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Abstract The crystal structure of the bacterioferritin from
Azotobacter vinelandii has been determined at 2.6 �A resolution.
Both the low occupancy of one iron ion in the dinuclear iron
center and the deviation of its adjacent residue His130 from the
center suggest migration of the iron ion from the dinuclear iron
site to the inner nucleation site. The concerted movement of
His130 and Glu47 may admit a dynamic gating mechanism for
shift of the oxidized iron ion. Ba2þ binding to the fourfold
channel implicates that the channel bears Fe2þ conductivity and
selectivity to provide a route for iron access to the inner cavity
during core formation.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Iron, an essential metal element for most biological organ-

isms, is involved in a variety of critical processes, such as DNA

synthesis, nitrogen fixation and photosynthesis [1]. As iron-

storage proteins, ferritins are widespread in all domains of life,

supply cells with the necessary iron, and can be also involved

in cell redox-stress resistance [2], Bacterioferritins, the heme-

containing ferritins isolated from bacteria, have essentially the

same architecture as ferritins, assembling in a 24mer cluster to

form a hollow and roughly spherical construction with a di-

ameter of about 120 �A [2]. For both ferritins and bacteriof-

erritins, the mechanism of iron storage, such as iron entry and

exit, as well as core formation, remains unclear [2–4].

In 1973, Bulen et al. [5] isolated and crystallized a hemo-

protein with non-heme iron from Azotobacter, Several years

later, this kind of cytochrome protein was identified as a

bacterioferritin and speculated as a specific iron-storage depot

for nitrogenase and an electronic storage for nitrogen fixation

[6]. Whereafter, the bacterioferritin from Azotobacter vinelandii

(AvBF) has aroused research interests [7–9]. However, only the

preliminary crystallographic study was performed in 1984,

indicating that the crystals of AvBF belonged to the space

group I432 [10].
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In this paper, we report the crystal structure of the AvBF in

the R3 space group. The structure has some important features

different from those observed so far for other (bacterio)ferri-

tins, such as the bacterioferritin from Desulfovibrio desulfuri-

cans (DdBF) [11], and probably reveals a series of events

relating to iron storage, including the shift of iron from ferr-

oxidase center to the inner nucleation site and the selective

entry of iron ions into the inner core through the fourfold

channel.
2. Materials and methods

2.1. Protein preparation and crystallization
Crystals of AvBF were accidentally obtained while attempting to

crystallize the Cr-containing nitrogenase component I anaerobically
purified from the mutant UW3 of Azotobacter vinelandii [12] according
to the method of Huang et al. [13]. The mutant UW3 was grown in the
modified Burk’s medium containing 4.6 mM K2HPO4, 1.4 mM
KH2PO4, 0.8 mM MgSO4 � 7H2O, 1.7 mM NaCl, 0.6 mM
CaCl2 � 2H2O, 0.01 mM Na2CrO4 � 4H2O, 0.05 mM FeSO4 � 7H2O
(dissolved in the same concentration of citric acid) and 2% (w/v)
sucrose [13].
The brick red crystals used for data collection were anaerobically

grown by the microcapillary batch liquid–liquid diffusion method at 20
�C from 15 ll of 6.53 mg/ml protein solution (in 25 mM Tris buffer
containing 250 mM NaCl and 1.72 mM Na2S2O4, pH 7.4) in equi-
librium with 15 ll of precipitant solution containing 5.57% PEG 8000
(w/v), 599.75 mM MgCl2, 1158.9 mM NaCl, 9.23 mM Na2S2O4,
11.57% (v/v) glycerin and 74.57 mM HEPES (pH 8.2). Matrix-assisted
laser desorption ionization time-of-flight mass spectrum (MALDI-
TOF MS) confirmed that the brick red crystal protein was a bacte-
rioferritin from Azotobacter vinelandii. Absorption spectrum with three
peaks at 416, 526 and 556 nm showed that the crystallized bacteriof-
erritin was in a reduced state. These characterization results will be
published elsewhere.

