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Abstract

This paper presents algorithms to find vertex-critical and edge-critical subgraphs in a given graph G, and demonstrates how these
critical subgraphs can be used to determine the chromatic number of G. Computational experiments are reported on random and
DIMACS benchmark graphs to compare the proposed algorithms, as well as to find lower bounds on the chromatic number of these
graphs. We improve the best known lower bound for some of these graphs, and we are even able to determine the chromatic number
of some graphs for which only bounds were known.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E. A k-coloring of G is a functionc : V —
{1,...,k}. Ttis legal if c(i) # c(j) for all edges (7, j) in E. The smallest integer k such that a legal k-coloring exists
for G is the chromatic number y(G) of G. Finding the chromatic number of a given graph is known as the graph-
coloring problem, and is NP-hard [10]. Although many exact algorithms have been devised for this particular problem
[2,13,16,18,20], such algorithms can only be used to solve small instances. Heuristics coloring algorithms [5,6,8,14,23],
on the other hand, can be used on much larger instances, but only to get an upper bound on % (G).

1.1. Preliminary definitions

A graph G is vertex-critical if y(H) < y(G) for every subgraph H C G obtained by removing any vertex from G.
Similarly, G is edge-critical if removing any edge causes a decrease of y(G). Given an integer k, a k-vertex-critical
subgraph (k-VCS) of G is a vertex-critical subgraph G’ C G, such that y(G’) =k. Similarly, a k-edge-critical subgraph
(k-ECS) of G is an edge-critical subgraph G’ C G, such that y(G’) = k. Note that each graph G contains at least one
k-VCS and one k-ECS for 1 <k <y (G). Finally, a k-VCS (resp. k-ECS) is minimum if G has no other such critical
subgraph containing less vertices (resp. edges).
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Fig. 1. A vertex-4-critical subgraph that is not edge-4-critical.

While any k-ECS is also a k-VCS, the opposite is not necessarily true. For example, consider the graph in Fig. 1.
This graph of chromatic number 4 is vertex-critical, since removing any vertex decreases its chromatic number to 3,
but is not edge-critical since one can remove the edge (v, v2) without changing its chromatic number.

1.2. Applications of critical subgraphs

There are many reasons to search for critical subgraphs of a given graph G. One of them is to obtain y(G) [13]. A lower
bound on y(G) can be obtained by finding a k-VCS or a k-ECS H of G for any 1 <k < (G) and then computing y(H)
using an exact coloring algorithm. Furthermore, if an upper bound k" on y(G) is known, for example from a heuristic
algorithm, one can find a k’-VCS or a k’-ECS G’ and show that y(G’) = k’ using the exact coloring algorithm. The
reason for applying the exact coloring algorithm to G’ instead of G is that, unless G is itself critical, critical subgraphs
have fewer edges and possibly fewer vertices. Thus, the exact coloring algorithms, of exponential complexity, have
better chances of solving these reduced subgraphs than the whole graph.

This paper proposes algorithms for finding k-VCSs and k-ECSs, and is organized as follows. Section 2 contains
the description of these algorithms. Section 3 presents a heuristic strategy to find small critical subgraphs. Section 4
discusses the implementation of heuristic coloring algorithms for critical subgraph detection. Section 5 introduces a
technique to speed up the detection. Section 6 contains an algorithm to compute a lower bound on the size of a critical
subgraph. Section 7 presents some computational experiments and their results. Finally, Section 8 contains some final
remarks on this paper.

2. Critical subgraph detection algorithms

The graph k-coloring problem, where one has to find a legal k-coloring or show that none exists, is a classic instance
of the constraint satisfaction problem (CSP) [17,21], where the vertices are the variables, the set {1, ..., k} of possible
colors is the domain of each variable, and each edge induces an inequality constraint on two variables. Hence, a legal
k-coloring exists if one can assign a value to all variables such that all constraints are satisfied. Given an infeasible
CSP, an irreducible inconsistent set (I1S) of variables (resp. constraints) is an infeasible set that becomes feasible when
any variable (resp. constraint) is removed [7,22]. A k-VCS (resp. k-ECS) of a graph G is thus an IIS of variables (resp.
constraints) for the CSP that corresponds to finding a (k — 1)-coloring of G. In [7], Galinier and Hertz present some
algorithms that find IISs of variables and constraints in infeasible CSPs. We now present these algorithms and their
most interesting properties, in the context of graph coloring and critical subgraphs. For the proofs of these properties,
we refer to [7].

Definition. Let G = (V, E) be a graph, ¢ a k-coloring of G, and Ug(c) C E the set of edges having both vertices with
the same color in c. Given a function wg : E — R that associates a weight wg (e) to each edge e € E, the minimum
weighted k-coloring problem is to determine a k-coloring ¢ for G that minimizes the following cost function:

fe(@)= )" wgle)
ecUE(c)

(i.e., fe(c) is the sum of the weights of the edges in Ug(c)).
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Definition. Let G = (V, E) be a graph, c a partial legal k-coloring of this graph, and Uy (c) € V the subset of vertices
that are not colored in c. Given a function wy : V — R that associates a weight wy (v) to each vertex v € V, the
minimum partial legal weighted k-coloring problem is to determine a partial legal k-coloring ¢ for G, that minimizes
the following cost function:

fr@= Y wy(

veUy (c)
(i.e., fy(c) is the sum of the weights of the vertices that are not colored in c).

To be more succinct, we will present only one version of each algorithm, which can be used to find k&-VCSs or
k-ECSs. If one wants to find a k-VCS, S corresponds to the set of vertices V, w is the weight function wy, fis the cost
function fy, U(c) is the set of non-colored vertices in a partial legal (k — 1)-coloring ¢ of G, and Min is an exact or
heuristic algorithm that, given G, k — 1 and w, finds such a coloring that minimizes fy. On the other hand, if the goal
is to find a k-ECS, then S is the set of edges E, w is the weight function wg, fis the cost function fg, U(c) is the set
of edges having both vertices with the same color in a (k — 1)-coloring ¢, and Min is an exact or heuristic algorithm
that finds such a coloring that minimizes fg. One can also consider Min as an algorithm that finds a set of vertices
or edges which intersects with every vertex-critical or edge-critical subgraph, such that the total weight of this set is
minimum. The algorithms we are going to present do not return a critical subgraph, but rather a subset H of vertices or
edges which translates into a subgraph by reducing G so that its set of vertices V or its set of edges E is equal to H.

2.1. The removal algorithm

The removal algorithm is perhaps the simplest of all critical subgraphs detection algorithms. Similar approaches have
already been proposed, for example, in [3,4] for linear programming and in [13] for the graph coloring problem. Given
a graph G and an integer k, the removal algorithm finds k-VCSs (resp. k-ECSs) by removing vertices (resp. edges) from
G and setting their weight to 0. If the chromatic number of the remaining graph becomes smaller than &, then Min
should find a coloring ¢ with f(c) = 0. In such a case, the vertex or edge that was removed last is re-inserted in G and
its weight is set equal to |S|. The algorithm repeats this process until Min produces a coloring ¢ with f(c) > |S|, which
occurs when the vertices or edges of weight |S| induce a graph of chromatic number k.

Algorithm 1. Removal.

Input: A graph G, an integer &, and a set S of vertices or edges;
Output: A set H of vertices or edges.

Initialization
for all s € S do

w(s) < 1;
end for

Construction
repeat
Choose an element s € S such that w(s) = 1;
w(s) < 0;
c < Min(G,k—1,w);
if f(c) =0 then
w(s) < IS
end if
until f(c) > S|

Extraction
H < {s | w(s) =|Sl};
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Fig. 2. A graph of chromatic number 3.

Property 2.1. Given a graph G and an integer k, if Min is an exact algorithm, then the removal algorithm produces,
in a finite number of iterations, a set H which forms a k-VCS or a k-ECS. Otherwise, if Min is a heuristic algorithm,
then H forms a subgraph that is either a k-VCS or k-ECS, or has a chromatic number smaller than k.

To illustrate the removal algorithm, consider the graph shown in Fig. 2. This graph has a chromatic number of 3, and
contains two 3-VCSs, {vy, v2, vg} (minimum) and {v,, v3, v4, v5, vg}, as well as two 3-ECSs, {e1, €2, ¢4} (minimum)
and {e3, ey, es, e, e7}. Suppose we want to find a 3-VCS. We first remove any vertex, for example v,. The graph then
becomes 2-colorable (i.e., f(c) =0), so vy gets re-inserted with a weight of | S| = 6. Another vertex is then removed, say
v1, and since y(G) remains equal to 3, this vertex is not re-inserted in the graph. Notice that the 3-VCS that contained
v1 has been destroyed in the process, and only one 3-VCS, containing the vertices v, v3, v4, v5 and vg, remains. Hence,
these vertices all decrease y(G) when removed, and will all get weight |S| = 6. When so, f(c) =|S| and the 3-VCS is
therefore detected.

