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We obtain a comprehensive description on the overall geometri-
cal and dynamical structures of homoclinic tangles in periodically
perturbed second-order ordinary differential equations with dissi-
pation. Let μ be the size of perturbation and Λμ be the entire ho-
moclinic tangle. We prove in particular that (i) for infinitely many
disjoint open sets of μ, Λμ contains nothing else but a horseshoe of
infinitely many branches; (ii) for infinitely many disjoint open sets
of μ, Λμ contains nothing else but one sink and one horseshoe of
infinitely many branches; and (iii) there are positive measure sets
of μ so that Λμ admits strange attractors with Sinai–Ruelle–Bowen
measure. We also use the equation

d2q

dt2
+ (

λ − γ q2)dq

dt
− q + q2 = μq2 sinωt

to illustrate how to apply our theory to the analysis and to the nu-
merical simulations of a given equation.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The chaos theory has been built around the following two themes:

(1) to develop mathematical theories that help us to understand and to describe the complicated
dynamics of non-linear systems;

(2) to apply these theories to the analysis of given differential equations coming from the real world.
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Concerning theme (1), there have been spectacular developments and the vast literature on this sub-
ject dates back to Poincaré [26] and Birkhoff [4]. Here we list a few theories that are closely related
to the studies of this paper: The theory of Smale’s horseshoes and homoclinic tangles [38,39,1,22];
the Newhouse theory on homoclinic tangency [25,29,16,17,20]; the theory of SRB measures [37,6,31,
46], and the theory of Hénon-like and rank one attractors [5,24,7,43,44]. There have also been a large
body of work from Shilnikov’s school [40,41,3,32–36] and Hale’s school [10,9] concerning chaos and
homoclinic bifurcations in ordinary differential equations.

The study of homoclinic tangles formed by periodically perturbed homoclinic solutions goes back
to Poincaré [26] and Birkhoff [4]. The construction of horseshoes of two branches in homoclinic
tangles is due to Smale [38,39]. After Smale’s work, there has been an extensive literature on pe-
riodically perturbed second-order differential equations arising in applications. The main objective of
these studies is to prove the existence of horseshoes in differential equations through Smale’s con-
struction (see, for example, [15,18,27,28] and the references therein). For this purpose it suffices to
explicitly compute the Melnikov function and to verify that this function has a simple zero.

The purpose of this paper is to systematically develop a way of applying, rigorously, the dynamics
theories on non-uniformly hyperbolic maps to the analysis of homoclinic tangles in time-periodic dif-
ferential equations coming from applications. It resembles the previous development of the Melnikov
method for the rigorous proof of the existence of Smale’s horseshoe in periodically and almost-
periodically perturbed equations [21,18,27,23,19]. Though the majority of our results are new as far
as theme (1) is concerned, the overall purpose of this paper falls into theme (2). It is an attempt to
bridge the gap between the theory on maps and the analysis of homoclinic tangles in given ordinary
differential equations.

We start with an autonomous second-order ordinary differential equation that contains a non-
resonant, dissipative saddle fixed point with a homoclinic solution. This autonomous equation is then
subjected to time-periodic perturbations. The homoclinic solution becomes a homoclinic loop for the
time-T map of the unperturbed equation and this homoclinic loop can be broken into two intersect-
ing curves by a small perturbation, creating a homoclinic tangle. In this case there exists a maximal
invariant set in the neighborhood of the unperturbed loop, which we denote as Λ.

Λ is the object of study and the ultimate goal is to completely understand the geometric and
dynamic structure of the entire homoclinic tangle Λ. Smale [38,39] constructed a horseshoe of two
branches, which is an invariant subset of Λ. Conley and Moser constructed a horseshoe of infinitely
many branches, which is also an invariant subset of Λ nearby a transversal homoclinic point [22]. If
inside of Λ there is a point of transversal non-degenerate homoclinic tangency, then there could be
Newhouse sinks or SRB measures supported on an invariant subset of Λ nearby the point of tangency.

In this paper, we derive a return map in the extended phase space that catches dynamical activities
of all solutions staying in the neighborhood of the unperturbed homoclinic loop in the extended phase
space (see the Main Theorem in Section 2), and through the maps derived, we give a comprehensive
description on the overall geometrical and dynamical structures of the associated homoclinic tangles
(see Sections 4.1 and 4.3). In particular, we prove that, let μ be the size of perturbation,

(i) for infinitely many disjoint open sets of μ, Λμ contains nothing else but a horseshoe of infinitely
many branches (Theorem 1 in Section 4.2);

(ii) for infinitely many disjoint open sets of μ, Λμ contains nothing else but one sink and one horse-
shoe of infinitely many branches (Theorem 2 in Section 4.2); and

(iii) we also prove, rigorously, that there are infinitely many values of μ, for which the unstable
manifold of a periodic saddle in Smale’s horseshoe and the stable manifold of the same saddle
form non-degenerate, transversal homoclinic tangency in Λμ (Theorem 3 in Section 4.2).

For the parameters of (i) and (ii), we now understand completely the structure of the entire ho-
moclinic tangle Λ. As for (iii): it is the first time that the Newhouse theory and the theory of
Sinai–Ruelle–Bowen measures are rigorously applied to the analysis of homoclinic tangles in given
differential equations (see Corollary 4.1).
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Our theory is then applied to the analysis of a periodically perturbed equation. We start with a 2D
autonomous equation

d2q

dt2
− q + q2 = 0. (1.1)

We add a term of dissipation and a term of non-linear damping to (1.1) to form a new autonomous
equation

d2q

dt2
+ (

λ − γ q2)dq

dt
− q + q2 = 0 (1.2)

where λ,γ > 0 are parameters. Denote p = dq
dt . (q, p) = (0,0) is now a dissipative saddle. Let λ =

λ0 > 0. Then for λ0 sufficiently small there exists a γ0 > 0 uniquely determined by λ0, so that (q, p) =
(0,0) admits a homoclinic saddle connection. To Eq. (1.2) we now add a time-periodic forcing to
obtain a new equation

d2q

dt2
+ (

λ0 − γ0q2)dq

dt
− q + q2 = μq2 sinωt (1.3)

where μ is a parameter representing the magnitude of the forcing and ω is the forcing frequency.
We prove that our descriptions on the overall dynamics of the homoclinic tangles, in particular, the
(i)–(iii) above, apply to Eq. (1.3) (Sections 5.1 and 5.2). We also use Eq. (1.3) to illustrate how to sys-
tematically explore and to explain, by using the theory of this paper, the various dynamical scenarios
observed in numerical simulations of a periodically perturbed homoclinic solution (Sections 5.3–5.5).

The idea of using the return maps induced by the solutions around the unperturbed homoclinic
loop in extended phase space goes back to Afraimovich and Shilnikov [3], see also [2]. The same
constructions are used in the studies of homoclinic bifurcations in autonomously perturbed equations
[33,34,36,14,8] including the studies of Shilnikov’s attractor [35,13]. Similar maps are also used in
the study of the Arnold diffusion in Hamiltonian equations (see [30] and the long list of references
therein).

2. Return map in extended phase space

2.1. Equations of study

Let (x, y) ∈ R2 be the phase variables and t be the time. We start with an autonomous differential
equation

dx

dt
= −αx + f (x, y),

dy

dt
= β y + g(x, y) (2.1)

where f (x, y), g(x, y) are defined on an open domain V ⊂ R2 satisfying f (0,0) = g(0,0) =
∂x f (0,0) = ∂y f (0,0) = ∂x g(0,0) = ∂y g(0,0) = 0. We assume that f (x, y), g(x, y) are Cr on V for
some r � 3 and are real-analytic at (x, y) = (0,0). We also assume that (0,0) is a non-resonant, dissi-
pative saddle point. To be more precise we assume

(H1) (i) there exist d1,d2 > 0 so that for all n,m ∈ Z+ ,

|nα − mβ| > d1
(|n| + |m|)−d2 ;

(ii) 0 < β < α.
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Fig. 1. Uε , D and σ± .

(H1)(i) is a Diophantine non-resonance condition on α and β . (H1)(ii) claims that the saddle point
(0,0) is dissipative. Let us also assume that the positive x-side of the local stable manifold and the
positive y-side of the local unstable manifold of (0,0) are included as part of a homoclinic solution,
which we denote as

� = {
�(t) = (

a(t),b(t)
) ∈ V, t ∈ R

}
.

Let P (x, y, t), Q (x, y, t) : V × R → R be Cr functions for some r � 3. We assume that P (x, y, t) =
P (x, y, t + T ), Q (x, y, t) = Q (x, y, t + T ) for a constant T > 0. To the right of Eq. (2.1) we add forcing
terms to form a non-autonomous equation

dx

dt
= −αx + f (x, y) + μP (x, y, t),

dy

dt
= β y + g(x, y) + μQ (x, y, t). (2.2)

We also assume that P (x, y, t), Q (x, y, t) are real-analytic, high order terms at (x, y) = (0,0). This is
to say that P (0,0, t) = Q (0,0, t) = 0, ∂x P (0,0, t) = ∂y P (0,0, t) = ∂x Q (0,0, t) = ∂y Q (0,0, t) = 0. We
regard α,β , f (x, y), g(x, y), P (x, y, t), Q (x, y, t) as fixed. μ is the forcing parameter.

2.2. The return map

We study the solutions of Eq. (2.2) in the surroundings of the homoclinic loop � in the original
phase space (x, y), which we divide into a small neighborhood Uε of (0,0) and a small neighborhood
D around � out of U 1

4 ε . See Fig. 1. Let σ± ∈ Uε ∩ D be the two line segments depicted in Fig. 1, both

perpendicular to the homoclinic solution. We use an angular variable θ ∈ S1 to represent the time. In
the extended phase space (x, y, θ) we denote

Uε = Uε × S1, D = D × S1

and let

Σ± = σ± × S1.

Let N :Σ+ → Σ− be the maps induced by the solutions on Uε and M : Σ− → Σ+ be the maps
induced by the solutions on D. See Fig. 2. We follow the steps of [42] in deriving the return maps.
We first compute M and N separately, then compose N and M to obtain an explicit formula for
the return map R = N ◦ M :Σ− → Σ− .
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Fig. 2. N and M.

2.3. The Main Theorem

From this point on all functions are regarded as functions in phase variables, time t and the pa-
rameter μ. Let X , Y be such that

x = X + P(X, Y ) + μP̃(X, Y , t;μ),

y = Y + Q(X, Y ) + μQ̃(X, Y , t;μ) (2.3)

where P,Q, P̃, Q̃ as functions of X and Y are real-analytic on |(X, Y )| < 2ε, and the values of these
functions and their first derivatives with respect to X and Y at (X, Y ) = (0,0) are all zero. As is
explicitly indicated in (2.3), P and Q are independent of t and μ. We also assume that

P̃(X, Y , t + T ;μ) = P̃(X, Y , t;μ), Q̃(X, Y , t + T ;μ) = Q̃(X, Y , t;μ)

are periodic of period T in t and they are also real-analytic with respect to t and μ for all t ∈ R and
|μ| < μ0 for some μ0 > 0 sufficiently small. (2.3) defines a non-autonomous, near identity coordinate
transformation from x, y to (X, Y ). First we have

Proposition 2.1. Assume that α and β satisfy the Diophantine non-resonance condition (H1)(i). Then there
exists a small neighborhood Uε of (0,0), the size of which is completely determined by Eq. (2.1) and d1 , d2
in (H1)(i), such that there exists an analytic coordinate transformation in the form of (2.3) that transforms
Eq. (2.2) into

dX

dt
= −αX,

dY

dt
= βY .

Moreover, the Cr -norms of P,Q, P̃, Q̃ as functions of X, Y , t,μ are all uniformly bounded from above by a
constant K that is independent of both ε and μ on (X, Y ) ∈ Uε , t ∈ R and |μ| < μ0 .

Proof. This is a standard linearization result. See for instance [11] for a proof. �
Let ω = 2π T −1 be the forcing frequency and θ = ωt be the extended phase variable for t . In the

extended phase space (X, Y , θ) we define Σ± by letting

Σ− = {
(X, Y , θ): Y = ε, |X | < μ, θ ∈ S1}

and

Σ+ = {
(X, Y , θ): X = ε, |Y | < K1(ε)μ, θ ∈ S1}

where K1(ε) > 1 is a constant depending on ε.
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Two small scales. μ � ε � 1 represents two small scales of different magnitude. 2ε represents the
size of a small neighborhood of (x, y) = (0,0), where the linearization above is valid. Let L+ , −L− be
the respective times at which the homoclinic solution �(t) enters Uε in the positive and the negative
time directions, respectively. L+ and L− are related, both determined completely by ε and �(t). The
parameter μ � ε controls the magnitude of the time-dependent perturbation.

Notations. 1. (Generic constant) Quantities that are independent of the phase variables, time and μ
are regarded as constants and K is used to denote a generic constant, the precise value of which is
allowed to change from line to line. We will also make distinctions between constants that depend
on ε and those that do not by making such dependencies explicit. A constant that depends on ε is
written as K (ε). A constant written as K is independent of ε.

