
Journal of Complexity 27 (2011) 352–382

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

The randomized complexity of indefinite integration
Stefan Heinrich ∗, Bernhard Milla
Department of Computer Science, University of Kaiserslautern, D-67653 Kaiserslautern, Germany

a r t i c l e i n f o

Article history:
Received 15 February 2010
Accepted 25 August 2010
Available online 24 September 2010

Keywords:
Indefinite numerical integration
Monte Carlo method
Smolyak algorithm
Lower bounds

a b s t r a c t

We show that for functions f ∈ Lp([0, 1]d), where 1 ≤ p ≤ ∞, the
family of integrals∫

[0,x]
f (t)dt (x = (x1, . . . , xd) ∈ [0, 1]d)

can be approximated by a randomized algorithm uniformly over
x ∈ [0, 1]d with the same rate n−1+1/min(p,2) as the optimal rate for
a single integral, where n is the number of samples.We present two
algorithms, one being of optimal order, the other up to logarithmic
factors. We also prove lower bounds and discuss the dependence
of the constants in the error estimates on the dimension.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

It is well-known that optimal randomized algorithms for the integration of Lp([0, 1]d) functions
with n samples have an error rate n−1+1/min(p,2) [14,4]. In this paper we show that the same rate can
be obtained for the simultaneous computation of all integrals∫

[0,x]
f (t)dt

uniformly over x ∈ [0, 1]d. Thus, we want to approximate the indefinite integral, the anti-derivative.
While numerous papers study the complexity of definite integrals, the case of indefinite integration
has not been considered so far.

We propose and analyze two algorithms and prove lower bounds. The first algorithm is the simple
sampling algorithm— a function valued version of the standard Monte Carlo method. The second one
is a combination of the Smolyak algorithmwith simultaneous Monte Carlo sampling. Both algorithms
need O(n) function values and produce an approximation which is a linear combination of O(n)
functions.

∗ Corresponding author.
E-mail addresses: heinrich@informatik.uni-kl.de (S. Heinrich), milla@informatik.uni-kl.de (B. Milla).

0885-064X/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jco.2010.08.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82118196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jco.2010.08.003
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:heinrich@informatik.uni-kl.de
mailto:milla@informatik.uni-kl.de
http://dx.doi.org/10.1016/j.jco.2010.08.003

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 353

The first one is of optimal order for all 1 ≤ p ≤ ∞ and, moreover, the constants in the
error estimates depend polynomially on the dimension. Thus, it proves polynomial tractability of
the problem in the randomized setting. This is noteworthy since so far only very few unweighted
problems (i.e., all dimensions play the same role) are known to share polynomial tractability (see,
e.g., the comment at the top of page 39 of [17]).

The second algorithm is of optimal order for 2 < p ≤ ∞, while for 1 ≤ p ≤ 2 additional log-
arithmic factors occur. The second algorithm, however, has the advantage that once the approxima-
tion is established, any value of it can be computed in only O(1) operations for 2 < p ≤ ∞ and in
O((log n)d−1) for 1 ≤ p ≤ 2, while in the case of the first algorithm this takesΘ(n). The simple sam-
pling algorithm, on the other hand, can be mademore efficient for d fixed (and small), see Section 6.2.
Still, for 2 < p ≤ ∞ the Smolyak–Monte Carlo algorithm has better efficiency estimates, see the
discussion at the end of Section 6.2.

We also present a sharp in n and dimension independent lower bound. Furthermore, for p > 1,
we prove lower bounds which show that for fixed ε > 0 the dependence of the minimal number of
samples of an algorithm with error ≤ε on the dimension is linear.

Let us note that the rate of deterministic algorithms is Θ(1) for all p with 1 ≤ p ≤ ∞, thus there
is no convergence to zero at all, see Section 6.1. For comparison, the optimal rate for randomized
algorithms, is n−1+1/min(p,2), so it is n−1/2 for 2 ≤ p ≤ ∞, but in the interval 1 < p < 2 the exponent
goes to zero as p approaches 1. Finally, for p = 1 the rate of convergence of randomized algorithms is
Θ(1), as well.

The paper is organized in the following way: Section 2 contains notation and preliminaries,
the simple sampling algorithm is described and analyzed in Section 3, the Smolyak–Monte Carlo
algorithm in Section 4. Lower bounds are presented in Section 5, and in Section 6 we comment on the
deterministic setting, present an efficientway of computing point evaluations for the simple sampling
algorithm, and discuss measurability issues.

2. Notation and preliminaries

We write N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. The logarithm log is always meant as log2. All
functions and Banach spaces considered in this paper are assumed to be defined over the same field of
scalarsK ∈ {R,C}. For a Banach space Xwe denote the unit ball byBX and the dual space by X∗. Given
Banach spaces X, Y , the space of all bounded linear operators from X to Y is denoted by L (X, Y), and,
if X = Y , by L (X).

Let d ∈ N, Q = [0, 1]d, let C(Q) denote the space of continuous functions on Q and, for
1 ≤ p ≤ ∞, let Lp(Q) be the space of (equivalence classes of) p-th power integrable with respect
to the Lebesgue measure functions, both equipped with their usual norm. Let F (Q) denote the linear
space of all functions on Q and let B0(Q) be the space of all bounded Lebesgue measurable functions
(not equivalence classes) on Q with supremum norm.

Let 1 ≤ p ≤ ∞. We study S(d) ∈ L (Lp(Q), C(Q)) given by

(S(d)f)(x) =

∫
[0,x]

f (t)dt, (x = (x1, . . . , xd) ∈ Q),

where [0, x] = [0, x1] × · · · × [0, xd]. Note that

‖S(d) : Lp (Q) → C(Q)‖ = 1 (1)
(the problem is normalized).

Throughout the paper the symbols c, c0, c1, . . . denote positive constantswhich are either absolute
ormay depend only on p and p1. Constantswhichmay also depend on d are denoted by c(d), c0(d), etc.
The same symbol may denote different constants (also when they appear in a sequence of relations).

3. The simple sampling algorithm

We have

(S(d)f)(x) =

∫
[0,1]d

χ[0,x](t)f (t)dt.

354 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

We introduce the simple sampling algorithm as follows: Let n ∈ N and let (ξi)ni=1 be independent,
uniformly distributed on Q = [0, 1]d random variables on some probability space (Ω,Σ, P). We
assume without loss of generality that (Ω,Σ, P) is complete, meaning that D ⊆ D1 ∈ Σ and P(D1)
= 0 implyD ∈ Σ (if (Ω,Σ, P) is not complete, we replace it by its completion). Thenwe approximate
for f ∈ Lp(Q)

S(d)f ≈ A1
nf ,

with A1
nf given by

(A1
nf)(x) =

1
n

n−
i=1

χ[0,x](ξi)f (ξi) (x ∈ Q). (2)

We have

A1
nf =

1
n

n−
i=1

f (ξi) χ[ξi,1̄], (3)

where

1̄ = (1, 1, . . . , 1  
d

).

Since

(S(d)f)(x) =

∫
[0,1]d

f (t)χ[t,1̄](x)dt (x ∈ [0, 1]d),

the algorithm can be considered as a function-valued version of the standard Monte Carlo method for
integration. Let usmention that the simple sampling algorithmproduces discontinuous in x functions,
so we consider it as mapping into B0(Q) and as an approximation to S(d) : Lp(Q) → B0(Q), where
we identify C(Q) in the canonical way with a subspace of B0(Q). Furthermore, note that A1

n is lacking
certain measurability properties, see the beginning of Sections 5 and 6.3 for details. Nevertheless the
mapping

ω → ‖S(d)f − A1
n,ω f ‖B0(Q)

isΣ-measurable, where we write

A1
n,ω f =

1
n

n−
i=1

f (ξi(ω)) χ[ξi(ω),1̄] (ω ∈ Ω) (4)

to emphasize the dependence on ω ∈ Ω . Indeed, this follows from

‖S(d)f − A1
n,ω f ‖B0(Q) = sup

x∈[0,1]d∩Qd

(S(d)f)(x)− (A1
n,ω f)(x)

 (ω ∈ Ω)

(with Q the rationals), which, in turn, is a simple consequence of (4). Thus it makes sense to consider
the p1-st moment E‖S(d)f − A1

nf ‖
p1
B0(Q)

for suitable 1 ≤ p1 < ∞, as we will do below.
We also introduce a slight modification of this algorithm, which has values in C([0, 1]d) and

possesses the desired measurability properties. For this purpose we introduce for l ∈ N the function
ϕ
(1)
l ∈ C([0, 1]2) by

ϕ
(1)
l (x, t) =


1 if t ≤ x

1 − l(t − x) if x < t < x +
1
l

0 if x +
1
l

≤ t.

(5)

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 355

Define ϕ(d)l ∈ C([0, 1]2d) by setting for x = (x1, . . . , xd) and t = (t1, . . . , td)

ϕ
(d)
l (x, t) =

d∏
j=1

ϕ
(1)
l (xj, tj). (6)

Now we put

A2
n,lf =

1
n

n−
i=1

ϕ
(d)
l (·, ξi)f (ξi). (7)

Let us first consider the cost of computing A1
nf and A2

n,lf . Each of them needs dn independent
uniformly distributed on [0, 1] random variables and n function values to determine the respective
representation (3) and (7). Next we have a look at computing


A1
nf

(x) and


A2
n,lf

(x) for any given

x ∈ Q . Since the supports of the involved functions can overlap in an arbitrary way, we need cdn
operations to compute term after term in (3), and similarly in (7). More efficient approaches for fixed
(small) d are discussed in Section 6.2.

Now we pass to the error analysis. For m ∈ N let Γm be the equidistant grid on Q = [0, 1]d with
mesh-size 1/m. We need the following (bracketing) lemma.

Lemma 3.1. Let 1 < p ≤ ∞, m ∈ N, and f ∈ Lp(Q) with f ≥ 0. Let ε0 > 0 and assume ψ :

[0, 1]2d → R is a measurable function satisfying the following: For each x ∈ [0, 1]d there exist y, z ∈ Γm
with

y ≤ z, (8)
|[0, z]| − |[0, y]| ≤ ε0, (9)

χ[0,y](t) ≤ ψ(x, t) ≤ χ[0,z](t) (t ∈ [0, 1]d). (10)

Then the following holds P-almost surely:

sup
x∈Q


∫

[0,x]
f (t)dt −

1
n

n−
i=1

ψ(x, ξi)f (ξi)


≤ ε

1/p∗

0 ‖f ‖Lp(Q) + sup
x∈Γm


∫

[0,x]
f (t)dt −

1
n

n−
i=1

χ[0,x](ξi)f (ξi)

 , (11)

where p∗ is given by 1/p + 1/p∗
= 1.

Proof. We assume that the values f (ξi), 1 ≤ i ≤ n, are defined, which is the case P-almost surely. Let
x ∈ Q and choose y, z ∈ Γm satisfying (8)–(10). Then∫

[0,x]
f (t)dt −

1
n

n−
i=1

ψ(x, ξi)f (ξi) ≤

∫
[0,z]\[0,y]

f (t)dt +

∫
[0,y]

f (t)dt −
1
n

n−
i=1

χ[0,y](ξi)f (ξi).

Similarly

−

∫
[0,x]

f (t)dt +
1
n

n−
i=1

ψ(x, ξi)f (ξi) ≤

∫
[0,z]\[0,y]

f (t)dt −

∫
[0,z]

f (t)dt +
1
n

n−
i=1

χ[0,z](ξi)f (ξi).