Observe that the order in which the vertices or edges are removed affects which critical subgraph is obtained.
Accordingly, if we had removed v3 instead of vy during the second removal, the resulting 3-VCS would instead contain
v1, V2, and vg, and would be minimum.

2.2. The insertion algorithm

While the removal algorithm proceeds by removing vertices or edges from the graph, the insertion algorithm builds
a critical subgraph by adding them. In every iteration i, Min returns a (k — 1)-coloring ¢; that minimizes f. This coloring
has a set U (c;) of uncolored vertices or conflicted edges. From this set, one vertex or edge gets a weight of | S| and
the others are removed by setting their weight to 0. One vertex or edge is kept to ensure that at least one k-VCS or
k-ECS remains in G. Once again, this process is repeated until the vertices or edges of weight |S| induce a graph with
chromatic number k.

Property 2.2. Given a graph G and an integer k, if Min is an exact algorithm, then the insertion algorithm produces,
in a finite number of iterations, a set H which forms a k-VCS or a k-ECS. Otherwise, if Min is a heuristic algorithm,
then H forms a subgraph that is either a k-VCS or k-ECS, or has a chromatic number smaller than k.
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Fig. 3. A graph containing one minimum edge-3-critical subgraph.

Let us illustrate the insertion algorithm on the detection of a 3-ECS in the graph of Fig. 2. The first 2-coloring ¢
returned by Min gives U (c1) = {es4}. Since ey is the only conflicted edge, its weight is changed to |S| = 7. The next
2-coloring should then satisfy this edge and have one conflicted edge for each 3-ECS. The second 2-coloring ¢, can
therefore be such that U(c2) = {e1, e3}. Suppose we choose to set the weight of e; to 0 and e3 to |S| = 7, only one
3-ECS remains: {es, e4, €5, eg, e7}. The three next 2-colorings c3, c4, and cs will fix the weight of es, eg, and e7 to
|S| = 7. Then Min produces a 2-coloring cg with f(cg) = |S| = 7, and the 3-ECS is therefore detected. Once more,
the choice of which edge from each U (c;) gets a weight of |S| = 7 determines which critical subgraph is found by the
insertion algorithm. If, during the second iteration, we had decided to set the weight of e3 to 0 instead of e;, one can
verify that the 3-ECS found would have been the minimum one formed by {ey, e, e4}.

Algorithm 2. Insertion.

Input: A graph G, an integer &, and a set S of vertices or edges;
Output: A set H of vertices or edges.

Initialization
for all s € S do
w(s) < 1;

end for

Construction
repeat
c < Min(G,k —1,w);
if f(c) =0 then
STOP: an error occurred;
else if f(c) <|S| then
Choose an element s € U (c) such that w(s) = 1;
w(s) < |S];
for alls’ € U(c), s’ # s do
w(s’) < 0;
end for
end if
until f(c) > S|

Extraction
H < {s |w(s) =S}

Notice that the insertion algorithm cannot find all the critical subgraphs of a given graph. Consider, for example,
the graph of chromatic number 3, shown in Fig. 3. Suppose we wish to find the minimum 3-ECS corresponding to the
three edges in the center of the graph (bold lines in the figure). The first coloring c; yields a U (cy) that contains these
three edges. However, since we have to set the weight of one of these edges to | S| and the rest to 0, this 3-ECS will
thus be destroyed, and the output of the insertion algorithm will therefore be one of the pentagons.
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When Min is a heuristic algorithm, there are cases where the insertion algorithm provides a proof that the detected
subgraph is critical. Indeed, when Min returns a coloring ¢ with f(c) = 1, this means that c is either optimal and the
conflicted edge or uncolored vertex in ¢ belongs to a critical subgraph, or c is not optimal such that f(c) =0 (i.e.,
7(G) <k —1). Hence, if f(c)=1 for each coloring ¢ returned by Min at every step of the insertion algorithm, and if the
detected subgraph has a chromatic number equal to k (which can be validated by using an exact coloring algorithm),
we have a proof that this subgraph is critical.

2.3. The hitting set algorithm

The hitting set algorithm differs from the two previous algorithms in that it produces minimum critical subgraphs.
This algorithm relies on the fact that, given a graph G and a (k — 1)-coloring ¢ produced by Min, the set U (c) necessarily
intersects with all k-VCSs or k-ECSs of G. A k-VCS or a k-ECS is thus a hitting set (see definition below) of the collection
U = {U(C]), ey U(C|a]/‘)}.

Definition. Let 7 ={J1,..., J|/¢|} be a collection of sets J; € S, 1 <i < | #],and H C S be another set. H is a hitting
set of ¢ if it intersects each of its subsets Ji, ..., J| 7- The minimum hitting set problem for a collection # consists
in finding a hitting set H* of ¢ such that | H*| is minimum.

At each iteration i, the hitting set algorithm obtains a coloring ¢; and adds the set U(c;) to the initially empty
collection %. The algorithm then calls an exact procedure, called MinHS, which returns a minimum hitting set H for
. The weight of all vertices or edges in H is then set equal to |S|, while the other vertices or edges get a weight of 1 .
This procedure is repeated until Min produces a coloring ¢ with f(c) >1S|.

Property 2.3. Given a graph G and an integer k, if Min is an exact algorithm, then the hitting set algorithm produces,
in a finite number of iterations, a set H which forms a minimum k-VCS or k-ECS. Otherwise, if Min is a heuristic
algorithm, then H forms a subgraph that is either a minimum k-VCS or k-ECS, or has a chromatic number smaller
than k.

If MinHS is replaced by a heuristic algorithm, then the property still holds, except that there is no guarantee that a
detected k-VCS or k-ECS is minimum.

Algorithm 3. Hitting set.

input: A graph G, an integer &, and a set S of vertices or edges;
output: A set H of vertices or edges.

Initialization

U <~ 0,

Construction
repeat
H < MinHS(%);
for all s € S do
if s € H then
w(s) < [S];
else
w(s) < 1;
end if
end for
c < Min(G,k—1,w);
if f(c) <|S| then
U < U U{U(c)};
end if
until f(c)>|S|
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Let us illustrate the hitting set algorithm on the graph of Fig. 2. Suppose that our goal is to find a 3-VCS. Since % is
initially empty, all vertices first get a weight of 1. Accordingly, the first partial 2-coloring c; is such that U (c1) contains
either vy or vg, say vy. We then set Z ={{v>}}, such that the next hitting set returned by MinHS is H={v;}. Then, ¢, should
give U(cz) = {ve} and therefore % = {{va}, {ve}}. In turn, the following hitting set should be H = {vs, v¢}, and U(c3)
should contain v; and another vertex from the set {vs, v4, vs}, for example, v3. We then have % = {{v2}, {vs}, {v1, v3}},
and the corresponding hitting set can be either {vy, vz, ve} or {v2, v3, v6}. In the first case, the minimum 3-VCS is
found. However, if the latter set is returned by MinHS, then U (c4) necessarily contains vy and either v4 or vs, say
v4. We finally have % = {{v2}, {ve}, {v1, v3}, {v1, v4}}, and the next hitting set will be H = {vy, v2, v}, the minimum
3-VCS.

While the hitting set finds a minimum critical subgraph, it does so in an exponential number of steps. Therefore, this
algorithm may not be suitable for large instances. However, one can stop the algorithm at any time and use |H| as a
lower bound on the size of critical subgraphs.

2.4. The pre-filtering algorithm

When dealing with large instances, it can be useful to quickly filter out as many vertices and edges as possible,
leaving less for the critical subgraph detection algorithm. The pre-filtering algorithm is a variation of the insertion
algorithm used as pre-processing before one of the aforementioned detection algorithms is applied. At each iteration i,
Min produces a (k — 1)-coloring ¢; that minimizes f. This coloring has a set U (¢;) of uncolored vertices or conflicted
edges. A weight of | S| is assigned to each element in U (¢;) . The algorithm stops when a coloring ¢ is produced with
f(c) = |S]|. When this occurs, all vertices or edges with weight 1 are filtered out. Since at least one vertex (resp. edge)
of each k-VCS (resp. k-ECS) gets a weight of | S| at each iteration, smaller critical subgraphs are more likely to remain
on the filtered graph rather than bigger ones. Thus, the pre-filtering algorithm acts as an heuristic that isolates smaller
critical subgraphs.

Algorithm 4. Pre-filtering.

