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We study three-dimensional superconformal field theories on wrapped M5-branes. Applying the
gauge/gravity duality and the recently proposed 3d–3d relation, we deduce quantitative predictions
for the perturbative free energy of a Chern–Simons theory on hyperbolic 3-space. Remarkably, the
perturbative expansion is expected to terminate at two-loops in the large N limit. We check the
correspondence numerically in a number of examples, and confirm the N3 scaling with precise
coefficients.
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1. Introduction

In quantum field theories, duality refers to a map between
observables of two seemingly unrelated theories. Duality can be
particularly powerful when one of the two theories is not (yet)
defined rigorously. There are two prominent examples in string
theory: M-theory and holographic gauge/gravity duality [1]. While
less well-understood than perturbative string theory, M-theory of-
fers a unifying framework for all string theories. The gauge/gravity
duality relates a quantum field theory to a quantum gravity the-
ory in one higher dimensions. Although the gravity theory operates
mostly at the classical level, it often gives powerful predictions for
the quantum field theory.

A number of new dualities have been discovered recently
through compactification of M5-branes. Just as M-theory unifies
string theories, M5-branes provide a unifying framework for a large
class of supersymmetric quantum field theories. In the simplest
case, the M5-brane theory defines a 6d conformal field theory with
(2,0) supersymmetry. Wrapping M5-branes on internal manifolds
gives rise to lower dimensional field theories with the same or a
smaller number of supersymmetries.

In conventional compactifications, the compact manifold affects
the definition of the lower dimensional field theory, but does not
usually bear an independent physical meaning. A novelty in recent
works on M5-branes is that a duality holds between the compacti-
fied field theory and a different field theory defined on the internal
manifold. For instance, in the celebrated “4d–2d” relation [2] a 4d
N = 2 supersymmetric field theory is paired with an integrable
field theory on a Riemann surface. Similarly, the “3d–3d” relation

* Corresponding author.
http://dx.doi.org/10.1016/j.physletb.2014.04.051
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
[3] connects a 3d N = 2 supersymmetric field theory with a 3d
Chern–Simons (CS) theory.

The goal of this Letter is to point out and verify a surprising
prediction for the perturbative expansion of CS theory, which is
deduced from a combination of the gauge/gravity duality and the
3d–3d relation. We report on the main results here, and the details
will be published elsewhere [4].

We begin with wrapping a stack of N M5-branes on a hy-
perbolic 3-manifold M . The resulting lower dimensional the-
ory is called T N [M] [5]. One of the fundamental observables of
the theory is the partition function on a squashed three-sphere,
ZT N [M][S3

b], with a squashing parameter b, and the associated free
energy F N,b = − log |ZT N [M][S3

b]|. We will use the dualities to study
properties of F N,b without computing it directly from T N [M].

On the one hand, we embed the brane configuration into
the full M-theory to invoke the gauge/gravity duality. Building
upon the relevant supergravity solution [6] and taking the squash-
ing into account [7], we will show that the gravity computa-
tion gives F gravity = N3(b + b−1)2vol(M)/12π in the large N limit.
Gauge/gravity duality leads to an equality between the gravity free
energy and field theory free energy F N,b at large N . On the other
hand, we use the 3d–3d relation to compute F N,b from the CS the-
ory. The methods for the computation were developed recently
in [8,5]. A crucial feature of the 3d–3d relation is that the loop-
counting parameter “h̄” of the perturbative CS theory is related to
the squashing parameter b as h̄ = 2π ib2 [3,9]. It follows that the
n-th term F (n)

N , defined as

F CS
N,b =

∞∑
(h̄/i)n−1 F (n)

N + (non-perturbative), (1)

n=0
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comes from the n-loop diagrams of the perturbative CS theory.
Comparing this asymptotic expansion with the gravity free energy,
we infer: (1) F (0)

N , F (1)
N and F (2)

N all scale as N3 and their coef-
ficients of N3 are proportional to vol(M). (2) Three- and higher-
loop terms as well as the non-perturbative ones are suppressed at
large N .

After reviewing the gravity computation and the methods for
the CS computation, we subject our main observation to numeri-
cal tests. For a number of hyperbolic knot complements, and the
value of N reaching up to 30, our numerical results exhibit excel-
lent agreement with the predictions of the dualities.

2. Supergravity description

It is convenient to use lower dimensional gauged supergrav-
ity for constructing various near-horizon geometries of D- or M-
brane backgrounds. For M5-branes the relevant theory is 7d SO(5)

gauged supergravity, which is a consistent truncation of 11d su-
pergravity. In addition to the maximally supersymmetric AdS7, it
exhibits a rich spectrum of magnetically charged AdS solutions
which we interpret as M5-branes wrapped on supersymmetric cy-
cles [6].

