sV @ S“V)|

= 14 = PSSV < em TP,
The second term of (41) is treated as follows.
||(PL ® I(d_l))s(d) _ PL(d)S(d)”

L L

Y (P=P) @14V)SD =3 (P = Pi_y) @ P4 V)s@

=0 =0

L
Z (P — P[_l)s(l)) ® ((I(d—n _ P{f}”)s“*”)
=0

L
< 3 I = PSPV — P s @D
=0

L
<ccd-1) Z m*ﬂ*l/P)(l*l)(L I+ 1)d72m7(171/p)(L—17d+2)
1=0

< C(d)(L+ 1)d_1m_(]_l/p)(l'_d+l),
where we used Lemma 4.1, (40) and the induction hypothesis. This proves (38). O
For the further analysis we need the following direct consequence of the Kolmogorov-Doob
inequality.
Lemmad4.3. Let 1 < p; <00,k € Nd_and_let iQ; : 1 <i < k} be independent, mean zero scalar-valued
random variables with E|g;|P1 < oo (1 <i < k). Then

p1\ /P p1\ 1/p1

Emax |y o < |E[D g : (42)
1<j<k

<i<k |-/—-
11k],

where c; = p1/(p1 — 1).
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Proof. For d = 1 this is just the Kolmogorov-Doob inequality. Now let d > 2 and assume that (42)
holds ford — 1. We write i = (7, ig), k = (K, kg), 1 = (1, 1), define K’ = {i’ : 1 < i <k} c N¢-1
and

( Z oy Jd) €lo(K') (1 =jg <ka).
Vg'<if i’ek’

Then

b1

E max E 0j| =E max
1<i<k | —=- 1<ig<kq
- |1gi<i

P1
> G (43)

1<jg<iq

Loo(K")

Due to the assumptions,

1=ia=la / 1<ig<ky

is an £, (K’)-valued martingale, hence

( R )
Loo(K")/ 1<ig=<kq

1<ja<iq
is a non-negative submartingale. Applying the Kolmogorov-Doob inequality we get

P1 p1 P1
P1 —
Emax | D, & <Al ) g =q'Emax | (Z m)
T N=igsig Loo (K) 1<ja<kq Loo (K V<j'<i’ \1=ig<kq
b1
= {'"E max Z | s (44)
1V<i'<k - .
== 1<j' <if
with
/ +/ /
ny = E 0 j4 1 <j<k). (45)
1<ja=<kq

Since {ny : 1" <j < k'} are independent, mean zero random variables with finite p;-st moment, the
induction hypothesis implies

P1
E max E ny
=il

1<i’<k
=i'=k"| /2

P1

<y (46)

2w

1<j' <k

Inserting (45) and combining (43), (44), and (46), the desired result follows. O

Now we consider the second term on the right-hand side of (36).

Lemmad44. letd e N1 < p < oo,p = min(p, 2), 1 < p; < o0, p1 < p. Then there is a constant
c(d) > Osuch that forallm,L € No,m > 2,f € L,(Q)

) o
E[PSDf — A2 FIPHP < c(d)(L+ D m=OTVPHF||L ).

Proof. We can assume p < pp, the remaining cases follow by Holder’s inequality. We have

d
EIPOSDf — A3 FIPP < Y EIUSOf — Vif PP
TeNg, [ll=L
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For a further analysis we introduce

Ri:CQ) = looUD. R = F®D)iey,

and
Wi oo () = C(Q)
defined by
Wiz =) zn; (2= @icy, € Lo (1))
7617

Using (33) and (34), we get
U; = WiRy,
vif =w; <Z IQi,jlf(E:,j)) :
1gj=i ieq
We also note that
Wil = 11Ul < c(d),

where the inequality is a consequence of (20) and (32). It follows from (47)-(49) that

IUS@f — Vif |

wi((s@ ) — Z 1Q;;51f (Sz,;-))

1<j<i

(Lfmm—@w@m)

= c(d) max Z mj

ieli =

fElI

IA

c(d) max Z
S

ied; i

with
— / FO)dt — |Qgj1f &)
Q;

The random variables {r;; je 43} are independent, of mean zero, and satisfy

A

(Elm;PHYPT < 21Q;51ELf (&) PP

1/pq
=awmm0ﬁmw@ :
Q;

For p; > 1 we get from Lemma 4.3.

pi\ 1/p1 p1\ 1/p1

[E max Z n; <c@|E Z’?i,}‘

N |igs jes;

(51)

(52)
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Moreover, since p; > p, Lemma 3.2 gives
p1\ V/n 1/p
E|Y m; <c| D@y | (53)
j_'Eli ]_Elf
From (52) and (53) we conclude for p; > 1
p1\ /P 1/p
Emax | Y 1 <c@d [ Y@z | (54)
1<j<i jet;

The same relation also holds for p; = 1 (implying p = 1, by our assumption p < p;), which follows
with c(d) = 1 from the triangle inequality. Using (51) and, if p < p;, Hélder’s inequality with
exponent p;/p, we obtain

P

_ _ _ D pP1
> ElgPyPP < 2P max QP Y1l ( lf(t)l”‘dt)
jeu; Jeh jeu; j
=% ”
< 2 maxioyP ! | Y 1ay > [ ror
ek ]_'617 ]_'617 QU
< 22 max |Q; P IFIE (q)- (55)
]E.l] 1
Combining (50), (54) and (55), it follows that
1/ _1/p
EINUS@F — VifIP) P! < c(d) maIXIQz,;I‘ P (f llipco)- (56)
JeL