Input: A graph G, an integer &, and a set S of vertices or edges;
Output: A set H of vertices or edges.

Initialization
for all s € S do
w(s) < 1;

end for

Construction
repeat
c < Min(G,k—1,w);
if f(c) <|S| then
for all s € U(c) such that w(s) =1 do
w(s) < |S[;
end for
end if
until f(c) > S|

Extraction
H < {s | w(s) =S}

Consider once more the detection of a 3-ECS for the graph in Fig. 2. If we use the pre-filtering algorithm, the first
2-coloring returned by Min gives U (c1) = {e4}. As a result, e4 gets a weight of |S| = 7. Then U (cy) contains an edge
from the set {e1, ez} and another from {e3, es, eg, €7}, for example, e; and e3. Both edges get a weight of |S| =7,
such that the next 2-coloring c3 gives a set U (c3) containing e> and another edge from {es, e¢, €7}, say es. Once both
edges get a weight of |S| = 7, any 2-coloring ¢ has total weight f(c) >|S|. The pre-filtering algorithm therefore stops
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and returns the set H = {e1, e2, €3, e, e5}. Notice that H contains only one 3-ECS, {ey, e2, e4}, which is of minimum
cardinality.

As another example, consider the graph of Fig. 3 in which the insertion algorithm fails to find the unique minimum
3-ECS (made of the edges of the middle triangle). As for the insertion algorithm, the first 2-coloring c; yields a set
U (cy) that contains all three edges of the minimum 3-ECS. The weight of these three edges is set equal to |S| and
the pre-filtering algorithm then stops with the output H made of these three edges. Hence, in contrast to the insertion
algorithm, the pre-filtering algorithm succeeds in finding the minimum 3-ECS.

3. Neighborhood weight heuristic

Recall that finding a critical subgraph H of a graph G can be used to compute y(G), and that exact coloring
algorithms of exponential complexity are more likely to determine y(H) rather than y(G). Thus, when looking for a
critical subgraph, it is essential to find one having as few vertices and edges as possible. We saw in the previous section
that the hitting set algorithm finds minimum critical subgraphs. Since this algorithm typically requires an exponential
number of iterations, one can instead use the pre-filtering algorithm to isolate small critical subgraphs. This section
proposes yet another heuristic to find small critical subgraphs.

When describing the removal and insertion algorithms, we saw that the choice of which vertex or edge gets removed
from G or gets their weight set to |S| at any iteration determines which critical subgraph is obtained. The heuristic
we now present uses the information contained in the weights of the vertices and edges of G to find smaller critical
subgraphs of G.

Definition. Consider a graph G = (V, E) and a weight function wy that associates a weight wy (v) to each vertex
v € V, and let /"y (v) be the set of vertices adjacent to v. The neighborhood weight Wy (v) of v is defined as

Wy = Y wy@).

veNy(v)

Definition. Consider a graph G =(V, E) and a weight function w that associates a weight wg (e) toeachedge e € E,
and let A" (e) be the set of edges having a common endpoint with e. The neighborhood weight Wg (e) of e is defined
as

Wele)= Y we(e).

e'eNg(e)

Fig. 4 shows examples of neighborhood weights for the vertices (left graph) and edges (right graph) of a graph.
The values on the left graph are obtained using the weights of vertices resulting from two iterations of a 3-VCS detec-
tion using the insertion algorithm, where vertices shown in bold have a weight of |S| = 6 and others 1. Suppose the
third 2-coloration c¢3 produces a set U (c3) containing the topmost vertex of neighborhood weight 12 and another one with

12

2

Fig. 4. Vertex (left) and edge (right) neighborhood weights.
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neighborhood weight 7. The neighborhood weight heuristic favors keeping the vertex v having the greatest value for
Wy (v), such that the topmost vertex would get its weight changed to |S| = 6. Thus, the minimum 3-VCS corresponding
to the three topmost vertices is found.

The graph on the right of Fig. 4 shows the neighborhood weights of the edges after having initialized their weight to
1. Suppose we are detecting 3-ECSs using the removal algorithm, the neighborhood weight heuristic favors the removal
of an edge e having the smallest value for Wg (¢). Hence, the first edge to be removed would be one of the bottom edges
with W (e) = 2. This removal destroys one of the 3-ECSs, such that only the one with minimum cardinality remains.

4. Heuristic coloring algorithms

The algorithms presented in Section 2 guarantee that k-VCSs or k-ECSs are found when the input graph has chromatic
number y(G) >k and Min is an exact algorithm. However, the minimum weighted k-coloring problem and the minimum
partial legal weighted k-coloring problem are both NP-hard, and using exact algorithms for larger instances may
therefore prove to be impractical. This section discusses the implementation of heuristic coloring algorithms which
allow, without any guarantee, to find critical subgraphs of much larger graphs.

Local search has shown to be an efficient strategy when implementing heuristic algorithms for hard optimization
problems like the graph k-coloring problem. In particular, tabu search algorithms [11,12] have produced excellent results
on problems related to the minimum weighted k-coloring and minimum partial legal weighted k-coloring problems.
Accordingly, we now give some details on how to implement such algorithms for critical subgraph detection.

Recall that for the detection of k&-ECSs, the goal of procedure Min is to find a (k — 1)-coloring ¢ such that the sum
fE(c) of the weights of the edges having both vertices with the same color is minimum. The solution space of this
problem is defined as the set of all such colorings, and the cost function is f£. Given a coloring c, a neighbor solution is
obtained by modifying the color of exactly one vertex of an edge in Ug(c). To avoid cycling and escape local minima,
the tabu strategy forbids assigning to a vertex a color this vertex had in the last 7 iterations of the tabu search, unless
this assignment improves the best cost found so far. The parameter 7 is known as the tabu tenure, and its optimal value
varies from one instance to another.

For the detection of k-VCSs, procedure Min has to determine a partial legal (k — 1)-coloring such that the sum fy (c)
of the weights of the non-colored vertices is minimum. The solution space is the set of all such colorings, and the cost
function is fy. Following the strategy proposed by Morgenstern [19], a neighbor solution of a coloring c is obtained by
assigning a color i to a non-colored vertex v, and by removing the color on each vertex v” adjacent to v with c(v') = .
The tabu strategy forbids to color an non-colored vertex with a color that this vertex had in the last 7 iterations, unless
this move improves the best cost found so far.

5. Critical subgraphs detection speed-up

This section presents a technique that can be used to speed up the detection of critical subgraphs when using the
removal, insertion and pre-filtering algorithms.

Consider a graph G, an integer k, a weight function w, and let ¢ be a (k — 1)-coloring produced by Min. Recall that
U (c) can be understood as a minimum hitting set of the k-VCSs or k-ECSs in G. Accordingly, if c is a coloring with
f(c) =1, we know that U (c) contains a single vertex or edge that necessarily belongs to all k&-VCSs or k-ECSs of G.
We can therefore right away set the weight of this vertex or edge to |S|. This technique is very efficient when combined
with a local search coloring algorithm which can evaluate millions of solutions in a single run. Indeed, each time the
local search encounters a solution ¢ with f(c) = 1, one can insert the unique element of U (c) in a initially empty set A.
At the end of the local search, one can assign the weight | S| to each element in A. If a graph contains a unique k-VCS
or k-ECS, then this technique can detect this critical subgraph in a single run of the local search, which takes no more
than a few seconds.

6. A lower bound on the size of minimum critical subgraphs
In some cases, it can be useful to have an indication on the size of minimum critical subgraphs. We have shown in

Section 2.3 that one can stop the hitting set algorithm at any time and use the size of the last hitting set H as a lower
bound on the size of a critical subgraph. This is only true in the case where MinHS finds optimal solutions to the
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NP-hard minimum hitting set problem. We now present another algorithm for computing a lower bound on the size of
critical subgraphs. For proofs regarding this algorithm, we refer once more to [7].

Algorithm 5. Lower bound.

Input: A graph G, integers k and ip,x, and a set S of vertices or edges;
output: A lower bound b.

Initialization
for alls € S do
u(s) < 05
end for
b < 0
i <0
Computation
while i < i« do
for all s € S do
w(s) < [S|HO);
end for
c < Min(G, k—1, w);
for all s € U(c) do
pis) < u(s) +1;
end for
b =max(b, g(u,1));
end while

Given a graph G, an integer k and an integer imax, the lower bound algorithm computes a lower bound on the size of
a k-VCS or k-ECS, using no more than iy iterations. This algorithm uses a function x : § — N that associates to
each vertex or edge s € S the number u(s) of iterations i where this vertex or edge was in the set U (c;). In other words,
u(s) is initially equal to O for all s € S, and at each iteration i, Min returns a coloring ¢; and u(s) is incremented by
one unit for each s € U(c;). A temporary lower bound 4’ is then obtained from a function g defined below.