Thus, 
∫

[0,x]
f (t)dt −

1
n

n−
i=1

ψ(x, ξi)f (ξi)


≤

∫
[0,z]\[0,y]

f (t)dt + max
u∈{y,z}


∫

[0,u]
f (t)dt −

1
n

n−
i=1

χ[0,u](ξi)f (ξi)

 . (12)

356 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

Moreover,∫
[0,z]\[0,y]

f (t)dt ≤ (|[0, z]| − |[0, y]|)1/p
∗

‖f ‖Lp(Q) ≤ ε
1/p∗

0 ‖f ‖Lp(Q). (13)

Combining (12) and (13) yields (11). �

Next we recall some facts on Banach space valued random variables which will be needed in the
subsequent analysis. Let X and Y be Banach spaces and let T ∈ L (X, Y). Given p with 1 ≤ p ≤ 2, the
type p constant τp(T) of the operator T is the smallest c with 0 < c ≤ +∞, such that for all n and all
sequences (xi)ni=1 ⊂ X ,

E

 n−
i=1

εiTxi


p

≤ cp
n−

i=1

‖xi‖p, (14)

where (εi) denotes a sequence of independent symmetric Bernoulli random variables on some
probability space (Ω,Σ, P), i.e., P{εi = 1} = P{εi = −1} =

1
2 . The operator T is said to be of

type p if τp(T) < ∞. Each operator is of type 1. A Banach space X is of type p iff the identity operator
of X is of type p. We refer to [11], Ch. 9 for definitions and basic facts on the type of Banach spaces.
The operator analogues are straightforward.

Wewill use the following result. The Banach space case of it with p1 = p is contained in Proposition
9.11 of [11]. The proof given there easily extends to the case of general p1, as shown in Lemma2.1 of [8].
Here we note that the operator version of this lemma has literally the same proof, so we omit it.

Lemma 3.2. Let 1 ≤ p ≤ 2, p ≤ p1 < ∞. Then there is a constant c > 0 such that for all Banach spaces
X, Y , each operator T ∈ L (X, Y) of type p, each n ∈ N and each sequence of independent, mean zero
X-valued random variables (ηi)ni=1 with E‖ηi‖

p1 < ∞ (1 ≤ i ≤ n) the following holds:
E

 n−
i=1

Tηi


p11/p1

≤ cτp(T)


n−

i=1


E‖ηi‖

p1
p/p11/p

.

The next lemma provides the key estimate for the simple sampling algorithm.

Lemma 3.3. Let 1 ≤ p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2). Then there is a constant c > 0
such that for all d,m, n ∈ N, f ∈ Lp(Q)

E sup
x∈Γm


∫

[0,x]
f (t)dt −

1
n

n−
i=1

χ[0,x](ξi)f (ξi)


p11/p1

≤ cd1−1/p̄n−1+1/p̄
‖f ‖Lp(Q).

Proof. We can assume that p1 ≥ p̄, for smaller p1 the result follows from Hölder’s inequality. LetΣm
be the σ -algebra generated by the collection of sets {[0, x] : x ∈ Γm} and letM(Q ,Σm) be the Banach
space of signed measures onΣm, with the total variation norm. Consider the operator

Jm : M(Q ,Σm) → ℓ∞(Γm), Jmµ = (µ([0, x]))x∈Γm .

By a result of Pisier, see Theorem1 and Remark 6 of [19], there is a constant c > 0 depending only on
p̄ such that the type p̄ constant of Jm, see (14), satisfies

τp̄(Jm) ≤ cd1−1/p̄ (15)

(this uses the fact that the Vapnik–Červonenkis dimension of the family of sets {[0, x] : x ∈ [0, 1]d} is
d, see, e.g., [3], Cor. 9.2.15). Now let f ∈ Lp(Q). We define M(Q ,Σm)-valued random variables (ηi)ni=1
by setting

ηi(B) =

∫
B
f (t)dt − χB(ξi)f (ξi) (B ∈ Σm).

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 357

The ηi are independent and of zero mean. Moreover,

(E‖ηi‖
p1
M(Q ,Σm)

)1/p1 ≤


E
∫

Q
|f (t)|dt + |f (ξi)|

p11/p1
≤ 2‖f ‖Lp1 (Q)

.

By Lemma 3.2 and relation (15) we get
E sup

x∈Γm


∫

[0,x]
f (t)dt −

1
n

n−
i=1

χ[0,x](ξi)f (ξi)


p11/p1

= n−1


E

 n−
i=1

Jmηi


p1

ℓ∞(Γm)

1/p1

≤ cd1−1/p̄n−1


n−

i=1


E‖ηi‖

p1
M(Q ,Σm)

p̄/p11/p̄

≤ cd1−1/p̄n−1+1/p̄
‖f ‖Lp1 (Q)

. �

Theorem 3.4. Let 1 ≤ p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2). Then there is a constant c > 0
such that for all d, n, l ∈ N, l ≥ 2dn, f ∈ Lp(Q),

E‖S(d)f − A1
nf ‖

p1
B0(Q)

1/p1
E‖S(d)f − A2

n,lf ‖
p1
C(Q)

1/p1
 ≤ cd1−1/p̄n−1+1/p̄

‖f ‖Lp(Q).

Proof. For p = 1 the result follows trivially from the definitions (2) and (7) of A1
n and A2

n,l. So let p > 1.
We can assume f ≥ 0, otherwise we consider positive and negative part of f separately. Putm = 2dn
and observe first that the choice

ψ(x, t) = χ[0,x](t)

needed for A1 satisfies the (8)–(10) of Lemma 3.1 with ε0 = d/m. Indeed, given x ∈ [0, 1]d we can
choose y = (y1, . . . , yd) ∈ Γm and z = (z1, . . . , zd) ∈ Γm so that (10) holds and

yj +
1
m

= zj (j = 1, . . . , d).

We have

|[0, z]| − |[0, y]| ≤

d−
j=1

|y1 . . . yj−1zjzj+1 . . . zd − y1 . . . yj−1yjzj+1 . . . zd| ≤
d
m
. (16)

Similarly, for

ψ(x, t) = ϕ
(d)
l (x, t),

see (5)–(6), with l ≥ m, we can choose appropriate y and z with

yj +
2
m

= zj (j = 1, . . . , d),

implying |[0, z]| − |[0, y]| ≤ 2d/m. We obtain from Lemmas 3.1 and 3.3
E‖S(d)f − A1

nf ‖
p1
B0(Q)

1/p1
E‖S(d)f − A2

n,lf ‖
p1
C(Q)

1/p1
 ≤ n−1+1/p

‖f ‖Lp(Q) + cd1−1/p̄n−1+1/p̄
‖f ‖Lp(Q)

≤ cd1−1/p̄n−1+1/p̄
‖f ‖Lp(Q). �

358 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

It follows that for 1 < p ≤ ∞ the family of problems
S(d) : BLp([0,1]d) → C([0, 1]d)


d∈N

is polynomially tractable in the randomized setting, for the absolute and the normalized error
criterion (which in this case is the same, because of (1)), see [17] for the definitions. We note
that most of the polynomially tractable problems considered in [17,18] are weighted problems
(i.e., with decreasing dependence on subsequent dimensions). This way we obtained a new family
of unweighted polynomially tractable problems. Furthermore, most problems analyzed in [17,18] are
defined between Hilbert spaces, while here we study a Banach space situation.

4. The Smolyak–Monte Carlo algorithm

First we introduce the Smolyak algorithm in a form needed for our later purposes. The Smolyak
algorithm is by now a standard technique of treating high-dimensional problems, in particular those
of tensor product form. The basic idea of the algorithm is the balancing of fine approximation in certain
dimensions with rough approximation in others. For further background we refer to [17,18] and the
references therein. For eachm ∈ N with m ≥ 2 let

(Pm,l)∞l=0 ⊂ L (C([0, 1]))

be a sequence of operators of the form

Pm,lf =

nm,l−
i=1

f (xm,l,i)ψm,l,i (17)

with xm,l,i ∈ [0, 1] and ψm,l,i ∈ C([0, 1]), ψm,l,i ≠ 0 (i = 1, . . . , nm,l, l ∈ N0). We assume w.l.o.g. that
the points {xm,l,i : i = 1, . . . , nm,l} are pairwise different and ordered increasingly,

xm,l,1 < xm,l,2 < · · · < xm,l,nm,l .

Furthermore, we define xm,l,0 = 0 and xm,l,nm,l+1 = 1.
We assume the following: There are constants c1–4 > 0 such that for allm ∈ N withm ≥ 2 and for

all l ∈ N0

nm,l ≤ c1ml (18)

max
1≤i≤nm,l+1

(xm,l,i − xm,l,i−1) ≤ c2m−l (19)

‖Pm,l‖L (C([0,1])) ≤ c3 (20)

sup
f∈B

W1
p ([0,1])

‖f − Pm,lf ‖C([0,1]) ≤ c4m−(1−1/p)l. (21)

Here W 1
p ([0, 1]) stands for the space of all functions in Lp([0, 1]) whose first derivative, in the

distributional sense, also belongs to Lp([0, 1]), endowed with the norm

‖f ‖W1
p ([0,1])

=


‖f ‖p

Lp([0,1]) + ‖f ′
‖
p
Lp([0,1])

1/p
(and the usual modification for p = ∞).

Operators with these properties are easily constructed. For example, given m, we let Pm,l be
piecewise linear interpolation, applied to the subdivision of [0, 1] into ml equal length subintervals.
For this choice it is well-known that (18)–(21) hold.

We fix any m ∈ N, m ≥ 2. In the sequel m will be an algorithm parameter, and for convenience of
notation we drop the subscriptm and write Pl, nl, xl,i, ψl,i.

For the definition of the Smolyak algorithm in the case d > 1 and for the subsequent analysis of
the algorithm we use tensor products. Such an approach is usually applied in the case that both the

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 359

source and the target space are Hilbert spaces. Here we study a Banach space situation, the source
space being Lp(Q) (1 ≤ p ≤ ∞), the target space C(Q). For this purpose we use Banach space tensor
norms, as recently done in [20].

The tensor product structure of S(d) in the Banach space case is more subtle than in the Hilbert
case. In particular, we have to consider appropriate tensor norms to relate the spaces C([0, 1]d)
and Lp([0, 1]d) on the d-dimensional cube to tensor products of the corresponding spaces on the
unit interval. Moreover, these tensor products should have the property that the norm of the tensor
product of operators is equal to the product of the norms of the operators. We present the needed
notation and facts below. Further details and proofs can be found in [2,12].

Let X ⊗ Y be the algebraic tensor product of Banach spaces X and Y . For z =
∑n

i=1 xi ⊗ yi ∈ X ⊗ Y
define

λ(z) = sup
u∈BX∗ , v∈BY∗

 n−
i=1

⟨xi, u⟩ ⟨yi, v⟩


and for 1 ≤ p < ∞, with p∗ satisfying 1/p + 1/p∗

= 1,

αp(z) = inf




n−
i=1

‖xi‖p

1/p

sup
v∈BY∗


n−

i=1

| ⟨yi, v⟩ |
p∗

1/p∗


(with the usual modification for p∗
= ∞), where the infimum is taken over all representations

z =
∑n

i=1 xi ⊗ yi. We have for 1 ≤ p1 ≤ p < ∞ and z ∈ X ⊗ Y

λ(z) ≤ αp(z) ≤ αp1(z). (22)

For θ ∈ {λ, αp (1 ≤ p < ∞)}, the tensor product X ⊗θ Y is defined as the completion of X ⊗ Y with
respect to the norm θ .

