JOURNAL OF ALGEBRA 153, 271-288 (1992)

Cohen-Macaulay Approximation and Multiplicity

SONGQING DING*

Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113

Communicated by Melvin Hochster

Received April 26, 1990

INTRODUCTION

Let R be a commutative noetherian Gorenstein local ring with maximal ideal **m** and an infinite residue field k. In studying minimal Cohen-Macaulay approximation of a finitely generated R-module C, M. Auslander introduced in [1] the numerical invariant $\delta(C)$ which is defined to be the smallest integer n such that there is an epimorphism $X \coprod R^n \to C$ with X a maximal Cohen-Macaulay module with no free summands. This gives rise to the new numerical invariants $\delta(R/\mathbf{m}^i)$ for i = 1, 2, ..., for the ring R. We show there is always an integer n such that $\delta(R/\mathbf{m}^n) \neq 0$ and we define index(R) to be the smallest integer n such that $\delta(R/\mathbf{m}^n) \neq 0$. In general one has that $mult(R) \ge index(R)$, where mult(R) is the multiplicity of R. Our main objective in this paper is to show that mult(R) = index(R) if and only if R is an abstract hypersurface, i.e., the completion \hat{R} of R can be written as S/(x) with S a regular local ring.

Our proof is based on the following general result about hypersurfaces R = S/(x) with $x \neq 0$ in \mathbf{m}_{S}^{2} . Let **a** be an ideal of R and let A be its preimage in S. Then $\delta(R/\mathbf{a}) = 0$ if and only if $x \in \mathbf{m}_{S} \mathbf{A}$.

In Section 1 we recall some definitions and results about the theory of minimal Cohen-Macaulay approximations over a Gorenstein local ring, which were initiated by M. Auslander and R.-O. Buchweitz [1, 2]. Section 2 is devoted to studying conditions for an *R*-module *C* to have the property $\delta(C) = 0$. In Section 3 we show our main result. We end the paper with a discussion of the structure of the minimal Cohen-Macaulay approximations of finitely generated modules over hypersurfaces and its connection with minimal free resolutions.

* Present address: Department of Mathematics, Texas Tech. University, Lubbock, TX 79409-1042.

SONGQING DING

1. CM Approximations and Index of R

Throughout this section we assume that R is a commutative Gorenstein local ring with maximal ideal **m** and residue field k. We denote by mod R the category of all finitely generated R-modules and by CM(R) the category of all maximal CM R-modules. For C in mod R, we say C is *stable* if C has no non-zero free summands.

In this section we recall some definitions and results about the theory of minimal Cohen-Macaulay (CM) approximations of a Gorenstein local ring which will be used in the rest of the paper. We then introduce a new numerical invariant index(R) and show that there is an inequality connecting the index of R with the multiplicity of R and other standard invariants of R.

Let C be in mod R. Then the stable CM trace of C is the submodule $\tau(C)$ of C which is generated by the homomorphic images in C of all stable maximal CM modules. Since C is noetherian, it follows that there is a morphism $f: X \to C$ such that X is a stable maximal CM module and $\operatorname{Im} f = \tau(C)$. Therefore we have that $C = \tau(C)$ if and only if C can be covered (i.e., there is an epimorphism) by a stable maximal CM module. For any C in mod R, the number $\delta(C)$ is defined to be the minimal number of generators of the factor module $C/\tau(C)$. It is clear that $\delta(C)$ is an invariant of C and $\delta(C) = 0$ if and only if C is a homomorphic image of a stable maximal CM module.

Let C be in mod R. A CM approximation of C is an exact sequence $0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0$ with $B \in CM(R)$ and $pd A < \infty$. It is called a CM approximation of C because it has the universal mapping property that any morphism $h: X \rightarrow C$ with $X \in CM(R)$ factors through f. A CM approximation of C is called minimal if the morphism $f: B \rightarrow C$ is right minimal in the sense that morphism $g: B \rightarrow B$ is an isomorphism whenever f = fg.

Dually, an exact sequence $0 \to C \xrightarrow{g} A \to B \to 0$ is called a finite projective hull of C if $B \in CM(R)$ and $pd A < \infty$. This exact sequence has the universal mapping property that any morphism $h: C \to Y$ with $pd Y < \infty$ can be extended to A. A finite projective hull of C is called minimal if the morphism $g: C \to A$ is left minimal, i.e., morphism $h: A \to A$ is an isomorphism whenever g = hg.