2. (The O-terms) The intended formula for the return maps would inevitably contain terms that
are explicit and terms that are implicit. Implicit terms are usually “error” terms, and the usefulness of
a derived formula would depend completely on how well the error terms are controlled. In the rest
of this paper r � 3 is reserved for an integer arbitrarily fixed, and we aim at Cr -control on all error
terms. We adopt the following conventions indicating controls on magnitude. For a given constant,
we write O(1), O(ε) or O(μ) to indicate that the magnitude of this constant is bounded by K , Kε
or K (ε)μ, respectively. For a function of a set V of variables, we write OV (1), OV (ε) or OV (μ) to
indicate that the Cr -norm of the function on a specified domain is bounded by K , Kε or K (ε)μ,
respectively. We chose to specify the domain in the surrounding text rather than explicitly involving
it in this notation. For example, O Z ,θ (μ) represents a function of Z , θ , the Cr -norm of which is
bounded by K (ε)μ on a domain specified in the proceeding text.

3. (The new parameter p = lnμ−1) We also need to estimate derivatives with respect to parameter
but simply regarding μ as the parameter would lead to trouble, for taking derivative with respect to
μ would create new non-perturbational terms in variational equations. To deal with this problem we
let p = lnμ−1 and regard p, not μ, as a bottom-line parameter. In other words, we regard μ as a
shorthand for e−p , and all functions in μ as functions in p. Observe that μ ∈ (0,μ0) corresponds to
p ∈ (lnμ−1

0 ,+∞). By regarding a function F (μ) of μ as a function of p, we have

∂p F (μ) = −μ∂μF (μ),

and this allows us to keep copies of μ that would be otherwise lost.
We introduce a function, which we call the Melnikov function for Eq. (2.2), as follows: Let

(
u(t), v(t)

) =
∣∣∣∣ d

dt
�(t)

∣∣∣∣
−1 d

dt
�(t)

be the unit tangent vector of � at �(t), and let

E(t) = v2(t)
(−α + ∂x f

(
a(t),b(t)

)) + u2(t)
(
β + ∂y g

(
a(t),b(t)

))
− u(t)v(t)

(
∂y f

(
a(t),b(t)

) + ∂x g
(
a(t),b(t)

))
. (2.4)

The quantity E(t) measures the rate of expansion of the solutions of Eq. (2.1) in the direction normal
to � at �(t). The Melnikov function W (θ) for Eq. (2.2) is defined as

W(θ) =
∞∫

−∞

(
v(s)P

(
a(s),b(s), s + ω−1θ

) − u(s)Q
(
a(s),b(s), s + ω−1θ

))
e− ∫ s

0 E(τ )dτ ds. (2.5)

Observe that E(t) → β as t → +∞ and E(t) → −α as t → −∞. W (θ) is well defined and it measures
the distances between the stable manifold W s and the unstable manifold W u of the solution (x, y) =
(0,0) in the extended phase space.
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Let

X = μ−1 X, Y = μ−1Y .

Recall that L+,−L− are the respective times at which the homoclinic solution �(t) enters Uε in the
positive and the negative time directions. We obtain WL(θ) by replacing the integral bounds +∞,−∞
in W (θ) with L+,−L− respectively. This is to say that

WL(θ) =
L+∫

−L−

(
v(s)P

(
a(s),b(s), s + ω−1θ

) − u(s)Q
(
a(s),b(s), s + ω−1θ

))
e− ∫ s

0 E(τ )dτ ds. (2.6)

We also denote

P L = e
∫ L+
−L− E(s)ds, P+

L = e
∫ L+

0 E(s)ds. (2.7)

Main Theorem (Formula for R). Let (θ,X) ∈ Σ− , and (θ1,X1) = R(θ,X). We have

θ1 = θ + a − ω

β
ln F(θ,X,μ) + Oθ,X,p(μ),

X1 = b
[
F(θ,X,μ)

] α
β (2.8)

where

a = ω

β
lnμ−1 + ω

(
L+ + L−) + ω

β
ln

(
ε
(
1 + O(ε)

)
P+

L

)
,

b = (
με−1) α

β
−1[(

1 + O(ε)
)

P+
L

] α
β (2.9)

are constants and

F(θ,X,μ) = W(θ) + kX + E(θ,μ) + Oθ,X,p(μ) (2.10)

is a function of (θ,X,μ) where W (θ) is as in (2.5),

k = P L
(

P+
L

)−1(
1 + O(ε)

)
(2.11)

and

E(θ,μ) = (
P+

L

)−1
(1 + P L)Oθ,p(1) + WL(θ) − W(θ). (2.12)

Remarks. As we will see momentarily (Lemma 3.1), it holds by definition that

P L ∼ ε
α
β

− β
α � 1, P+

L ∼ ε− β
α � 1.

We have the following for a,b,k and E(θ,μ):

(i) a ≈ ω
β

lnμ−1. a → +∞ as μ → 0. We also observe that a ∼ lnμ−1. So concerning the parameter
for R, using a is as good as using p in the Main Theorem. For μ ∈ (0,μ0), a ∈ (a0,+∞) for some
a0 corresponding to μ0.
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(ii) b ∼ μ
α
β

−1. b → 0 as μ → 0 by (H1)(ii). Following [43] and [44], we call the 1D family

f (θ) = θ + a − ω

β
ln

(
W(θ) + E(θ,0)

)
the 1D singular limit for the 2D return map R.

(iii) k ∼ ε
α
β . Since k � μ, the first derivative of F(θ,X,μ) with respect to X is approximately k and

the unfolding from f (θ) to R in X-direction is determined mainly by the linear term kX.

(iv) E(θ,μ) ∼ ε
β
α Oθ,p(1). When ε is sufficiently small, E(θ,μ) is a Cr -small perturbation to W (θ).

3. Proof of the Main Theorem

3.1. A standard form around homoclinic loop

In this subsection we derive a standard form for Eq. (2.2) around the homoclinic loop of Eq. (2.1)
outside of U 1

2 ε .

Let us regard t in �(t) = (a(t),b(t)) not as time, but as a parameter that parameterizes the curve �

in (x, y)-space. We replace t by s to write the homoclinic loop as �(s) = (a(s),b(s)). We have

da(s)

ds
= −αa(s) + f

(
a(s),b(s)

)
,

db(s)

ds
= βb(s) + g

(
a(s),b(s)

)
. (3.1)

By definition,

u(s) = −αa(s) + f (a(s),b(s))√
(−αa(s) + f (a(s),b(s)))2 + (βb(s) + g(a(s),b(s)))2

,

v(s) = βb(s) + g(a(s),b(s))√
(−αa(s) + f (a(s),b(s)))2 + (βb(s) + g(a(s),b(s)))2

. (3.2)

Let

e(s) = (
v(s),−u(s)

)
.

We now introduce new variables (s, z) such that

(x, y) = �(s) + ze(s).

This is to say that

x = x(s, z) := a(s) + v(s)z, y = y(s, z) := b(s) − u(s)z. (3.3)

We derive the equations for (2.2) in the new variables (s, z) defined through (3.3). Differentiating
(3.3) we obtain

dx

dt
= (−αa(s) + f

(
a(s),b(s)

) + v ′(s)z
)ds

dt
+ v(s)

dz

dt
,

dy

dt
= (

βb(s) + g
(
a(s),b(s)

) − u′(s)z
)ds

dt
− u(s)

dz

dt
(3.4)

where u′(s) = du(s)
ds , v ′(s) = dv(s)

ds . Let us denote
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F (s, z) = −α
(
a(s) + zv(s)

) + f
(
a(s) + zv(s),b(s) − zu(s)

)
,

G(s, z) = β
(
b(s) − zu(s)

) + g
(
a(s) + zv(s),b(s) − zu(s)

)
,

P (s, z, t) = P
(
a(s) + zv(s),b(s) − zu(s), t

)
,

Q (s, z, t) = Q
(
a(s) + zv(s),b(s) − zu(s), t

)
.

By using Eq. (2.2), we obtain from Eq. (3.4) the new equations for s, z as

ds

dt
= u(s)F (s, z) + v(s)G(s, z) + μ(u(s)P (s, z, t) + v(s)Q (s, z, t))√

F (s,0)2 + G(s,0)2 + z(u(s)v ′(s) − v(s)u′(s))
,

dz

dt
= v(s)F (s, z) − u(s)G(s, z) + μ

(
v(s)P (s, z, t) − u(s)Q (s, z, t)

)
.

We re-write these equations as

ds

dt
= 1 + zw1(s, z, t) + μ(u(s)P (s, z, t) + v(s)Q (s, z, t))√

F (s,0)2 + G(s,0)2
,

dz

dt
= E(s)z + z2 w2(s, z) + μ

(
v(s)P (s, z, t) − u(s)Q (s, z, t)

)
(3.5)

where

E(s) = v2(s)
(−α + ∂x f

(
a(s),b(s)

)) + u2(s)
(
β + ∂y g

(
a(s),b(s)

))
− u(s)v(s)

(
∂y f

(
a(s),b(s)

) + ∂x g
(
a(s),b(s)

))
.

Also in the rest of this section we let K0(ε) be a given constant independent of μ and regard Eq. (3.5)
as being defined on {

s ∈ [−2L−,2L+]
, t ∈ R, |z| < K0(ε)μ

}
.

The Cr -norms of w1(s, z, t) and w2(s, z) are bounded above by a constant K (ε).
Finally we re-scale the variable z by letting

Z = μ−1z. (3.6)

We arrive at the following equations

ds

dt
= 1 + μw̃1(s, Z , t),

dZ

dt
= E(s)Z + μw̃2(s, Z , t) + (

v(s)P (s,0, t) − u(s)Q (s,0, t)
)

(3.7)

where (s, Z , t) is defined on

D = {
(s, Z , t): s ∈ [−2L−,2L+]

, |Z | � K0(ε), t ∈ R
}
.

Here we assume that μ is sufficiently small so that

μ � min
s∈[−2L−,2L+]

(
F (s,0)2 + G(s,0)2).
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Again, the Cr -norms of the functions w̃1, w̃2 are uniformly bounded by a constant K (ε) on D.
Eq. (3.7) is the one we need. Note that

P (s,0, t) = P
(
a(s),b(s), t

)
, Q (s,0, t) = Q

(
a(s),b(s), t

)
.

3.2. Poincaré sections Σ±

Recall that Σ± are defined by letting

Σ− = {
(X, Y , θ): Y = ε, |X | < μ, θ ∈ S1}

and

Σ+ = {
(X, Y , θ): X = ε, |Y | < K1(ε)μ, θ ∈ S1}

where (X, Y ) is as in (2.3). K1(ε) will be precisely defined momentarily.
Let q ∈ Σ+ or Σ− . We can also use (s, Z , θ)-coordinate to represent q, for which the defining

equations for Σ± are not as direct. To compute the return maps, we need to first attend two issues
that are technical in nature. First, we need to derive the defining equations for Σ± for (s, Z , θ).
Second, we need to be able to change coordinates from (X, Y , θ) to (s, Z , θ) and vice versa on Σ± . In
what follows

X = μ−1 X, Y = μ−1Y .

Proposition 3.1. Coordinate conversions on Σ± are as follows:

(a) On Σ+ , (i) s = L+ + O Z ,θ,p(μ), (ii) Y = (1 + O(ε))Z + Oθ,p(1) + O Z ,θ,p(μ).
(b) On Σ− , (i) s = −L− + O Z ,θ,p(μ), (ii) Z = (1 + O(ε))X + Oθ,p(1) + OX,θ,p(μ).

The proof of Proposition 3.1 is postponed to Section 3.5.

3.3. The map M :Σ− → Σ+

First we prove

Lemma 3.1.

P L ∼ ε
α
β

− β
α � 1, P+

L ∼ ε− β
α � 1.

Proof. By the definition of L± we have

ε ∼ e−αL+ ∼ e−βL−
.

We also have

P L ∼ eβL+−αL−
, P+

L ∼ eβL+
.

Lemma 3.1 follows directly from these estimates. �
Recall that θ = ωt . For q = (s−, Z , θ0) ∈ Σ− , the value of s− is uniquely determined by that of

(Z , θ0) through Proposition 3.1(b)(i). So we can use (Z , θ0) for q. Let (s(t), Z(t)) be the solution of
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Eq. (3.7) initiated from (s−, Z) at t0 := ω−1θ0, and t̂ be the time (s(t̂), Z(t̂)) hits Σ+ . In what follows
we write

s+ = s(t̂), Ẑ = Z(t̂).

Proposition 3.2. Denote ( Ẑ , θ̂ ) = M(Z , θ0). We have

Ẑ = P+
L WL

(
θ0 + ωL−) + P L Z + O Z ,θ0,p(μ),

θ̂ = θ0 + ω
(
L+ + L−) + O Z ,θ0,p(μ). (3.8)

Proof. We re-write Eq. (3.7) as

dZ

ds
= E(s)Z + (

v(s)P
(
a(s),b(s), t

) − u(s)Q
(
a(s),b(s), t

)) + Os,Z ,t,p(μ),

dt

ds
= 1 + Os,Z ,t,p(μ) (3.9)

on D × (0,μ0) where

D = {
(s, Z , t): s ∈ [−2L−,2L+]

, |Z | < K1(ε), t ∈ R
}
.