We use for d > 1 the canonical isometric identifications

C([0, 1])⊗λ C([0, 1]d−1) = C([0, 1]d), (23)

for 1 ≤ p < ∞

Lp([0, 1])⊗αp Lp([0, 1]
d−1) = Lp([0, 1]d), (24)

and the canonical isometric embedding

L∞([0, 1])⊗λ L∞([0, 1]d−1) ⊂ L∞([0, 1]d) (25)

(which is a proper embedding).
Given Banach spaces X1, X2, Y1, Y2, operators T1 ∈ L (X1, Y1), T2 ∈ L (X2, Y2), and two tensor

norms

θ1, θ2 ∈ {λ, αp (1 ≤ p < ∞)}, θ1 ≥ θ2,

the algebraic tensor product

T1 ⊗ T2 : X1 ⊗ X2 → Y1 ⊗ Y2

extends to a bounded linear operator (we use the same symbol for the extension)

T1 ⊗ T2 ∈ L (X1 ⊗θ1 X2, Y1 ⊗θ2 Y2) (26)

with

‖T1 ⊗ T2 : X1 ⊗θ1 X2 → Y1 ⊗θ2 Y2‖ = ‖T1 : X1 → Y1‖ ‖T2 : X2 → Y2‖. (27)

Let I(d) denote the identity operator on C([0, 1]d). In the sense of (23) and (26) we have

I(d) = I(1) ⊗ I(d−1),

360 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

furthermore, taking into account (24), we have for 1 ≤ p < ∞,

S(d) = S(1) ⊗ S(d−1),

and finally, based on (25), for p = ∞,

S(d)|L∞([0,1])⊗λ L∞([0,1]d−1) = S(1) ⊗ S(d−1).

Now we are ready to define operators P (d)L ∈ L (C([0, 1]d)) for L ∈ N0 by induction over d. For
d = 1 we put

P (1)L = PL.

For d > 1 we use the identification (23) and set

P (d)L =

L−
l=0

(Pl − Pl−1)⊗ P (d−1)
L−l

with the convention that P−1 := 0. For the sequel we also fix L, which will be another algorithm
parameter. The first step in the construction of our algorithm is the approximation of S(d)f by P (d)L S(d)f .

Nextwe are going to approximate P (d)L S(d)f . For this purpose let us take a closer look at the structure
of the operator P (d)L . Let for l ∈ N0

Γl = {xl,i : 1 ≤ i ≤ nl}, Γ̂l = Γl−1 ∪ Γl, (28)

where we set Γ−1 = ∅. Let the points of Γ̂l (l ∈ N0) be denoted in increasing order by

x̂l,1 < x̂l,2 < · · · < x̂l,n̂l , (29)

where n̂l = |Γ̂l|. Now the operator Pl − Pl−1 can be written as

(Pl − Pl−1)f =

nl−
j=1

f (xl,j)ψl,j −

nl−1−
j=1

f (xl−1,j)ψl−1,j

=

n̂l−
i=1

f (x̂l,i)ψ̂l,i (30)

with n−1 = 0 and

ψ̂l,i =


ψl,j if x̂l,i = xl,j ∈ Γl \ Γl−1
−ψl−1,j if x̂l,i = xl−1,j ∈ Γl−1 \ Γl
ψl,j1 − ψl−1,j2 if x̂l,i = xl,j1 = xl−1,j2 ∈ Γl−1 ∩ Γl.

We can split the operator P (d)L as follows:

P (d)L =

−
l̄∈Nd

0, |̄l|=L

Ul̄ (31)

where for l̄ = (l1, . . . , ld)we set |̄l| = l1 + · · · + ld and

Ul̄ = (Pl1 − Pl1−1)⊗ · · · ⊗ (Pld−1 − Pld−1−1)⊗ Pld . (32)

Define for l̄ = (l1, . . . , ld) ∈ Nd
0

n̄l̄ = (n̂l1 , . . . , n̂ld−1 , nld)

Il̄ = {ī ∈ Nd
: 1̄ ≤ ī ≤ n̄l̄}

with componentwise inequalities in the last line. Furthermore, for 0 ≤ ī ≤ n̄l̄ we set

xl̄,ī = (x̂l1,i1 , . . . , x̂ld−1,id−1 , xld,id) ∈ [0, 1]d,

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 361

where we define x̂l,0 = 0. Moreover, for ī ∈ Il̄ we put

ψl̄,ī = ψ̂l1,i1 ⊗ · · · ⊗ ψ̂ld−1,id−1 ⊗ ψld,id ∈ C([0, 1]d)

Ql̄,ī = [xl̄,ī−1̄, xl̄,ī]
= [x̂l1,i1−1, x̂l1,i1] × · · · × [x̂ld−1,id−1−1, x̂ld−1,id−1] × [xld,id−1, xld,id].

Combining (23), (17), (30) and (32), we obtain

Ul̄ f =

−
ī∈Il̄

f (xl̄,ī)ψl̄,ī (f ∈ C([0, 1]d)), (33)

hence

Ul̄S
(d)f =

−
ī∈Il̄

∫
[0,xl̄,ī]

f (t)dt


ψl̄,ī

=

−
ī∈Il̄

−
1̄≤j̄≤ī

∫
Ql̄,j̄

f (t)dt


ψl̄,ī.

We are ready to define the Smolyak–Monte Carlo algorithm. Let ξl̄,ī (|̄l| = L, 1̄ ≤ ī ≤ n̄l̄) be
independent random variables on a complete probability space (Ω,Σ, P) such that ξl̄,ī is uniformly
distributed on Ql̄,ī. Then we approximate

Ul̄S
(d)f ≈ Vl̄f :=

−
ī∈Il̄

−
1̄≤j̄≤ī

|Ql̄,j̄|f (ξl̄,j̄)


ψl̄,ī (34)

and thus

S(d)f ≈ A3
m,L f :=

−
l̄∈Nd

0,|̄l|=L

Vl̄f . (35)

Now we analyze the error, describe an efficient way to compute the needed quantities and estimate
its cost. Let 1 ≤ p1 < ∞, p1 ≤ p. We shall estimate the p1-st moment of the error. By the triangle
inequality, we have

(E‖S(d)f − A3
m,L f ‖

p1)1/p1 ≤ ‖S(d)f − P (d)L S(d)f ‖ + (E‖P (d)L S(d)f − A3
m,L f ‖

p1)1/p1 . (36)
In the following result we summarize the tensor product norm estimates whichwewill use below.

The case p = ∞ is particularly important, since in this case, according to (25), the tensor product of
the spaces L∞([0, 1]) and L∞([0, 1]d−1) is only a subspace of L∞([0, 1]d). The lemma ensures that we
can still use product norm estimates.

Lemma 4.1. For 1 ≤ p ≤ ∞, d > 1, and any T1 ∈ L (C([0, 1])) and T2 ∈ L (C([0, 1]d−1)) we have

‖(T1 ⊗ T2)S(d) : Lp([0, 1]d) → C([0, 1]d)‖

= ‖T1S(1) : Lp([0, 1]) → C([0, 1])‖‖T2S(d−1)
: Lp([0, 1]d−1) → C([0, 1]d−1)‖. (37)

Proof. For 1 ≤ p < ∞ this follows directly from (22), (27), (23) and (24). For the case p = ∞ we
note that

BL∞([0,1])⊗λ L∞([0,1]d−1)

is dense inBL∞([0,1]d) in the normof L1([0, 1]d). This is easily deduced from the fact that the linear span
of products of characteristic functions χD1 ⊗ χD2 , with D1 ⊆ [0, 1] and D2 ⊆ [0, 1]d−1 measurable, is
dense in L1([0, 1]d). Moreover, S(d) acts continuously from L1([0, 1]d) to C([0, 1]d). Consequently,

‖(T1 ⊗ T2)S(d) : L∞([0, 1]d) → C([0, 1]d)‖
= ‖(T1 ⊗ T2)(S(1) ⊗ S(d−1)) : L∞([0, 1])⊗λ L∞([0, 1]d−1) → C([0, 1]d)‖,

from which (37) follows. �

362 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

Now we are ready to estimate the first term on the right-hand side of (36).

Lemma 4.2. Let 1 ≤ p ≤ ∞ and d ∈ N. Then there is a constant c(d) > 0 such that for all m, L ∈ N0,
m ≥ 2,

‖S(d) − P (d)L S(d) : Lp([0, 1]d) → C([0, 1]d)‖ ≤ c(d)(L + 1)d−1m−(1−1/p)(L−d+1). (38)

Proof. First note that

S(1) ∈ L (Lp([0, 1]),W 1
p ([0, 1])),

which, by (21), implies

‖(I(1) − Pl)S(1) : Lp([0, 1]) → C([0, 1])‖ ≤ cm−(1−1/p)l (39)

and hence,

‖(Pl − Pl−1)S(1) : Lp([0, 1]) → C([0, 1])‖ ≤ cm−(1−1/p)(l−1). (40)

To prove (38), we argue by induction over the dimension d. For d = 1 the result is just (39). Now let
d > 1 and assume that (38) holds for d − 1. We have

‖S(d) − P (d)L S(d)‖ ≤ ‖S(d) − (PL ⊗ I(d−1))S(d)‖ + ‖(PL ⊗ I(d−1))S(d) − P (d)L S(d)‖. (41)

Using Lemma 4.1, (39), and (1), the first term is estimated as

‖S(d) − (PL ⊗ I(d−1))S(d)‖ = ‖

(I(1) − PL)⊗ I(d−1)S(1) ⊗ S(d−1)

‖

= ‖(I(1) − PL)S(1)‖‖S(d−1)
‖ ≤ cm−(1−1/p)L.

The second term of (41) is treated as follows.

‖

PL ⊗ I(d−1)S(d) − P (d)L S(d)‖

=

 L−
l=0


(Pl − Pl−1)⊗ I(d−1)S(d) − L−

l=0


(Pl − Pl−1)⊗ P (d−1)

L−l


S(d)


=

 L−
l=0


(Pl − Pl−1)S(1)


⊗

(I(d−1)

− P (d−1)
L−l)S(d−1)

≤

L−
l=0

‖(Pl − Pl−1)S(1)‖‖(I(d−1)
− P (d−1)

L−l)S(d−1)
‖

≤ c c(d − 1)
L−

l=0

m−(1−1/p)(l−1)(L − l + 1)d−2m−(1−1/p)(L−l−d+2)

≤ c(d)(L + 1)d−1m−(1−1/p)(L−d+1),

where we used Lemma 4.1, (40) and the induction hypothesis. This proves (38). �

For the further analysis we need the following direct consequence of the Kolmogorov–Doob
inequality.

Lemma 4.3. Let 1 < p1 < ∞, k̄ ∈ Nd and let {ϱī : 1̄ ≤ ī ≤ k̄} be independent, mean zero scalar-valued
random variables with E|ϱī|

p1 < ∞ (1̄ ≤ ī ≤ k̄). ThenE max
1̄≤ī≤k̄


−
1̄≤j̄≤ī

ϱj̄


p11/p1

≤ cd1

E


−
1̄≤j̄≤k̄

ϱj̄


p11/p1

, (42)

where c1 = p1/(p1 − 1).