2.2. Data collection and processing
Diffraction data were collected at the Beijing Synchrotron Radiation

Facility (BSRF) (Beijing, China) beamline 3W1A using a MAR345
(MAR Research, Hamburg) image plate detector with crystal-to-de-
tector distance of 300 mm. No good cryocondition was obtained after
many trials, most of which resulted in large mosaicity. As a result, all
the data were collected at room temperature. The X-ray diffraction
data integration and scaling were performed with the programs
DENZO and SCALEPACK [14]. The data statistics is shown in Table
1. The crystals belong to the space group R3 (a ¼ 124:965 �A,
b ¼ 124:965 �A, c ¼ 287:406 �A) with eight monomers per asymmetric
unit (Vm ¼ 2:94 �A3/Da; 57.8% solvent). A typical ‘432’ point group
symmetry was found by calculating the self-rotation function with
MOLREP [15], indicating the presence of non-crystallographic
ation of European Biochemical Societies.
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Table 1
Data collection and crystallographic refinement statistics

Crystal size (mm3) 0.28� 0.20� 0.10
k (�A) 0.9801
Mosaicity (�) 0.28
Independent reflections 48410
Resolution range (�A) 26.0–2.60
Completeness (%) 94.0 (95.7)d

hI=rðIÞi 10.97 (2.88)d

Rmerge
a 0.105 (0.409)d

Rcryst
b 0.196 (0.260)d

Rfree
c 0.246 (0.321)d

No. of protein atoms 8� 1261
No. of metal atoms 32
No. of water molecules 210
aRmerge: RjIh � hIhij=RIh.
bRcryst: RjFo � Fcj=RFo, where Fo and Fc are the observed and calcu-
lated structure factor amplitudes, respectively.
cRfree values were calculated from 10% of the full reflection data set,
which were not included in the refinement.
d Values in parentheses are for the highest resolution shell 2.69–2.60 �A.

94 H.-L. Liu et al. / FEBS Letters 573 (2004) 93–98
twofold, threefold and fourfold symmetry axes, consistent with a
typical 24-meric structure.

2.3. Structure determination and crystallographic refinement
The crystal structure of AvBF was solved by the molecular re-

placement method with the program EPMR [16]. The search template
was the octamer composed of the monomers A, B, C, D, K, L, U and
V from the crystal structure of Escherichia coli bacterioferritin (EcBF)
with PDB accession code 1BFR [17]. On the first run of EPMR, the
best solution was found with a crystallographic R factor of 0.362 and a
correlation coefficient 0.675. Crystallographic refinement was carried
out with CNS software package [18]. Model visualization and re-
building were done with O [19]. The crystallographic refinement sta-
tistics on the final model is given in Table 1. The quality of the model is
quite good and better than that expected at the relatively low resolu-
tion of 2.6 �A. As assessed by the program PROCHECK [20], the
stereochemistry is quite satisfactory with 95.8% of the residues in most
favored, 4.1% in additional, and the other 0.1% in generously allowed
areas of Ramachandran plot. Coordinates have been deposited at the
RCSB Protein Data Bank with accession code 1SOF.
3. Results and discussion

3.1. Overall structure of AvBF

AvBF is a spherically hollow 24mer with 432 point group

symmetry (Fig. 1). As an independently biological form, the

nearly spherical protomer has an external diameter of �125 �A
and an internal cavity for iron storage with a diameter of
Fig. 1. Ribbon views of the AvBF 24mer along a fourfold axis (left), the eight
group located in the twofold interface and two iron ions in each monomer (r
and Raster3D [31].
�72 �A. Four threefold symmetry axes and three fourfold

symmetry axes traverse the protomer shell, resulting in eight

threefold and six fourfold channels, respectively. In addition,

six twofold axes pass through the shell along the quasi-twofold

axes of twelve Fe-protoporphyrin IX prosthetic groups. In the

crystal structure, there are eight monomers in an asymmetric

unit. Each monomer is mainly composed of a four-a-helix
bundle containing a dinuclear iron site, a long loop connecting

two helices of the bundle, and a short a-helix at the C terminus

(Fig. 1). The C terminal residue Glu156 in each monomer was

not clearly observed in the density map and was omitted from

the model.