From the second item of (3.9) we obtain

t = t0 + s + L− + Os,Z ,t0,p(μ),

from which the claim on θ̂ follows. Substituting it into the first item of (3.9) we obtain

dZ

ds
= E(s)Z + (

v(s)P
(
a(s),b(s), t0 + s + L−) − u(s)Q

(
a(s),b(s), t0 + s + L−)) + Os,Z ,t0,p(μ),

from which it follows that

Ẑ = P L
(

Z + ΦL(t0)
) + O Z ,t0,p(μ)

where P L is as in (2.7) and

ΦL(t) =
L+∫

−L−

(
v(s)P

(
a(s),b(s), t + s + L−) − u(s)Q

(
a(s),b(s), t + s + L−)) · e− ∫ s

−L− E(τ )dτ ds.

(3.10)

We also observe that

P LΦL(t) = P+
L · WL

(
θ + ωL−)

.

This proves the line for Ẑ .
Let

K1(ε) = max
t∈R, s∈[−2L−,2L+]

P s · (2 + ∣∣Φs(t)
∣∣) (3.11)

where P s and Φs are obtained by replacing L+ with s in P L and ΦL respectively. K1(ε) is the one we
use for D and Σ+ . Solutions of (3.9) initiated on Σ− will stay inside of D before hitting Σ+ . �
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3.4. Proof of the Main Theorem

First we compute N :Σ+ → Σ− . For (X,Y, θ) ∈ Σ+ we have X = εμ−1. Similarly, for (X,Y, θ) ∈
Σ− we have Y = εμ−1. Denote a point on Σ+ by using (Y, θ) and a point on Σ− by using (X, θ).
For (Y, θ) ∈ Σ+ , let

(X̃, θ̃ ) = N (Y, θ).

Proposition 3.3. We have for (Y, θ) ∈ Σ+ ,

X̃ = (
με−1) α

β
−1

Y
α
β ,

θ̃ = θ + ω

β
ln

(
εμ−1) − ω

β
ln Y. (3.12)

Proof. Let T be the time it takes for the solution of the linear equation of Proposition 2.1 from
(ε, Y , θ) ∈ Σ+ to get to ( X̃, ε, θ̃ ) ∈ Σ− . We have

X̃ = εe−αT, ε = Y eβT, θ̃ = θ + ωT,

from which (3.12) follows. �
We are now ready to compute the return map R = N ◦ M : Σ− → Σ− . We use (X, θ) to represent

a point on Σ− and denote (X̃, θ̃ ) = R(X, θ). By using Propositions 3.2 and 3.1(b)(ii), we have

Ẑ = P L
(
1 + O(ε)

)
X + P+

L WL
(
θ + ωL−) + P L Oθ,p(1) + OX,θ,p(μ),

θ̂ = θ + ω
(
L+ + L−) + OX,θ,p(μ).

Let Ŷ be the Y-coordinate for ( Ẑ , θ̂ ), we have from Proposition 3.1(a)(ii),

Ŷ = (
1 + O(ε)

)
P+

L F(θ,X,μ) (3.13)

where

F(θ,X,μ) = WL
(
θ + ωL−) + P L

(
P+

L

)−1(
1 + O(ε)

)
X

+ (
P+

L

)−1
(1 + P L)Oθ,p(1) + OX,θ,p(μ). (3.14)

We then obtain (2.8) by using (3.12). Note that we also shifted the angular variable θ by −ωL− to
change W (θ + ωL−) to W (θ) for F(θ,X,μ) in (2.10).

3.5. Proof of Proposition 3.1

In this subsection we prove Proposition 3.1. We start with the defining equations for Σ+ in
(s, Z , θ).

Lemma 3.2. We have for (s, Z , θ) ∈ Σ+ ,

s = L+ + O Z ,θ,p(μ).
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Proof. We have on Σ+ ,

a(s) + v(s)z = ε + P(ε, Y ) + μP̃
(
ε, Y ,ω−1θ

)
,

b(s) − u(s)z = Y + Q(ε, Y ) + μQ̃
(
ε, Y ,ω−1θ

)
. (3.15)

By the definition

a
(
L+) = ε + P(ε,0),

b
(
L+) = Q(ε,0). (3.16)

Let

W1 = a(s) − a
(
L+) + v(s)z − μP̃

(
ε,0,ω−1θ

)
,

W2 = b(s) − b
(
L+) − u(s)z − μQ̃

(
ε,0,ω−1θ

)
. (3.17)

We have from (3.15) and (3.16),

W1 = P(ε, Y ) − P(ε,0) + μ
(
P̃
(
ε, Y ,ω−1θ

) − P̃
(
ε,0,ω−1θ

))
,

W2 = Y + Q(ε, Y ) − Q(ε,0) + μ
(
Q̃

(
ε, Y ,ω−1θ

) − Q̃
(
ε,0,ω−1θ

))
which we re-write as

W1 = (
O(ε) + μOθ,p(1)

)
Y + OY ,θ,p(1)Y 2,

W2 = (
1 + O(ε) + μOθ,p(1)

)
Y + OY ,θ,p(1)Y 2. (3.18)

We first obtain

Y = (
1 + O(ε) + μOθ,p(1)

)
W2 + OW2,θ,p(1)W 2

2 (3.19)

by inverting the second line in (3.18). We then substitute it into the first line in (3.18) to obtain

W1 = (
O(ε) + μOθ,p(1)

)((
1 + O(ε) + μOθ,p(1)

)
W2 + OW2,θ,p(1)W 2

2

)
+ OY ,θ,p(1)

((
1 + O(ε) + μOθ,p(1)

)
W2 + OW2,θ,p(1)W 2

2

)2

= (
O(ε) + μOθ,p(1)

)
W2 + OW2,θ,p(1)W 2

2 .

Consequently,

F (s, Z , θ) := W1 − (
O(ε) + μOθ,p(1)

)
W2 + OW2,θ,p(1)W 2

2 = 0 (3.20)

where W1, W2 as functions of s, Z , θ are defined by (3.17). To re-write W1 and W2, we let

ξ = s − L+ (3.21)
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and expand a(s) in terms of ξ as

a(s) = a
(
L+) + a′(L+)

ξ +
∞∑

i=2

ai
(
L+)

ξ i .

Expansions for b(s), u(s), and v(s) are similar. We have

W1 = a′(L+)
ξ +

∞∑
i=2

ai
(
L+)

ξ i + v
(
L+)

z +
(

v ′(L+)
ξ +

∞∑
i=2

vi
(
L+)

ξ i

)
z

− μP̃
(
ε,0,ω−1θ

)
,

W2 = b′(L+)
ξ +

∞∑
i=2

bi
(
L+)

ξ i − u
(
L+)

z −
(

u′(L+)
ξ +

∞∑
i=2

ui
(
L+)

ξ i

)
z

− μQ̃
(
ε,0,ω−1θ

)
. (3.22)

We now put (3.22) for W1 and W2 back into Eq. (3.20) and replace z by μZ . We obtain

(
a′(L+) − O(ε)b′(L+) + h(θ, ξ)ξ

)
ξ = O Z ,θ,p(μ)

where the Cr -norm of h(t, ξ) is bounded from above by K (ε). Also note that a′(L+) ≈ −αε, b′(L+) =
O(ε2). We finally obtain

s = L+ + O Z ,θ,p(μ)

by solving ξ . This completes the proof of Lemma 3.2. �
Lemma 3.2 is not precise enough. We need the following refinement.

Lemma 3.3. We have on Σ+ ,

s − L+ = − v(L+) + O(ε)u(L+)

a′(L+) − O(ε)b′(L+)
z + μ

a′(L+) − O(ε)b′(L+)
Oθ,p(1) + O Z ,θ,p

(
μ2).

Proof. It suffices for us to drop all terms that are O Z ,θ,p(μ2) in Eq. (3.20) to solve for ξ . From
Lemma 3.2 we conclude that all terms in ξ, z of degree higher than one are O Z ,θ,p(μ2). With these
terms all dropped, (3.20) becomes

(
a′(L+) − O(ε)b′(L+))

ξ + (
v
(
L+) + O(ε)u

(
L+))

z = μOθ,p(1), (3.23)

from which the estimates of Lemma 3.3 on Σ+ follow. �
Recall that X = μ−1 X , Y = μ−1Y .

Lemma 3.4. On Σ+ we have

Y = (
1 + O(ε)

)
Z + Oθ,p(1) + O Z ,θ,p(μ).
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Proof. We have

Y = (
1 + O(ε)

)(
b′(L+)

ξ − u
(
L+)

z − μQ̃(ε,0, t)
) + O Z ,t

(
μ2)

= (
1 + O(ε)

)(−
(

u
(
L+) + b′(L+) v(L+) + O(ε)u(L+)

a′(L+) − O(ε)b′(L+)

)
z

+ μb′(L+)

a′(L+) − O(ε)b′(L+)
Oθ,p(1) − μQ̃

(
ε,0,ω−1θ

)) + O Z ,θ,p
(
μ2)

= (
1 + O(ε)

)
z + μOθ,p(1) + O Z ,θ,p

(
μ2) (3.24)

where the first equality follows from using (3.19), (3.22) and Lemma 3.2, and the second equality from
using Lemma 3.3. To obtain the third equality we use u(L+) = −1 + O(ε), a′(L+) ≈ −αε, b′(L+) =
O(ε2). �

Lemma 3.2 is Proposition 3.1(a)(i) and Lemma 3.4 is Proposition 3.1(a)(ii). Proposition 3.1(b) follows
from parallel computations.

4. Dynamics of homoclinic tangles

In Sections 4.1 and 4.2 we let

P (x, y, t) = A(x, y) sinωt, Q (x, y) = B(x, y) sinωt (4.1)

in Eq. (2.2) where A(x, y), B(x, y) are high order terms at (x, y) = (0,0). We have

W(θ) = J s cos θ + Jc sin θ (4.2)

where

J s =
+∞∫

−∞

(
v(s)A(s) − u(s)B(s)

)
sin(ωs)e− ∫ s

0 E(τ )dτ ds,

Jc =
+∞∫

−∞

(
v(s)A(s) − u(s)B(s)

)
cos(ωs)e− ∫ s

0 E(τ )dτ ds, (4.3)

and A(s) = A(a(s),b(s), s), B(s) = B(a(s),b(s), s). For the rest of this section we assume

(H2) J 2
c + J 2

s �= 0.

4.1. A comprehensive description

First observe that the return map R is only defined on the part of Σ− satisfying

F(θ,X,μ) > 0. (4.4)

This part of Σ− follows the homoclinic loop of the unperturbed equation to hit Σ+ on the upper
side of the local stable manifold of (X, Y ) = (0,0) where they return to Σ− . The rest of Σ− satisfies
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Fig. 3. Partial returns to Σ− .

Fig. 4. The geometry of R.

F(θ,X,μ) � 0. (4.5)

From there the solutions hit the lower side of the local stable manifold of (X, Y ) = (0,0) where they
sneak out of Uε ∪ D. See Fig. 3.

From this point on we call the θ -direction in Σ− the horizontal direction and the X-direction the
vertical direction. With W (θ) as in (4.2),

F(θ,X,μ) = 0

defines two curves of slope ∼ ε− β
α . These two curves divide Σ− into two vertical strips, which we

denote as V and U respectively. Let us assume that R is defined on V , where (4.4) holds. By using
the Main Theorem for R, we know that R compresses V in the vertical direction and stretches it
in the horizontal direction, making the image infinitely long towards both ends. R then folds it and
wraps it around Σ− infinitely many times. See Fig. 4.

Denote the return map derived in the Main Theorem as Rμ and let1

Ωμ = {
(θ,X) ∈ V : Rn

μ(θ,X) ∈ V ∀n � 0
}
, Λμ =

⋂
n�0

Rn
μ(Ωμ).

1 We caution that V and U depend also on μ. So to be completely rigorous we ought to write Vμ and Uμ instead of V
and U . However, for Rμ derived from the periodically perturbed equations, V and U vary only slightly as μ varies, and we
could practically think of them as being independent of μ.
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Then Ωμ represents all solutions that stay close to the unperturbed homoclinic loop in forward times;
Λμ is the set Ωμ is attracted to, representing all solutions that stay close to the unperturbed homo-
clinic loop in both the forward and the backward times. The geometrical and dynamical structures of
the entire homoclinic tangle are manifested in those of Ωμ and Λμ .

From Fig. 4 for R, it is obvious that Λμ contains a horseshoe of infinitely many symbols as a
subset for all μ. We will refer to this horseshoe as the Smale horseshoe. The horseshoes constructed
previously by Smale and others near homoclinic intersections all came from this one horseshoe of
infinitely many branches.