Definition. Let 51> ... >s5| be an ordering of the elements in S such that u(s1) > ... > u(s|s|). Given an integer i,
g(u, i) is defined as the smallest integer / such that le=1 u(sj) =i,

Finally, since the lower bound &’ given by g can decrease from one iteration to another, the best lower bound b is set
equal to the greatest value between the previous best value b and the new bound &’.

To illustrate the lower bound algorithm, consider once again the graph in Fig. 3, which contains one minimum 3-ECS
that the insertion algorithm fails to detect. Fig. 5 shows the details of the first seven iterations of the algorithm. As
before, the first 2-coloring ¢ has a set U (c1) containing the three edges forming a triangle in the center of the graph.
For those edges e, u(e) is increased to 1, w(e) is set equal to | S|, and since only one of them is required to total i = 1,
the lower bound b is set to 1. The next 2-coloring c; is such that U (c3) contains one of the three middle edges, and four
other edges to cover all the remaining 3-ECSs, as shown in the second graph of Fig. 5. Thus, the leftmost edge e of the
triangle gets p(e) = 2 and since this single value is sufficient to total i = 2, b remains equal to 1. The same happens
for c3, except that the rightmost edge is in U (c3) and that two edges are now required to total i = 3, and thus b = 2.
Next, c4 has all three edges of the triangle with u(e) = 2, and given that only two of those are required to total i = 4,
b remains equal to 2. The fifth and sixth 2-colorings then cause two of the edges of the triangle to have u(e) = 3 such
that b still remains equal to 2. However, for the seventh 2-coloring, three edges are necessary to total i = 7, and the
lower bound b therefore becomes 3. Because b then equals the size of the smallest 3-ECS, all subsequent iterations of
this algorithm would be useless. Hence, imax = 7 is an optimal number of iterations for this particular graph.

There are cases, however, where this algorithm fails to obtain a lower bound equal to the size of a minimum critical
subgraph. For example, consider the graph in Fig. 6 which has a chromatic number of 4. Given the task of finding a
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Fig. 5. Ilustration of the minimum size lower bound algorithm.
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Fig. 6. A graph producing a sub-optimal minimum size lower bound.

lower bound to the minimum 3-VCS, one can verify that the algorithm returns a lower bound of 2, while any triangle
in this graph is a 3-VCS of size 3.

7. Computational experiments

In this section we present some computational experiments related to the algorithms described in the previous
sections. The purpose of these experiments is twofold: to analyze the pros and cons of each algorithm in finding critical
subgraphs, and to evaluate the general benefit of finding critical subgraphs of a graph G for the computation of y(G).

All experiments were carried out on computers having a 1.6 GHz Athlon processor and 512 Mb of RAM.

7.1. Implementation insights

When using heuristic implementations for procedure Min, the removal and insertion algorithms may produce errors.
More precisely, it can happen that, based on the output of Min, vertices or edges are removed from G (i.e., their weight
is set equal to 0) so that a subgraph H is obtained with y(H) < k < y(G). In the case of the insertion algorithm, such
errors can be detected if the output ¢ of Min has value f(c) = 0. One can correct these errors by restoring the weight
of previously removed vertices or edges to 1, until f(c) > 0. There are many ways to choose which removed vertex or
edge to re-insert first. One possibility, based on the fact that the error was probably committed at a recent iteration, is
to re-insert them in the reverse order of their removal. Another possibility is to use the neighborhood weight heuristics
(see Section 3) to select the vertex or edge that is the closest to those of weight |S|, thus trying to generate denser
critical subgraphs. A similar strategy can be implemented to detect errors in the removal algorithm.
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Table 1
Vertex-critical and edge-critical subgraph detection on graph R50.5

Method vCS ECS
V'] |E'| P bk’ V'] |E'| P bk’
Rem+h 382 384.1 0.54 380.4 36.8 3275 0.50 1089.4
Ins+h 37.1 355.7 0.53 348.5 412 344.8 0.42 1295.4
Filter+Ins 36.3 3447 0.54 371.8 419 344.4 0.40 2625.4

When errors are detected and repaired, it may happen that the subgraph H produced by the removal or insertion
algorithm is not critical (especially if the repairing strategy does not re-insert vertices or edges in the reverse order
of their removal). Hence, if desired, one can re-apply the critical subgraph detection algorithm on H, and repeat this
process until no additional vertex or edge can be removed.

7.2. Experimental data

The experiments were carried out on two sets of instances. The first set contains (1, p) random graphs. Given a
positive integer n and a real number p € [0, 1], the corresponding (n, p) random graph is such that |V| = n and
all n(n — 1)/2 ordered pairs of vertices have a probability p of being linked by an edge in E. Parameter p is called
the edge density of the graph. As a convention, we give the name “R(n).(p)” to particular (n, p) random graphs
generated in our experiments. The second set of instances used for the experiments are the DIMACS benchmark
graphs, which come from various sources. For a detailed description of these instances, the reader can refer to [15] or
http://mat.gsia.cmu.edu/COLORO4.

7.3. VCS versus ECS detection

The first experiment aims at comparing VCS and ECS detection on a (50, 0.5) random graph R50.5 that has 590 edges
and a chromatic number of 9. Table 1 shows the results of critical subgraph detection on R50.5 using three algorithms:
the removal algorithm with neighborhood weight heuristic (Rem+h), the insertion algorithm also with neighborhood
weight heuristic (Ins+h), and the pre-filtering algorithm followed by Ins+h (Filter+Ins). For each of these detection
algorithms, 10 k-VCSs and 10 k-ECSs were found for k =9, using different random seeds for Min. The average number
of vertices and edges of these critical subgraphs is shown under the columns labeled |V’| and |E’|, and the resulting
average edge densities under the column labeled p’. The chromatic number of these subgraphs was then obtained using
an exact coloring algorithm based on the one described in [20], after an average number of backtracks shown in the
column labeled btk’.

From these results, we can see that the detection algorithms perform differently on VCSs than on ECSs. For instance,
Filter+Ins produces, on average, the smallest VCSs of the three algorithms, but yields the biggest ECSs. On the other
hand, Rem+h produces, on average, the biggest VCSs of the three algorithms, while smallest ECSs are obtained by
the same algorithm. Differences also emerge between the VCSs and ECSs found by the detection algorithms. While
ECSs have fewer edges than VCSs, VCSs tend to have less vertices. Consequently, the edge density of ECSs is much
less than that of VCSs (0.44 on average for ECSs compared to 0.54 for VCSs). Notice also that the edge density of
VCSs is greater than the expected 0.5. This increase is probably due to the use of the neighborhood weight heuristic
and pre-filtering algorithm that help finding denser subgraphs. A less predictable result is the huge difference in the
number of backtracks required for VCSs and ECSs (367 on average for VCSs compared to 1670 for ECSs). This gap
can mostly be explained by the difference in edge density of the subgraphs. Firstly, VCSs have fewer vertices resulting
in a smaller search space for the exact coloring algorithm. Secondly, the greater number of edges in VCSs results in
more constraints to eliminate illegal colorings from the search space, thus reducing the number of backtracks.

When the goal is to find a lower bound on y(G), we have observed that it is more efficient to search for VCSs than
ECSs. Apart from producing critical subgraphs that are easier for the exact coloring algorithm to solve, VCS detection
requires a lesser number of iterations than ECS detection. In the case of the removal algorithm, the number of iterations
required to find a critical subgraph, which estimates the calculation time complexity, is, in the worst case, equal to | V|
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Table 2
Hitting set algorithm on 0.5 density random graphs

Graph VCS

Vi IE| 1(G) v Iter
15 46 4 4 10.9
20 90 5 5 16.6
25 137 6 9 404
30 211 7 7 222
35 277 7 7 41.7
40 369 8 25 641.5
45 473 9 42 164.8
50 590 9 32 2554.4

for VCS detection, and | E| for ECS detection. For the insertion algorithm, the number of iterations is, in the worst case,
equal to the size of H. For example, VCS detection on R50.5 using Ins+h took, on average, 37 iterations while 345
iterations were required for ECSs detection using the same algorithm. For these reasons, the next experiments focus
on VCS detection.

7.4. VCS detection by hitting set algorithm

The next experiment evaluates the hitting set algorithm. We have generated a (n, 0.5) random graph for each n €
{15, 20, 25, 30, 35, 40, 45, 50}. For each such graph G, we have applied the hitting set algorithm 10 times for the
detection of k-VCSs with k = y(G), each time using different random seeds for Min and MinHS. The values y(G) were
obtained by means of the exact coloring algorithm. Table 2 shows the number of vertices |V | and edges | E| of these
random graphs, and their chromatic number y(G). The column labeled | V| contains the average number of vertices of
the detected k-VCSs, and the column labeled ifer indicates the average number of iterations that this algorithm took
to find the corresponding subgraphs. A tabu search implementation for MinHS was used. Thus, unless the k-VCS is a
clique, we have no guarantee that it is minimum.