In particular, we are interested in an AdS4 × M solution where
M5-branes are wrapped on a special Lagrangian 3-cycle M which is
locally H3, the hyperbolic 3-space. To implement topological twist-
ing, one first turns on SO(3) ⊂ SO(5) part of gauge fields so that
they exactly cancel the contribution of spin connections on H3 in
the Killing spinor equation. There are also 14 scalar fields in the
traceless symmetric tensor representation of SO(5), and we turn
on a single scalar field which is singlet under the remaining sym-
metry SO(3) × SO(2).

It turns out that the supersymmetry and the equation of motion
uniquely determine the AdS4 × H3 solution [6]. One can then use
the uplifting formula to obtain a solution of 11d supergravity. The
metric is

ds2
11 = 22/3(1 + sin2 θ)1/3

g2

[
ds2(AdS4) + ds2(M)

+ 1

2

(
dθ2 + sin2 θ

1 + sin2 θ
dφ2

)
+ cos2 θ

1 + sin2 θ
dΩ̃2

]
, (2)

where 0 < θ < π/2,0 < φ < 2π . M is locally H3. Both AdS4 and
M have unit radius. dΩ̃2 denotes the unit 2-sphere, twisted by the
spin connection one-forms of M .

The parameter g is the coupling constant of 7d supergravity,
and sets the overall curvature scale of the solution. Through the
flux quantization, g is related to the number of M5-branes N . The
4-form field G of 11d supergravity, when restricted to the internal
space X4, is

G|X4 = −8π3

g3
d

[
cos3 θ

1 + sin2 θ

]
∧ dφ ∧ vol

(
S̃2). (3)

Integrating this, one obtains N = (π l3P g3)−1, where lP is 11d Planck
length.

The gravity side computation of the partition function can be
done using the standard AdS/CFT prescription. That is, we calculate
the holographically renormalized on-shell action for the supergrav-
ity solution. For round S3, the result is simply F = π

2G4
, where G4

is 4d Newton’s constant. See e.g. [10] for derivation.
To invoke the 3d–3d relation we put the wrapped M5-brane

theory on an ellipsoid S3
b , defined by b2(x2

1 +x2
2)+b−2(x2

3 +x2
4) = 1.

The geometry has a manifest b ↔ b−1 symmetry and so do all par-
tition functions in this Letter. For the holographic computation on
S3, we consider the minimal N = 2 gauged supergravity in 4d,
b
and look for a particular supersymmetric solution whose metric
and the Killing spinors reproduce the S3

b metric and its Killing
spinor given in [11], as one approaches the boundary. Such a so-
lution is presented in [7], which is a class of Plebanski–Demianski
solutions in Einstein–Maxwell theory. Then the 11d solution (2)
should change accordingly, as one plugs the solution in [7] into
the uplifting formula of [6]. But it is also established in [7] that the
b-dependence of the holographic free energy is universally given as
Fb = (b + 1/b)2 Fb=1/4. One may thus first compute Fb=1 using (2)
and restore b-dependence easily.

F gravity = N3

12π

(
b + 1

b

)2

vol(M). (4)

This is the key result we check against the field theory in this Let-
ter. Since the gravity analysis is classical, F gravity captures only the
leading N3 term at large N . On the other hand, its b-dependence
is exact as coefficient of N3. For knot complements M = S3\K ,
the solution (2) needs to be modified to incorporate intersecting
M5-branes along the knot. For 4d theories of class S associated
with a Riemann surface Σg,h of genus g with h full punctures,
the leading N3 terms of conformal anomaly coefficients a and c
depend only on the Euler characteristic of the Riemann surface re-
gardless of the existence of punctures [12]. In a similar vein, as the
hyperbolic volume is a topological invariant, we expect the formula
(4) to be robust and insensitive to the presence of the knot K .

3. 3d–3d relation and a PGL(N) CS theory

The 3d–3d relation [3] states a precise map between T N [M]
and the analytically continued PGL(N) CS theory on M . The map
for supersymmetric partition function is

ZT N [M]
[

S3
b

] = Z CS
N [M; h̄]. (5)

In this Letter, we focus on the case when the 3-manifolds are
hyperbolic knot complements on S3, M = S3\K , obtained by re-
moving a tubular neighborhood of a hyperbolic knot K from S3.
A unique complete hyperbolic metric is known to exist for each
M = S3\K . For the notation of knots we follow [13]. The volume
of M can be expressed in terms of dilogarithm, e.g. vol(S3\41) =
2 Im(Li2(e

iπ
3 )) = 2.02988 · · · .