The structures of Ωμ and Λμ depend sensitively on the location of the folded part of Rμ(V ).
If this part is deep inside of U , then the entire homoclinic tangle is reduced to one horseshoe of
infinitely many symbols. If it is located inside of V , then the homoclinic tangles are likely to have
attracting periodic solutions or sinks and observable chaos associated with non-degenerate transversal
homoclinic tangency. According to the formula for Rμ obtained in the Main Theorem, Rμ(V ) moves
horizontally towards θ = +∞ as μ → 0. With a roughly constant speed with respect to p = lnμ−1,
it crosses V and U infinitely many times along the way. As the folded part of Rμ traverses V , we
encounter complicated dynamics caused by our allowing the folded images of the unstable manifold
of the Smale horseshoe to come back to form tangential intersections to the stable manifold of the
same horseshoe. In this case the dynamics of the associated homoclinic tangles depends sensitively
on μ and it is not possible to obtain a bifurcation diagram for Rμ . However, we know from (2.8)
that, in the limit, there is a dynamics pattern that repeats periodically with respect to a of period 2π ,
for a → ∞ is a parameter appearing additively in the angular component of the map Rμ in the Main
Theorem. In terms of μ, this is a “multiplicative period” of size ≈ eβT . This is to say that, let [μ1,μ2]
be a base interval for the indicated periodicity, then μ2 ≈ μ1eβT .

4.2. The dynamics of homoclinic tangles

In Eq. (2.2) we let P (x, y, t) and Q (x, y, t) be as in (4.1) and assume that (H1) and (H2) hold. Let
Rμ be the return map derived in the Main Theorem. First we have

Theorem 1 (Tangle as one full shift of countably many symbols). Assume that ωβ−1 > 100, then there exists
a sequence of μ that approaches to zero, which we denote as

1 � μ
(r)
1 > μ

(l)
1 > · · · > μ

(r)
n > μ

(l)
n > · · · → 0

such that for all μ ∈ [μ(l)
n ,μ

(r)
n ], Rμ on

Λ = {
(θ,X) ∈ V : Ri

μ(θ,X) ∈ V , ∀i ∈ Z
}

conjugates to a full shift of countably many symbols.

For the parameters of Theorem 1, the entire homoclinic tangle consists of one single horseshoe of
infinitely many symbols.

We caution that, though the horseshoe of Theorem 1 represents all solutions of the perturbed
equation that stay forever inside of a small neighborhood of the homoclinic loop �, solutions sneaking
out through U might find a way to come back to Σ− , creating more complicated structures. One
particular mechanism for such a come back is for the unperturbed equation to have two homoclinic
loops. In this case, part of U would come back to Σ− following the other homoclinic loop. On the
other hand, it is easy to obtain examples for which the solutions sneaking out of U would never come
back. One such example is presented in Section 5.
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Fig. 5. Transversal homoclinic tangency.

We also have

Theorem 2 (Tangle as the union of one sink and one horseshoe). Let the assumptions be identical to that of The-
orem 1. Then there exists an open set of μ inside each of the intervals [μ(r)

n ,μ
(l)
n+1], such that the corresponding

homoclinic tangle consists of one periodic sink and one horseshoe of countably many branches.

We again remark that, for the parameters of Theorem 2, the entire homoclinic tangle consists
of one attractive periodic solution and one horseshoe. The periodic sink we obtained here is not
Newhouse sink associated to homoclinic tangency.

Our next theorem is about the existence of non-degenerate transversal homoclinic tangency.

Theorem 3 (Homoclinic tangency). Let the assumptions be identical to that of Theorem 1. Then for every n > 0
given, there exists μ̂ ∈ [μ(r)

n ,μ
(l)
n+1], the corresponding value for a we denote as â, such that:

(i) Râ has a saddle fixed point, which we denote as q(â), so that W u(q(â)) ∩ W s(q(â)) contains a point of
non-degenerate tangency.

(ii) Let q(a) be the continuous extension of q(â) for a sufficiently close to â. Then as a passes through â,
W u(q(a)) crosses W s(q(a)) at the tangential intersection point of (i) with a relative speed > 1

2 with respect
to a in θ -direction.

Outline of proof. Let V f be the vertical strip in Σ− so that R(V f ) is the turning part of the image
R(V ). Our plan of proof is as follows. We know that Ra induces a horseshoe of infinitely many
symbols in V , creating many saddle fixed points. Pick one and denote it as q. We prove that q is
continuously extended over the μ-interval [μ(r)

n ,μ
(l)
n+1], which we denote as q(a). Let W u(q(a)) be

the unstable and W s(q(a)) be the stable manifold of q(a). We prove that W u(q(a)) traverses V f in
horizontal direction and it has a horizontal segment inside of V f , which we denote as �u(a). We
also prove that W s(q(a)) has a vertical segment fully extended in V , which we denote as �s(a). We
observe that Ra(�

u(a)) has a sharp quadratic turn, and as μ varies from μ
(r)
n to μ

(l)
n+1, it moves from

one side of V to the other, transversally crossing �s(a). See Fig. 5.
Detailed proof for Theorem 3 is long and includes some tedious computations. A complete proof

is included in Appendices B and C. �
The following is a direct consequence of Theorem 3.2

Corollary 4.1. Let the assumptions be identical to that of Theorem 1. Then inside of every parameter inter-
val [μ(r)

n ,μ
(l)
n+1], there is a set of parameters of positive Lebesgue measure, such that the homoclinic tangle

associated with these parameters admits strange attractors with SRB measures.

Proof. This follows from Theorem 3 applying [24] and [7], both are based on [5], to Ra . �
Detailed proofs for Theorems 1–3 are included in Appendices A–C.

2 We thank Marcelo Viana for assuring us that, with Theorem 3, [24] directly applies.
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4.3. Homoclinic tangles for general perturbation

In this subsection we consider the geometric and dynamic structure of homoclinic tangles for
general forcing functions. Let P (x, y, t) and Q (x, y, t) be as in Section 2.1, and W (θ) be as in (2.5).
We assume that P (x, y, t) and Q (x, y, t) are such that the graph of X = W (θ) is transversal to the
θ -axis. We also assume that W (θ) is a Morse function. Let

M = max
θ∈S1

W(θ), m = min
θ∈S1

W(θ).

We divide into the following three cases: (a) M < 0; (b) m > 0; and (c) m < 0 < M . Among the three,
(a) is a trivial case for which Λ = ∅. For (b) the return map R in the Main Theorem is completely
well defined on Σ− and it is a family of rank one maps studied previously by Wang and Young in
[43–45]. The entire theory on rank one attractors is applicable and we obtain a variety of dynamical
scenarios from a globally attracting invariant tori to strange attractors with SRB measures. For more
details see [42].

(c) is the case for homoclinic tangles. By the assumption that the graph of X = W (θ) is transversal
to the θ -axis, it follows that

F(θ,X,μ) = 0

divides Σ− into a collection of vertical strips, which we denote as V 1, U1, . . . , Vn−1, Un−1, Vn = V 1.
The sign of F alternates on V i and Ui . The return map R is well defined on all V i but not on Ui . The
actions of R on each of the vertical strips V i are similar to the ones on V described previously in
Section 4.1: First it compresses V i in the vertical direction and stretches it in the horizontal direction.
It then folds it, but probably more than one time. The number of turns of this image is determined
by the number of critical points of W (θ) on the corresponding θ -interval for V i . This image is then
put back into Σ− , wrapping around Σ− infinitely many times in θ -direction. Finally, the images of
all V i are bound together, moving towards θ = ∞ in a roughly constant speed with respect to lnμ−1

as μ → 0. The rich possibility on the number of folds for each vertical strip, and the possibilities on
the different locations of all these folded parts create a rich array of complicated structures where
the three dynamical scenarios of horseshoes, sinks, and SRB measures represented in Theorems 1–3
co-exist. In general, these are all that are out there for these homoclinic tangles.

5. Analysis of a periodically forced second-order equation

5.1. An integrable equation

We start with the second-order equation

d2q

dt2
− q + q2 = 0. (5.1)

Observe that the non-linear term in Eq. (5.1) is q2, not q3 as in the Duffing equation [12]. Though
our theory also applies to periodically perturbed Duffing equation, (5.1) is a better choice for our
purpose of comparing the three theorems of Section 4.2 to the results of numerical simulations of
Sections 5.3–5.5. Duffing’s equation has two homoclinic loops, and the mixture of two homoclinic
tangles for the perturbed equation would make the comparison between the theory and the nu-
merical integration less direct. A separate paper on periodically perturbed Duffing’s equation, where
the dynamics of strange attractors formed by the mixture of two homoclinic tangles are studied, is
currently under preparation and will appear elsewhere.

Let

H(q, p) = 1
p2 + 1

q3 − 1
q2
2 3 2
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where (q, p) ∈ R2. We re-write Eq. (5.1) as the following integrable Hamiltonian equations

dp

dt
= −∂ H

∂q
= q − q2,

dq

dt
= ∂ H

∂ p
= p. (5.2)

(q, p) = (0,0) is a saddle point with a homoclinic solution, which we denote as (q, p) = (a(t),b(t)).
From a direct computation we obtain

a(t) = 6e−t

(1 + e−t)2
, b(t) = 6e−t(e−t − 1)

(1 + e−t)3
. (5.3)

5.2. Periodically perturbed equation

We add a term of dissipation and a term of non-linear damping to (5.1) to form a new autonomous
equation

d2q

dt2
+ (

λ − γ q2)dq

dt
− q + q2 = 0 (5.4)

where λ,γ > 0 are parameters. Denote p = dq
dt . (q, p) = (0,0) is now a dissipative saddle.

Proposition 5.1. There exists ε0 > 0 sufficiently small, such that for λ ∈ [0, ε0), there exists a γλ, |γλ| � Kλ

such that for γ = γλ , Eq. (5.4) has a homoclinic solution for (q, p) = (0,0).

Proof. Re-write Eq. (5.4) as

d2q

dt2
− q + q2 = −λ

(
1 − γ λ−1q2)dq

dt
.

Let τ := γ λ−1. λ is the magnitude of an autonomous perturbation and the Melnikov function in this
case is a constant. As a matter of fact,

W =
∞∫

−∞

(
1 − τa2(s)

)
b2(s)ds.

We obtain a unique τ for a homoclinic solution provided that

∞∫
−∞

a2(s)b2(s)ds �= 0

which is clearly the case here. �
Let 0 < λ0 < ε0 be fixed and γ0 = γλ0 be as in Proposition 5.1. (q, p) = (0,0) is a dissipative saddle

and the eigenvalues are −α and β where

α = 1

2

(√
λ2

0 + 4 + λ0
)
, β = 1

2

(√
λ2

0 + 4 − λ0
)
.

The set of λ0 satisfying (H1)(i) has full measure in (0, ε0), and (H1)(ii) holds because −α + β =
−λ0 < 0.
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Let us now fix a λ0 ∈ (0, ε0) so that (H1)(i) holds. Let the homoclinic solution be denoted as
(aλ(t),bλ(t)) and the unit tangent vector be denoted as (uλ(t), vλ(t)), and so on. We add a periodic
perturbation to Eq. (5.4) to obtain a new equation

d2q

dt2
+ (

λ0 − γ0q2)dq

dt
− q + q2 = μq2 sinωt (5.5)

where μ is a parameter representing the magnitude of the forcing and ω is the forcing frequency. In
order to prove that Theorems 1–3 of Section 4.2 apply to Eq. (5.5), it suffices for us to verify (H2).
That is

J 2
c + J 2

s �= 0.

Let Jλ(ω) = Jc + i J s . We could make a direct estimate by first computing Jλ at λ = 0, then arguing
that Jλ is close to J0, or we take advantage of the fact that, as a function of ω, Jλ is the Fourier
transform of the function

Rλ(s) = (
vλ(s)Aλ(s) − uλ(s)Bλ(s)

)
e− ∫ s

0 Eλ(τ )dτ .

Since Rλ(s) decays exponentially as a function of s, the Fourier transform Jλ(ω) is analytic in a strip
containing the real ω-axis by the Paley–Wiener theorem. It follows that Jλ(ω) = 0 for at most a
discrete set of values of ω unless Rλ(s) is identically zero, which is obviously not the case here.

We have rigorously proved that the theory developed in this paper, in particular, Theorems 1–3,
apply to Eq. (5.5).

5.3. Numerical simulations

In Sections 5.3–5.5 we use Eq. (5.5) to illustrate how to systematically explore and to explain, by
using the theory of this paper, the various dynamical scenarios observed in numerical simulations
of a periodically perturbed homoclinic solution (Sections 5.3–5.5). We adopt throughout the point of
view that (1) a dynamical object is observable in phase space only if it affords an attractive basin that
is of positive Lebesgue measure in the extended phase space and (2) observable objects are the ones
expected to show up in numerical simulations. If the equations are with parameters, then there is
also an issue of observability in the parameter space. A dynamical scenario is observable in parameter
space if it is supported by a positive measure set of parameters.

The conclusions we wish to verify through numerical simulations are as follows:

(I) (Observable objects) There are three main observable dynamical scenarios in parameter space:

(a) (Transient tangle) there exist open sets of parameters so that the entire homoclinic tangle is a
uniformly hyperbolic horseshoe of infinitely many symbols (Theorem 1);

(b) (Non-chaotic tangle) there exist open sets of parameters so that the homoclinic tangle admits
periodic sinks (Theorems 2 and 3); and

(c) (Chaotic tangle) there exist positive measure sets of parameters so that the homoclinic tangle
admits Sinai–Ruelle–Bowen measure (Corollary 4.1).