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 363

Proof. For d = 1 this is just the Kolmogorov–Doob inequality. Now let d ≥ 2 and assume that (42)
holds for d − 1. We write ī = (i′, id), k̄ = (k′, kd), 1̄ = (1′, 1), define K ′

= {i′ : 1′
≤ i′ ≤ k′

} ⊂ Nd−1

and

ζjd =

 −
1′≤j′≤i′

ϱj′,jd


i′∈K ′

∈ ℓ∞(K ′) (1 ≤ jd ≤ kd).

Then

E max
1̄≤ī≤k̄


−
1̄≤j̄≤ī

ϱj̄


p1

= E max
1≤id≤kd

 −
1≤jd≤id

ζjd


p1

ℓ∞(K ′)

. (43)

Due to the assumptions, −
1≤jd≤id

ζjd


1≤id≤kd

is an ℓ∞(K ′)-valued martingale, hence −
1≤jd≤id

ζjd


ℓ∞(K ′)


1≤id≤kd

is a non-negative submartingale. Applying the Kolmogorov–Doob inequality we get

E max
1≤id≤kd

 −
1≤jd≤id

ζjd


p1

ℓ∞(K ′)

≤ cp11 E

 −
1≤jd≤kd

ζjd


p1

ℓ∞(K ′)

= cp11 E max
1′≤i′≤k′

 −
1′≤j′≤i′

 −
1≤jd≤kd

ϱj′,jd


p1

= cp11 E max
1′≤i′≤k′

 −
1′≤j′≤i′

ηj′


p1

, (44)

with

ηj′ =

−
1≤jd≤kd

ϱj′,jd (1′
≤ j′ ≤ k′). (45)

Since {ηj′ : 1′
≤ j′ ≤ k′

} are independent, mean zero random variables with finite p1-st moment, the
induction hypothesis implies

E max
1′≤i′≤k′

 −
1′≤j′≤i′

ηj′


p1

≤ c(d−1)p1
1 E

 −
1′≤j′≤k′

ηj′


p1

. (46)

Inserting (45) and combining (43), (44), and (46), the desired result follows. �

Now we consider the second term on the right-hand side of (36).

Lemma 4.4. Let d ∈ N, 1 ≤ p ≤ ∞, p̄ = min(p, 2), 1 ≤ p1 < ∞, p1 ≤ p. Then there is a constant
c(d) > 0 such that for all m, L ∈ N0, m ≥ 2, f ∈ Lp(Q)

(E‖P (d)L S(d)f − A3
m,L f ‖

p1)1/p1 ≤ c(d)(L + 1)d−1m−(1−1/p̄)L
‖f ‖Lp(Q).

Proof. We can assume p̄ ≤ p1, the remaining cases follow by Hölder’s inequality. We have

(E‖P (d)L S(d)f − A3
m,L f ‖

p1)1/p1 ≤

−
l̄∈Nd

0, |̄l|=L

(E‖Ul̄S
(d)f − Vl̄f ‖

p1)1/p1 .

364 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

For a further analysis we introduce

Rl̄ : C(Q) → ℓ∞(Il̄), Rl̄f = (f (xl̄,ī))ī∈Il̄

and

Wl̄ : ℓ∞(Il̄) → C(Q)

defined by

Wl̄ z =

−
ī∈Il̄

zīψl̄,ī


z = (zī)ī∈Il̄

∈ ℓ∞(Il̄)

.

Using (33) and (34), we get

Ul̄ = Wl̄Rl̄, (47)

Vl̄f = Wl̄

−
1̄≤j̄≤ī

|Ql̄,j̄|f (ξl̄,j̄)


ī∈Il̄

. (48)

We also note that

‖Wl̄‖ = ‖Ul̄‖ ≤ c(d), (49)

where the inequality is a consequence of (20) and (32). It follows from (47)–(49) that

‖Ul̄S
(d)f − Vl̄f ‖ =

Wl̄


(S(d)f)(xl̄,ī)−

−
1̄≤j̄≤ī

|Ql̄,j̄|f (ξl̄,j̄)

ī∈Il̄


≤ c(d)max

ī∈Il̄


−
1̄≤j̄≤ī

∫
Ql̄,j̄

f (t)dt − |Ql̄,j̄|f (ξl̄,j̄)


= c(d)max

ī∈Il̄


−
1̄≤j̄≤ī

ηl̄,j̄

 (50)

with

ηl̄,j̄ =

∫
Ql̄,j̄

f (t)dt − |Ql̄,j̄|f (ξl̄,j̄).

The random variables {ηl̄,j̄ : j̄ ∈ Il̄} are independent, of mean zero, and satisfy

(E|ηl̄,j̄|
p1)1/p1 ≤ 2|Ql̄,j̄|(E|f (ξl̄,j̄)|

p1)1/p1

= 2|Ql̄,j̄|
1−1/p1

∫
Ql̄,j̄

|f (t)|p1dt

1/p1

. (51)

For p1 > 1 we get from Lemma 4.3.Emax
ī∈Il̄


−
1̄≤j̄≤ī

ηl̄,j̄


p11/p1

≤ c(d)

E


−
j̄∈Il̄

ηl̄,j̄


p11/p1

. (52)

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 365

Moreover, since p1 ≥ p̄, Lemma 3.2 givesE


−
j̄∈Il̄

ηl̄,j̄


p11/p1

≤ c

−
j̄∈Il̄

(E|ηl̄,j̄|
p1)p̄/p1

1/p̄

. (53)

From (52) and (53) we conclude for p1 > 1Emax
ī∈Il̄


−
1̄≤j̄≤ī

ηl̄,j̄


p11/p1

≤ c(d)

−
j̄∈Il̄

(E|ηl̄,j̄|
p1)p̄/p1

1/p̄

. (54)

The same relation also holds for p1 = 1 (implying p̄ = 1, by our assumption p̄ ≤ p1), which follows
with c(d) = 1 from the triangle inequality. Using (51) and, if p̄ < p1, Hölder’s inequality with
exponent p1/p̄, we obtain

−
j̄∈Il̄

(E|ηl̄,j̄|
p1)p̄/p1 ≤ 2p̄ max

j̄∈Il̄

|Ql̄,j̄|
p̄−1

−
j̄∈Il̄

|Ql̄,j̄|
1− p̄

p1

∫
Ql̄,j̄

|f (t)|p1dt

 p̄
p1

≤ 2p̄ max
j̄∈Il̄

|Ql̄,j̄|
p̄−1

−
j̄∈Il̄

|Ql̄,j̄|

1− p̄
p1
−

j̄∈Il̄

∫
Ql̄,j̄

|f (t)|p1dt


p̄
p1

≤ 2p̄ max
j̄∈Il̄

|Ql̄,j̄|
p̄−1

‖f ‖p̄
Lp1 (Q)

. (55)

Combining (50), (54) and (55), it follows that
E‖Ul̄S

(d)f − Vl̄f ‖
p1
1/p1

≤ c(d)max
j̄∈Il̄

|Ql̄,j̄|
1−1/p̄

‖f ‖Lp(Q). (56)

Taking into account that by (19), (28) and (29),

max
1≤i≤n̂l

(x̂l,i − x̂l,i−1) ≤ max
1≤i≤nl+1

(xl,i − xl,i−1) ≤ cm−l,

we get

|Ql̄,ī| = (xld,id − xld,id−1)

d−1∏
k=1

(x̂lk,ik − x̂lk,ik−1) ≤ c(d)m−L (ī ∈ Il̄, |̄l| = L).

Together with (31), (35) and (56) we obtain

(E‖P (d)L S(d)f − A3
m,L f ‖

p1)1/p1 ≤ c(d)(L + 1)d−1m−(1−1/p̄)L
‖f ‖Lp(Q),

which proves Lemma 4.4. �

Theorem 4.5. Let d ∈ N, 1 ≤ p ≤ ∞, p̄ = min(p, 2), 1 ≤ p1 < ∞, p1 ≤ p. Then there are
constants c1–4(d) > 0 such that for all m ∈ N, m ≥ 2, L ∈ N0 the algorithm A3

m,L uses not more than
c1(d)(L + 1)d−1mL function values and the error satisfies for each f ∈ Lp(Q)

(E‖S(d)f − A3
m,L f ‖

p1)1/p1 ≤ c2(d)(L + 1)d−1m−(1−1/p)(L−d+1)
+ m−(1−1/p̄)L

‖f ‖Lp(Q). (57)

Moreover, for each n ∈ N with n ≥ 2 there is a choice of the parameters m and L such that the algorithm
uses not more than c3(d)n function values and the error can be estimated for f ∈ Lp(Q) as

(E‖S(d)f − A3
m,L f ‖

p1)1/p1 ≤


c4(d)n−1/2

‖f ‖Lp(Q) if 2 < p ≤ ∞

c4(d)(log n)(2−1/p)(d−1)n−1+1/p
‖f ‖Lp(Q) if 1 ≤ p ≤ 2.

(58)

366 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

Proof. Relation (57) follows readily from Lemmas 4.2 and 4.4. By (18), (28)–(29), and (34)–(35), the
number of function values used in A3

m,L f is−
|̄l|=L

n̂l1 . . . n̂ld−1nld ≤ c(d)(L + 1)d−1mL. (59)

To show the second part we first assume 2 < p ≤ ∞. Then p̄ = 2 and we put

L =


2(p − 1)(d − 1)

p − 2


, m =


n

1
L


. (60)

With this choice we have n ≤ mL
≤ 2Ln and

1 −
1
p


(L − d + 1) ≥

L
2

+


1
2

−
1
p


2(p − 1)(d − 1)

p − 2
−


1 −

1
p


(d − 1) =

L
2
,

which gives (58). Now let 1 ≤ p ≤ 2, hence p̄ = p. For n ≤ (log n)d−1, that is, n ≤ c(d)
for some constant c(d), the result follows trivially from (57) (with suitably chosen c3(d), c4(d)). If
n > (log n)d−1, then the (standard) choice

m = 2, L = ⌈log n − (d − 1) log log n⌉ (61)

implies

n(log n)−(d−1)
≤ mL

≤ 2n(log n)−(d−1),

which yields (58). �

Note that in (58) of Theorem 4.5 we obtain for p = 1 no convergence to zero as n → ∞. The lower
bound in Proposition 5.1 shows that in this case no algorithm at all has an error converging to zero.

Let us comment on the arithmetic work required for the computation of A3
m,L f as given in (34) and

(35) (we always assume the real number model, see [21,17] and, for more details, [15]). Clearly, for
the ξl̄,ī (|̄l| = L, 1̄ ≤ ī ≤ n̄l̄)we need

d
−
|̄l|=L

n̂l1 . . . n̂ld−1nld

independent random variables uniformly distributed on [0, 1]. Taking into account (59), this number
is

≤c(d)(L + 1)d−1mL
≤ c(d)n

for each of the choices (60) and (61).
In order to compute the coefficients of the functions ψl̄,ī in (34) and (35), for each l̄ with |̄l| = L

we have to carry out a task of the following type. Given k̄ = (k1, . . . , kd) ∈ Nd and numbers (aī)1̄≤ī≤k̄,
compute (bī)1̄≤ī≤k̄, where

bī =

−
1̄≤j̄≤ī

aj̄.

We show how this can be done with at most c0(d)k1 . . . kd arithmetic operations. For d = 1 with
c0(1) = 1 this is obvious. Nowweuse recursion. So let d > 1 and assumewehave a suitable procedure
for d − 1. Let us write k̄ = (k′, kd), and ī = (i′, id). We compute for each jd ∈ {1, 2, . . . , kd}

vi′,jd =

−
1′≤j′≤i′

aj′,jd (1′
≤ i′ ≤ k′)

by the procedure for dimension d − 1 (thus, we compute the sums in the jd-th ‘layer’). Then for each
1′

≤ i′ ≤ k′ we determine

bi′,id =

−
1≤jd≤id

vi′,jd (1 ≤ id ≤ kd).