The results presented in Table 2 show that the hitting set algorithm found, for all instances, 10 subgraphs having the
same |V’|, which indicates that these critical subgraphs are most probably minimum. Most importantly, these results
reveal that the number of iterations of the hitting set algorithm is, as predicted, exponential on |V |. Notice, however, that
this relation is not strictly increasing, as the number of iterations shortly drops when y(G) increases. This phenomenon
is detailed in an experiment presented later in this paper (see Section 7.6).

7.5. Detection heuristics and lower bounds comparison

The next experiment has two goals. The first goal is to analyze the impact of using the neighborhood weight heuristic
and the pre-filtering algorithm on VCS detection. The second goal is to compare the lower bounds on the size of a VCS
obtained by the hitting set algorithm and by the lower bound algorithm presented in Section 6. Table 3 contains the
results of this experiment. The first four columns of this table contain the name, number of vertices and edges, as well
as the chromatic number of the instances used in the experiment. The next five columns contain the minimum, median
and maximum number of vertices of 10 k-VCSs for k = x(G), found by five detection algorithms, each time using
a different random seed for Min: the removal algorithm without any heuristic (Rem), the removal algorithm with the
neighborhood weight heuristic (Rem-+h), the insertion algorithm without any heuristic (/ns), the insertion algorithm with
the neighborhood weight heuristic (Ins+h), and the pre-filtering algorithm followed by Ins+h (Filter+Ins). Finally, the
last two columns show the minimum, median and maximum number of vertices of the k-VCSs detected for k = y(G) by
the hitting set algorithm (HS) and the minimum, median and maximum values produced by the lower bound algorithm
(LB). For HS, the values preceded by “>” represent lower bounds obtained when stopping the hitting set algorithm
after 3000 iterations.

The results in Table 3 clearly indicate that the removal and insertion algorithms perform better when combined
with the neighborhood weight heuristic. In all but one case (Rem on queen6_6), the smallest VCSs found using the
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Table 3
Detection heuristics impact and lower bounds of vertex-critical subgraph

Graph VCS
Rem Rem—+h Ins Ins+h Filter+Ins HS LB

Name Vi |E| b4 V'l V'l V'l V'l V'l V'] V'l
R50.5 50 590 9 36,41,44 36,38,41 37,41,44 34,37,39 32,36,40 32,32,32 13,13,13
R60.5 60 858 10 48,51,53 44,46,48 49,52,54 45,46,48 43,44,46 > 36 10,10,11
DSIC125.1 125 736 5 10,31,50 10,10,13 68,84,87 10,14,53 11,14,35 > 10 445
queen6_6 36 290 7 25,27,29 26,27,27 27,28,30 24,27,28 22,2427 22,2222 7,1,
queen8_8 64 728 9 57,58,59 54,55,56 56,58,60 54,55,56 53,55,56 > 29 11,11,12
queen9_9 81 2112 10 - 73,74,74 - 73,74,75 73,75,76 - 12,12,13

heuristic have a lesser or equal number of vertices than the ones found without any heuristic. More importantly, the
median number of vertices of VCSs found with the heuristic is strictly smaller for all instances except one (again
Rem on queen6_6), while the biggest VCSs found using the neighborhood weight heuristic have fewer vertices for all
instances. Thus, the neighborhood weight heuristic also reduces the variance in the size of critical subgraphs found. A
good example is DSJC125.1 which contains minimum VCSs of only 10 vertices. The simple removal algorithm found
such minimum subgraphs in 2 out of 10 cases, whereas the same algorithm using the neighborhood weight heuristic
found one in 6 cases. Furthermore, the biggest VCS found using Rem+h has only 13 vertices, compared to 50 for
Rem. Algorithm Filter+Ins seems to perform even better as a heuristic to find smaller VCSs. For the R50.5, R60.5,
queen6_6 and queen8_S8 instances, Filter+Ins finds VCSs containing fewer vertices than those found by any other
detection algorithm. Moreover, for the R50.5 and queen6_6 instances, these subgraphs were shown minimum by the
hitting set algorithm. Considering that Filter+Ins is usually faster than the other detection algorithms, it is probably
the best algorithm to find critical subgraphs.

As for finding lower bounds on the size of minimum VCSs, the last two columns of Table 3 show that HS performs
better than LB. For all instances tested with HS, the lower bounds found had more vertices than those found with LB.
For example, HS found a lower bound of 36 vertices for R60.5, while LB produced a best lower bound of 11 vertices.
Moreover, HS found actual minimum VCSs for R50.5 and queen6_6. In brief, when the size of the instance allows its
use, HS yields better lower bounds than LB.

7.6. VCS detection on random graphs

The next experiment focuses on finding VCSs in random graphs for the computation of their chromatic number.
Because they have no particular structure, (n, p) random graphs are probably the least suitable instances for finding
critical subgraphs. Depending on the edge density p, such graphs can contain critical subgraphs that have almost as
many vertices or edges as the original graph.

Tables 4 and 5 show the results of VCS detection for random graphs of edge density 0.1 and 0.5. We have generated
four different random graphs for each pair (n,0.1) with n € {100, 110, ..., 220}, and for each pair (n, 0.5) with
n € {80,90, 95, 100}. The first four columns contain the number of vertices and edges of the instances, an upper
bound k for y(G), and the number of backtracks required by the exact coloring algorithm to determine y(G). Backtrack
values given without parentheses indicate that we have been able to compute y(G) and, in such a case, we have fixed
k = y(G). However, backtrack values enclosed in parentheses mean that we have not been able to compute y(G) and
we indicate the CPU-time (in seconds) it took for the exact coloring algorithm to exceed the maximum allowed number
of backtracks (250,000,000). In such a case, k can be strictly larger than y(G).

We have applied each algorithm 10 times on each instance, every time using a different random seed for Min. The
other columns of Tables 4 and 5 contain the number of vertices and edges of the smallest k&-VCS obtained by Rem+h,
Ins+h and Filter+Ins for each instance, as well as the number of backtracks required to determine the chromatic
number of these k-VCSs. Once more, backtrack values enclosed in parentheses indicates that the chromatic number
of the corresponding subgraphs could not be determined by the exact coloring algorithm, and can be strictly smaller
than k.
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Table 4
Vertex-critical subgraph detection on 0.1 density random graphs