(II) (Multiplicative periodicity) Let T be the period of the forcing function in time, β be the positive
eigenvalue of the perturbed saddle, and μ be the magnitude of the forcing. There is a well-defined
pattern for the occurrence of the three dynamical scenarios of (I); and this pattern materializes over
every μ-interval (μ1,μ2) satisfying μ2/μ1 ≈ eβT , repeating infinitely many times as μ → 0.

A horseshoe of (I)(a) has an attractive basin of measure zero therefore is not observable in phase
space. Consequently, corresponding to (I)(a), we would expect in numerical simulations a scenario in
which no solution will stay in the surroundings of the unperturbed homoclinic solution for long. The



Q. Wang, A. Oksasoglu / J. Differential Equations 250 (2011) 710–751 731
sinks of (I)(b) and the Sinai–Ruelle–Bowen measures of (I)(c), on the other hand, are both observable
in phase space.

We proceed as follows:

Step 1. We arbitrarily pick a λ0, say for example, λ0 = 0.5. We then numerically integrate Eq. (5.4) to
find the corresponding value of γ0 from Proposition 5.1. Set λ = λ0, γ = γ0 in (5.5).

Step 2. We let μ, the small parameter representing the magnitude of the forcing, vary in between
10−3 and 10−6.

Step 3. We take (q0, p0) = (0.01,0) as our initial phase position. The dynamics of homoclinic tangles,
according to the Main Theorem, are best revealed by the various behavior of solutions of different
initial times. We set ω = 2π in Eq. (5.5). With (q0, p0) being fixed throughout, we run the initial
time over the interval [0,1). We then compare the simulation results to the predictions (I) and (II).
We remark that using a different initial phase position (q0, p0) does not change the qualitative nature
of our simulation results provided that it is inside of, and reasonably close to the homoclinic loop of
Eq. (5.1).

From this point on we let λ0 = 0.5. Note that though Proposition 5.1 requires that λ0 is small,
numerical simulation indicates that homoclinic solutions for Eq. (5.4) exist for much larger λ0. For
λ0 = 0.5, the corresponding value of γ0 ≈ 0.577028548901. Let (qμ,t0 (t), pμ,t0 (t)) be the solution
of Eq. (5.5) satisfying (qμ,t0 (t0), pμ,t0 (t0)) = (q0, p0). We numerically integrate Eq. (5.5) to compute
(qμ,t0 (t), pμ,t0 (t)). We then plot the following:

(a) (qμ,t0 (n), pμ,t0 (n)) on the (q, p)-plane.
(b) (n,qμ,t0 (n)). We save the redundancy of plotting (n, pμ,t0 (n)).
(c) The Fourier spectrum of (n,qμ,t0(n)).

It is expected that either a solution satisfies q > 0 for all t , in which we obtain a plot of an
observable object in the homoclinic tangle, or a solution reaches the negative side of q. When the
latter occur, we know that the solution has moved out of the homoclinic tangle and our computation
will be terminated, often at a time much earlier than the targeted ending time. There will be no plots
for these solutions.

5.4. Simulation results on Section 5.3(I)

Our simulation results fall always into one of the three types:
(a) (Transient tangle): One instance of this type is for μ = 8 × 10−7. We run the initial time t0

over [0,1), skipping by 0.001 along the way. This amounts to numerically computing one thousand
solutions of different initial time. All solutions reach the negative side of q rather quickly, indicating
that they all pass through the homoclinic tangle. In this instance we have a homoclinic tangle without
any observable objects. We hit a transient tangle of (I)(a).

(b) (Non-chaotic tangle): One instance of this type is for μ = 3.26 × 10−6. Again, we run the initial
time t0 over [0,1), but this time we hit some initial time t0, for which the solutions stay on the pos-
itive q side for all t . The plots for t0 = 0.15 are illustrated in Fig. 6. Fig. 6(a) is for (qμ,t0 (n), pμ,t0 (n));
Fig. 6(b) is for (n,qμ,t0(n)); and Fig. 6(c) is for the Fourier spectrum for (n,qμ,t0 (n)). This solution
catches a sink.

(c) (Chaotic tangle): One instance of this type is for μ = 7.25 × 10−7. For the solution plotted in
Fig. 7, t0 = 0.25. The observable object illustrated in Fig. 7 has a dominating periodic behavior and a
random deviation that is somewhat secondary. These are the plots of a Hénon-like attractor associated
to homoclinic tangency of the stable and unstable manifolds of a saddle of high period from the Smale
horseshoe.
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Fig. 6. Sinks inside of homoclinic tangle, μ = 3.26 × 10−6, t0 = 0.15.

5.5. Simulation results on Section 5.3(II)

The explicit formula for the multiplicative ratio of μ serves more than an item for verifica-
tion. It helps in anticipating the future simulation results. For the case considered here, T = 1,
β = +0.78077641. Therefore the theoretical ratio for μ is P ≈ eβT ≈ 2.18316664.

Simulation results are presented in Table 1. All our simulations have resulted in one of the three
cases listed above. We record a transient tangle in Table 1 if, by running t0 over [0,1) with a skip of
0.001 each step along the way, the one thousand solutions integrated all reach the negative side for q,
passing the homoclinic tangle without hitting anything observable. We record a non-chaotic tangle if
there are values of initial time t0, for which the solutions stay on the positive side of q for all t;
furthermore, all these solutions return plots similar to Fig. 6. We record a chaotic tangle if the plots
of some of these solutions are like Fig. 7. The μ values listed in Table 1 are where the plots change
from one scenarios to another. The actual multiplicative ratios, computed by using the consecutive μ
values for the same dynamics scenario, are listed in the third column of Table 1. Again, the theoretical
ratio is ≈ 2.18316664.
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Fig. 7. Chaotic tangle, μ = 7.25 × 10−7, t0 = 0.25.

Appendix A. Proof of Theorems 1 and 2

From this point on we use z for X and write the annulus Σ− as A. We also use a in place of
p = lnμ−1 (see remark (i) at the end of Section 2.3). Let

J =
√

J 2
c + J 2

s ,

J �= 0 by (H2). The return map (θ1, z1) = R(θ, z) of the Main Theorem is written as

θ1 = θ + a − ω

β
ln F(θ, z,μ) + Oθ,z,a(μ),

z1 = b
[
F(θ, z,μ)

] α
β (A.1)

where

F(θ, z,μ) = kz + sin θ + E(θ,μ) + Oθ,z,a(μ). (A.2)

Note that a, b, k, E and F here are slightly different from those in the Main Theorem because we
now take a factor of J out of F. The variable θ is shifted one more time to take away the initial phase
θ0 caused by writing Jc sin θ + J s cos θ as J sin(θ + θ0) where θ0 = tan−1 J s J−1

c . On the other hand, it
remains true that
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Table 1
Multiplicative ratio for μ.

λ = 0.5
γ = 0.577028548901
β = 0.78077641
Theoretical multiplicity = eβT = 2.1831

μ Behavior type Actual ratio

1.575 × 10−3 Transient tangle (I)(a) 2.1141
7.952 × 10−4 Chaotic tangle (I)(c) 2.1498
7.677 × 10−4 Non-chaotic tangle (I)(b) 2.1492

7.450 × 10−4 Transient tangle (I)(a) 2.1495
3.699 × 10−4 Chaotic tangle (I)(c) 2.1670
3.572 × 10−4 Non-chaotic tangle (I)(b) 2.1820

3.466 × 10−4 Transient tangle (I)(a) 2.1676
1.707 × 10−4 Chaotic tangle (I)(c) 2.1754
1.637 × 10−4 Non-chaotic tangle (I)(b) 2.1745

1.599 × 10−4 Transient tangle (I)(a) 2.1749
7.847 × 10−5 Chaotic tangle (I)(c) 2.1797
7.528 × 10−5 Non-chaotic tangle (I)(b) 2.1795

7.352 × 10−5 Transient tangle (I)(a) 2.1797
3.600 × 10−5 Chaotic tangle (I)(c) 2.1818
3.454 × 10−5 Non-chaotic tangle (I)(b) 2.1751

3.373 × 10−5 Transient tangle (I)(a) 2.1818
1.650 × 10−5 Chaotic tangle (I)(c) 2.1825
1.588 × 10−5 Non-chaotic tangle (I)(b) 2.1753

1.546 × 10−5 Transient tangle (I)(a) –
7.560 × 10−6 Chaotic tangle (I)(c) –
7.300 × 10−6 Non-chaotic tangle (I)(b) –

a ≈ ω

β
lnμ−1, b ∼ μ

α
β

−1
, k ∼ ε

α
β , E ∼ ε

β
α Oθ,a(1). (A.3)

For q = (θ, z) ∈ A, let v = (u, v) be a tangent vector of A at q and let s(v) = vu−1. s(v) is the
slope of v. We say that v is horizontal if |s(v)| < 1

100 and v is vertical if |s(v)| > 100. A curve in A
is a horizontal curve if all its tangent vectors are horizontal and it is a vertical curve if all its tangent
vectors are vertical. A vertical curve is fully extended if it reaches both boundaries of A in z-direction.
A region in A that is bounded by two non-intersecting, fully extended vertical curves is a vertical
strip. For a given vertical strip V , a horizontal strip in V is a region bounded by two non-intersecting
horizontal curves traversing V in θ -direction.

Observe that

F(θ, z,μ) = kz + sin θ + E(θ,μ) + Oθ,z,a(μ) = 0 (A.4)

defines two fully extended vertical curves that divide A into two vertical strips, which we denote as
V and U . Let F > 0 on V and F < 0 on U . Ra is well defined on V but not on U . U is the window
through which the solutions of Eq. (2.2) sneak out.

Let

Ωa = {
(θ, z) ∈ V : Rn

a(θ, z) ∈ V , ∀n � 0
}
, Λa =

⋂
n�0

Rn
a(Ωa). (A.5)

Ωa represents all solutions of Eq. (2.2) that stay close to � in forward times; Λa is the set Ωa is
attracted to, representing all solutions that stay close to � in both the forward and the backward
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times. Ωa and Λa together represent the homoclinic tangles, the structure of which we now unravel
through Ra .

For a fixed z ∈ [−1,1], let

Iz =
{
θ ∈

(
−1

2
π,

3

2
π

]
: (θ, z) ∈ V

}
.

Iz is an interval in (− 1
2 π, 3

2 π), which we denote as (θl(z), θr(z)). Let hz = {(θ, z): θ ∈ Iz}. Ra(hz) is a
1D curve in A parameterized in θ , which we denote as (z1(θ), θ1(θ)). By definition

θ1(θ) = θ + a − ω

β
ln F(θ, z,μ) + Oθ,z,a(μ). (A.6)

We have

Lemma A.1. Assume that ωβ−1 > 100.

(a) limθ→θr (z)− (θ1, z1) = limθ→θl(z)+ (θ1, z1) = (+∞,0).
(b) For every fixed z ∈ [−1,1], there exists a unique value of θ , which we denote as θc(z), such that

dθ1

dθ

(
θc(z)

) = 0.

(c) Let

V f =
⋃

z∈[−1,1]

{
(θ, z) ∈ V :

∣∣∣∣dθ1

dθ

∣∣∣∣ < 1.5

}
. (A.7)

Then V f is a vertical strip, the horizontal size of which is < 10ω−1β .

Proof. Observe, from (A.4), that θl ∈ (− 1
4 π, 1

4 π) where cos θ > 0, and θr ∈ ( 3
4 π, 5

4 π) where cos θ < 0.
(a) follows directly from the fact that, as θ → θ+

l , θ−
r , F → 0. To prove (b) we first observe that,

because F → 0 as θ → θ−
r ,

∣∣sin θ−
r

∣∣ < Kεβα−1 � 1,

and it follows that

∂F

∂θ

(
θr(z)−, z

) ≈ cos θr < −1/2.

Consequently,

lim
θ→θ−

r

dθ1

dθ
= lim

θ→θ−
r

(
1 − ωβ−1 1

F

∂F

∂θ

)
+ Oθ,z,a(μ) = +∞.

Similarly, we have

lim
θ→θ+

dθ1

dθ
= lim

θ→θ+

(
1 − ωβ−1 1

F

∂F

∂θ

)
+ Oθ,z,a(μ) = −∞.
l l
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Therefore there exists at least one θc(z) satisfying dθ1
dθ

= 0. For the uniqueness we observe that

d2θ1

dθ2
= −ωβ−1

F2

(
∂2F

∂θ2
F −

(
∂F

∂θ

)2)
+ Oθ,z,a(μ) ≈ ωβ−1

F2
> 0

for all θ .
To prove (c) we observe that the boundary of V f is defined by

∣∣∣∣1 − ωβ−1 1

F

∂F

∂θ

∣∣∣∣ ≈ 1.5,

from which we obtain

|cos θ | � 5

2
ω−1β + Kεβα−1

.