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 367

Clearly, this needs a total of

kd · c0(d − 1)k1 . . . kd−1 + k1 . . . kd−1 · kd = c0(d)k1 . . . kd

operations, andwe get c0(d) = c0(d−1)+1, hence c0(d) = d. Using again (59), thework of computing
all coefficients in (34)–(35) is

d
−
|̄l|=L

n̂l1 . . . n̂ld−1nld ≤ c(d)(L + 1)d−1mL
≤ c(d)n.

Finally we consider the cost of computing the value

A3
m,L f


(x) for a given x ∈ Q , once the

coefficients in (34)–(35) have been determined. For this purpose we assume that the functions
ψm,l,i (i = 1, . . . , nm,l), see (17), have the following properties: There are constants c1–3 > 0 such
that for all m, l ∈ N0,m ≥ 2,

sup
t∈[0,1]

i : ψm,l,i(t) ≠ 0
 ≤ c1, (62)

furthermore, given m, l, t , the cost of identifying those i ∈ {1, . . . , nm,l} with ψm,l,i(t) ≠ 0 is ≤c2 and
the cost of computingψm,l,i(t) for any such i is ≤c3. These properties hold, in particular, for piecewise
linear interpolation as described after (18)–(21) (here we assume that our model of computation
allows one to take the integer part at a cost of ≤c , which is needed to identify the indices i).

The assumptions imply that the corresponding statements also hold for the ψ̂m,l,i (i = 1, . . . , n̂m,l)

and therefore also for the ψl̄,ī (ī ∈ Il̄). Hence, the number of non-zero terms ψl̄,ī(x) in (34)–(35) is(l̄, ī) : |̄l| = L, ī ∈ Il̄, ψl̄,ī(x) ≠ 0
 ≤ c(d)Ld−1.

Moreover, the cost of identifying and computing them is ≤c(d)Ld−1, as well. Thus, the cost of
computing the value


A3
m,L f


(x) is ≤c(d)(L + 1)d−1, therefore ≤c(d) for the choice (60) in the case

2 < p ≤ ∞ and ≤c(d)(log n)d−1 for the choice (61) in the case 1 ≤ p ≤ 2.

5. Lower bounds and complexity

For basic notions concerning the randomized setting of information-based complexity – the
framework we use – we refer to [14,21,4]. Here we consider the class of all randomized adaptive
algorithms of varying cardinality. We refer to [5,6] for this approach, the particular notation applied
here, and more details.

First we introduce the respective deterministic class. An element

A ∈ Adet(F (Q), Y)

is a tuple

A = ((Li)∞i=1, (τi)
∞

i=0, (ϕi)
∞

i=0)

such that

L1 ∈ Q , τ0 ∈ {0, 1}, ϕ0 ∈ Y ,

and

Li : Ki−1
→ Q (i = 2, 3, . . .)

τi : Ki
→ {0, 1} (i = 1, 2, . . .)

ϕi : Ki
→ Y (i = 1, 2, . . .)

are arbitrary mappings. Given f ∈ F (Q), we associate with it a sequence (ti)∞i=1 with ti ∈ Q , defined
as follows:

t1 = L1 (63)
ti = Li(f (t1), . . . , f (ti−1)) (i ≥ 2). (64)

368 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

Define card(A, f), the cardinality of A at input f , to be 0 if τ0 = 1. If τ0 = 0, let card(A, f) be the first
integer n ≥ 1 with

τn(f (t1), . . . , f (tn)) = 1,

if there is such an n. If τ0 = 0 and no such n ∈ N exists, put card(A, f) = +∞. For f ∈ F (Q) with
card(A, f) < ∞ we define the output Af of algorithm A at input f as

Af =


ϕ0 if n = 0
ϕn(f (t1), . . . , f (tn)) if n ≥ 1.

Given n ∈ N0 and F ⊆ F (Q), we define Adet
n (F , Y) as the set of those A ∈ Adet(F (Q), Y) for which

max
f∈F

card(A, f) ≤ n.

Given a mapping S : F → Y , the error of A ∈ Adet
n (F , Y) in approximating S is defined as

e(S, A, F , Y) = sup
f∈F

‖Sf − Af ‖Y .

The deterministic n-th minimal error of S is defined for n ∈ N0 as

edetn (S, F , Y) = inf
A∈Adet

n (F ,Y)
e(S, A, F , Y). (65)

It follows that no deterministic algorithm that uses at most n function values can have a smaller error
than edetn (S, F , Y).

Next we introduce the class of randomized adaptive algorithms of varying cardinality. We do this
for the case that F consists of equivalence classes of functions, as needed for this paper, following the
approach of [7]. The case of F being a set of functions can be found in [5,6]. Let 1 ≤ p ≤ ∞ and let
F ⊆ Lp(Q). An element

A ∈ Aran
n (F , Y)

is a tuple

A = ((Ω,Σ, P), (Aω)ω∈Ω),

where (Ω,Σ, P) is a probability space,

Aω ∈ Adet(F (Q), Y) (ω ∈ Ω), (66)

and the following two properties are satisfied.
1. For each f ∈ F and each representative f0 of f the mapping

ω ∈ Ω → card(Aω, f0)

isΣ-measurable and satisfies

E card(Aω, f0) ≤ n.

Moreover, the mapping

ω ∈ Ω → Aωf0 ∈ Y

is Σ-to-Borel measurable and essentially separably valued, i.e., there is a separable subspace
Y0 ⊆ Y such that

Aωf ∈ Y0 for P-almost all ω ∈ Ω.

2. If f0 and f1 are representatives of the same class f ∈ F , then P-almost surely

card(Aω, f0) = card(Aω, f1),
Aωf0 = Aωf1.

Consequently, we can define the output Af of algorithm A at input f ∈ F ⊆ Lp(Q) as the Y -valued
random variable Aωf0 on (Ω,Σ, P), where f0 is any representative of f . By the above, another choice
of f0 leads – up to equivalence – to the same random variable.

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 369

It is readily seen that

A2
n,l ∈ Aran

n (BLp(Q), C(Q))

and

A3
m,L ∈ Aran

n (BLp(Q), C(Q)) for n ≥ c1(d)(L + 1)d−1mL (67)

(see Theorem 4.5 for the estimate of the number of samples in (67)). Here we use the completeness
of the measure P stated at the beginning of Section 3 and assumed throughout the paper. Algorithm
A1
n is of the required form (with Y = B0(Q)), satisfies property 2, but not 1. The latter is discussed in

Section 6.3.
Given a mapping S : F → Y , the error of A ∈ Aran

n (F (Q), Y) as an approximation of S on F is
defined as

e(S, A, F , Y) = sup
f∈F

E‖Sf − Aωf ‖Y . (68)

The randomized n-th minimal error of S is defined for n ∈ N0 as

erann (S, F , Y) = inf
A∈Aran

n (F ,Y)
e(S, A, F , Y). (69)

Consequently, no randomized linear algorithm that uses (on the average) at most n function values
has an error smaller than erann (S, F , Y). Note that the definition (68) involves the first moment. This
way lower bounds have the strongest form, because respective bounds for higher moments follow by
Hölder’s inequality. In Sections 3 and 4 upper bounds for concrete algorithms were stated in a form
which included possible estimates of higher moments.

Define for ε > 0 the information complexity as the inverse function of the n-th minimal error

nran
ε (S, F , Y) = min{n ∈ N0 : erann (S, F , Y) ≤ ε}, (70)

if there is such an n, and

nran
ε (S, F , Y) = +∞, (71)

if there is no such n. Thus, if nran
ε (S, F , Y) < ∞, it follows that any algorithm with error ≤ε needs at

least nran
ε (S, F , Y) samples, while (71) means that no algorithm at all has error ≤ε.

Now let ν be a probability measure on F (Q)whose support, denoted by supp ν, is a finite set and
satisfies supp ν ⊆ F (meaning, more precisely, that each function from supp ν belongs to a class from
F). For A ∈ Adet(F (Q), Y) put

card(A, ν) =

∫
F (Q)

card(A, f) dν(f),

e(S, A, ν, Y) =

∫
F (Q)

‖Sf − Af ‖Y dν(f)

and define the average n-th minimal error as

eavgn (S, ν, Y) = inf{e(S, A, ν, Y) : A ∈ Adet(F (Q), Y), card(A, ν) ≤ n}.

Then the following holds

erann (S, F , Y) ≥
1
2
eavg2n (S, ν, Y). (72)

This follows from the usual relation between randomized and average case setting, going back to
Bakhvalov, see [14,4,17].

We also consider two smaller classes of algorithms. The first one is the class of non-adaptive
algorithms Adet,1

n (F (Q), Y). We define A ∈ Adet,1
n (F (Q), Y) if A ∈ Adet(F (Q), Y) and the respective

functions Li and τi are constant and satisfy

τ0 = τ1 = · · · = τn−1 = 0, τn = 1.

370 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

Thus, an element A of Adet,1
n (F (Q), Y) generates a mapping from F(Q) to Y of the form

Af =


ϕ0 if n = 0
ϕn(f (t1), . . . , f (tn)) if n ≥ 1 (f ∈ F (Q))

with ϕ0 ∈ Y , ti ∈ Q (i = 1, . . . , n), not depending on f , and ϕn : Kn
→ Y an arbitrary mapping.

The second class Adet,2
n (F (Q), Y) is the class of linear algorithms, that is, the set of all A ∈

Adet,1
n (F (Q), Y)with ϕn linear. In other words, an element A ∈ Adet,2

n (F (Q), Y) has the form

Af =


0 if n = 0
n−

i=1

f (ti)ψi if n ≥ 1 (f ∈ F (Q))

with ti ∈ Q and ψi ∈ Y for 1 ≤ i ≤ n.
For j = 1, 2 we define A

ran,j
n (F , Y) as the set of all A ∈ Aran

n (F , Y)with

Aω ∈ Adet,j
n (F (Q), Y) (ω ∈ Ω).

We note that the algorithms constructed in Sections 3 and 4 are linear in the sense that

A2
n,l ∈ Aran,2

n (BLp(Q), C(Q)) (n ∈ N),

A3
m,L ∈ Aran,2

n (BLp(Q), C(Q)) (n ≥ c1(d)(L + 1)d−1mL),

and the operators A1
n,ω constituting algorithm A1

n, see (4), are linear, as well.
By analogy to the above, we define for j = 1, 2 the respective n-th minimal errors edet,jn (S, F , Y),

eran,jn (S, F , Y), the information complexities nran
ε (S, F , Y), and the average n-th minimal errors

eavg,jn (S, ν, Y). The quantities edet,2n (S, F , Y) were also called linear sampling numbers in [16], the
edet,1n (S, F , Y) nonlinear sampling numbers. Thus, the eran,jn (S, F , Y) (j = 1, 2) could be viewed as the
respective randomized counterparts.

In these cases slightly sharper lower bounds through the average case can be given:

eran,jn (S, F , Y) ≥ eavg,jn (S, ν, Y) (j = 1, 2). (73)

We prove three lower bounds for the randomized n-th minimal error. The first one is standard and
contains the sharp order in n. It has a constant independent of d, but it does not match the positive
power of d in the upper estimate.