A knot complement M has a torus boundary and T N [M] has a
flavor symmetry of rank N − 1 which will be enhanced to SU(N)

at IR [5]. Both sides of (5) are functions of complex parameters
{μi}N−1

i=1 . For T N [M], μi are complexified mass parameters

μi = 2πb

(
mi + i

2

(
b + b−1)ri

)
, (6)

where mi and ri are real masses and R-charges coupled to the
U (1)N−1 flavor symmetry. For comparison with AdS4 gravity, the
conformal symmetry requires mi = 0 and ri are determined via
maximization of the free energy on S3 [14]. The symmetry en-
hancement to SU(N) leads to ri = 0 which are invariant under
Weyl reflections. For the CS theory, we consider a boundary condi-
tion which fixes the conjugacy class of gauge holonomy along the
meridian cycle of ∂M . μi parametrizes the meridian holonomy.

The action for the CS theory is

SCS[A, Ā] = i

2h̄
CS[A] + i

2 ˜̄h CS[Ā], (7)

CS[A] :=
∫
M

Tr

(
A∧ dA+ 2

3
A∧A∧A

)
. (8)

We consider an analytic continuation of the theory [15] where h̄, ˜̄h
are complex and A, Ā are independent gauge fields. h̄ and ˜̄h are
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mapped through the 3d–3d relation to the squashing parameter b
as [3,9]

h̄ = 2π ib2, ˜̄h = −4π2/h̄ = 2π ib−2. (9)

Formally, Z CS
N [M] can be written as a path-integral,

Z CS
N [M](μi) =

∫
DADĀ|b.c.e

iSCS[A,Ā], (10)

with the boundary condition |b.c. specified by {μi}. In practice, it
is more convenient to use canonical quantization. The classical so-
lutions are flat-connections,

F = dA+A∧A = 0, F̄ = dĀ+ Ā∧ Ā = 0. (11)

For quantization, we first consider a classical phase space P(∂M)

associated with the boundary of M ,

PN(∂M) = {A, Ā|F = F̄ = 0 on ∂M}/(gauge),

and its Lagrangian submanifold associated with M [16],

LN(M) = {A, Ā|F = F̄ = 0 on M}/(gauge).

After quantization, the phase space is replaced by a Hilbert-space
HN (∂M), and LN(M) by a state |MN 〉 ∈ HN (∂M). The dimension
of the phase space is 2(N − 1) and we choose the meridian {μi}
as position variables. Collecting all the ingredients, the CS partition
function (10) can be identified as a wave-function [16],

Z CS
N [M](μi) = 〈μi |MN〉. (12)

It is possible to write down an integral expression for Z CS
N ,

thanks to the two recently developed tools: N-decomposition of
M [5] and a state-integral model in [8]. They both make use of an
ideal triangulation of M ,

M =
(

k⋃
i=1

�i

)
/(gluing data). (13)

Dividing each �i further into a pyramid of N(N2 − 1)/6 octahedra
(�), we obtain an N-decomposition of M , (see Fig. 1 as an exam-
ple),

M =
(

k⋃
i=1

⋃
(a,b,c,d)

�(i)
(a,b,c,d)

)
/(gluing data). (14)

The gluing data dictate how we should match the vertices from
different octahedra. The octahedra in each �i are labelled by four
non-negative integers (a,b, c,d) whose sum is N − 2. The decom-
position is a mathematical tool to construct the moduli spaces
P(∂M) and L(M) by ‘gluing’ the building blocks P(∂�) and L(�).

The state-integral model [8,17] is obtained by quantizing the
gluing procedure of constructing flat connection moduli spaces.
The model provides a finite dimensional integral expression for
Z CS

N [M]. At conformal point μi = 0 (MN := k
6 N(N2 − 1))

Z CS
N [M] = 1√

det B N

∫
dMN X

(2π h̄)MN /2

∏
ψh̄(X)

× exp

[
−1

h̄

(
iπ + h̄

2

)
X T B−1

N νN + 1

2h̄
X T B−1

N AN X

]
,

(15)

up to prefactors independent of N and an overall phase factor.
ψh̄(X) is a non-compact quantum dilogarithm function, which is
roughly Z CS

2 [�] [8]. {AN , B N} are MN × MN matrices and νN is
an MN -dimensional column vector with integer entries. They can
be determined from the gluing data of the N-decomposition up to
a certain ambiguity which does not affect our discussion.
Fig. 1. N-decomposition for M = S3\41. M is decomposed into two tetrahedra Y
and Z . Each tetrahedron is decomposed into a pyramid of 1

6 N(N2 − 1) octahedra.

4. Perturbative CS theory vs gravity

In the limit h̄ → 0, Z CS
N [M] can be evaluated perturbatively us-

ing the saddle point approximation leading to an expansion of the
form (1). The perturbative “invariants” F (n)