(c) follows directly from this estimate. �
Proof of Theorem 1. For different values of μ, the corresponding vertical curves in A defined by (A.4)
are O(μ) close. So V and U are almost stationary as a varies from a0 to +∞. On the other hand, it
follows from (2.8) that, by varying a from a0 to +∞, we move Ra(V ) horizontally towards θ = +∞.
Denote R = Ra and let V f be the vertical strip defined through (A.7). The horizontal size of R(V f )

is smaller than 20βω−1 from Lemma A.1 assuming ωβ−1 > 100, which is in turn smaller than the
horizontal size of U . Therefore R(V f ) traverses A infinitely many times in the horizontal direction
as we vary a from a0 to +∞ and there are infinitely many sub-intervals of a, such that R(V f ) ⊂ U .
For these parameter values R(V ) ∩ V consists of countably many horizontal strips in V (see Fig. 4 in
Section 4.1), to each of which we assign a positive integer according naturally to the order in which
these strips are stacked in the downward z-direction.

For q ∈ A, let v be a tangent vector at q. Let Ch(q) be the collection of all v satisfying |s(v)| < 1
100 ,

and Cv (q) be the collection of all v satisfying |s(v)| > 100. To prove that Λ conjugates to a full shift
of all positive integers, it suffices to verify that we have, assuming R(V f ) ⊂ U ,

(i) D R(Ch(q)) ⊂ Ch(R(q)) on R−1(R(V ) ∩ V ), and
(ii) D R−1(Cv (q)) ⊂ Cv(R(q)) on R(V ) ∩ V .

To prove (i) we first compute D R by using (A.1). Let (θ1, z1) = R(θ, z), we have

D R =
(−ωβ−1 1

F

∂F

∂θ
+ Oθ,z,a(μ) ωβ−1 1

F

∂F

∂z + Oθ,z,a(μ)

αβ−1bFαβ−1−1 ∂F

∂θ
αβ−1bFαβ−1−1 ∂F

∂z

)
(A.8)

where F = F(θ, z,μ) is as in (A.2) and

∂F

∂θ
= cos θ + εβα−1 Oθ,a(1) + Oθ,z,a(μ),

∂F

∂z
= k + Oθ,z,a(μ).

Let v be such that |s(v)| < 1
100 , we have from (A.8)

∣∣s(D R(v)
)∣∣ =

∣∣∣∣ αβ−1bFαβ−1−1 ∂F

∂θ
+ αβ−1bFαβ−1−1 ∂F

∂z s(v)

(1 − ωβ−1 1 ∂F ) + ωβ−1 1 ∂F s(v) + (1 + s(v))Oθ,z,a(μ)

∣∣∣∣. (A.9)

F ∂θ F ∂z
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We have two cases to consider.

Case 1: F �
√

k. In this case we have

ωβ−1 1

F

∂F

∂z
< ωβ−1

√
k � 1.

From (θ, z) ∈ R−1(R(V ) ∩ V ) and R(V f ) ⊂ U , it follows that (θ, z) /∈ V f therefore

∣∣∣∣∂θ1

∂θ

∣∣∣∣ ≈
∣∣∣∣1 − ωβ−1 1

F

∂F

∂θ

∣∣∣∣ > 1.5.

These two estimates together imply that the denominator for |s(D R(v))| in (A.9) is > 1, and it follows
that |s(D R(v))| < 1

100 .

Case 2: F <
√

k. In this case

|sin θ | < Kε
β
α + √

k,

from which we have

|cos θ | > 1/2. (A.10)

It then follows that the denominator for |s(D R(v))| in (A.9) is >
ωβ−1

2
√

k
, which implies |s(D R(v))| <

1
100 . This finishes our proof for (i).

To prove (ii) we let v be such that |s(v)| > 100. From (A.8),

D R−1 = 1

αβ−1bFαβ−1−1 ∂F

∂z

(
αβ−1bFαβ−1−1 ∂F

∂z −ωβ−1 1
F

∂F

∂z

−αβ−1bFαβ−1−1 ∂F

∂θ
1 − ωβ−1 1

F

∂F

∂θ

)
. (A.11)

Note that in obtaining (A.12) we dropped the Oθ,z,p(μ) terms in (A.8) to avoid tedious writing, which
is not consequential for the outcome of the rest of the estimates that follow. We have

∣∣s(D R−1(v)
)∣∣ =

∣∣∣∣−αβ−1bFαβ−1−1 ∂F

∂θ
s−1(v) + (1 − ωβ−1 1

F

∂F

∂θ
)

αβ−1bFαβ−1−1 ∂F

∂z s−1(v) − ωβ−1 1
F

∂F

∂z

∣∣∣∣.
We again divide into the cases of F >

√
k and F <

√
k. For the case of F >

√
k, the magnitude of the

denominator � 1 and that of the numerator is > 1 again because∣∣∣∣1 − ωβ−1 1

F

∂F

∂θ

∣∣∣∣ > 1.5

from the assumption that (θ, z) /∈ V f . For the case of F <
√

k, we re-write |s(D R−1(v))| as

∣∣s(D R−1(v)
)∣∣ =

∣∣∣∣−αβ−1bFαβ−1 ∂F

∂θ
s−1(v) + (F − ωβ−1 ∂F

∂θ
)

αβ−1bFαβ−1 ∂F

∂z s−1(v) − ωβ−1 ∂F

∂z

∣∣∣∣.
The denominator is again � ωβ−1 and the dominating term in the numerator is∣∣∣∣ωβ−1 ∂F

∂θ

∣∣∣∣ >
1

2
ωβ−1.
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The last estimate is from

∣∣∣∣∂F

∂θ

∣∣∣∣ ≈ |cos θ | > 1/2

again by (A.10). This proves (ii). �
We refer the reader to Chapter III.1 of [22] for a detailed discussion on horseshoes of infinitely

many symbols.

Proof of Theorem 2. Let θc(z) be as in Lemma A.1(b). To make the dependency on μ explicit we
write it as θc(z,μ). Let an be the value of a at μ = μ

(r)
n and [an] = an − an mod (2π). Observe that

there exists a μ̂ ∈ [μ(r)
n ,μ

(l)
n+1] so that θ1(θc) = θc + [an] where θc = θc(0, μ̂). This is because when μ

traverses [μ(r)
n ,μ

(l)
n+1], θ1(θc) traverses the interval (θl + [an], θr + [an]). Let â be the value of a for μ̂.

To solve for a fixed point we let

θ + [an] = θ + â − ωβ−1 ln F + Oθ,z,a(μ̂),

z = bFαβ−1
(A.12)

to obtain

F = eω−1β(â−[an])+Oθ,z,a(μ̂),

z = beω−1α(â−[an])+Oθ,z,a(μ̂). (A.13)

From the first line we have

sin θ + E(θ, μ̂) + Oθ,z,a(μ̂) = eω−1β(â−[an])+Oθ,z,a(μ̂). (A.14)

To solve (A.14) for θ , first we observe that θc = θc(0, μ̂) is a solution of (A.14) for z = 0. We then
observe that

|cos θc| > K −1.

This estimate follows from the fact that θc is defined by

1 − ωβ−1 1

F

∂F

∂θ
+ Oθ,a(μ̂) = 0

and F = eω−1β(â−[an])+Oθ,z,a(μ̂) from (A.13). Applying the inverse value theorem to (A.14) we obtain a
solution θ̂ satisfying

|θ̂ − θc| < K μ̂.

In summary we have obtained a fixed point (θ̂ , ẑ) satisfying

θ̂ ≈ θc; ẑ ≈ beω−1α(â−[an]).
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To prove that (θ̂ , ẑ) is an attracting fixed point, we compute the eigenvalues. The eigen-equation
for D R is

λ2 − Tr(D R)λ + det(D R) = 0.

From (A.8) we have

Tr(D R) ≈ ∂θ1

∂θ
+ αβ−1bFαβ−1−1 ∂F

∂z
� 1,

det(D R) ≈ αβ−1bFαβ−1−1 ∂F

∂z
� 1 (A.15)

where for the first inequality we use

∂θ1

∂θ
< K

(|θ̂ − θc| + |ẑ|)

at (θ̂ , ẑ) with

K = max
θ∈(θc,θ̂ ), z∈[0,ẑ]

(∣∣∣∣∂2θ1

∂θ2

∣∣∣∣ +
∣∣∣∣ ∂2θ1

∂θ∂z

∣∣∣∣ + 1

)
.

Note that, on the domain the maximum is taken, F > 1
2 . The rest of (A.15) is obvious. It follows from

(A.15) that both eigenvalues of D R are close to 0.
Let qc = (θ̂ , ẑ) be the stable fixed point obtained above and let

V f = {
(θ, z) ∈ A, |θ − θ̂ | < 1.5ω−1β

}
.

To prove that the homoclinic tangle Λ contains only qc and a horseshoe of infinitely many symbols,
it suffices to prove that

qc =
∞⋂

n=0

Rn(V f ). (A.16)

Assuming (A.16), the horseshoe inside of Λ is constructed by first adding V f to U , then repeating the
proof for Theorem 1.

Observe that R on V f is a 2D map unfolded from the 1D singular limit

f (θ) = θ + a + ωβ−1 ln
(
sin θ + E(θ)

)
where E(θ) = εβα−1 Oθ (1) is also a perturbation to sin θ . Denote

F (θ) = θ + ωβ−1 ln sin θ,

and let θc be the critical point of F (θ). Also denote

Iτ = {
θ : |θ − θc| < τω−1β

}
.

To prove (A.16) it suffices to prove that
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F (I1.5) ⊂ I1.4. (A.17)

(A.17) follows directly from an elementary computation. �
Appendix B. Proof of Theorem 3

In this appendix we prove Theorem 3.3 Let an be the value of a at μ = μ
(r)
n and [an] = an −

an mod (2π). Let a(μ) be the value of a at μ ∈ [μ(r)
n ,μ

(l)
n+1]. We divide the proof of this theorem into

the following steps.

Step 1. Solving for hyperbolic fixed points. For μ ∈ [μ(r)
n ,μ

(l)
n+1], let m be an integer � 3ωβ−1 and qm(a) =

(θm, zm) be the solution of the equations

θ + [an] + 2πm = θ + a(μ) − ω

β
ln F(θ, z,μ) + Oθ,z,a(μ),

z = b
[
F(θ, z,μ)

] α
β . (B.1)

θm is determined by

F(θm, zm,μ) = eω−1β(a(μ)−[an]−2πm)+Oθ,z,a(μ), (B.2)

and

zm = beω−1α(a(μ)−[an]−2πm)+Oθ,z,a(μ). (B.3)

Let us note again that, in all estimates that follow, the Oθ,z,a(μ) terms in (B.1)–(B.3) are inconsequen-
tial. We will drop them to avoid tedious writings.

Claim B.1. qm(a) = (θm, zm) is a saddle fixed point.

Proof. Recall that

Tr(D R) = ∂θ1

∂θ
+ αβ−1bFαβ−1−1 ∂F

∂z
,

det(D R) = αβ−1bFαβ−1−1 ∂F

∂z
.

Observe that, from (B.2) and the assumption that m � 3ωβ−1, F(θm, zm,μ) < 1
100 . It follows that

| cos θm| > 2/3, and

∣∣∣∣∂θ1

∂θ

∣∣∣∣ > 51.

This implies

∣∣Tr(D R)
∣∣ > 50.

3 Minus Claim B.6(b), which we prove in Appendix C.
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Observe that we also have det(D R) � 1. Therefore we have two eigenvalues, one is close to 0 and
the other is with magnitude > 1. �

We also have

Claim B.2. For m � 3ωβ−1 , ∣∣∣∣dθm

da

∣∣∣∣ <
1

100
,

∣∣∣∣dzm

da

∣∣∣∣ < K b.

Proof. Estimate for dzm
da follows directly from (B.3). To estimate dθm

da we take the derivative with re-

spect to a on both sides of (B.2) and use F < 1
100 to obtain |cos θm| > 2/3. �

Step 2. The stable and the unstable manifolds for qm . In the rest of this proof we let m be the smallest
integer > 3ωβ−1. Denote q(a) = qm(a). Let

V̂ = {
(θ, z) ∈ V , F > F

(
q100m(a),μ

)}
.

We obtain V̂ from V by taking away two thin vertical strips at the vertical boundaries of V . Observe
that, by definition, q(a) ∈ V̂ . We make ε sufficiently small so that (1) the distance from q(a) to the
vertical boundary of V̂ is � k; and (2) Km := F(q100m) � k.

Denote the stable and the unstable manifolds of q = q(a) as W s(q) and W u(q) respectively. The
local stable and the local unstable manifolds are denoted as W s

loc(q) and W u
loc(q). Let �u(q) be the

connected branch of W u(q) in V̂ \ V f that contains W u
loc(q), and �u

1(q) = Ra(�
u(q)). �u

1(q) is a hori-
zontal curve traversing V f in θ -direction: it is straightforward to verify that (1) �u(q) is a horizontal
curve, (2) the image of �u(q) is also a horizontal curve, and (3) the length of that image is at least
double the length of �u(q) so it traverses V f . Let z = wu(θ) be such that (θ, wu(θ)) ∈ �u

1(q).

Claim B.3. We have on �u
1(q),

(a) | dwu

dθ
| < b

1
2 ;

(b) | d2 wu

dθ2 | < b
1
2 .