Proposition 5.1. Let 1 ≤ p ≤ ∞ and p̄ = min(p, 2). Then there is a constant c > 0 such that for all
d, n ∈ N

erann (S(d),BLp([0,1]d), C([0, 1]
d)) ≥ cn−1+1/p̄.

Proof. We write t = (t1, t ′) ∈ [0, 1]d with t1 ∈ [0, 1] and t ′ ∈ [0, 1]d−1. Let 0 < δ < 1 and let

Rδ : F ([0, 1]) → F ([0, 1]d)

be defined by

(Rδ f)(t1, t ′) =


f ((1 − δ)−1t1) if 0 ≤ t1 ≤ 1 − δ
0 otherwise.

If f0, f1 ∈ F ([0, 1]) coincide except for a set of Lebesguemeasure zero, the same is true for Rδ f0, Rδ f1 ∈

F ([0, 1]d). Moreover,

‖Rδ : Lp([0, 1]) → Lp([0, 1]d)‖ = (1 − δ)1/p ≤ 1. (74)

Define

Ψδ : C([0, 1]d) → K, Ψδ g = δ−d
∫

[1−δ,1]d
g(x)dx.

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 371

Then

‖Ψδ : C([0, 1]d) → K‖ = 1. (75)

Finally, let

S1 : Lp([0, 1]) → K, S1f =

∫ 1

0
f (t)dt

be the integration operator. Then for x = (x1, . . . , xd)with 1 − δ ≤ x1 ≤ 1 and f ∈ Lp([0, 1])
S(d)Rδ f


(x) = x2 . . . xd(1 − δ)

∫ 1

0
f (t)dt,

and hence,

ΨδS(d)Rδ f = δ−d

δ −

δ2

2

d−1

δ(1 − δ) S1f = γ (d, δ) S1f , (76)

with

γ (d, δ) =


1 −

δ

2

d−1

(1 − δ) .

Now let

A = ((Ω,Σ, P), (Aω)ω∈Ω) ∈ Aran
n (BLp([0,1]d), C([0, 1]

d)).

By Lemma 2 of [6], for eachω ∈ Ω there is an A1,ω ∈ Adet(F ([0, 1]),K) such that for all f ∈ F ([0, 1])

card(A1,ω, f) = card(Aω, Rδ f)

and, if card(A1,ω, f) < ∞,

A1,ωf = γ (d, δ)−1ΨδAωRδ f .

It follows that

A1 = ((Ω,Σ, P), (A1,ω)ω∈Ω) ∈ Aran
n (BLp([0,1]),K).

Moreover, because of (74)–(76),

e(S1, A1,BLp([0,1]),K) = sup
f∈BLp([0,1])

E|S1f − A1,ωf |

= γ (d, δ)−1 sup
f∈BLp([0,1])

E|ΨδS(d)Rδ f − ΨδAωRδ f |

≤ γ (d, δ)−1 sup
g∈BLp([0,1]d)

E‖S(d)g − Aωg‖

= γ (d, δ)−1e(S(d), A,BLp([0,1]d), C([0, 1]
d)).

Consequently

γ (d, δ) erann (S1,BLp([0,1]),K) ≤ erann (S(d),BLp([0,1]d), C([0, 1]
d)).

Finally, the lower bound for integration is well-known, see [14,4],

erann (S1,BLp([0,1]),K) ≥ c1n−1+1/p̄.

With γ (d, δ) → 1 for d fixed and δ → 0 the result follows. �

The second lower bound is not sharp in n, but gives more information about the dependence on d.
See also [9], the proof of Theorem 8, for a similar approach in the deterministic case.

372 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

Proposition 5.2. Let 1 ≤ p ≤ ∞. Then there is a constant c > 0 such that for all d, n ∈ N

erann (S(d),BLp(Q), C(Q)) ≥ c 2−4n/d.

Proof. Since BL∞(Q) ⊂ BLp(Q), it suffices to consider the case p = ∞. We use the following fact (see,
e.g., [10], proof of Theorem 2): There is a constant 0 < c0 ≤ 1 such that for each d ∈ N and each
0 < ε ≤ 1 there is a set U ⊂ [0, 1]d with

|U | ≥

 c0
ε

d
, (77)

|[0, u] ÷ [0, v]| ≥ ε (u, v ∈ U , u ≠ v), (78)

where ÷ denotes the symmetric difference. Let u, v ∈ U , u ≠ v. Then (78) gives

‖S(d)χ[0,u] − S(d)χ[0,v]‖C(Q) ≥ max
x∈{u,v}

∫
[0,x]


χ[0,u](t)− χ[0,v](t)


dt


= max

|[0, u] \ [0, v]| , |[0, v] \ [0, u]|


≥ ε/2. (79)

Let ν be the uniform distribution on the set

{χ[0,u] : u ∈ U } ⊂ F (Q). (80)

Given n ∈ N, we put

ε = c0 2−(4n+4)/d. (81)

Now we estimate eavg2n (S
(d), ν, C(Q)) from below. So let A ∈ Adet(F (Q), C(Q)), with

card(A, ν) =

∫
F (Q)

card(A, f) dν(f) ≤ 2n. (82)

Let

U0 = {u ∈ U : card(A, χ[0,u]) ≤ 4n}.

It follows from (82) that

|U0| ≥
1
2
|U | ≥

1
2

 c0
ε

d
. (83)

For u∈ U 0 let (tu,i)i∈N be the respective sequence associated with A and χ[0,u] according to (63) and
(64), and let nu = card(A, χ[0,u]). Define

T =

(χ[0,u](tu,i))

nu
i=1 : u∈ U 0


⊆


k≤4n

{0, 1}k. (84)

This implies

|{Aχ[0,u] : u∈ U 0}| ≤ |T | (85)

and

|T | < 24n+1. (86)

From (79) and (85) we get

|{u∈ U 0 : ‖S(d)χ[0,u] − Aχ[0,u]‖ < ε/4}| ≤ |T |,

and therefore

eavg2n (S
(d), ν, C(Q)) ≥

|U0| − |T |

4|U |
ε. (87)

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 373

Using (81) and (83), we obtain

|U0| ≥
1
2

 c0
ε

d
= 24n+3, (88)

and with (83) and (86) it follows that

|U0| − |T |

|U |
≥

|U0| − |T |

2|U0|
≥

1
2
.

Now (87) and (81) imply

eavg2n (S
(d), ν, C(Q)) ≥

ε

8
≥ c 2−4n/d.

Since supp ν ⊆ BL∞(Q), we apply (72), concluding the proof. �

Combining Theorem 3.4 and Propositions 5.1 and 5.2, we obtain

Theorem 5.3. Let 1 ≤ p ≤ ∞ and p̄ = min(p, 2). Then there exist constants c1–6 > 0 such that for all
d, n ∈ N, 0 < ε ≤ c1,

c2 max(n−1+1/p̄, 2−4n/d) ≤ erann (S(d),BLp(Q), C(Q)) ≤ c3d1−1/p̄n−1+1/p̄,

moreover, for p > 1,

max


c4
εp̄/(p̄−1)

,
d
4
log

 c5
ε


≤ nran

ε (S
(d),BLp(Q), C(Q)) ≤

c6d
εp̄/(p̄−1)

, (89)

and finally, for p = 1,

nran
ε (S

(d),BL1(Q), C(Q)) = ∞.

As a consequence, we get the sharp order of the minimal error in n for d fixed.

Corollary 5.4. Let 1 ≤ p ≤ ∞, p̄ = min(p, 2), and d ∈ N. There are constants c1(d), c2(d) > 0 such
that for all n ∈ N,

c1(d)n−1+1/p̄
≤ erann (S(d),BLp(Q), C(Q)) ≤ c2(d)n−1+1/p̄.

So the algorithms constructed in Sections 3 and 4 are of optimal order (up to logarithmic factors
for the Smolyak–Monte Carlo algorithm in the case 1 ≤ p ≤ 2). Furthermore, we obtain for any fixed
0 < ε ≤ c1 the order of the information complexity (see relations (70) and (71)) as a function of d —
it is linear in d for all p > 1.

Corollary 5.5. Let 1 < p ≤ ∞. Then there is a constant c1 > 0 with the following property. For each
0 < ε ≤ c1 there exist constants c2(ε), c3(ε) > 0 such that for all d ∈ N

c2(ε)d ≤ nran
ε (S

(d),BLp(Q), C(Q)) ≤ c3(ε)d.

Finally, as observed by an anonymous referee, the lower boundof (89) implies that the upper bound
of the same relation is sharp among all estimates of the form

nran
ε (S

(d),BLp(Q), C(Q)) ≤
c1dσ1

εσ2
for all d ∈ N, 0 < ε ≤ c2, (90)

in the sense that if c1, c2 > 0 and σ1, σ2 ∈ R are such that (90) holds, then

σ1 ≥ 1, σ2 ≥ p̄/(p̄ − 1). (91)

This remark, as well as Corollaries 5.4 and 5.5, remain true with erann replaced by eran,jn and nran
ε by

nran,j
ε (j = 1, 2), respectively, since the upper bounds were obtained by the help of a linear algorithm

(Theorem 3.4).

374 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

For the class of nonadaptive algorithms the lower bounds of Proposition 5.2 and Theorem 5.3 can
be strengthened as follows.

Proposition 5.6. Let 1 ≤ p ≤ ∞. Then there is a constant c > 0 such that for all d, n ∈ N

eran,1n (S(d),BLp(Q), C(Q)) ≥ c min(d/n, 1).

Proof. We argue in a way similar to the proof of Proposition 5.2. We use again the set U , see relations
(77) and (78), and the distribution ν, see (80). Given n ∈ N, we put here

ε =
c0
2e

min

d
n
, 1

. (92)

We estimate eavg,1n (S(d), ν, C(Q)) from below. Let A ∈ Adet,1
n (F (Q), C(Q)),

Af = ϕn(f (t1), . . . , f (tn)) (f ∈ F (Q)),

and put

T =

(χ[0,u](ti))ni=1 : u ∈ U


⊆ {0, 1}n. (93)

It follows that

|{Aχ[0,u] : u ∈ U }| ≤ |T |. (94)

Now we use an argument due to Hinrichs ([10], proof of Theorem 4). Since the Vapnik–Červonenkis
dimension of the family {[0, u] : u ∈ U } is ≤d (referring again to [3], Cor. 9.2.15), we conclude from
the shatter function lemma that

|T | ≤


emax

n
d
, 1
d

(95)

(see, e.g., [13], Lemma 5.9 and inequality (4.7), for the case n ≥ d, the case n < d is trivial). From (94)
and (79) we get

|{u ∈ U : ‖S(d)χ[0,u] − Aχ[0,u]‖ < ε/4}| ≤ |T |,

hence

eavg,1n (S(d), ν, C(Q)) ≥
|U | − |T |

4|U |
ε. (96)

On the other hand, by (77) and (92),

|U | ≥

 c0
ε

d
=


2emax

n
d
, 1
d

. (97)

Together with (95) we obtain

|U | − |T |

|U |
≥ 1 − 2−d, (98)

consequently, from (96) and (92),

eavg,1n (S(d), ν, C(Q)) ≥
ε

8
=

c0
16e

min

d
n
, 1

,

and the desired result follows from (73). �

As a consequence of Theorem 3.4 and Proposition 5.6 we get

Theorem 5.7. Let 1 ≤ p ≤ ∞ and p̄ = min(p, 2). Then there exist constants c1−5 > 0 such that for all
d, n ∈ N, 0 < ε ≤ c1, j = 1, 2,

c2 max(n−1+1/p̄,min(d/n, 1)) ≤ eran,jn (S(d),BLp(Q), C(Q)) ≤ c3d1−1/p̄n−1+1/p̄,

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 375

furthermore, for p > 1,

c4 max(1/εp̄/(p̄−1), d/ε) ≤ nran,j
ε (S(d),BLp(Q), C(Q)) ≤ c5d/εp̄/(p̄−1).

and for p = 1,

nran,j
ε (S(d),BL1(Q), C(Q)) = ∞.