3.2. Orientation of heme group

One asymmetric unit contains four Fe-protoporphyrin IX

prosthetic groups and each prosthetic group is located in the

interface between two monomers related by a non-crystallo-

graphic twofold axis. In the Fo � Fc electron density map with

heme (in one orientation) being kept in the phasing model, no

significant positive and negative peaks were observed, in par-

ticular, on the two methyl and vinyl groups, respectively. This

means that the heme cofactor is located in a right position and

orientation, but is not disordered or in a mixture of two ori-

entations. Therefore, we consider that the heme preferentially

binds to AvBF protein in one orientation, similar to the case of

EcBF [17,21]. However, in the structures of both Rhodobacter

capsulatus bacterioferritin (RcBF) [22] and DdBF [11], the

heme groups were defined with two possible orientations each

with an occupancy of about 0.50. Whether the heme group

adopts two orientations or not perhaps depends on its inter-

actions with surrounding residues. This assumption needs

further investigation.

3.3. Dinuclear iron center

In the Fo � Fc electron density map (Fig. 2), two peaks with

different heights were detected at the hydrophilic interior of the

four-helix bundle, and were assigned to iron ions Fe1 with a

low occupancy and Fe2 with an occupancy of 1.00, respec-

tively. Iterative B factor and occupancy refinements resulted

into Fe1 with the averaged occupancy of 0.54 (range 0.49–

0.60) and B factor 31.52 �A2 (range 27.84–34.07 �A2) as well as

Fe2 with the averaged B factor 29.64 �A2 (range 23.27–36.85
�A2) in the eight subunits of an asymmetric unit where the mean

Fe1–Fe2 distance is 4.13 �A (range 3.76–4.39 �A). The residues

coordinated to the dinuclear iron sites include Glu127 and

Glu51 as bridging ligands, Glu18 and His54 as terminal li-
monomers in an asymmetric unit (middle), and one dimer with a heme
ight). Figs. 1, 3 and 4 in this paper were generated with Molscript [30]



Fig. 3. Superposition of residues around the dinuclear iron site (brown
spots) from AvBF (green), EcBF (blue) and DdBF (yellow). The labels
refer to the AvBF residues.

Fig. 2. Stereo view of the dinuclear iron center in the monomer G. The Fo � Fc difference electron density (contoured at 7.5r, limegreen) was
calculated with the dinuclear iron omitted, and the 2Fo � Fc omit map (contoured at 1.2r, sienna) calculated with His130 and Glu47 omitted for map
calculation. Water molecules coordinated to Fe1 are not shown for clarity. Fig. 2 was generated with Bobscript [32] and Raster3D [31].
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gands to Fe2, as well as Glu94 as a ligand to Fe1 (Fig. 2). All

the residues are conserved in the ferroxidase centers of EcBF

[17], DdBF [11] and RcBF [22]. Similar to the case of DdBF

[11], the dinuclear iron center is located in the bottom of the

so-called ferroxidase pore and can be sectioned into three

layers. The top layer defines the entrance and includes Asn17,

Ile20, Leu93 and Gly97; the middle layer defines the side walls

and mainly includes residues Ala21, Try25 and Leu101; and

the bottom layer is mainly composed of Glu47, Asp50, His54,

Asp129, His130 and Ser126.