THEOREM 1.1 [1, 2]. Let R be a commutative Gorenstein local ring. Then each C in mod R has a minimal CM approximation and a minimal finite projective hull. They are unique up to isomorphisms.

Let C be in mod R. Since the minimal CM approximation of C is unique (up to isomorphisms), we usually use the notation $0 \rightarrow Y_C \rightarrow X_C \xrightarrow{f} C \rightarrow 0$ to denote a minimal CM approximation of C. We also denote by $\mu(C)$ the minimal number of generators of C over R.

The following proposition gives a criterion of when a CM approximation is minimal.

PROPOSITION 1.2 [1]. Let $0 \to Y \to X \xrightarrow{f} C \to 0$ be an exact sequence in mod R such that pd $Y < \infty$ and $X \in CM(R)$. Then the following are equivalent:

(a) f is right minimal.

(b) Given any decomposition $X = U \coprod F$ such that U has no free summand and F is a free module, the induced map $F \to C/f(U)$ is a projective cover.

The connections between $\delta(C)$ and the minimal CM approximation and finite projective hull of C are shown in the following proposition.

PROPOSITION 1.3 [1]. Let C be in mod R and let $0 \to Y_C \to X_C \to C \to 0$ and $0 \to C \to Y \to X \to 0$ be a minimal CM approximation and a finite projective hull of C, respectively. Then the following numbers are the same.

- (a) $\delta(C)$.
- (b) Maximum of the ranks of free summands of $X_{\rm C}$.
- (c) $\mu(Y) \mu(X)$.

In particular we have $\delta(C) = 0$ if and only if $\mu(Y) = \mu(X)$ for any finite projective hull of C. Using this proposition we also have a necessary and sufficient condition for $\delta(C) = 0$ in terms of morphisms $C \to B$ with pd $B < \infty$.

COROLLARY 1.4 [1]. Let C be in mod R and let $0 \to Y_C \to X_C \to C \to 0$ be a minimal CM approximation of C. Then the following are equivalent for C.

- (a) $\delta(C) = 0.$
- (b) X_C has no non-zero free summands.

(c) Given any morphism $\varphi: C \to B$ with $pd B < \infty$, we have Im $\varphi \subset \mathbf{m}B$.

Another useful result about the invariant $\delta(C)$ is the following.

PROPOSITION 1.5 [1]. Let C be in mod R. Then

(a) pd $C < \infty$ if and only if X_C is a free module. In particular, if pd $C < \infty$, then $\delta(C) > 0$.

(b) If $D \to C \to 0$ is an epimorphism, then $\delta(D) \ge \delta(C)$.

Now we define the index of R. It is known that a Gorenstein local ring R is a regular local ring if and only if all maximal CM modules over R are free modules. Therefore if R is not a regular local ring, then there exists a non-zero stable maximal CM module over R. It follows that k = R/m can be covered by a stable maximal CM module, i.e., $\delta(R/m) = 0$. On the other hand we know that there is an integer n_0 such that $\delta(R/m^n) \neq 0$ for all $n \ge n_0$. For let **a** be an ideal of R generated by a regular sequence of R. Then pd $\mathbf{a} < \infty$ and **a** is an **m**-primary ideal of R. Therefore there exists an integer n_0 such that $\mathbf{m}^{n_0} \subset \mathbf{a}$. Then we have an epimorphism $R/\mathbf{m}^{n_0} \to R/\mathbf{a} \to 0$ and so $\delta(R/\mathbf{m}^{n_0}) \ge \delta(R/\mathbf{a}) > 0$ by Proposition 1.5. Also for $n > n_0$, we have a natural epimorphism $R/\mathbf{m}^n \to R/\mathbf{m}^{n_0} \to 0$ which shows that $\delta(R/\mathbf{m}^n) \ge \delta(R/\mathbf{m}^{n_0}) > 0$. Therefore the integer

 $\min\{i \mid \delta(R/\mathbf{m}^i) \neq 0\}$

is well defined which we call the index of R and denote by index(R). For any Gorenstein local ring R, we have that $index(R) < \infty$ and index(R) = 1if and only if R is a regular local ring.

In the rest of this section we assume that R is a Gorenstein local ring having infinite residue field. Later in Section 3 we show that this additional hypothesis can be removed since the minimal CM approximations behave well under faithfully flat local ring extensions.

Let mult(R) denote the multiplicity of R which is defined in terms of the Hilbert polynomial of R. Since R has an infinite residue field and R is CM, we have that $mult(R) = min\{l(R/a)\}$ for ideal **a** of R which is generated by a regular sequence of R. We denote by dim(R) the embedding dimension of R (i.e., the minimal number of generators of **m**). Then we have the following result.