Taking into account that by (19), (28) and (29),
gzgl(fq,i —Rim) = max (ui— i) < cm™,
we get
d—1

1l = Cigig = Xigig—D [ [ R = Rii-1) < c@m™ G e ay, [l =1).
k=1

Together with (31), (35) and (56) we obtain
EIPSOf — A% FIPHPT < c@ @+ D) 'm TP ),
which proves Lemma 4.4. O

Theorem4.5. et d € N1 < p < oo, p = min(p,2),1 < p; < oo, p; < p. Then there are
constants c1_4(d) > 0 such that forallm € N, m > 2, L € Ny the algorithm Af’n,L uses not more than

c1(d) (L + 1) 'm* function values and the error satisfies for each f € L,(Q)

ESDf — A3 FIPHYP < cp(d)(L 4 D! (m~ VD =GPy o). (57)

Moreover, for each n € N with n > 2 there is a choice of the parameters m and L such that the algorithm
uses not more than cs(d)n function values and the error can be estimated for f € L,(Q) as

{c4<d)n—”2||f||L,,<Q> if2<p<oo

EIS@f — A3 piy1I/p1 <
EISTT = Andd D= cy@ogm® W@ D141 ), if 1 <p <2,

(58)
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Proof. Relation (57) follows readily from Lemmas 4.2 and 4.4. By (18), (28)-(29), and (34)-(35), the
number of function values used in A3, | f is

> Ay, < o+ D' m (59)

=L

To show the second part we first assume 2 < p < oco. Then p = 2 and we put

_[20-D@-1) o

With this choice we have n < m! < 2n and

1 L 1 1\2(p=1Dd-1 1 L
(1-5)e-arv=5+(3-5) 522 (1) e-v=3

which gives (58). Now let 1T < p < 2, hence p = p. Forn < (logn)¢~!, thatis, n < c(d)
for some constant c(d), the result follows trivially from (57) (with suitably chosen c5(d), c4(d)). If
n > (logn)¢~", then the (standard) choice

m=2, L= [logn— (d — 1)loglogn] (61)
implies

n(logn)~ Y < m! < 2n(logn)~“@",
which yields (58). O

Note that in (58) of Theorem 4.5 we obtain for p = 1 no convergence to zero as n — oo. The lower
bound in Proposition 5.1 shows that in this case no algorithm at all has an error converging to zero.

Let us comment on the arithmetic work required for the computation of A m..J asgivenin(34) and
(35) (we always assume the real number model, see [21,17] and, for more detalls [15]). Clearly, for
the &; (|l =L, 1 <i < nj) we need

d Z ng...My_ Ny,

independent random variables uniformly distributed on [0, 1]. Taking into account (59), this number
is
<c(@d L+ D" 'm" < c(d)n
for each of the choices (60) and (61). _ _
In order to compute the coefficients of the functions ;5 in (34) and (35), for each [ with || = L

we have to carry out a task of the following type. Given k = (ki, . .., kg) € N¢ and numbers (@) <i<ko
compute (b;)ij<f, where

=24
1gj<i

We show how this can be done with at most cy(d)k; ...k, arithmetic operations. For d = 1 with
co(1) = 1thisis obvious. Now we use recursion. Soletd > 1and assume we have a suitable procedure

for d — 1. Let us write k = (K, kq), and i = (7', ig). We compute for each j; € {1, 2, ..., kq}
Vil jg = Z ait jq (1/ < i < k/)
1/§j/§i/

by the procedure for dimension d — 1 (thus, we compute the sums in the j;-th ‘layer’). Then for each
1 < i < kK we determine

z’id— § Vil jg (1 <ig < kq).

1<5jg<iq
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Clearly, this needs a total of
kq-co(d— Dky...kg—1+Kk1...ka—1 kg = co(d)kq... kg

operations, and we get cp(d) = co(d—1)+1, hence co(d) = d. Using again (59), the work of computing
all coefficients in (34)-(35) is

dY fy .. Ay, < cd@+ DMt < cd)n

Finally we consider the cost of computing the value (Afnlf) (x) for a given x € Q, once the
coefficients in (34)-(35) have been determined. For this purpose we assume that the functions

Ymii = 1,...,nn)), see (17), have the following properties: There are constants ¢;-3 > 0 such
that forallm,l € Ng,m > 2,
sup |{i: Ym1i(0) # 0} <1, (62)
te[0,1]
furthermore, given m, [, t, the cost of identifying those i € {1, ..., ny} with ¥, 1;(t) # 0is <c, and

the cost of computing ¥, i(t) for any such i is <c3. These properties hold, in particular, for piecewise
linear interpolation as described after (18)-(21) (here we assume that our model of computation
allows one to take the integer part at a cost of <c, which is needed to identify the indices i).

The assumptions imply that_the corresponding statements also hold for the @m_l,,» i=1,...,0m)
and therefore also for the ;5 (i € {;). Hence, the number of non-zero terms y;(x) in (34)-(35) is

H@ D : [l =L i€y ¥i;00 # 0} < el

Moreover, the cost of identifying and computing them is <c(d)L%"!, as well. Thus, the cost of
computing the value (A3, f) (x) is <c(d)(L + 1)*~", therefore <c(d) for the choice (60) in the case
2 < p < oo and <c(d)(log n)?~! for the choice (61)in the case 1 < p < 2.

5. Lower bounds and complexity

For basic notions concerning the randomized setting of information-based complexity - the
framework we use - we refer to [14,21,4]. Here we consider the class of all randomized adaptive
algorithms of varying cardinality. We refer to [5,6] for this approach, the particular notation applied
here, and more details.