Structural comparison reveals that the dinuclear iron center

of AvBF has two significant structural features different from

those of EcBF [17] and DdBF [11]. First, the Fe1 atom in

AvBF has both a low occupancy (0.54 on average) and a long

distance to Fe2. The lower occupancy of Fe1 implicates that

three steps might have continuously occurred to the dinuclear

center: oxidation of Fe1 and Fe2, rupture of any l-oxo or

hydroxyl-bridge connecting them, and sequential migration of

Fe1 to the inner nucleation site (possibly composed of Asp50,

Glu47, and Asp129), which might have left some dinuclear

sites occupied by Fe3þ only at the site of Fe2 as suggested by

Stillman et al. [23]. From the perspective of oxidation, the

Fe1–Fe2 distance of AvBF would be as short as that of the

‘isolated’ oxidized structure of DdBF, 3.71 �A [11]. However,

the averaged Fe1–Fe2 distance is 4.13 �A and compatible with

that (3.99 �A) in the reduced structure for DdBF [11]. In gen-

eral, the dinuclear iron site in AvBF may represent a special

partially oxidized state, to some extent, different from the

‘cycled’ oxidized state observed for DdBF [11], and is likely an

outcome of the alternative oxidation and reduction. The low

occupancy of Fe1 resulted from its oxidation during crystal

installation for diffraction, while the long Fe1–Fe2 distance

was from the reduction processes, including crystallization

with excess of sodium dithionite as well as reduction by syn-

chrotron radiation similar to the case of the iron derivative of

the non-heme ferritin from Escherichia coli [23]. Furthermore,

the important difference between the dinuclear iron site of

AvBF and that of the ‘cycled’ DdBF comes from the fact that

in the latter case the data were measured from flash-frozen

crystals [11]. In the case of AvBF, perhaps because the oxygen

exposure was shorter, the iron depletion reaction was not as
complete, and once the data collection started, the reducing

effect of X-rays on the remaining iron (III) very likely stopped

the reaction early on. This might also explain the longer Fe1–

Fe2 distance, more typical of a reduced center, but keeping the

structural changes associated with the iron depletion process.

In the ‘cycled’ oxidized DdBF structure, any similar motion of

the quasi-depleted iron (III) atoms due to X-ray induced re-

duction would be hindered by the fact that the crystals were

frozen.

Second, the conserved residue His130 in AvBF is considered

to be beyond the coordination shell of Fe1 because the dis-

tance between Fe1 and the amino nitrogen atom Nd1 of Hisl30

averages 3.45 �A (range 2.96–3.87 �A) in the eight subunits of an

asymmetric unit. The large variation of Hisl30 Nd1-to-Fe1

distances may be mainly due to changes in the position of both

His130 and Fe1. In contrast, its counterpart in EcBF [17] or

DdBF [11] was coordinated to the metal ion in the corre-

sponding ferroxidase center. As shown by the superposition of

the residues around the dinuclear iron site from AvBF, EcBF

[17] and DdBF [11] (Fig. 3), the side chain of Hisl30 is devi-

ating from the dinuclear metal site while the neighbor residue

Glu47 swings along the reverse direction. This superposition

result strongly suggests that the concerted movement of His130

and Glu47 in AvBF may constitute a gating mechanism for the
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shift of iron ion from the ferroxidase center to the inner nu-

cleation site, and to a large extent supports the hypothesis that

‘‘the iron ions entered through the pore on the external sur-

face, formed the di-iron site and from there eventually moved

into the inner protein core’’ [2].

However, the difference in the primary sequence resulted

into the concrete gating way in AvBF different from that in

DdBF [11], where the movement of His59 and Glu131 was

suggested to be a gating mechanism for iron migration. In the

dinuclear center of AvBF, the iron atom close to His130 may

migrate with the help of Glu47 after oxidation, while in DdBF

the iron atom close to His59 migrates with Glu131. During the

migration of iron ion, the acidic residues Glu47 (in AvBF) or

Glu131 (in DdBF) near the dinuclear iron site are important

for iron migration. Interestingly, four residues Hisl30 and

Glu47 (in AvBF), and His59 and Glu131 (in DdBF) are all

conserved in EcBF and RcBF, which implicates that they

could adopt two types of gating ways of both AvBF and

DdBF. The uranyl derivative of EcBF has structurally con-

firmed the gating mechanism through ligand exchange between

His130 and Glu47 for iron migration [24].

In addition, in the crystal structure of AvBF, the weak

2Fo � Fc electron density of Glu47 (Fig. 2), as well as a low

occupancy of Fe1, indicates a dynamic migration of Fe1. That

is likely why the crystal structure of AvBF has variable coor-

dination environment of Fe1 in the various crystallographi-

cally independent subunits. The variable coordination

environment of Fe1 concentrates on changeable Fe1-to-

Glu94Oe1 and Fe1-to-Glu94Oe2 distances (range 2.35–3.18 and

1.85–2.69 �A, respectively) as well as water molecule which is

coordinated to Fe1 in the subunit G but absent in the coor-

dinate sphere of Fe1 in some subunits. In contrast, His59 re-

mained close to the dinuclear iron site in the structure of

oxidized DdBF [11] and likely reflected the final stage of the

gating process with the coordinated iron mostly depleted.