Graph VCS
Rem+h Ins+h Filter+Ins

4 |E| k btk [V |E| btk V' |E| btk’ V| |E'| btk

100 496 5 92 38 137 109 55 207 271 38 138 122
100 447 5 193 66 263 233 62 234 333 63 242 282
100 499 5 33 38 137 63 44 160 66 42 156 55
100 507 5 135 46 175 105 51 198 151 42 151 237
110 600 5 114 34 119 32 61 244 201 41 151 116
110 555 5 45 36 126 40 50 188 98 36 123 97
110 592 5 131 33 116 58 46 170 330 33 113 30
110 610 5 72 43 162 117 51 188 57 43 157 76
120 715 5 7105 32 113 59 52 199 157 42 156 31
120 669 5 45 21 63 10 38 134 16 33 108 32
120 714 5 1172 31 109 67 50 195 38 36 126 121
120 706 5 186 27 88 71 61 239 693 43 157 102
130 795 5 173,090 31 108 30 42 150 87 35 115 39
130 832 5 62,743 34 120 47 46 171 59 42 154 41
130 828 6 1,519,301 113 712 1,493,884 112 702 1,898,057 113 710 2,094,563
130 843 6 462,073 100 617 415,567 101 617 519,210 99 605 323,833
140 972 6 767,916 99 625 1,551,179 102 637 1,122,434 99 615 970,417
140 936 6 1,130,903 103 640 1,610,227 107 664 1,439,572 104 647 2,775,637
140 988 6 138,308 83 499 137,685 94 569 202,552 88 522 149,205
140 968 6 906,265 105 654 4,436,370 108 681 1,621,338 104 643 3,149,618
150 1103 6 829,224 96 610 1,289,371 99 622 887,587 97 606 1,164,246
150 1098 6 109,821 93 579 247,208 95 581 148,611 93 565 202,147
150 1120 6 79,497 81 481 133,880 87 517 234917 88 531 274,521
150 1128 6 194,667 91 554 115,757 98 606 112,071 98 591 298,509
160 1261 6 187,661 87 539 347,890 103 642 407,695 94 582 520,562
160 1251 6 101,953 83 501 140,258 95 580 126,134 92 561 96,891
160 1274 6 107,938 79 474 71,615 91 536 148,744 83 497 81,926
160 1279 6 199,720 87 529 250,846 103 647 7,955,344 93 564 257,126
170 1430 6 (43,603s) 80 487 168,991 97 597 340,743 89 550 167,544
170 1414 6 8,320,828 80 477 85,597 96 581 490,732 85 500 94,995
170 1460 6 (45,118s) 69 405 7,660 80 470 7367 73 421 10,720
170 1440 6 70,336,660 85 516 193,161 96 581 61,871 93 563 207,389
180 1603 6 (46,199s) 78 467 10,347 102 613 294,620 87 519 44,426
180 1617 7 (44,611s) 158 1386 (41,4915s) 159 1386 (42,298s) 158 1389 (41,474s)
180 1584 7 (45,690s) 168 1471 (45,480s) 168 1467 (45,627s) 168 1467 (45,627s)
180 1639 7 (43,834s) 148 1278 (37,592s) 148 1266 (39,431s) 150 1286 (39,265s)
190 1799 7 (49,624s) 147 1281 (39,683s) 156 1359 (41,245s) 152 1327 (41,473s)
190 1784 7 (47,708s) 152 1327 (41,621s) 157 1352 (43,114s) 154 1337 (41,929s)
190 1826 7 (49,295s) 140 1206 (38,256s) 152 1307 (40,572s) 141 1206 (38,298s)
190 1785 7 (49,653s) 158 1389 (44,149s) 160 1403 (43,280s) 160 1405 (44,872s)
200 2036 7 (50,830s) 139 1220 (46,450s) 147 1291 (46,855s) 148 1281 (45,411s)
200 1941 7 (48,910s) 153 1343 (63,880s) 155 1347 (64,474s) 155 1347 (63,452s)
200 2026 7 (46,2215) 130 1113 (44,259s) 150 1288 (60,526s) 148 1277 (47,730s)
200 1977 7 (47,076s) 146 1278 (46,846s) 147 1281 (47,080s) 152 1324 (48,111s)
210 2221 7 (61,537s) 134 1166 (34,091s) 148 1289 (37,564s) 144 1256 (37,077s)
210 2123 7 (54,287s) 146 1277 (38,301s) 157 1367 (39,882s) 154 1342 (40,706s)
210 2226 7 (64,066s) 129 1109 (33,831s) 143 1213 (35,316s) 136 1161 (35,703s)
210 2175 7 (59,757s) 139 1210 (36,732s) 153 1331 (38,900s) 149 1283 (38,497s)
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Table 4 (contd.)
Graph VCS
Rem+h Ins+h Filter+Ins
4 |E| k btk V'| |E'| btk’ V| |E'| btk’ V| |E'| btk
220 2422 7 (62,081s) 132 1145 (32,986s) 148 1279 (37,429s) 139 1208 (35,358s)
220 2348 7 (59,384s) 137 1188 (34,917s) 149 1290 (37,488s) 148 1281 (36,713s)
220 2435 7 (56,396s) 125 1070 (31,717s) 146 1259 (37,417s) 134 1144 (34,620s)
220 2387 7 (58,6865) 135 1166 (34,208s) 145 1241 (34,873s) 144 1245 (35,1365)
Table 5
Vertex-critical subgraph detection on 0.5 density random graphs
Graph VCS
Rem-+h Ins+h Filter+Ins
4 |E| k btk V' |E'| btk [V'| |E'| btk [V'| |E'| btk
80 1547 12 14,029,599 64 1051 1,285,350 66 1086 3,887,945 63 1007 726,965
80 1528 12 12,860,059 59 911 293,100 60 926 531,284 58 884 429,381
80 1609 13 7,255,750 75 1440 21,670,437 73 1380 6,590,146 72 1343 6,387,828
80 1582 13 58,684,771 75 1425 22,694,200 74 1389 14,340,999 73 1350 20,529,374
90 1924 13 128,822,599 74 1398 17,898,027 75 1402 30,015,939 71 1288 17,201,820
90 1984 13 133,509,732 72 1354 4,320,820 73 1374 7,693,584 72 1334 11,737,502
90 1978 14 (26,310s) 88 1908 (26,010s) 87 1870 (26,268s) 87 1870 (26,253s)
90 2003 14 (26,271s) 86 1858 (25,914s) 84 1783 (25,912s) 84 1783 (26,381s)
95 2223 14 (28,823s) 82 1723 (27,079s) 83 1754 (27,116s) 82 1703 (26,512s)
95 2149 14 (27,836s) 89 1931 (26,961s) 89 1935 (26,994s) 88 1896 (27,510s)
95 2223 14 (28,861s) 83 1777 (27,784s) 88 1906 (26,981s) 84 1797 (27,024s)
95 2208 14 (28,553s) 85 1834 (26,831s) 84 1780 (34,611s) 86 1841 (26,097s)
100 2381 14 (30,027s) 83 1748 (25,375s) 87 1869 (25,959s) 83 1724 (26,025s)
100 2444 14 (30,107s) 81 1690 (26,861s) 85 1828 (25,663s) 82 1711 (25,304s)
100 2469 15 (30,328s) 97 2345 (28,932s) 96 2297 (28,595s) 97 2342 (28,454s)
100 2465 15 (31,121s) 100 2465 (29,744s) 99 2425 (29,499s) 99 2414 (29,335s)

Figs. 7 and 8 were produced using the VCSs obtained by Filter+Ins' . Each curve contains instances for a particular
value of k, and are drawn such that abscissa values are the number of vertices |V| of these instances, and ordinate
values are the minimum, average and maximum reductions of vertices for the corresponding critical subgraphs. Given
a critical subgraph of | V’| vertices, the vertex reduction is calculated as follows:

Vi=1V'l
V]

These figures first show that the vertex reduction decreases as p increases. Thus, the maximum vertex reduction reached
for instances of 100 vertices is 62% when p = 0.1, whereas the maximum reduction for p = 0.5 is only 18%. This
result comes as no surprise, since denser instances tend to have larger critical subgraphs. Furthermore, these figures
reveal two opposite trends when considered separately. On the one hand, the vertex reduction decreases as k increases.
Consider, for example, the reduction values for the curves in Fig. 7. For k = 5, the maximum vertex reduction is 73%,
while this value drops to 57% for k =6, and 39% for k =7. The same goes for the curves in Fig. 8, where the maximum
vertex reduction is 21% for k =13, 18% for k =14, and 3% for k = 15. On the other hand, the vertex reduction increases
with n, for a particular value of k. Consider once more Fig. 7. For k = 5, the maximum vertex reduction increases from

! The VCSs found using Rem+h and Ins+h produce similar curves.
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62%, when n = 100, to a higher 73%, for n = 130. Likewise, for kK = 6 the reduction rises from 24%, for n = 130 to
57% for n = 170. Finally, the same happens for kK = 7, where the reduction increases from 7% to 38% as n varies from
180 to 220.

As an illustration of the detection times, Fig. 9 gives the CPU time required by Filter+Ins to find candidate VCSs for
random graphs of edge density 0.1. Again, each curve represents instances for a particular value of k such that abscissa
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values are the number of vertices | V| of these instances, and ordinate values are the minimum, average and maximum
number of seconds used by Filter+Ins to find the VCSs. We notice that the CPU times increase with k and not with
| V|, showing that the detection time is proportional to the size of the detected VCSs. Furthermore, for k = 7, the curve
shows great variance in the detection times. This is due to the fact that some instances were particularly difficult to
solve with the coloring heuristic Min, and needed a more robust, yet slower, set of parameters to avoid detection errors.

Fig. 10 shows the maximum backtrack reduction for the k-VCSs obtained with a particular value of k. Consider the
backtrack reduction curve for k = 5. For n = 100, the maximum backtrack reduction is —33% (i.e., the number of
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backtracks actually increases). However, the maximum backtrack reduction rises to an excellent 77% for n = 110, and
almost 100% for n = 120 and n = 130. For k = 6, the maximum backtrack reduction starts off at a positive 30% for
n = 130, but then drops to —8% for n = 140 and to —40% for n = 150. Fortunately, the maximum reduction increases
again to a positive 24% for n = 160 and reaches close to 100% for n = 170 and n = 180. These results suggest that
searching for critical subgraphs is especially useful for instances having as many vertices as possible for a particular
1(G).