First we introduce the respective deterministic class. An element

A€ AC(F(Q),Y)
is a tuple
A= (L2, ()2, (1))
such that
LieQ 1wef01}, ¢eY,
and
L: K'->Q (i=23,..)
Ti: Kf—> {0,1} (=1,2,..)
pi: K—>Y i=1,2,..)

are arbitrary mappings. Given f € #(Q), we associate with it a sequence (;){2; with t; € Q, defined
as follows:

t1 =1L (63)
ti=L(f(t),....f(ti_) (@(=2). (64)
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Define card(A, f), the cardinality of A at input f, to be 0 if 7o = 1.If 7o = 0, let card(A, f) be the first
integer n > 1 with

Tn(f(ﬁ), o »f(tn)) = ],

if there is such an n. If tp, = 0 and no such n € N exists, put card(A, f) = +o0o. For f € #(Q) with
card(A, f) < oo we define the output Af of algorithm A at input f as

Af _J)%o ifn=0
T en(f(t), ... f(t) ifn> 1.
Givenn € Ny and F C ¥ (Q), we define A%(F, Y) as the set of those A € A%(F (Q), Y) for which

max card(4, f) <n.
feF

Given a mapping S : F — Y, the error of A € AgEt(F, Y) in approximating S is defined as
e(S, A, F,Y) = sup ||Sf — Aflly.
feF

The deterministic n-th minimal error of S is defined for n € Ny as

e'(S,F,Y) = inf e(S,AF,Y). (65)
AcAdet(F y)

It follows that no deterministic algorithm that uses at most n function values can have a smaller error
than ed°t(S, F, Y).

Next we introduce the class of randomized adaptive algorithms of varying cardinality. We do this
for the case that F consists of equivalence classes of functions, as needed for this paper, following the
approach of [7]. The case of F being a set of functions can be found in [5,6]. Let 1 < p < oo and let
F € L,(Q). An element

A€ AP Y)
is a tuple
A=((£2,%,P), (Av)wea),
where (£2, X', P) is a probability space,
A, € A®(F(Q),Y) (ve R), (66)
and the following two properties are satisfied.
1. For each f € F and each representative fy of f the mapping
w € 2 — card(Ay, fo)
is X’-measurable and satisfies
Ecard(Ay, fo) < n.
Moreover, the mapping
weER—>ASoeY

is X-to-Borel measurable and essentially separably valued, i.e., there is a separable subspace
Yo C Y such that

A.f € Yo forP-almostallw € £2.
2. If f and f; are representatives of the same class f € F, then P-almost surely
card(Ay, fo) = card(Ay, f1),
Auvfo = Aufr.
Consequently, we can define the output Af of algorithm A at input f € F C L,(Q) as the Y-valued

random variable A,fy on (£2, X', P), where fj is any representative of f. By the above, another choice
of fo leads - up to equivalence - to the same random variable.
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It is readily seen that

AL € APN(BL), C(Q))

and
An L € ARNBry). C(Q) forn > ci(d)(L+ D 'mt (67)

(see Theorem 4.5 for the estimate of the number of samples in (67)). Here we use the completeness
of the measure P stated at the beginning of Section 3 and assumed throughout the paper. Algorithm
Al is of the required form (with Y = By(Q)), satisfies property 2, but not 1. The latter is discussed in
Section 6.3.

Given a mapping S : F — Y, the error of A € A" (F(Q),Y) as an approximation of S on F is
defined as

e(S, A F,Y) = sup E|ISf — Aufllv. (68)
feF

The randomized n-th minimal error of S is defined for n € Ny as

e"(S,F,Y)= inf e(S,AF,Y). (69)
A AR (E,Y)
Consequently, no randomized linear algorithm that uses (on the average) at most n function values
has an error smaller than e;*"(S, F, Y). Note that the definition (68) involves the first moment. This
way lower bounds have the strongest form, because respective bounds for higher moments follow by
Holder’s inequality. In Sections 3 and 4 upper bounds for concrete algorithms were stated in a form
which included possible estimates of higher moments.
Define for ¢ > 0 the information complexity as the inverse function of the n-th minimal error

n?"(S,F,Y) =min{n € Ng : e"(S,F,Y) <&}, (70)
if there is such an n, and
n" (S, F,Y) = 400, (71)

if there is no such n. Thus, if n*"(S, F, Y) < oo, it follows that any algorithm with error <e¢ needs at
least n?"(S, F, Y) samples, while (71) means that no algorithm at all has error <s.

Now let v be a probability measure on F (Q) whose support, denoted by supp v, is a finite set and
satisfies supp v C F (meaning, more precisely, that each function from supp v belongs to a class from
F).ForA € A%(F(Q), Y) put

card(A, v) :/ card(A, f) dv(f),
FQ)

es.AvY) = [ 17— Al dvep)
FQ)
and define the average n-th minimal error as
el®8(S, v, Y) = infle(S,A,v,Y) : A€ ASYF(Q),Y), card(A, v) < n).

Then the following holds

, 1
e (S, F,Y) > 3 (S, v, Y). (72)

This follows from the usual relation between randomized and average case setting, going back to
Bakhvalov, see [14,4,17].