3.4. Fourfold channel and its Fe2þ conductivity and selectivity

In the Fo � Fc electron density map with all hetero atoms

omitted from the phasing model, significant peaks with aver-

aged heights of 50r were observed on the fourfold channels

and were two to three times more electron dense than those

corresponding to heme iron ions. Because the AvBF sample
Fig. 4. Fourfold channel viewed from perspectives, respectively, perpendicul
spots represent the barium ion.
was purified from the mutant strain UW3 of Azotobacter vin-

elandii, Mo with different oxidation states was tentatively as-

signed to the strong peaks. However, residual peaks with 8r
were still detected on the positions of Mo in the Fo � Fc elec-
tron density map calculated with Mo in the phasing model.

Obviously, Mo is not enough to fit the assignment and heavier

atoms should be adopted for these peaks. In order to deter-

mine the chemical nature of the strong peaks, an X-ray fluo-

rescence spectrum was scanned on AvBF crystals at the BSRF,

and the characteristic X-rays of Ba (La1, 4.466 keV; Lb1,
4.828 keV) unambiguously indicated the presence of barium.

Meanwhile, the XFS shows that the element barium is the only

element heavier than Mo in AvBF crystals. The element bar-

ium may come from the reagents used for the sample prepa-

ration medium, such as sucrose (Ba content: 0.001%, Beijing

Factory of Chemical Engineering) and calcium chloride dihy-

drate (Ba content: negligible, Beijing Yili Fine Chemistry Co.

Ltd), even from glassware where BaCO3 is used deliberately as

additive for glassmaking. The assignment of Ba2þ with an

occupancy of 1.00 leads to no negative or positive peaks on the

Ba2þ positions in the Fo � Fc electron density map. The rea-

sonable averaged B factor 24.67 �A2 of Ba2þ is close to that of

its coordinated oxygen atoms, 22.24 �A2.

As in the case of EcBF [17], the fourfold channel in AvBF is

extremely hydrophilic with an upper layer of four Asnl48

residues on the external surface of the protein shell and a lower

layer of four Gln151 residues on the inner face (Fig. 4). The

backbone of Asn148–Tyr149–Leu150–Gln151 located on the

C terminal a-helix provides a stable scaffold to support the two

layers (about 3.5 �A apart). In the structure of EcBF [17], only

four Gln151 residues in the lower layer are coordinated to

Mn2þ. In contrast, in the crystal structure of AvBF, the eight

carbonyl oxygen atoms from Asn148 and Gln151 residues are

all coordinated to the barium ion located on the fourfold axis

(Fig. 4). The averaged distance between barium and oxygen is

3.09 �A, close to the averaged distance 3.08 �A from oxygen

atom to Ba2þ located at the catalytic metal site in monomer B

of phosphoinositide-specific phospholipase C [25].

In mammalian ferritin, the hydrophobic fourfold channel

was suggested to form a ‘‘proton wire’’ facilitating proton

transfer [26], or to provide either an exit pathway for protons

during mineralization or iron leaving the protein cavity during
ar to a fourfold axis (left) and along with the axis (right). The brown
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de-mineralization [27], even to act as the access route for

dioxygen [4]. In DdBF, it is unlikely for iron to access through

the fourfold channel [11], In contrast, the hydrophilic four-

fold channel of AvBF could have a function for iron entry

because its structural features reveal its Fe2þ conductivity and

selectivity.

Around the entrance to this channel, four symmetry-related

acidic residues Glu147 are protruding away from the AvBF

surface (Fig. 4 left), thus easily uptaking ferrous ions from the

surroundings and facilitating the access of these ions to the

entrance of the channel. This effect is always anticipated for a

cation channel and would raise the local concentration of ca-

tions while lowering the concentration of anions [27]. The

distance between two layers is about 3.5 �A, so that it is easy for

the Fe2þ ion to shift from one layer to the other. Meanwhile,

carbonyl oxygen atoms from either four Asnl48 residues on the

upper layer or four Gln151 residues on the lower layer have the

capacity to accommodate a ferrous ion just as four Gln151

residues of EcBF captured Mn2þ [17], which has a similar size

to Fe2þ. Therefore, two ferrous ions may simultaneously bind

to each layer of residues, leading to multiple ion occupancy

of the fourfold channel. Due to the short distance between

the two ions, strong electrostatic repulsive forces may enhance

the throughput of ferrous ions into inner cavity of AvBF. The

destabilization of ions by multiple ion occupancy may be a

general property of all selective ion channels [28].