We do not know if Proposition 5.6 holds for erann (S(d),BLp(Q), C(Q)). Its proof does not generalize
directly to adaptive algorithms. An obvious obstacle is that we cannot apply the shatter function
lemma since the point set (ti)ni=1 may vary with the input χ[0,u]. But more than that, one can show
that, in a certain sense, this proof cannotwork for adaptive algorithms. Namely, observe that the proof
operates on the smaller class

F1 = {χ[0,u] : u ∈ [0, 1]d}
and yields the estimate

eran,1n (S(d), F1, C(Q)) ≥ c min(d/n, 1).

However, this estimate does not hold for erann (S(d), F1, C(Q)). Indeed, for the class F1 adaptive
algorithms can have a much better, an exponential rate, as the following result shows.

Proposition 5.8. For all d, n ∈ N,

erann (S(d), F1, C(Q)) ≤ d 2−⌊n/d⌋−1. (99)

Proof. Use bisection to determine an approximation v = (v1, . . . , vd) to the input u = (u1, . . . , un)
withnqueries (in otherwords,withn function valuesχ[0,u](ti)with adaptively chosen ti) andprecision

max
1≤i≤d

|ui − vi| ≤ 2−⌊n/d⌋−1.

Then approximate

S(d)χ[0,u] ≈ S(d)χ[0,v],

where for x = (x1, . . . , xn) ∈ [0, 1]d
S(d)χ[0,v]


(x) =

∫
[0,x]

χ[0,v](t)dt =

d∏
i=1

min(xi, vi).

Arguing similarly to (16), this leads to (99) (in fact, this is a deterministic approximation). �

Note that the results of this section remain true for the case that S(d) is considered as an operator
into L∞([0, 1]d).

For p > 1 the sharp order of
erann (S(d),BLp(Q), C(Q)) and eran,jn (S(d),BLp(Q), C(Q)) (j = 1, 2)

as a function of n and d simultaneously is an open problem.

6. Supplements, extensions, comments

6.1. Deterministic setting

We want to compare our results to the deterministic setting, which was defined in Section 5. The
deterministic setting is not well-defined for F = BLp(Q), since the elements are classes of functions
for which function values are not well-defined. Alternatively, we might consider the dense subset
F = BLp(Q) ∩ C(Q). Then function values are defined. However, we have the following essentially
well-known result.

Proposition 6.1. For all n ∈ N

edetn (S(d),BLp(Q) ∩ C(Q), C(Q)) = 1.

376 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

Proof. The case p < ∞ of Proposition 6.1 follows from the case p = ∞, which says that

edetn (S(d),BC(Q), C(Q)) = 1.

Using the same argument as in the proof of Proposition 5.1, this is readily reduced to

edetn (S1,BC([0,1]),K) = 1,

which is well-known and easily checked. �

Thus, we see that deterministic algorithms can have no convergence rate at all for the problem
S(d) : BLp(Q) ∩ C(Q) → C(Q).

6.2. Efficient function evaluation for simple sampling

It is interesting to consider the task that once the representation (3), (7), or (34)–(35) of the output
of the respective algorithm has been obtained, we want to compute many function values of it. The
case of (34)–(35)was discussed at the end of Section 4. Herewe restrict the consideration to (3). It was
mentioned in the discussion after (7) that a direct approach leads to a cost of cdn for each value. In this
case it mightmake sense to spend some extra effort in advance tomake the subsequent computations
more efficient. This is the topic of the present subsection.

We have the following task: given n ∈ N and any

zi ∈ [0, 1]d, βi ∈ K (i = 1, . . . , n), (100)

compute

s(x) =

n−
i=1

βiχ[zi,1̄](x) (101)

for a given x ∈ [0, 1]d (or a number of such x). We assume that n = 2L for some L ∈ N0. (If this is not
the case we put L = ⌈log n⌉ and add points zi = 0 and numbers βi = 0 for i = n + 1, . . . , 2L.)

We need some notation. Let DL be the set of all integer intervals of the form

I = {k2l
+ 1, k2l

+ 2, . . . , (k + 1)2l
} (102)

contained in {1, . . . , 2L
}, i.e., all intervals (102) with 0 ≤ l ≤ L and 0 ≤ k < 2L−l. In a first step

we provide the needed arrays of auxiliary numbers, that is, we compute a series of numbers which
depend on the zi and βi, which are then used for the subsequent computation of the value s(x). Let us
call this structure a d-dimensional sampling array of size n. It is defined recursively.

A one-dimensional sampling array of size n is a pair of n-vectors

a = ((ui)
n
i=1, (γi)

n
i=1) (103)

with γi ∈ K (i = 1, . . . , n) and

0 ≤ u1 ≤ · · · ≤ un ≤ 1. (104)

For d > 1 a d-dimensional sampling array of size n is a tuple

a =

(ui)

n
i=1, (aI)I∈DL


(105)

where (ui)
n
i=1 satisfies (104) and the aI are (d−1)-dimensional sampling arrays of size |I|. Let S (d, n)

denote the set of all d-dimensional sampling arrays of size n.
Let Pn denote the set of all permutations of (1, 2, . . . , n) and let

ΠL : [0, 1]n → Pn

be such that for all (ui)
n
i=1 ∈ [0, 1]n the following holds: ifΠL(u1, . . . , un) = π , then

uπ(i) ≤ uπ(j) (1 ≤ i < j ≤ n)

(i.e., π induces a non-decreasing reordering of the (ui)
n
i=1).

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 377

Now we define recursively

Λd(z1, . . . , zn, β1, . . . , βn) ∈ S (d, n),

for all (zi)ni=1, (βi)
n
i=1 satisfying (100). We let

π = ΠL(z1,1, . . . , zn,1).

For d = 1 define

Λ1(z1, . . . , zn, β1, . . . , βn) = ((zπ(i))ni=1, (γi)
n
i=1), (106)

where

γi =

i−
k=1

βπ(k) (i = 1, . . . , n).

For d > 1, we write zi = (zi,1, z ′

i)with zi,1 ∈ [0, 1] and z ′

i ∈ [0, 1]d−1. Then we define

Λd(z1, . . . , zn, β1, . . . , βn) =

(zπ(i),1)ni=1, (aI)I∈DL


(107)

with

aI = Λd−1

(z ′

π(i))i∈I , (βπ(i))i∈I

. (108)

Given x = (x1, x′) ∈ [0, 1] × [0, 1]d−1 and a d-dimensional sampling array a ∈ S (d, n), we define
the function

Ψd(x, a) ∈ K

as follows. Let a have the form (103) if d = 1 and the form (105) if d > 1. In both cases we determine
the largest j ≤ nwith uj ≤ x1. If there is no such j, we set

Ψd(x, a) = 0. (109)

Otherwise we put for d = 1

Ψ1(x, a) = γj. (110)

If d > 1, let

{1, 2, . . . , j} =

m
l=1

Il (111)

be the unique representation with 1 ≤ m ≤ L, Il ∈ DL (l = 1, . . . ,m) and

Il1 ∩ Il2 = ∅, |Il1 | > |Il2 | (l1 < l2). (112)

Then we set

Ψd(x, a) =

m−
l=1

Ψd−1(x′, aIl). (113)

Our first claim is the following

Lemma 6.2. For all d ∈ N, L ∈ N0, n = 2L, x ∈ [0, 1]d, z1, . . . , zn ∈ [0, 1]d, β1, . . . , βn ∈ K the
following holds

s(x) = Ψd(x,Λd(z1, . . . , zn, β1, . . . , βn)). (114)

Proof. We argue by induction over d. First let d = 1. If

{i : zi ≤ x} = ∅,

then

s(x) =

n−
i=1

βiχ[zi,1](x) = 0 = Ψ1(x,Λ1(z1, . . . , zn, β1, . . . , βn))

378 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

by (109). Otherwise, with

j = max{i : zπ(i) ≤ x},

we have

s(x) =

n−
i=1

βiχ[zi,1](x) =

n−
i=1

βπ(i)χ[zπ(i),1](x)

=

j−
i=1

βπ(i) = γj = Ψ1(x,Λ1(z1, . . . , zn, β1, . . . , βn)).

Now let d > 1 and assume the statement holds for d − 1. Again, we first consider the case

{i : zi,1 ≤ x1} = ∅. (115)

Here we have

s(x) =

n−
i=1

βiχ[zi,1̄](x) =

n−
i=1

βiχ[zi,1,1](x1)χ[z′i ,1
′](x

′)

= 0 = Ψd(x,Λd(z1, . . . , zn, β1, . . . , βn)),

by (109). If (115) does not hold, we set

j = max{i : zπ(i),1 ≤ x1}

and conclude

s(x) =

n−
i=1

βiχ[zi,1̄](x) =

n−
i=1

βπ(i)χ[zπ(i),1̄](x)

=

n−
i=1

βπ(i)χ[zπ(i),1,1](x1)χ[z′
π(i),1

′](x
′)

=

j−
i=1

βπ(i)χ[z′
π(i),1

′](x
′) =

m−
l=1

−
i∈Il

βπ(i)χ[z′
π(i),1

′](x
′)

=

m−
l=1

Ψd−1(x′,Λd−1((z ′

π(i))i∈Il , (βπ(i))i∈Il))

= Ψd(x,Λd(z1, . . . , zn, β1, . . . , βn)),

by the induction hypothesis, (107), (108) and (113). �

Now we have a look at the number of arithmetic operations needed for the computation of s(x)
according to formula (114). Recall that we assume the real number model [15].