We also consider two smaller classes of algorithms. The first one is the class of non-adaptive
algorithms A% 1(F(Q), Y). We define A € A%U1(F(Q), Y) ifA € A% (F(Q), Y) and the respective
functions L; and t; are constant and satisfy

To=T1==Tp-1 =0, T, = 1.
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Thus, an element A of Afle“ (£(Q), Y) generates a mapping from F(Q) to Y of the form

_ ]%o ifn=0
A= {¢n(f(t]),...,f(tn)) ifn>1 (feF@)
withgp € Y,t; € Q (i=1, ..., n), not depending on f, and ¢, : K" — Y an arbitrary mapping.

The second class AﬂEt’z(}“(Q), Y) is the class of linear algorithms, that is, the set of all A €
AL(F(Q), Y) with ¢, linear. In other words, an element A € A32(F(Q), Y) has the form

0 ifn=0
A= Zf(fi)l/fi ifn>1 F€F@Q)
i=1

witht; € Q and ¢; € Y for 1 <i<n
Forj = 1,2 we define A, "/ (F, Y) as the set of all A € A™(F, Y) with

A € AFYI(F(Q).Y) (0 € ).
We note that the algorithms constructed in Sections 3 and 4 are linear in the sense that

A € AT (B1,0), C(Q) (neN),

As L € AT (B, C(Q) (1> ci(@d)(L+ 1) 'mh),
and the operators A,lw constituting algorithm A;, see (4), are linear, as well.

By analogy to the above, we define for j = 1, 2 the respective n-th minimal errors eﬂEt’J (S,F,Y),

en (S, F,Y), the information complexities n™"(S,F,Y), and the average n-th minimal errors
en>’(S,v,Y). The quantities ed“2(S, F, Y) were also called linear sampling numbers in [16], the

edet1(s, F, Y) nonlinear sampling numbers. Thus, the ef™(S, F, Y) (j = 1, 2) could be viewed as the
respective randomized counterparts.
In these cases slightly sharper lower bounds through the average case can be given:

™S, FY) = e® (S, Y) (=1,2). (73)

We prove three lower bounds for the randomized n-th minimal error. The first one is standard and
contains the sharp order in n. It has a constant independent of d, but it does not match the positive
power of d in the upper estimate.

Proposition 5.1. Let 1 < p < oo and p = min(p, 2). Then there is a constant ¢ > 0 such that for all
dneN

e (S, By, 10,114 C(10, 1]) = en™1+1P.

Proof. We write t = (t1,t") € [0, 1]1¢ with t; € [0, 1]and t’ € [0, 1]9"". Let 0 < § < 1and let
Rs - 7 ([0, 1)) — £ ([0, 119
be defined by

N Jf@=8"1y) ifo<t<1-36
(R‘;f)(t]’t)_{o 1 otherwi]se.

Iffo, f1 € F ([0, 1]) coincide except for a set of Lebesgue measure zero, the same is true for Rsfy, Rsf1 €
F ([0, 11%). Moreover,

IRs : Ly([0, 1]) = Ly([0, 1)l = (1 = §)VP < 1. (74)

Define

s : C([0, 1) > K, Wsg= 5*"/ g(x)dx.
[1-5,11d
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Then
W : C([0,1]%) — K| = 1. (75)
Finally, let

1
S1:Ly([0, 1) = K, Sif :/ fde
0

be the integration operator. Then forx = (xq,...,xg) with1—§ < x; < landf € L,([0, 1])

1
(S“Rsf) (x) = Xo ... x4(1 — 5)/ f(t)dt,
0

and hence,
82 d—1
Wy S@Rsf =574 (5 - ?) §(1—8)S:if = y(d, 8) S+f, (76)
with
s\4-1
y(d,d) = (1 - 5) (1-9).
Now let

A=((R2,Z,P), (Awea) € A" (B, q0.19), C([0, 11).
By Lemma 2 of [6], foreach w € £2 thereisanA; , € A%(F ([0, 1]), K) such that for all f € £ ([0, 1])
card(A1 o, f) = card(A,, Rsf)
and, if card(A; 4, f) < o0,
Arof = y(d, )7 AR
It follows that
A= ((£2, Z,P), (A1w)wce) € A (Bryo.1)), K).
Moreover, because of (74)-(76),

e(S1, A1, Bryo.1), K) = sup  E[Sif —Aquf]
fE€Biy (10,11
=y(d 8" sup E[W%SDRS — WsALRS|
feBryq0,17)
<y & sup E|SDg—Agl
8€BL, 10,114

=y, 8) te(s?, A, B, 0.174)» C([0, 11%).
Consequently
y(d, 8) € (S1, Buy(o.1), K) < €S, By 0,110, C([0, 1]9).
Finally, the lower bound for integration is well-known, see [14,4],
e (S1, B, o1, K) = ¢y TP
With y(d, §) — 1 for d fixed and § — O the result follows. O

The second lower bound is not sharp in n, but gives more information about the dependence on d.
See also [9], the proof of Theorem 8, for a similar approach in the deterministic case.
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Proposition 5.2. Let 1 < p < oc. Then there is a constant ¢ > 0 such that foralld,n € N
e (S, B, ). C(Q)) = c27*4

Proof. Since B ,(q) C By, (). it suffices to consider the case p = oo. We use the following fact (see,
e.g., [10], proof of Theorem 2): There is a constant 0 < ¢; < 1 such that for each d € N and each
0 < & < 1thereisaset# C [0, 1]¢ with

d
= (2) ()
[[0,u] = [0,v]| > ¢ (u,ve#, u#v), (78)

where + denotes the symmetric difference. Let u, v € %, u # v. Then (78) gives

/ (X10.u1(t) — Xj0,01())dt
[0,x]

d d
IS x10.u1 — S xp0.u1llc@) = max

xefu,v)
= max(I[0. ul \ [0, v]]. 1[0, v] \ [0, ull) = &/2. (79)
Let v be the uniform distribution on the set
o s uew} C F(Q). (80)
Givenn € N, we put
g = co 2~ nt/d, (81)