The structure of the fourfold channel also reveals its selec-

tivity for Fe2þ. When a hydrated ion enters the fourfold

channel, the carbonyl oxygen atoms must substitute the water

oxygen atoms to compensate for the energetic cost of dehy-

dration. Like the Mn2þ ion accommodated by one layer of

carbonyl oxygen atoms in EcBF [17], Fe2þ fits one layer of

carbonyl oxygen atoms in the fourfold channel precisely so

that the energetic costs and gains are well balanced, similar to

the case of Kþ channel [28]. The stable backbone of Asn148–

Tyr149–Leu150–Gln151 tightly holds two layers to prevent the

carbonyl oxygen atoms from approaching close enough to

accommodate a cation smaller than the Fe2þ ion. For a larger

cation, such as Ba2þ, two layers of carbonyl oxygen atoms may

slightly adjust their direction to the center of the fourfold

channel and form a deep energy well to trap the large cation.

Thus, the deep energy well formed by eight carbonyl oxygen

atoms results into a blocker effect of large ions such as Ba2þ

[29], which may inhibit the iron core formation in AvBF.

However, the selectivity of the fourfold channel is limited be-

cause the channel cannot exclude the permeability of ions with

size close to that of Fe2þ. The Mn2þ ion in the structure of

EcBF [17] is an example for this kind of limitation. Here, it is

suggested that the fourfold channel bears Fe2þ selectivity, as

the concept of Kþ selectivity was put forward although the Kþ

channels allow permeation of the cations Rbþ and Csþ [28].
3.5. General consideration on iron entry

In summary, the crystal structure of AvBF strongly suggests

two pathways for iron entry. Both the low occupancy of Fe1

and the concerted movement of His130 and Glu47 suggest the

shift of iron from the ferroxidase center to the inner nucleation

site, implicating that the entry of iron may occur through the

ferroxidase pore [2]. Because the hydrophobicity of the pore

entrance residues Ile20 and Leu93 may limit the entry of hy-

drated iron, the ferroxidase pore may only provide an entry
route for a small amount of iron at initial nucleation stage. On

the other hand, the observed Ba2þ binding to the fourfold

channel implicates that the channel bears Fe2þ conductivity

and selectivity. The potential multiple ion occupancy of the

fourfold channel may lead to a high throughput for iron entry

through the channel during core formation.

According to our assumption, the threefold channel, de-

fined by the alternating positively and negatively charged

residues Glu109, Arg117 and Glu121, is a connecting link

between the preceding events at initial nucleation stage (the

entry of hydrated iron through the ferroxidase pore and Fe3þ

binding to the nucleation site) and the following events

during core formation (iron entry through the fourfold

channel and phosphate ion entry through the threefold

channel). After completion of initial nucleation stage, Fe3þ

may bind to the nucleation site of Glu47, Asp50 and Asp129,

even to the adjacent acidic residues Asp122, Glu125, Asp132,

Glu121 and Glu118 possibly due to local pH variations. The

original negatively charged region (mainly composed of

Glu121 and Glu118) around the bottom of the threefold

channel may turn positively charged and bear more positive

charges than its middle layer of the channel (composed of

three symmetry related Arg117 residues). A large electrostatic

potential gradient may be formed at the threefold channel,

which may give rise to an electrostatic potential field directed

outward from the internal cavity. At this point, phosphate

ions may enter the AvBF athwart the electrostatic potential

field. The access of phosphate and Fe2þ to the inner cavity may

take place simultaneously through the threefold and fourfold

channels, respectively. This may confirm the conclusion that

‘‘during iron deposition into AVBF, the phosphate and iron

enter the core together to form the phosphate-Fe3þ mineral

core’’ [8].
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