Lemma 6.3. There is a choice of (ΠL)L∈N0 such that the following holds: For all d ∈ N there is a constant
c(d) > 0 such that for all L ∈ N0, n = 2L, z1, . . . , zn ∈ [0, 1]d, β1, . . . , βn ∈ K the d-dimensional
sampling array

Λd(z1, . . . , zn, β1, . . . , βn),

as defined in (106)–(108), can be computed in

≤c(d)n(log n)max(d−1,1)

operations.
Proof. Let ΠL(u1, . . . , un) be the output supplied by merge sorting, which can be obtained in
≤cn log n operations (see [1], Ch. 2.7). For d = 1 we need a total of ≤c1n log n operations for sorting
the zi and computing the sums. If d = 2, we first sort zi,1 in ≤cn log n, which gives π . Then for each
I ∈ DL we have to sort z ′

π(i) = zπ(i),2 for i ∈ I . These results are obtained simultaneously for all

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 379

I as a by-product of merge sorting (zπ(i),2)ni=1, which requires ≤cn log n operations. The remaining
computations of the sums require

≤c
−
I∈DL

|I| ≤ cn log n

operations.
For d > 2 we argue by induction. So assume the statement holds for d − 1. To compute

Λd(z1, . . . , zn, β1, . . . , βn)

according to (107) and (108), we need cn log n operations for sorting the first component. By the
induction assumption, the computation of the aI requires not more than

c(d − 1)
−
I∈DL

|I|(log |I|)d−2
≤ c(d − 1)2L

L−
l=0

(L − l)d−2

≤ c(d)2LLd−1
≤ c(d)n(log n)d−1. �

Lemma 6.4. Let d ∈ N. Then there is a constant c(d) > 0 such that for all L ∈ N0, n = 2L, a ∈ S (d, n),
x ∈ [0, 1]d the function Ψd(x, a) given by (109), (110) and (113), can be computed in ≤c(d)(log n + 1)d
operations.
Proof. For d = 1 we apply the bisection algorithm to determine j (or its non-existence) in
≤c(log n + 1) operations. For d > 1 we argue by induction. Assume the statement is true for d − 1.
Again, we determine j by bisection. The binary representation of j yields m ≤ L and the sets (Il)ml=1
so that (111) and (112) hold. By the induction assumption, the cost of computing Ψd−1(x′, aIl) is
≤c(d − 1)(log |Il| + 1)d−1, so the total cost is

≤c(log n + 1)+ c(d − 1)
m−
l=1

(log |Il| + 1)d−1

≤c(log n + 1)+ c(d − 1)
L−

l=1

(l + 1)d−1

≤c(d)(log n + 1)d. �

Corollary 6.5. Let d ∈ N. Then there are constants c1(d), c2(d) > 0 such that for all n ∈ N, n ≥ 2,
z1, . . . , zn ∈ [0, 1]d, β1, . . . , βn ∈ K, N ∈ N, xi ∈ [0, 1]d (i = 1, . . . ,N) the values

s(xi) =

n−
i=1

βiχ[zi,1̄](xi) (i = 1, . . . ,N)

can be computed in

≤c1(d)n(log n)max(d−1,1)
+ c2(d)(log n)dN

operations.

Let us summarize the total cost – including the computation of N values of the output function –
needed for algorithm A1

n to reach an error ε > 0. Combining Lemmas 6.2–6.4 with Theorem 3.4 we
obtain the following

Corollary 6.6. Let d ∈ N, 1 < p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2). Then there are
constants c1, c2 > 0 not depending on d and constants c3(d), c4(d) > 0 such that for each 0 < ε ≤ 1/2
there exists an n ∈ N with the following properties. The algorithm A1

n has error

sup
f∈BLp(Q)


E sup

x∈Q

S(d)f (x)−

A1
nf

(x)
p11/p1

≤ ε

380 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

and for each f ∈ Lp(Q) and ω ∈ Ω it uses not more than

n ≤ c1d

1
ε

p̄/(p̄−1)

function values of f and needs

≤c2d2

1
ε

p̄/(p̄−1)

operations to set up the approximating function A1
n,ω f .

Moreover, having obtained A1
nf , a d-dimensional sampling array of size n can be computed in

≤c3(d)

1
ε

p̄/(p̄−1) 
log


1
ε

max(d−1,1)

operations, with the property that for each N ∈ N, xi ∈ Q (i = 1, . . . ,N), the values

A1
nf

(xi) (i =

1, . . . ,N) can be computed in

c4(d)

log


1
ε

d

N

operations.

For comparison, let us formulate the analogous result for the Smolyak–Monte Carlo algorithm,
which is a consequence of Theorem 4.5 and the cost analysis given after its proof.

Corollary 6.7. Let d ∈ N, 1 < p ≤ ∞, 1 ≤ p1 < ∞, p1 ≤ p, and p̄ = min(p, 2). Then there are
constants c1–3(d) > 0 such that for each 0 < ε ≤ 1/2 there exist m, L ∈ N0, m ≥ 2 with the following
properties. The algorithm A3

m,L has error

sup
f∈BLp(Q)


E sup

x∈Q

S(d)f (x)−

A3
m,L f


(x)
p11/p1

≤ ε

and for each f ∈ Lp(Q) and ω ∈ Ω it needs not more than

c1(d)(L + 1)d−1mL
≤ c2(d)



1
ε

p̄/(p̄−1)

if 2 < p ≤ ∞
1
ε

p̄/(p̄−1) 
log


1
ε

1+ p
p−1


(d−1)

if 1 < p ≤ 2

function values of f and (up to a constant factor depending on d) the same number of operations to set up
the approximating function A3

m,L f .
Furthermore, having obtained A3

m,L f , for each N ∈ N, xi ∈ Q (i = 1, . . . ,N), the values

A3
m,L f


(xi)

(i = 1, . . . ,N) can be computed in

≤c3(d)


N if 2 < p ≤ ∞
log


1
ε

d−1

N if 1 < p ≤ 2

operations.

On the basis of these results let us compare the total cost of both algorithms, including the
computation of N values of the approximating function. We assume d to be fixed and consider the
behaviour as ε → 0, N → ∞. For 2 < p ≤ ∞ and, if d = 1, also for 1 < p ≤ 2, the cost
of the Smolyak–Monte Carlo algorithm is (up to a constant factor depending on d) lower than that
of the simple sampling algorithm. On the other hand, for 1 < p ≤ 2 and d > 1 the cost of the

S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382 381

Smolyak–Monte Carlo algorithm can be anything from higher (N small relative to 1/ε) to slightly
lower than simple sampling (N large relative to 1/ε).

If d is large, the simple sampling algorithmwith direct term-by-term computation of cost≤cdnN is
obviously preferable to the version with sampling array computation and also to the Smolyak–Monte
Carlo algorithm because of the exponential dependence of the cost on d in the latter two.

6.3. Separability and measurability

In Section 5 we mentioned that the simple sampling algorithm

A1
n ∉ Aran(BLp(Q), B0(Q)). (116)

We show that it does not have property 1 introduced in Section 5 (see below (66)). Let f0(x) ≡ 1(x ∈

[0, 1]d). Then by (3)

A1
n,ω f0 =

1
n

n−
i=1

χ[ξi(ω),1̄] (ω ∈ Ω).

Define

Qi =

[
i − 1
n
,
i
n

d

⊂ [0, 1]d = Q (i = 1, . . . , n),

K =

n∏
i=1

Qi ⊂ Q n.

For (x1, . . . , xn), (y1, . . . , yn) ∈ K we have1n
n−

i=1

χ[xi,1̄] −
1
n

n−
i=1

χ[yi,1̄]


B0(Q)

≥
1
n

(117)

whenever (x1, . . . , xn) ≠ (y1, . . . , yn). Put
Ω0 = {ω ∈ Ω : (ξ1(ω), . . . , ξn(ω)) ∈ K}.

Clearly, P(Ω0) ≠ 0. Moreover, if X is a separable subspace of B0(Q), then due to (117), the set

KX =


(x1, . . . , xn) ∈ K :

1
n

n−
i=1

χ[xi,1̄] ∈ X


is at most countable, which implies

P({ω ∈ Ω0 : A1
n,ω f0 ∈ X}) = P({ω ∈ Ω0 : (ξ1(ω), . . . , ξn(ω)) ∈ KX }) = 0 ≠ P(Ω0).

Hence, the mappingΦ : Ω → B0(Q) given by
Φ(ω) = A1

n,ω f0 (ω ∈ Ω)

is not essentially separably valued, and (116) follows.
Let us also mention that if we consider the canonical choice Ω = [0, 1]nd, Σ the σ -algebra of all

Lebesgue measurable subsets, P the Lebesgue measure on [0, 1]nd and, for 1 ≤ i ≤ n,
ξi(ω) = xi (ω = (x1, . . . , xn) ∈ Q n

= Ω),

then Φ is not Σ-to-Borel measurable. To see this, assume the contrary. We have Ω0 = K and for
ω = (x1, . . . , xn) ∈ Q n

Φ(ω) =
1
n

n−
i=1

χ[xi,1̄].

Moreover, by (117),Φ is a one-to-one mapping of K onto

Z =


1
n

n−
i=1

χ[xi,1̄] : (x1, . . . , xn) ∈ K


⊂ B0(Q).

382 S. Heinrich, B. Milla / Journal of Complexity 27 (2011) 352–382

Also by (117), each subset of Z is a closed subset of B0(Q), hence Borel measurable, implying that each
subset of K is Lebesgue measurable, a contradiction.

The arguments above remain true when considering A1
n,ω as a mapping into L∞(Q).

References

[1] A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Massachusetts,
1974.

[2] A. Defant, K. Floret, Tensor Norms and Operator Ideals, North Holland, Amsterdam, 1993.
[3] R.M. Dudley, A course on empirical processes (École d’Été de Probabilités de Saint-Flour XII-1982), in: Lecture Notes in

Mathematics, vol. 1097, Springer-Verlag, New York, 1984, pp. 2–141.
[4] S. Heinrich, Random approximation in numerical analysis, in: K.D. Bierstedt, A. Pietsch, W.M. Ruess, D. Vogt (Eds.),

Functional Analysis, Marcel Dekker, New York, 1993, pp. 123–171.
[5] S. Heinrich, Monte Carlo approximation of weakly singular integral operators, J. Complexity 22 (2006) 192–219.
[6] S. Heinrich, The randomized information complexity of elliptic PDE, J. Complexity 22 (2006) 220–249.
[7] S. Heinrich, Randomized approximation of Sobolev embeddings II, J. Complexity 25 (2009) 455–472.
[8] S. Heinrich, Randomized approximation of Sobolev embeddings III, J. Complexity 25 (2009) 473–507.
[9] S. Heinrich, E. Novak, G.W. Wasilkowski, H. Woźniakowski, The inverse of the star-discrepancy depends linearly on the

dimension, Acta Arithmetica 96 (2001) 279–302.
[10] A. Hinrichs, Covering numbers, Vapnik-Červonenkis classes and bounds for the star-discrepancy, J. Complexity 20 (2004)

477–483.
[11] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, Berlin, Heidelberg, New York, 1991.
[12] W.A. Light, W. Cheney, Approximation Theory in Tensor Product Spaces, in: Lecture Notes in Mathematics, vol. 1169,

Springer-Verlag, Berlin, 1985.
[13] J. Matoušek, Geometric Discrepancy, in: An Illustrated Guide, Springer, Berlin, 1999.
[14] E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, in: Lecture Notes in Mathematics, vol. 1349,

Springer-Verlag, Berlin, 1988.
[15] E. Novak, The real number model in numerical analysis, J. Complexity 11 (1995) 57–73.
[16] E. Novak, H. Triebel, Function spaces in Lipschitz domains and optimal rates of convergence for sampling, Constr. Approx.

23 (2006) 325–350.
[17] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume 1, Linear Information, European Math. Soc.,

Zürich, 2008.
[18] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume 2, Standard Information for Linear Functionals,

European Math. Soc., Zürich, 2010.
[19] G. Pisier, Remarques sur les classes de Vapnik-Červonenkis, Ann. Inst. H. Poincaré Probab. Stat. 20 (1984) 287–298.
[20] W. Sickel, T. Ullrich, Tensor products of Sobolev–Besov spaces and applications to approximation from the hyperbolic

cross, J. Approx. Theory 161 (2009) 748–786.
[21] J.F. Traub, G.W. Wasilkowski, H. Woźniakowski, Information-Based Complexity, Academic Press, 1988.

	The randomized complexity of indefinite integration
	Introduction
	Notation and preliminaries
	The simple sampling algorithm
	The Smolyak--Monte Carlo algorithm
	Lower bounds and complexity
	Supplements, extensions, comments
	Deterministic setting
	Efficient function evaluation for simple sampling
	Separability and measurability

	References