Now we estimate €5,*(S@, v, C(Q)) from below. So let A € A%*(F (Q), C(Q)), with

card(A,v) = / card(A, f) dv(f) < 2n. (82)
FQ)

Let
U ={u e« : card(A, xjo,4) < 4n}.
It follows from (82) that

0l = S = (2 (83
N= =\
Foru e % let (t,;)ien be the respective sequence associated with A and o, according to (63) and
(64), and let n, = card(A, x[o,u])- Define

7 ={ (ot - ue %o} < [ J{0, 11 (84)
k<4n

This implies

Ao : UE %o} = |7| (85)
and

| 7| < 241, (86)
From (79) and (85) we get

Hue Zo : 1S xp0.u — Axpo.ull < £/4}] < |71,
and therefore
|2%| — |7|

O T (87)
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Using (81) and (83), we obtain

1 /co\¢
w0l = 5 (2) =2, (88)
&

and with (83) and (86) it follows that
%l — 171 _ %] — 171 1.
7l T 2wl T2

Now (87) and (81) imply

£
(s, v, CQ)) > 5> c274/d,

Since suppv C B (o), We apply (72), concluding the proof. O

Combining Theorem 3.4 and Propositions 5.1 and 5.2, we obtain

Theorem 5.3. Let 1 < p < oo and p = min(p, 2). Then there exist constants ci_¢ > 0 such that for all
dneNO0<e¢g<c,

c;max(n~ 1P, 27 < (S, By, (), C(Q)) < c5d P07 THP,
moreover, for p > 1,

Cq d Cs ran (¢ (d) Ced
max (W Z‘°g<€)> < "5 B0, CQ) = oy (89)
and finally, for p = 1,
nan(s@, B, CQ)) = 0.

As a consequence, we get the sharp order of the minimal error in n for d fixed.

Corollary 5.4. Let 1 < p < oo, p = min(p, 2), and d € N. There are constants c;(d), c;(d) > 0 such
that foralln € N,

ci(dyn” P < el (s @, Bi,@>CQ)) < c(dn™ P,

So the algorithms constructed in Sections 3 and 4 are of optimal order (up to logarithmic factors
for the Smolyak-Monte Carlo algorithm in the case 1 < p < 2). Furthermore, we obtain for any fixed
0 < & < c; the order of the information complexity (see relations (70) and (71)) as a function of d —
itislinearind forallp > 1.

Corollary 5.5. Let 1 < p < ooc. Then there is a constant c; > 0 with the following property. For each
0 < & < cy there exist constants c, (&), c3(¢) > 0 such that foralld € N

c(e)d < (S, B,). C(Q)) < c3(e)d.

Finally, as observed by an anonymous referee, the lower bound of (89) implies that the upper bound
of the same relation is sharp among all estimates of the form

Cq dot

M (S, By, C(Q) < o foralldeN, 0 <¢ <y (90)

in the sense that if ¢1, c; > 0 and o1, 03 € R are such that (90) holds, then
o1 > 1, oy >p/(p—1). (91)

This remark, as well as Corollaries 5.4 and 5.5, remain true with e replaced by ef™ and n™" by

nf“*j (j = 1, 2), respectively, since the upper bounds were obtained by the help of a linear algorithm
(Theorem 3.4).
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For the class of nonadaptive algorithms the lower bounds of Proposition 5.2 and Theorem 5.3 can
be strengthened as follows.

Proposition 5.6. Let 1 < p < oc. Then there is a constant ¢ > 0 such that foralld,n € N

e (59, B, ), C(Q)) = ¢ min(d/n, 1).

Proof. We argue in a way similar to the proof of Proposition 5.2. We use again the set %, see relations
(77) and (78), and the distribution v, see (80). Given n € N, we put here

Co . <d )
e=—min|—,1}. (92)
2e n
We estimate ej®' (5@, v, C(Q)) from below. Let A € A%¢1(F(Q), C(Q)),
Af = on(f(t1), ... fta)) (f € F(Q)),

and put

7 ={(xou )i, : uex} < {0, 1" (93)
It follows that

{Axouw : ue 2} <171. (94)

Now we use an argument due to Hinrichs ([10], proof of Theorem 4). Since the Vapnik-Cervonenkis
dimension of the family {[0, u] : u € #} is <d (referring again to 3], Cor. 9.2.15), we conclude from
the shatter function lemma that

|7] < (e max (g 1))d (95)

(see, e.g., [13], Lemma 5.9 and inequality (4.7), for the case n > d, the case n < d is trivial). From (94)
and (79) we get

Huez : IS %0 — Axpoull < e/4} < |71,

hence
% — 17|
eVel(s@ y ¢ =17 96
no (S, v, CQ) = 47| € (96)
On the other hand, by (77) and (92),
co\¢ n d
|%| > (—0) = <Zemax (7, 1)) . (97)
I3 d
Together with (95) we obtain
v\ — |7
M >1— 2-‘1, (98)

|%|
consequently, from (96) and (92),
£ o . [d
eVel(s@ y ¢ >—=—min(-,1),
n v CQ) = 8 16e '\ n
and the desired result follows from (73). O

As a consequence of Theorem 3.4 and Proposition 5.6 we get

Theorem 5.7. Let 1 < p < oo and p = min(p, 2). Then there exist constants c;_s > 0 such that for all
dneNO0O<e<c,j=1,2,

c; max(n~"Y2 ‘min(d/n, 1)) < ™ (S, By, (q). C(Q)) < c3d'~Pn P,
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furthermore, for p > 1,

camax(1/e? P70 d/e) < nf™(SP, By, ). C(Q) < csd/e? PV,
and for p = 1,

™ (S?, 81,), C(Q)) = 0.