In most combinatorial problems, there is a very sharp transition between instances that can be solved optimally and
those that cannot. In the case of random graphs of edge density 0.1, the exact coloring algorithm used in this experiment
solved all instances of 160 vertices with less than 200,000 backtracks, while two out of four instances of 170 vertices
were not solved after 250,000,000 backtracks, and none of the instances of 180 vertices were solved within the same
limit. However, these instances are close to the maximum number of vertices for k =6, and are thus excellent candidates
for the critical subgraph detection. In fact, the two instances of 170 vertices that were not solved within limits produced
critical subgraphs that were easily solved in 167,544 and 7367 backtracks, and the one instance of 180 vertices for
k = 6 gave a critical subgraph that was solved in only 10347 backtracks.

As a final observation, the results of this experiment reveal a surprising phenomenon. As the number of vertices
of a given instance is reduced, one can expect the exact coloring algorithm, which has a computational complexity
exponential in the number of vertices, to solve that instance in a lesser or equal number of backtracks. However, Fig.
10 shows that this is not always the case. For example, for instances of 150 vertices, all the critical subgraphs found
increased the number of backtracks instead of reducing it. A more striking example is a critical subgraph found by
Ins+h that reduced the number of vertices from 160 to 103. While the original instance took 199,720 backtracks to
solve, this critical subgraph was solved after as much as 7,955,344 backtracks (3883% increase). This phenomenon,
was previously observed by Herrmann and Hertz in [13].

7.7. VCS detection on benchmarks

The last experiment, which results are presented in Table 6, deals with DIMACS benchmark graphs. The purpose of
this experiment is to find VCSs in these instances in order to compute a lower bound on their chromatic number. The first
four columns in Table 6 contain the names of the instances,? their number of vertices and edges, as well as the number
of backtracks needed by the exact coloring algorithm to determine y(G). Backtrack values enclosed in parentheses
represent the number of backtracks made by the exact coloring algorithm after reaching a 4 h CPU-time limit. In such a
case, no value was obtained for y(G). The next column contains the best known upper bounds k on %(G), gathered from
various publications such as [9]. Values preceded by an asterisk “x” indicate that (G) is known, such that k = y(G).
The following column gives the lower bound & on %(G) used for VCS detection. The following four columns contain
the number of vertices and edges of the smallest k-VCSs found within five attempts using a different random seed for
Min, the CPU-time in seconds needed to find these subgraphs, and the number of backtracks required by the exact
coloring algorithm to determine their chromatic number. Once again, values enclosed in parentheses indicate that this
chromatic number was not determined within the same CPU-time limit, and might be different from k. The next column
has values “Y” if the corresponding detected subgraphs were proven to be critical (see Section 5), and “N” otherwise.
Finally, the last column contains lower bounds on the size of k-VCSs obtained by means of the lower bound algorithm.

To facilitate the presentation of the results in Table 6, we will divide the instances in three categories. The first
category is composed of instances that are probably vertex-critical for y(G). Graphs having myciel, mug or Insertions
in their name fall into this category. Results in Table 6 show that for the twelve instances where k = y(G), we have got a
proof that G is a vertex-critical since V is the output of the detection algorithm. In the eight other cases were k is possibly
strictly smaller than y(G), we have a proof that either k < y(G) or G is vertex-critical. Furthermore, because we used
the speed-up technique in combination with the detection algorithm, these graphs were shown possibly critical after
only a small number of iterations, even for those with a great number of vertices. For example, 3-Insertions_5 which
has 1406 vertices, was shown possibly vertex-critical by Ins+h using the speed-up technique in only 22 iterations.
The speed-up technique is thus highly useful for showing that a given graph is critical. As regards lower bounds on the

2 Names in bold correspond to graphs for which our algorithm determined the previously unknown chromatic number.
3 As many as 1152 vertices of the critical subgraph were found after the first iteration, and 1372 after the second.
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Table 6

Vertex-critical subgraph detection on Color04 graphs

Graph VCS

Name 4 |E| btk k k V'| |E'| cpu btk’ Crit. LB
myciel3 11 20 4 *4 4 11 20 0.1 4 Y 11
myciel4 23 71 106 *5 5 23 71 0.1 106 Y 23
myciel5 47 236 30,998 *6 6 47 236 0.2 30,998 Y 47
myciel6 95 755 (138,446,852) *7 7 95 755 0.4 (138,446,852) Y 95
myciel7 191 2360 (77,223,695) *8 8 191 2630 61.3 (77,223,695) Y 189
mug88_1 88 146 2,204,467 *4 4 88 146 0.1 2,204,467 Y 55
mug88_25 88 146 942,961 *4 4 88 146 0.1 942,961 Y 56
mugl100_1 100 166 1,406,570 *4 4 100 166 0.1 1,406,570 Y 67
mugl100_25 100 166 974,170 *4 4 100 166 0.1 974,170 Y 68
1-Insertions_4 67 232 104,296,036 *5 5 67 232 0.1 104,296,036 Y 67
1-Insertions_5 202 1227 (133,727,661) 6 6 202 1227 0.1 (133,727,661) Y 202
1-Insertions_6 607 6337 (50,929,137) 7 7 607 6337 99.7 (50,929,137) Y 448
2-Insertions_3 37 72 3064 *4 4 37 72 0.1 3064 Y 37
2-Insertions_4 149 541 (154,902,785) 5 5 149 541 0.3 (154,902,785) Y 14
2-Insertions_5 597 3936 (48,458,541) 6 6 597 3936 16.0 (48,458,541) Y 208
3-Insertions_3 56 110 723,616 *4 4 56 110 0.4 723,616 Y 56
3-Insertions_4 281 1046 (95,076,991) 5 5 281 1046 0.8 (95,076,991) Y 220
3-Insertions_5 1406 9695 (13,784,327) 6 6 1406 9695 541.8 (13,784,327) Y 73
4-Insertions_3 79 156 (228,367,528) 4 4 79 156 0.6 (228,367,528) Y 6
4-Insertions_4 475 1795 (70,891,706) 5 5 475 1795 1.5 (70,891,706) Y 232
fpsol2.i.1 496 11,654 (169,107,715) *65 65 65 2080 209.9 0 Y 24
fpsol2.i.2 451 8691 2 *30 30 30 435 20.0 0 Y 24
fpsol2.i.3 425 8688 2 *30 30 30 435 52.5 0 Y 24
inithx.i.1 864 18,707 1 *54 54 54 1431 897.7 0 Y 41
inithx.i.2 645 13,979 (139,157,853) *31 31 31 465 10.2 0 Y 25
inithx.i.3 621 13,969 (141,407,783) *31 31 31 465 14.2 0 Y 25
mulsol.i.1 197 3925 1 *49 49 49 1176 44 0 Y 44
mulsol.i.2 188 3885 6 *31 31 31 465 6.4 0 Y 24
mulsol.i.3 184 3916 6 *31 31 31 465 6.5 0 Y 25
mulsol.i.4 185 3946 (161,605,284) *31 31 31 465 6.8 0 Y 24
mulsol.i.5 186 3973 (161,214,648) *31 31 31 465 6.9 0 Y 28
zeroin.i.1 211 4100 24 *49 49 49 1176 12.3 0 Y 44
zeroin.i.2 211 3541 11,472 *30 30 30 435 11.4 0 Y 27
zeroin.i.3 206 3540 11,472 *30 30 30 435 5.6 0 Y 27
1e450_5a 450 5714 (21,467,721) *5 5 5 10 10.7 0 Y 2
1e450_5b 450 5734 (28,479,480) *5 5 5 10 134 0 Y 2
1e450_5c 450 9803 5 *5 5 5 10 17.8 0 Y 2
1e450_5d 450 9757 5,754,158 *5 5 5 10 16.7 0 Y 2
1e450_15a 450 8168 (54,447,597) *15 15 15 105 10.8 0 Y 7
1e450_15b 450 8169 (49,996,287) *15 15 15 105 6.0 0 Y 7
1e450_15¢ 450 16,680 (40,481,025) *15 15 15 105 44.5 0 Y 3
1e450_15d 450 16,750 (35,180,270) *15 15 15 105 29.3 0 Y 3
1e450_25a 450 8260 14 *25 25 25 300 14.4 0 Y 20
1e450_25b 450 8263 12 *25 25 25 300 13.2 0 Y 19
1e450_25c¢ 450 17,343 (41,188,964) *25 25 25 300 18.2 0 Y 7
1le450_25d 450 17,425 (42,974,825) *25 25 25 300 17.9 0 Y 7
schooll 385 19,095 17 *14 14 14 91 12.5 0 Y 2
schooll_nsh 352 14,612 (59,393,984) *14 14 14 91 30.2 0 Y 2
anna 138 493 8 *11 11 11 55 0.3 0 Y 11
david 87 406 36 *11 11 11 55 0.3 0 Y 11
homer 561 1629 (244,497,375) *13 13 13 78 0.8 0 Y 13



264

C. Desrosiers et al. / Discrete Applied Mathematics 156 (2008) 244—266

Table 6 (contd.)