Proof. Denote R = Ra . For (θ, z) ∈ �u(q), let (θ1, z1) = R(θ, z). We have from (A.8)

∣∣∣∣dwu(θ1)

dθ1

∣∣∣∣ =
∣∣∣∣αβ−1bFαβ−1−1 ∂F

∂θ
+ αβ−1bFαβ−1−1 ∂F

∂z
dwu(θ)

dθ

(1 − ωβ−1 1
F

∂F

∂θ
) + ωβ−1 1

F

∂F

∂z
dwu(θ)

dθ

∣∣∣∣. (B.4)

(a) holds because the magnitude of the denominator in (B.4) is > 1 for (θ, z) ∈ V̂ \ V f . Remember

that since �u(q) is horizontal we have | dwu(θ)
dθ

| < 1
100 . To prove (b) we take the derivative one more

time to obtain

d2 wu(θ1)

d2θ1
=

d
dθ

(
dwu(θ1)

dθ1
)

dθ1
dθ

. (B.5)

Observe that dθ1
dθ

is the denominator in (B.4), the magnitude of which is > 1. Let

M = max
(θ,z)∈�u

∣∣∣∣d2 wu(θ)

dθ2

∣∣∣∣.

1
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We have from (B.4) and (B.5),

∣∣∣∣d2z1

d2θ1

∣∣∣∣ < K1b + K2bM.

So

M < K1b + K2bM,

and M < K b < b
1
2 . �

Let �s−1(q) be the segment of W s(q) in V̂ that contains W s
loc(q), and �s(q) = R(�s−1(q)). �s−1(q) is

a fully extended vertical curve in V̂ , which we represent by a function θ = ws(z).

Claim B.4. We have on �s−1(q),

(a) | dws(z)
dz | < k

1
2 ; and

(b) | d2 ws(z)
dz2 | < b

1
2 .

Proof. Let (θ, z) ∈ �s(q) and denote (θ−1, z−1) = R−1(θ, z). We have from (A.12),

( dθ−1
dz

dz−1
dz

)
= 1

αβ−1bFαβ−1−1 ∂F

∂z

(
αβ−1bFαβ−1−1 ∂F

∂z −ωβ−1 1
F

∂F

∂z

−αβ−1bFαβ−1−1 ∂F

∂θ
1 − ωβ−1 1

F

∂F

∂θ

)( dws(z)
dz

1

)
, (B.6)

and it follows that

∣∣∣∣dws(z−1)

dz−1

∣∣∣∣ =
∣∣∣∣ αβ−1bFαβ−1−1 ∂F

∂z
dws(z)

dz − ωβ−1 1
F

∂F

∂z

−αβ−1bFαβ−1−1 ∂F

∂θ
dws(z)

dz + (1 − ωβ−1 1
F

∂F

∂θ
)

∣∣∣∣. (B.7)

Let

M1 = max
(θ,z)∈�s−1(q)

∣∣∣∣dws(z)

dz

∣∣∣∣.
We have from (B.7), ∣∣∣∣dws(z−1)

dz−1

∣∣∣∣ < K1k + K2bM1

because F > Km and (
1 − ωβ−1 1

F

∂F

∂θ

)
> 2.

It then follows that M1 < K k < k
1
2 .

To prove (b) we write

d2 ws(z−1)

dz2
=

d
dz (

dws(z−1)

dz−1
)

dz−1
(B.8)
−1 dz
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where dws(z−1)

dz−1
is as in (B.7) and

dz−1

dz
= 1

αβ−1bFαβ−1−1 ∂F

∂z

(
−αβ−1bFαβ−1−1 ∂F

∂θ

dws(z)

dz
+ 1 − ωβ−1 1

F

∂F

∂θ

)
. (B.9)

Let

M2 = max
(θ,z)∈�s−1(q)

∣∣∣∣d2 ws(z)

dz2

∣∣∣∣.
We have from (B.7), (B.8) and (B.9) that

∣∣∣∣d2 ws(z−1)

dz2−1

∣∣∣∣ < K b(K1bM2 + K2),

from which we obtain M2 < K b < b
1
2 . �

Step 3. Non-degenerate, transversal tangency. Let �u
a be a connected segment of �u

1(q) ∩ V f , and �s
a be

the vertical curve �s−1(q) where �u
1(q), �s−1(q) are as in Step 2. We use z = wu(θ) to represent �u

a and

θ = ws(z) to represent �s
a . Ra(�

u
a) traverses V̂ in horizontal direction as μ runs through [μ(r)

n ,μ
(l)
n+1].

Consequently there exists μ̂ ∈ [μ(r)
n ,μ

(l)
n+1], the corresponding value for a we denote as â, so that �s

â
and Râ(�

u
â) intersect tangentially at a point we denote as q̃ = (θ̃ , z̃). Let (θ0, z0) ∈ �u

â be such that

(θ̃ , z̃) = Râ(θ0, z0). Our next claim implies that the tangential intersection of �s
â and Râ(�

u
â ) at q̃ is

not degenerate.

Claim B.5. For (θ, z) ∈ �u
â , let (θ1, z1) = Râ(θ, z). Then at (θ, z) = (θ0, z0), we have

∣∣∣∣d2θ1

dz2
1

∣∣∣∣ � 1.

Proof. From (A.8) we have

dθ1

dz1
= (1 − ωβ−1 1

F

∂F

∂θ
) + ωβ−1 1

F

∂F

∂z
dwu(θ)

dθ

αβ−1bFαβ−1−1 ∂F

∂θ
+ αβ−1bFαβ−1−1 ∂F

∂z
dwu(θ)

dθ

. (B.10)

At the point of tangential intersection, we have | dθ1
dz1

| < k
1
2 , which is not possible unless

∣∣∣∣1 − ωβ−1 1

F

∂F

∂θ

∣∣∣∣ < b
1
4 (B.11)

from (B.10). This is because dwu(θ)
dθ

< b
1
2 from Claim B.3(a). The effect of b in the denominator cannot

be possibly balanced if (B.11) is false.
For the estimate on the second derivative we start from

d2θ1

dz2
=

d
dθ

( dθ1
dz1

)

dz1
(B.12)
1 dθ
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where dz1
dθ

is the denominator in (B.10). To compute d
dθ

( dθ1
dz1

), we take the derivative of the function
on the right-hand side of (B.10) with respect to θ . Applying the quotient rule we obtain a fraction,
the bottom of which has a factor b2. On the top, we have a collection of finitely many terms, each of

which is < K b1+ 1
4 in magnitude except one in the form of

(
αβ−1bFαβ−1−1 ∂F

∂θ

)
d

dθ

(
1 − ωβ−1 1

F

∂F

∂θ

)
. (B.13)

Remember that we have F > Km on V̂ , and dF

dθ
> K −1 from (B.11). We also have

∣∣∣∣ d

dθ

(
1 − ωβ−1 1

F

∂F

∂θ

)∣∣∣∣ ≈ ωβ−1

F2
> 1.

Therefore, (B.13) is the dominating term on top and we obtain

∣∣∣∣d2θ1

dz2
1

∣∣∣∣ > K b−2

at q̃. �
To finish our proof of Theorem 3, we also need to prove that, as a varies, �s

a and Ra(�
u
a) move

with different speeds at the point of tangency. To make the dependency on parameter a explicit, we
write wu = wu(θ,a), ws = ws(z,a). Claim B.3 applies to wu(θ,a) and Claim B.4 applies to ws(z,a).

Claim B.6. Let (θ1(θ0,a), z1(θ0,a)) = Ra(θ0, wu
a(θ0,a)). Then at a = â we have

(a) | ∂
∂a θ1(θ0,a)| > 2

3 ; and

(b) | ∂
∂a ws(z̃,a)| < 1

25 .

Recall that q̃ = (θ̃ , z̃) is the point of tangential intersection and (θ0, z0) is such that Râ(θ0, z0) = q̃.

Proof. In this proof we use ∂z, ∂θ and ∂a to denote the partial derivative with respect to z, θ and a
respectively.

To prove (a) we let q = (θm, zm) be the saddle fixed point and �u(q) and �u
1(q) = Ra(�

u(q)) be as
in Claim B.3. For (θ, z) ∈ �u(q) and (θ0, z0) = Ra(θ, z), we have from (2.8),

θ0 = f (θ, z,a) = θ + a − ω

β
ln F(θ, z,μ),

z0 = g(θ, z,a) = b
[
F(θ, z,μ)

] α
β , (B.14)

and in (B.14), z0 = wu(θ0,a), z = wu(θ,a) because both (θ0, z0) and (θ, z) are on �u
1(q). We first invert

the first equality in (B.14), obtaining θ = θ(θ0,a); then we put it into the second equality in (B.14) to
obtain z0 = wu(θ0,a). To estimate ∂a wu(θ0,a), we first let

Ma = max
(θ,z)∈�u

1(q)

∣∣∂a wu(θ,a)
∣∣

and obtain from the first equality in (B.14),

∣∣∂aθ(θ0,a)
∣∣ =

∣∣∣∣ ∂a f + ∂z f · ∂a wu

∂ f + ∂ f · ∂ wu

∣∣∣∣ < K1 + K2Ma

θ z θ
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because |∂θ f | > 1 for (θ, z) ∈ V̂ \ V f and |∂θ wu | < b
1
2 from Claim B.3(a). From the second equality in

(B.14) we have

∣∣∂a wu(θ0,a)
∣∣ = ∣∣∂θ g · ∂aθ + ∂z g · (∂θ wu · ∂aθ + ∂a wu) + ∂a g

∣∣
� K3b(K1 + K2Ma) + K4b,

from which it follows that

Ma < b
1
2 . (B.15)

(a) now follows by taking ∂a on

θ1(θ0,a) = θ0 + a − ωβ−1 ln F
(
θ0, wu(θ0,a),μ

)
using (B.15).

Proof of (b) is more sophisticated than that of (a). We need to study the stable manifold through
the field of most contracted directions, a method originally introduced in [5] and fully developed in
[43] and [44]. A detailed proof is included in Appendix C. �

With Claim B.6 we know that, as a varies passing â, Ra(�
u
a ) crosses �s

a transversally. This finishes
our proof of Theorem 3 owing that of Claim B.6(b).

Appendix C. Proof of Claim B.6(b)

In order to produce the desired estimates in Claim B.6(b), we need more precise controls on the
stable manifold of the saddle fixed point qm . The main idea of our proof, that is, to approximate
the stable manifold by using the integral curves of the vector field defined by the most contracted
directions of the Jacobi matrix, was originated from [5], and was fully developed in [43] and [44].
Here we only need a specific version of the contents developed in the beginning part of Section 3
in [44].

C.1. Most contracted directions

In what follows u1 ∧ u2 is the wedge product and 〈u1, u2〉 is the inner product for u1, u2 ∈ R2.
Let M be a 2 × 2 matrix and assume M �= cO where O is orthogonal and c ∈ R. Then there is

a unit vector e, uniquely defined up to a sign, that represents the most contracted direction of M ,
i.e. |Me| � |Mu| for all unit vectors u. From standard linear algebra, we know f = e⊥ is the most
expanded direction, meaning |Me⊥| � |Mu| for all unit vectors u, and Me ⊥ Me⊥ . The numbers |Me|
and |Me⊥| are the singular values of M .

Let u ⊥ v be two unit vectors in R2. The following formulas are the results of elementary compu-
tations. First, we write down the squares of the singular values of M:

|Me|2 = 1

2

(
B −

√
B2 − 4C

) := λ, |M f |2 = 1

2

(
B +

√
B2 − 4C

)
(C.1)

where

B = |Mu|2 + |M v|2, C = |Mu ∧ M v|2. (C.2)

We write e = α0u + β0 v , and solve for |Me| = √
λ subject to α2

0 + β2
0 = 1. There are two solutions

(a vector and its negative): either e = ±v , or the solution with a positive u-component is given by
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e = 1

Z
(αu + βv) (C.3)

with

α = |M v|2 − λ, β = −〈M v, Mu〉 (C.4)

and

Z =
√

α2 + β2. (C.5)

From this we deduce that a solution for f is

f = 1

Z
(−βu + αv). (C.6)

C.2. Stability of most contracted directions

In what follows we let qi = Ri
a(q0), Mi = D Ra(qi−1);

Mi =
(

Ai Bi
Ci Di

)
=

( 1 − ωβ−1 1
F

∂F

∂θ
ωβ−1 1

F

∂F

∂z

αβ−1bFαβ−1−1 ∂F

∂θ
αβ−1bFαβ−1−1 ∂F

∂z

)
.

We have for qi−1 ∈ V̂ \ V f ,

2 < |Ai| < K , |Bi| < K , |Ci|, |Di | < K b. (C.7)

Let M(n) = D Rn
a(q0). M(n) = Mn · Mn−1 · · · M1. Let the most contracted direction for M(n) be en and

the most expanded direction be fn . Denote the values of α,β and Z in (C.4) and (C.5) for M(n) as
αn, βn and Zn . Observe that, assuming qi ∈ V̂ \ V f , i < n,

∣∣M(n) fn
∣∣ > 1. (C.8)

We have

Lemma C.1. Let q0 be such that q0, . . . ,qn ∈ V̂ \ V f . Then for all 1 � i � n,

(a) |ei+1 − ei| < (K b)i , |M(i)en| < (K b)i ;
(b) |∂a(ei+1 − ei)| < (K b)i , |∂aM(i)en| < (K b)i .