We do not know if Proposition 5.6 holds for e,‘f‘“(S(d), B1,Q)» C(Q)). Its proof does not generalize
directly to adaptive algorithms. An obvious obstacle is that we cannot apply the shatter function
lemma since the point set (t;)!; may vary with the input x[o ;. But more than that, one can show
that, in a certain sense, this proof cannot work for adaptive algorithms. Namely, observe that the proof
operates on the smaller class

Fi = {Xjo.u : u € [0, 11
and yields the estimate
™S9, F1, C(Q)) = ¢ min(d/n, 1).
However, this estimate does not hold for eff“(S(d), F1, C(Q)). Indeed, for the class F; adaptive
algorithms can have a much better, an exponential rate, as the following result shows.
Proposition 5.8. Foralld, n € N,
e, Fy, C(Q)) < d27WamT (99)

Proof. Use bisection to determine an approximation v = (vq, ..., vg) to the input u = (uy, ..., u,)
with n queries (in other words, with n function values ;o . (t;) with adaptively chosen t;) and precision

max |u; — v;| < 27 Wa-1,

1<i<d
Then approximate

d o
SD 0.0 ~ S x10,015

where forx = (xq, ..., xy) € [0, 1]¢

d
(“r10.)00 = [ xoun(©ct = [ [mincs. v
[0.x] i=1

Arguing similarly to (16), this leads to (99) (in fact, this is a deterministic approximation). 0O

Note that the results of this section remain true for the case that S is considered as an operator
into Lo, ([0, 119).
For p > 1 the sharp order of

e (S, B, 0), C(Q) and ™S, B 0).CQ)) (=1,2)
as a function of n and d simultaneously is an open problem.

6. Supplements, extensions, comments
6.1. Deterministic setting

We want to compare our results to the deterministic setting, which was defined in Section 5. The
deterministic setting is not well-defined for F = 8,(q), since the elements are classes of functions
for which function values are not well-defined. Alternatively, we might consider the dense subset
F = 8, N C(Q). Then function values are defined. However, we have the following essentially
well-known result.

Proposition 6.1. Foralln € N
e (S, B, N C(Q).C(Q)) = 1.



376 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352-382

Proof. The case p < oo of Proposition 6.1 follows from the case p = oo, which says that
el (S, By, C(Q)) = 1.

Using the same argument as in the proof of Proposition 5.1, this is readily reduced to
3 (S1, Bcqo.ap, K) = 1,

which is well-known and easily checked. O

Thus, we see that deterministic algorithms can have no convergence rate at all for the problem
S@: B0 NCQ) — CQ).

6.2. Efficient function evaluation for simple sampling

It is interesting to consider the task that once the representation (3), (7), or (34)-(35) of the output
of the respective algorithm has been obtained, we want to compute many function values of it. The
case of (34)-(35) was discussed at the end of Section 4. Here we restrict the consideration to (3). It was
mentioned in the discussion after (7) that a direct approach leads to a cost of cdn for each value. In this
case it might make sense to spend some extra effort in advance to make the subsequent computations
more efficient. This is the topic of the present subsection.

We have the following task: given n € N and any

z€[0,19  BieK(=1,...,n), (100)
compute
S =Y Bips ) ®) (101)
i=1

for a given x € [0, 1]¢ (or a number of such x). We assume that n = 2! for some L € Ny. (If this is not
the case we put L = [logn] and add points z; = 0 and numbers 8; = 0fori =n+1,...,25L)
We need some notation. Let D; be the set of all integer intervals of the form

I={k2'+1,k2"+2,..., (k+ 12} (102)

contained in {1, ..., 2!}, i.e, all intervals (102) with0 < [ < Land 0 < k < 2 In a first step
we provide the needed arrays of auxiliary numbers, that is, we compute a series of numbers which
depend on the z; and B;, which are then used for the subsequent computation of the value s(x). Let us
call this structure a d-dimensional sampling array of size n. It is defined recursively.

A one-dimensional sampling array of size n is a pair of n-vectors

a= ((u)iy» Mizy) (103)
withy; e K(i=1,...,n)and
0=y =---=2uy, =1 (104)

For d > 1 a d-dimensional sampling array of size n is a tuple

a= ((Ui)?zp (al)le.DL) (105)

where (u;)!, satisfies (104) and the g; are (d — 1)-dimensional sampling arrays of size |I|. Let = (d, n)
denote the set of all d-dimensional sampling arrays of size n.
Let £, denote the set of all permutations of (1, 2, ..., n) and let

I : [0,1]" = 2,
be such that for all (u;)_; € [0, 1]" the following holds: if IT; (uy, ..., u,) = m, then
Ur) Uz (I1<i<j<n

(i.e., w induces a non-decreasing reordering of the (u;)!_,).
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Now we define recursively
Ag(z1, .-y 2zn, B1,y -, Bn) € #(d, n),
forall ()} ,, (B, satisfying (100). We let
m=1I(zZ11,-..,2Zn1)-
For d = 1 define
A1(z1, oo 2o, Bro - Br) = (Zna)iers Wiz
where

i
=Y Brwy (i=1.....n).
k=1

Ford > 1, we write z; = (z;,1, z) withz;; € [0, 1]and Z] € [0, 1]9=1. Then we define