Graph VCS

Name V| |E| btk k k V| |E'| cpu btk’ Crit. LB
huck 74 301 211,680 *11 11 11 55 0.2 0 Y 11
jean 80 254 8645 *10 10 10 45 14.2 0 Y 10
games120 120 638 (516,246,020) *9 9 9 36 0.4 0 Y 9
miles250 128 387 (136,594,896) *§ 8 8 28 0.2 0 Y 8
miles500 128 1170 8 #20 20 20 190 0.9 0 Y 20
miles750 128 2113 434 #3] 31 31 465 2.1 0 Y 28
miles1000 128 3216 4,583,894 #42 42 42 861 3.0 0 Y 41
miles1500 128 5198 1,692,256 *73 73 73 2628 3.2 0 Y 73
DSJC125.1 125 736 227 *5 5 10 26 0.8 1 Y 4
DSJC125.5 125 3891 (71,844,096) 17 14 70 1341 92.7 37,453,055 N -
DSJC250.1 250 3218 (42,398,413) 8 6 64 362 55.3 2464 N -
DSJC250.5 250 15,668 (32,205,501) 28 14 74 1505 119.2 22,670,005 N -
DSJC500.1 500 12,458 (31,588,256) 12 6 65 369 146.3 6756 N -
DSJR500.1 500 3555 (141,520,342) *12 12 12 66 3.8 0 Y 11
DSJR500.1¢ 500 121,275 (6,401,403) 86 80 84 3477 1421.5 1 N -
DSJR500.5 500 58,862 (73,970,922) 125 90 90 4005 747.2 0 N -
queen5_5 25 160 1 *5 5 5 10 0.5 0 Y 5
queen6_6 36 290 410 *7 7 22 119 1.6 45 Y 7
queen7_7 49 476 2555 *7 7 7 21 0.5 0 Y 5
queen8_8 64 728 597,552 *9 9 54 538 25.2 188,021 N 11
queen8_12 96 1368 (139,081,460) *12 12 12 66 1.9 0 Y 11
queen9_9 81 2112 80,603,809 *10 10 74 897 27.6 135,083,408 N 12
queenl0_10 100 2940 (134,401,345) *11 10 10 45 3.8 0 Y -
queenll_11 121 3960 (116,006,580) *11 11 11 55 2.5 0 Y 6
queenl2_12 144 5192 (101,315,208) *#12 12 12 66 3.5 0 Y -
queenl3_13 169 6656 (90,800,757) *13 13 13 78 2.6 0 Y 6
queenl4_14 196 8372 (83,679,129) *14 14 14 91 6.8 0 Y
queenl5_15 225 10,360 (69,555,352) 16 15 15 105 6.4 0 Y -
queenl6_16 256 12,640 (72,473,005) 17 16 16 120 6.7 0 Y -
ash331GPIA 662 4185 14 *4 4 9 16 3.2 2 Y 2
1-Fulllns_3 30 100 7 *4 4 7 12 0.2 1 Y 7
1-Fulllns_4 93 593 5567 *5 5 15 43 0.5 6 Y 14
1-Fulllns_5 282 3247 (106,523,508) *6 6 31 144 14.6 271 Y 19
2-Fulllns_3 52 201 1850 *5 5 9 22 0.2 1 Y 9
2-Fulllns_4 212 1621 (209,999,176) 6 6 19 75 0.5 8 Y 19
2-Fulllns_5 852 12,201 (91,922,086) 7 7 39 244 26.6 715 Y 31
3-Fulllns_3 80 346 366,830 *6 6 11 35 0.3 1 Y 5
3-Fulllns_4 405 3524 (164,058,937) 7 7 23 116 2.5 10 Y 23
3-Fulllns_5 2030 33,751 (34,366,333) 8 8 47 371 157.2 1675 N -
4-Fulllns_3 114 541 80,247,163 *7 7 13 51 0.4 1 Y 13
4-Fulllns_4 690 6650 (126,559,559) 8 8 27 166 24.6 12 Y 25
5-Fulllns_3 154 792 (448,858,523) *§ 8 15 70 24 1 Y 15

size of VCSs, we found in most cases values close or equal to |V|. For example, we obtained a lower bound equal to

| V| for all but one myciel graphs.

The second category contains the instances which have cliques as minimum k-VCSs, for k = y(G). The graphs anna,
david, homer, huck, jean, as well as those having fpsol2, inithx, mulsol, zeroin, le450, schooll, games120 or miles in
their name are such instances. These instances are interesting because they have the smallest possible critical subgraphs
(i.e., k-VCSs with k vertices) that are therefore easier to detect. Moreover, the chromatic number of a clique is equal to
its number of vertices, such that the exact coloring algorithm is not required at all. From Table 6, we see that cliques
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were found as VCSs for all 39 instances in this category, among which 17 had not been solved by the exact coloring
algorithm. Once more, the lower bound procedure gives good results for instances in this second category.

Finally, the last category is composed of all the instances falling in none of the two first categories. Among those
are the DSJC instances, which are standard (n, p) random graphs used by Aragon et al. in [1]. As mentioned in the
previous experiments, random graphs are generally poor candidates for the detection algorithms because, as opposed
to instances in the second category, they have critical subgraphs of large size. Except for DSJCI25.1, which has a
5-VCS of only 10 vertices, we therefore focused on the search of interesting lower bounds k& < y(G) for these instances.
We thus showed for DSJC125.5 that y(G) > 14, while, to our knowledge, the best known bound for this instance was
13. Additionally, we were able to show that y(G) > 6 for DSJC250.1, that y(G) > 14 for DSJC250.5, that y(G) > 6 for
DSJC500.1, and that y(G) >80 for DSJR500.1c.

The queenN_N graphs are also comprised in this last category of instances. These graphs are particular because
the minimum k-VCSs for k = y(G) are either cliques* or subgraphs containing most of the vertices of the original
instance. Accordingly, we were able to find k-VCSs for k = y(G) when these subgraphs were cliques (i.e., queen5_5,
queen7_7, queenS_12, queenll_11, queenl2_12, queenl3_13 and queenl4_I14). We were also able to compute y(G)
for queen6_6, queen8_8, and queen9_9 after finding k-VCSs that are small enough to be solved by the exact coloring
algorithm. Finally, we only achieved a lower bound of k = N for queenl0_10, queenl5_15 and queenl6_16.

The last set of instances in this category are the Fulllns graphs, which were built by adding extra nodes to critical
graphs. These instances are therefore perfect candidates for critical subgraph detection. To our knowledge, the chromatic
number of all theses instances was known except for 2-Fulllns_4,2-Fulllns_5, 3-Fulllns_4, 3-Fulllns_5 and 4-Fulllns_4
(represented with bold characters). For these five graphs, we were able to raise the best known lower bound to equal the
best known upper bound, thus fixing the chromatic number. We have found, for k = y(G), k-VCSs in all these instances
and could easily compute the chromatic number of these critical subgraphs using an exact coloring algorithm. Notice
that when applied on the original graph, the exact coloring algorithm could only determine the chromatic number of 5
of these instances.

To finish, the bounds obtained for this category of instances are sometimes much lower than the number of vertices
of the critical subgraphs found. Knowing that these instances most probably have large minimum critical subgraphs,
we come to the conclusion that LB gives poor results for this category of instances.

8. Conclusion

We have presented algorithms to find vertex-critical and edge-critical subgraphs of a given graph. We have also
described algorithms to find minimum critical subgraphs, as well as lower bounds on the size of these subgraphs.
In addition, we have shown that such critical subgraphs could be used to find a lower bound on y(G). Furthermore,
because these algorithms need to solve the NP-hard k-coloring problem, we have indicated how heuristic algorithms
for this problem can be used within the detection algorithms. Finally, we have presented various strategies to accelerate
the detection algorithms, to find smaller critical subgraphs, and to correct errors that may occur because of the use of
heuristic algorithms.

Experiments were carried out on different types of instances to evaluate the detection algorithms and to find lower
bounds on the chromatic number. Those experiments have shown that some detection algorithms are more efficient
than others. For example, we saw that the pre-filtering algorithm significantly reduces the number of iterations for the
detection algorithms, and serves as a good heuristic to find small critical subgraphs. Furthermore, these experiments
made it possible to identify on which instances the detection algorithms perform best. Using these results, we were able
to improve known lower bounds on x(G) for some benchmark instances, and even to compute the chromatic number
of five benchmark instances for which only bounds were known.
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