N can be systematically
computed using the Feynman rules derived in [17]. Remarkably
enough, in view of the dictionary (9), we find the gravity free en-
ergy (4) displays the same expansion structure as the CS counter-
part but terminates at two-loop. Combining F gravity = F gauge with
the 3d–3d relations (5) and (9), we conclude

lim
N→∞

F (n)
N

N3
= cnvol(M), (16)

with c0 = 1
6 , c1 = 1

6π , c2 = 1
24π2 and cn = 0 for n ≥ 3. If the pre-

dictions are correct, the symmetry b ↔ b−1 exists even in the
perturbative expansion at large N , which gives a strong evidence
that non-perturbative corrections in (1) will be suppressed in the
limit. The prediction on the classical part F (0) can be under-
stood intuitively [5]. First, we recall that Im(CS[A]) for PGL(2) is
equivalent to the 3d AdS gravity action [18]. The unique complete
hyperbolic metric on M is mapped to a geometrical flat connec-
tion A(geom)

N=2 . The flat PGL(2)-connection can be lifted to a flat

PGL(N)-connection A(geom)
N using the irreducible N-dimensional

representation of PGL(2). We assume that conjugate A(geom)
N of

the PGL(N) gives a dominant contribution to the path-integral (10)
when μi = 0. Elementary algebra gives

CS
[
A(geom)

N

] = 1

6
N

(
N2 − 1

)
CS

[
A(geom)

2

]
. (17)

Combining this with the fact that F (0)
2 = Im(CS)/2 for A(geom)

N=2
equals to vol(M), we arrive at (16) for n = 0. The prediction on
F (1)

N can be proved using results in [19]. A perturbative analy-

sis of the CS theory gives F (1)
N = − 1

2 log |Toradj[M,A(geom)
N ]| where

Torρ [M,A] is the Ray–Singer torsion of an associated vector bun-
dle in a representation ρ twisted by a flat connection A. In [19],
it is proven that

lim
1

2
log Torρm

[
M,A(geom)

N=2

] = − 1
vol(M), (18)
m→∞ m 4π
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Fig. 2. Log–log plot of F (1)
N (left) and F (2)

N (right) vs. N , for N = 6, · · · , Nmax for the seven simplest hyperbolic knot complements M = S3\K (K = 41,52,61,62,63,72,73).
Nmax for each M is limited by computing time.
Table 1
Numerical values of 1,2-loop invariants.

K vol(S3\K ) π F (1)
N

′′′ (N) 4π2 F (2)
N

′′′ (N)

41 2.02988 2.03001 (27) 2.02898 (17)

52 2.82812 2.82828 (12) 2.82674 (12)

61 3.16396 3.20648 (12) 3.15574 (12)

62 4.40083 4.40364 (12) 4.39929 (12)

63 5.69302 5.69464 (11) 5.68799 (9)

72 3.33174 3.56613 (12) 3.27455 (12)

73 4.59213 4.58680 (12) 4.58331 (11)

where ρm is the irreducible m-dimensional representation of
PGL(2). Applying the theorem to F (1)

N using the branching rule
adj = ρ3 ⊕ ρ5 ⊕ . . . ⊕ ρ2N−1, we arrive at (16) for n = 1.

We currently have little analytic understanding of the loop in-
variants F (n)

N (n ≥ 2). In particular, the appearance of vol(M) in the
2-loop term is striking and seems non-trivial to prove.

We have verified (16) for several examples of M by calculating
the invariants F (1)

N , F (2)
N and F (3)

N numerically as we vary N . The
computation of the gluing data {AN , B N , νN } is greatly facilitated
by the computer package SnapPy [20,21]. Our results are summa-
rized in Fig. 2, which shows log–log plots of F (1) and F (2) . They
clearly exhibit the expected N3 behavior already at modest values
of N ∼ 10.

To extract the coefficient of N3 term efficiently, we computed
the third-differences F (1)

N
′′′ and F (2)

N
′′′ and confirmed that they

quickly converge to the exact values of vol(M) up to overall factors
1
π and 1

4π2 respectively, as we increase N . The results summarized
in Table 1 show excellent agreement. The computation of 3-loop
invariant F (3)

N takes significantly longer, due to the large number of
Feynman diagrams. We have done the computation for 41 and ob-
tained F (3)

N = 0.03128,0.02844,0.02602 for N = 7,8,9. It is thus

strongly suggested that limN→∞ F (3)
N /N3 = 0, in accordance with

the holographic prediction.

5. Discussion

In this Letter we have performed a quantitive study of AdS4/CFT3
arising from wrapped M5-branes, by comparing the free energy on
both sides. We confirm the famous N3-behavior of the M5-brane
physics including an overall factor. It is highly desirable to have
an analytic proof of the predictions on the perturbative PGL(N) CS
invariants on hyperbolic 3-manifolds in the large N limit. Study-
ing other physical objects, such as defects, will certainly give new
insights and deserve further exploration.
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