Ad@1, . zn, Bro o B) = (@i )iy @)ieo,)
with
a = Agq ((Z;T(,'))iels (Bri))ier) -

377

(106)

(107)

(108)

Givenx = (x1, ) € [0, 1] x [0, 119~ and a d-dimensional sampling array a € .#(d, n), we define

the function
Yi(x,a) e K

as follows. Let a have the form (103) if d = 1 and the form (105) if d > 1. In both cases we determine

the largestj < n with y; < x;.If there is no such j, we set

¥y(x,a) = 0.
Otherwise we put ford = 1
vix,a) =y,
Ifd > 1,let

{1,2,...,j} = UI,

be the unique representationwith1 <m <L L e D, (I=1,...,

LN, =9, ] >I, 0 <b).
Then we set

m
W, @) = Y W (X, ).
=1

Our first claim is the following

Lemma6.2. Foralld € N,L € No,n = 2, x € [0,1]% z, ...

following holds
S(X) = Wa(x, Ad(z1, ..., 20, B1s - - -5 Br))-

Proof. We argue by induction over d. First letd = 1. If
{i:zz<x}=0

then

n
SO =D BiXian® =0 =U1(x, A1, .. 20, B, -
i=1

m) and

.z € [0, 1]% By, ...,

Bn))

(109)

(110)

(111)

(112)

(113)

Bn € K the

(114)
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by (109). Otherwise, with
j=max{i: z;4 < x},

we have

s(x) = Zﬁi)([z,-,l](x) = Z,Bn(i)X[zn(,'),l](x)
p =1

J
=Y Bety =¥ =1 A1, . 2o, Br. - Ba)).
i=1

Now let d > 1 and assume the statement holds for d — 1. Again, we first consider the case
{l Zi1 SX1}=®. (115)

Here we have
n n
SC) =Y Bz 1 ®) = Y Biiz 11X X1z, 11 ()
i=1 i=1

=0= l[fd(x’ Ad(Z], <e-5Zn, ,317 ey ,311))7
by (109). If (115) does not hold, we set
j=max{i: zz.1 < X1}

and conclude

n n
SC) =Y BiXis 1 ®) = Y Bri Xz 1®)
i=1 i=1

n

/

= Z ﬂn(i)X[z,,(,-H,1](X1)X[z7’f(i),l’](x )
=1

m

Jj
/ /
= Z’Bﬂ(i)x[z;r(i)’ll](x) = Z Z’B”(i)x[z;z(iy]/](x)

i=1 =1 iel

= Z Va1 (X, Aa1(Zg)iens Bri)ier))

=1
= Wx, Aa(Z1, ..., Zn, B1, ..., Bn)),
by the induction hypothesis, (107), (108) and (113). O

Now we have a look at the number of arithmetic operations needed for the computation of s(x)
according to formula (114). Recall that we assume the real number model [15].

Lemma 6.3. There is a choice of (I1;)en, such that the following holds: For all d € N there is a constant
c(d) > Osuchthat foralllL € No,n = 2%, zq,...,2, € [0, 1]%, B1, .., Bn € K the d-dimensional
sampling array

Ad(z1, .o 20, By oo o5 B,
as defined in (106)-(108), can be computed in

<c(d)n(log n)m*@=1.1
operations.
Proof. Let IT,(uq,...,u,) be the output supplied by merge sorting, which can be obtained in

<cnlog n operations (see [1], Ch. 2.7). For d = 1 we need a total of <cynlogn operations for sorting
the z; and computing the sums. If d = 2, we first sort z; ; in <cnlogn, which gives 7. Then for each
I € D; we have to sort z/ ) = Zx(),2 for i € I. These results are obtained simultaneously for all

(i
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I as a by-product of merge sorting (z,;,2){_;, which requires <cnlogn operations. The remaining
computations of the sums require

<c Z |I| < cnlogn
leD;

operations.
For d > 2 we argue by induction. So assume the statement holds for d — 1. To compute

Adz1, o2, Brs ooy Br)

according to (107) and (108), we need cnlogn operations for sorting the first component. By the
induction assumption, the computation of the a; requires not more than

L
cd—1) ) Idogll*? < c(d=1)2" Yy (L —Dh*?
=0

leDy

IA

c( )24 < c(dn(logn)?'. O

Lemma 6.4. Let d € N. Then there is a constant c(d) > 0 such that forall L € No,n = 2%, a € #(d, n),
x € [0, 119 the function ¥y(x, a) given by (109), (110) and (113), can be computed in <c(d)(logn + 1)¢
operations.

Proof. For d = 1 we apply the bisection algorithm to determine j (or its non-existence) in
<c(logn + 1) operations. For d > 1 we argue by induction. Assume the statement is true for d — 1.
Again, we determine j by bisection. The binary representation of j yields m < L and the sets (I})[",
so that (111) and (112) hold. By the induction assumption, the cost of computing ¥y_; (X', ay) is
<c(d — 1)(log |I}] + 1)%7, so the total cost is

m
<c(logn+1)+c(d—1) ) _(ogh| + 1)
=1

L
<clogn+ 1) +cd—1 Y (+ D"

=1
<c(d(logn+ 1. O

Corollary 6.5. Let d € N. Then there are constants c{(d), ca(d) > 0 such that foralln € N,n > 2,
Z1,...,2,€ (0,114 81, ..., Ba e KN eN,x €[0,11% (i =1, ..., N) the values

s6) =Y Bixn®) (i=1,...,N)
i=1

can be computed in
<ci(d)n(log m)™ =1V ¢, (d) (log )N
operations.