Proof. Let �i := |M(i)u ∧ M(i)v|. We have

�i = ∣∣det
(
M(i))∣∣ < (K b)i . (C.9)

It then follows from |M(i)ei||M(i) f i | = �i and (C.8),

∣∣M(i)ei
∣∣ < (K b)i . (C.10)

We substitute u = ei, v = f i and M = M(i+1) into (C.3) for ei+1 and (C.5) for f i+1. By using (C.1)
for M(i+1) f i+1, we have
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∣∣M(i+1) f i
∣∣ = ∣∣M(i+1) f i+1

∣∣ ± O
(
(K b)i). (C.11)

From (C.2), (C.9) and (C.10), we also have

Zi+1 ≈ |αi+1| ≈
∣∣M(i+1) f i

∣∣2
. (C.12)

We now prove Lemma C.1(a). Using u = ei and v = f i , we have, from (C.3),

ei+1 − ei = 1

Zi+1

( −β2
i+1

αi+1 + Zi+1
ei + βi+1 f i

)
. (C.13)

To estimate |ei+1 − ei|, we need to obtain a suitable upper bound for |βi+1| and lower bounds for
|αi+1| and Zi+1. We have from (C.4), (C.10) and (C.12),

|βi+1| �
∣∣M(i+1)ei

∣∣∣∣M(i+1) f i
∣∣ < K bi

√
Zi+1 (C.14)

and |αi+1| ≈ Zi+1. These estimates together with Zi+1 > 1 tell us

|ei+1 − ei| ≈ |βi+1|
Zi+1

< (K b)i .

The second assertion follows easily from∣∣M(i)en
∣∣ �

∣∣M(i)(en − en−1)
∣∣ + · · · + ∣∣M(i)(ei+1 − ei)

∣∣ + ∣∣M(i)ei
∣∣ < (K b)i .

This finishes our proof for Lemma C.1(a).
To prove Lemma C.1(b) we start with

Sublemma C.1. |∂ae1|, |∂a f1| < K1 for some K1 .

Proof. Let u = (0,1)T , v = (1,0)T and use (C.3) for e1 and (C.6) for f1. We have Z1 > α � |M1 v|2 −
K b > 1. Differentiating (C.3) and (C.6) gives the desired result. �

In the rest of this proof, ∂ = ∂a . Our plan of proof for Lemma C.1(b) is as follows: For k = 1,2, . . . ,

we assume for all i � k:

(∗) |∂ei|, |∂ f i | < 2K1 where K1 is as in Sublemma C.1,

and prove for all i � k:

(A) |∂(M(i) f i)| < K i , |∂(M(i)ei)| < (K b)i ;
(B) |∂(ei+1 − ei)|, |∂( f i+1 − f i)| < (K b)i .

Observe that for i = 1, (∗) is given by Sublemma C.1. It is easy to see that (B) above implies
(∗) with i = k + 1, namely |∂ fk+1| � |∂( fk+1 − fk)| + · · · + |∂( f2 − f1)| + |∂ f1|. From (B), we have
|∂( f i+1 − f i)| < (K b)i , and from Sublemma C.1, we have |∂ f1| < K1. Hence |∂ fk+1| < K b + K1, which,
for b sufficiently small, is < 2K1. The computation for ek+1 is identical.

Proof that (∗) ⇒ (A). First we prove the estimate for ∂(M(i) f i). Writing

∂
(
M(i) f i

) =
i∑

j=1

Mi · · · (∂M j) · · · M1 f i + M(i)∂ f i,
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we obtain easily

∣∣∂(
M(i) f i

)∣∣ �
i∑

j=1

∣∣Mi · · · (∂M j) · · · M1 f i
∣∣ + ∥∥M(i)

∥∥|∂ f i| � iK i + K i(2K1).

This estimate is used to estimate ∂(M(i)ei). Write ∂(M(i)ei) = (I) + (II) where (I) is its com-
ponent in the direction of M(i) f i and (II) is its component orthogonal to M(i) f i . Recall that
∂〈M(i)ei, M(i) f i〉 = 0. We have

∣∣(I)
∣∣ =

∣∣∣∣
〈
∂
(
M(i)ei

)
,

M(i) f i

|M(i) f i|
〉∣∣∣∣ = 1

|M(i) f i|
∣∣〈M(i)ei, ∂

(
M(i) f i

)〉∣∣ < (K b)i K i;
∣∣(II)

∣∣∣∣M(i) f i
∣∣ = ∣∣∂(

M(i)ei
) ∧ M(i) f i

∣∣ �
∣∣∂(

M(i)ei ∧ M(i) f i
)∣∣ + ∣∣M(i)ei ∧ ∂

(
M(i) f i

)∣∣.
The first term in the last line is < (K b)i , noting that we have established |∂ei|, |∂ f i | < 2K1; the second
term is < (K b)i · K i . This completes the proof of (A). �

To prove (B), we first compute some quantities associated with the next iterate. Substitute u = ei ,
v = f i, M = M(i+1) in (C.1)–(C.6). The following is a straightforward computation.

Sublemma C.2. Assume (∗) and (A). Then for all i � k:

(a) |∂λi+1| < (K b)2(i+1);
(b) |∂βi+1| < (K b)i√Zi+1;
(c) |∂αi+1|, |∂ Zi+1| < K i√Zi+1 .

Proof that (∗), (A) ⇒ (B). We work with ei ; the computation for f i is similar. From (23) we have
∂(ei+1 − ei) = (III) + (IV) + (V) where

∣∣(III)
∣∣ =

∣∣∣∣ 1

Zi+1
(ei+1 − ei)∂ Zi+1

∣∣∣∣ <
K i√Zi+1

Zi+1
· (K b)i < (K b)i;

∣∣(IV)
∣∣ =

∣∣∣∣ 1

Zi+1
∂(βi+1 f i)

∣∣∣∣ <
1

Zi+1

(|∂βi+1| + |βi+1||∂ f i|
)
< (K b)i;

∣∣(V )
∣∣ =

∣∣∣∣ 1

Zi+1
∂

(
β2

i+1

αi+1 + Zi+1
ei

)∣∣∣∣ � (K b)i .

To estimate (III), we have used Sublemma C.2(c) and part (a) of Lemma C.1. To estimate (IV), we have
used Sublemma C.2(b), (∗) and |βi+1| < ( Kb

κ )i . The estimate for (V ) is easy. �
This completes the proof of Lemma C.1(b). �
We also need to control the speed of change for the most contracted directions in V̂ \ V f . Let

q0(s,a) be a curve in V̂ \ V f parameterized by a parameter s and assume that

∥∥q0(s,a)
∥∥

C2 < K .

Let M(n)(s) = D Rn
a(q0(s,a)), and en(s) be the most contracted direction for M(n)(s).
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Lemma C.2. Let q0 be such that q0, . . . ,qn ∈ V̂ \ V f . Then for all 1 � i � n,

(a) |∂s(ei+1(s) − ei(s))| < (K b)i , |∂s M(i)(s)en(s)| < (K b)i ; and
(b) |∂s∂a(ei+1(s) − ei(s))| < (K b)i , |∂s∂aM(i)(s)en(s)| < (K b)i .

Proof. The proof for Lemma C.2(a) is identical to that of Lemma C.1(b). It suffices to regard all ∂ as ∂s

instead of ∂a . The estimate for the second derivatives is proved by a similar argument. Here we skip
the details. �
C.3. Temporary stable curves and the stable manifold

In the rest of this proof we let η = b
1

10 and denote Aη = {(θ, z) ∈ A: |z| < η}. We view en as a
vector field, defined where it makes sense, and let γn(s) be the integral curve to en with γn(0) = q0.

Lemma C.3. Let q0 = qm be the saddle fixed point of Theorem 3, and γn(s) be the integral curve to en satisfying
γn(0) = q0 in Aη . Then, for all n > 0,

(a) |Ri
a(q) − Ri

a(q0)| < (Kb)i |s| for all q = γn(s) and all i � n;
(b) γn(s) is a fully extended vertical curve in (V̂ \ V f ) ∩ Aη;

(c) |γn+1(s) − γn(s)|, |∂aγn+1(s) − ∂aγn(s)| < b
n

10 .

Proof. Lemma C.3(a) follows directly from |M(i)en| < (K b)i for all i � n (Lemma C.1(a)). Denote
R = Ra . Let B0 be the ball of radius 2η centered at q0. e1 is well defined on B0, and substitut-
ing u = (0,1)T , v = (1,0)T into (C.3) we obtain s(e1) > K b−1. Let γ1 = γ1(s) be the integral curve to
e1 defined for s ∈ (−2η,2η) with γ1(0) = q0.

To construct γ2, let B1 be the η2-neighborhood of γ1. For ξ ∈ B1, let ξ ′ be a point in γ1 with
|ξ − ξ ′| < η2. Then |R(ξ) − R(q0)| � |R(ξ) − R(ξ ′)| + |R(ξ ′) − R(q0)| � Kη2 + K bη < Kη2. This
ensures that e2 is defined on all of B1. Let γ2 be the integral curve to e2 with γ2(0) = q0. We verify
that γ2 is defined on (−2η,2η) and runs alongside γ1. More precisely, let t ∈ [0,1] and

q(t, s) = γ1(s) + t
(
γ2(s) − γ1(s)

)
.

We have

∣∣∣∣ d

ds

(
γ2(s) − γ1(s)

)∣∣∣∣ �
∣∣e2

(
γ2(s)

) − e1
(
γ2(s)

)∣∣ + ∣∣e1
(
γ2(s)

) − e1
(
γ1(s)

)∣∣
� |e2 − e1| + |∂te1|

∣∣γ2(s) − γ1(s)
∣∣

� K b + K
∣∣γ2(s) − γ1(s)

∣∣.
Here we use |∂te1| < K . By Gronwall’s inequality, |γ2(s) − γ1(s)| � K b|s|eK |s|, which is � η2 for
|s| < 2η. This ensures that γ2 remains in B1 and hence is well defined for all s ∈ (−2η,2η).

In general, we inductively construct γi by letting Bi−1 be the ηi -neighborhood of γi−1 in S . Then
for all ξ ∈ Bi−1, |R j(ξ) − R j(q0)| = |R j(ξ) − q0| < Kη j for k < i. Thus ei is well defined. Integrating
and arguing as above, we obtain γi with |γi(s) − γi−1(s)| < (K b)i−1|s| � ηi for all s with |s| < 2η.

To estimate the derivative with respect to a, we let

q(t, s) = γn(s) + t
(
γn+1(s) − γn(s)

)
.

We have
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∣∣∣∣ d

ds
∂a

(
γn+1(s) − γn(s)

)∣∣∣∣ �
∣∣∂a

(
en+1

(
γn+1(s)

) − en
(
γn+1(s)

))∣∣
+ ∣∣∂a

(
en

(
γn+1(s)

) − en
(
γn(s)

))∣∣
� |en+1 − en| + |∂t∂aen|

∣∣γn+1(s) − γn(s)
∣∣ � Kηn.

From this the second item of Lemma C.3(b) follows. �
C.4. The proof of Claim B.6(b)

We are ready to prove Claim B.6(b). First we note that at the point of tangency, |z| � b
1

10 so it

suffices for us to consider Aη in place of A with η = b
1

10 .
From Lemma C.3(c), we know that γn → γ∞ uniformly as n → ∞, and from Lemma C.3(a) we

know that γ∞ is the stable manifold of q0 = qm , which we write as

θ = θ∞(s,a), z = z∞(s,a). (C.15)

We also have

∣∣∂aθ∞(s,a) − ∂aθ1(s,a)
∣∣, ∣∣∂sθ∞(s,a) − ∂sθ1(s,a)

∣∣ < 2b
1

10 (C.16)

from Lemma C.1(b) and Lemma C.2(a).
Write γ∞ using θ = ws(z,a). We first solve s = s∞(z,a) from the second item in (C.15), then

substitute it to the first item in (C.15) to obtain

ws(z,a) = θ∞
(
s∞(z,a),a

)
.

Differentiating on both sides, we obtain

∂a ws(z,a) = ∂sθ∞(s,a)∂as∞(z,a) + ∂aθ∞(s,a)

= −∂sθ∞(s,a)
∂az∞(s,a)

∂s z∞(s,a)
+ ∂aθ∞(s,a)

= ∂a ws
1(z,a) + O

(
b

1
10

)
where θ = ws

1(z,a) is the equation for γ1. To obtain the last estimate we use (C.16) and the fact that
∂s z1(s,a) > 1

2 .
To prove Claim B.6(b), it now suffices for us to confirm that

∂a ws
1(z,a) <

1

50
.

To verify this estimate we observe

∣∣∣∣∂a
d

dz
ws

1(z,a)

∣∣∣∣ = ∣∣∂as−1(e1)
∣∣ < K b (C.17)

where s(e1) is the slope for e1. This follows from a direct computation using (C.3). From (C.17),∣∣∂a ws
1(z,a)

∣∣ <
∣∣∂a ws

1(zm,a)
∣∣ + K bη

where ∂a ws
1(zm,a) is the value of ∂a ws

1(z,a) at q0 = qm . We now use Claim B.2 for ∂a ws
1(zm,a).
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