Let us summarize the total cost - including the computation of N values of the output function -
needed for algorithm A; to reach an error ¢ > 0. Combining Lemmas 6.2-6.4 with Theorem 3.4 we
obtain the following

Corollary 6.6. Let d € N, 1 < p < 00,1 < p; < 00,p1 < p,and p = min(p, 2). Then there are
constants c1, ¢; > 0 not depending on d and constants c3(d), c4(d) > 0 such that foreach0 < ¢ < 1/2
there exists an n € N with the following properties. The algorithm A; has error

1/p1
sup <]Esup [(SF) (%) — (A,lf)(x)|pl> <e

fEéBLp(Q) xeQ
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and for each f € L,(Q) and w € £2 it uses not more than

1\#/6-D
n<cd <)
15

function values of f and needs

1\P/G-D
<cd? (*)
€

operations to set up the approximating function A;,w f.
Moreover, having obtained Alf, a d-dimensional sampling array of size n can be computed in

1\ P/®-1 1)\ max(@d—1.1)
o (c) (m(2))

operations, with the property that foreach N € N, x; € Q (i = 1,...,N), the values (A;f)(x,-) (i =
1,..., N) can be computed in

¢
c4(d) (log <g)> N

operations.
For comparison, let us formulate the analogous result for the Smolyak-Monte Carlo algorithm,
which is a consequence of Theorem 4.5 and the cost analysis given after its proof.

Corollary6.7. et d € N, 1 < p < 00,1 < p; < o0, p1 < p, and p = min(p, 2). Then there are
constants c¢;_3(d) > O such that for each 0 < & < 1/2 there exist m, L € Ny, m > 2 with the following
properties. The algorithm Af’n’ . has error

1/p1
sup (IE sup |[(Sf) (x) — (Afn’Lf)(x)|m> <e
fEfBLp(Q) xeQ

and for each f € L,(Q) and w € §2 it needs not more than

1\P/®=D
(*) f2<p=<oo

&
1\P/6-D 1\ ()@
(g> (log <g>> fl<p<2

function values of f and (up to a constant factor depending on d) the same number of operations to set up
the approximating function Afn_, S

Furthermore, having obtained A} | f, foreach N € N, x; € Q (i = 1,..., N), the values (A3 | ) (x)
(i=1,...,N) can be computed in

a(d @+ D' mt < o (d)

N if2<p<oo

d—1
=6 (log (;)) N ifl<p<2

operations.

On the basis of these results let us compare the total cost of both algorithms, including the
computation of N values of the approximating function. We assume d to be fixed and consider the
behaviourase — O,N — oo.For2 < p < ooand, ifd = 1,alsofor1 < p < 2, the cost
of the Smolyak-Monte Carlo algorithm is (up to a constant factor depending on d) lower than that
of the simple sampling algorithm. On the other hand, for 1 < p < 2andd > 1 the cost of the
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Smolyak-Monte Carlo algorithm can be anything from higher (N small relative to 1/¢) to slightly
lower than simple sampling (N large relative to 1/¢).

If d is large, the simple sampling algorithm with direct term-by-term computation of cost <cdnN is
obviously preferable to the version with sampling array computation and also to the Smolyak-Monte
Carlo algorithm because of the exponential dependence of the cost on d in the latter two.

6.3. Separability and measurability

In Section 5 we mentioned that the simple sampling algorithm

Ay & A (B,0). Bo(Q)). (116)
We show that it does not have property 1 introduced in Section 5 (see below (66)). Let fo(x) = 1(x €
[0, 11%). Then by (3)

1 n
Anofo = - > X (@€ Q).
i=1

Define
i—1 i\’ P .
Q=|——--) Cl0,1"=Q (=1,...,n),
n o n
n
kK=[]aca"
i=1
For (x1,...,%n), W1, ...,¥Yn) € K we have
1< 1< 1
= Xpwil — = D Xy > - (117)
n 4 n 4 n
=1 =1 Bo(Q)

whenever (x1, ..., x,) # V1, ..., Y¥n). Put
20 ={we 2: 1(w),...,&w) €K}
Clearly, P(£29) # 0. Moreover, if X is a separable subspace of By(Q ), then due to (117), the set

l n
Ky = {(xl,...,xn)el(: - E Xixi. 1] GX}
i=1

is at most countable, which implies

P{w € 2 : Ay fo € X)) =P({w € 2 : (1(w), ..., () € Kx}) =0 # P(2).
Hence, the mapping @ : 2 — By(Q) given by

D) =A),fo (@e)

is not essentially separably valued, and (116) follows.
Let us also mention that if we consider the canonical choice 2 = [0, 11", X the o -algebra of all
Lebesgue measurable subsets, P the Lebesgue measure on [0, 1] and, for 1 < i < n,

) =% (W= X1,...,x) €Q" =),
then @ is not X¥'-to-Borel measurable. To see this, assume the contrary. We have £2, = K and for
w=(X,...,X;) €Q"

1 n
D(w) = E Z X, 11
i=1

Moreover, by (117), @ is a one-to-one mapping of K onto

1 n
7 = E E X[X,‘,i] : (X],...,Xn) EK} CB()(Q)
i=1
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Also by (117), each subset of Z is a closed subset of By (Q ), hence Borel measurable, implying that each
subset of K is Lebesgue measurable, a contradiction.
The arguments above remain true when considering A,‘w as a mapping into Ly (Q).
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