PROPOSITION 1.6. Let R be a local Gorenstein ring having infinite residue field. Assume R is not regular. Then

 $\operatorname{mult}(R) \ge \operatorname{index}(R) + (\operatorname{edim} R - \operatorname{dim} R) - 1.$

In particular, $mult(R) \ge index(R)$.

Proof. Let **a** be an ideal of *R* generated by a regular sequence of *R* such that $\operatorname{mult}(R) = l(R/\mathbf{a})$. Let *n* be the least integer such that $\mathbf{m}^n \subseteq \mathbf{a}$ (n > 1). Then $l(R/\mathbf{a}) = l(R/\mathbf{m}) + l(\mathbf{m}/\mathbf{m}^2 + \mathbf{a}) + \cdots + l(\mathbf{m}^{n-1} + \mathbf{a}/\mathbf{a})$ and by a simple counting argument, we have

$$mult(R) = l(R/\mathbf{a})$$

$$\geq 1 + (e\dim R - \dim R) + n - 2.$$

274

Since $\mathbf{m}^n \subseteq \mathbf{a}$ and pd $R/\mathbf{a} < \infty$, we know index $(R) \leq n$ and so

 $\operatorname{mult}(R) \ge 1 + (\operatorname{edim} R - \operatorname{dim} R) + \operatorname{index}(R) - 2.$

Hence we obtain the result

$$\operatorname{mult}(R) \ge \operatorname{index}(R) + (\operatorname{edim} R - \operatorname{dim} R) - 1.$$

Since R is not regular, we have edim $R - \dim R \ge 1$ and so $\operatorname{mult}(R) \ge \operatorname{index}(R)$.

2. A SUFFICIENT CONDITION FOR $\delta(C) = 0$

Throughout this section we assume that R is in the form R = S/(x), where S is a local Gorenstein ring with maximal ideal \mathbf{m}_S and $x \in \mathbf{m}_S$ is an S-regular element. For a finitely generated R-module (resp. S-module) C, we denote by $\Omega_R^i(C)$ (resp. $\Omega_S^i(C)$) the *i*th syzygy of C in the minimal free resolution of C over R (resp. over S). We denote by $\mu(C)$ the minimal number of generators of C as an S-module and by $\operatorname{Ann}_S(C)$ the annihilator of C in S. We write \overline{C} for the reduction C/xC. We set $\delta^i(C) = \delta(\Omega_R^i(C))$ for $i \ge 0$ with the convention that $\Omega_R^0(C) = C$.

The purpose of this section is to study conditions for an *R*-module *C* to have the property $\delta^i(C) = 0$ for $i \ge 0$.

Our first result is a sufficient condition for $\delta^i(C) = 0$ for all $i \ge 0$.

THEOREM 2.1. Let C be in mod R. If $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$, then $\delta^i(C) = 0$ for all $i \ge 0$.

The proof of Theorem 2.1 requires some preparation. The basic idea of the proof is as follows. Let C be in mod R. Then the syzygies $\Omega_R^i(C)$ are stable maximal CM R-modules for all $i > \dim R$. Therefore if C can be covered by some syzygy $\Omega_R^i(C)$ with $i > \dim R$, then we have $\delta(C) = 0$. Now let C be in mod R and let $0 \to \Omega_S^1(C) \to S^n \to C \to 0$ be a projective cover of C over S. Tensoring it with S/(x) over S, we obtain an exact sequence

$$0 \to \operatorname{Tor}^1_S(C, S/(x)) \to \overline{\Omega^1_S(C)} \to R^n \to C \to 0.$$

Since $C \in \text{mod } R$, we have $\text{Tor}_{S}^{1}(C, S/(x)) \simeq C$. That is, we have an exact sequence of *R*-modules

$$0 \to C \to \Omega^1_S(C) \to R^n \to C \to 0$$

from which we obtain the short exact sequence

$$0 \to C \to \overline{\Omega^1_S(C)} \to \Omega^1_R(C) \to 0.$$

Now consider the commutative exact diagram

where $P \to \Omega_R^1(C) \to 0$ is a projective cover of $\Omega_R^1(C)$ over R. It follows that h is an epimorphism if and only if $P \to \overline{\Omega_S^1(C)}$ is an epimorphism. It is also easy to see that $P \to \overline{\Omega_S^1(C)}$ is an epimorphism if and only if $\mu(\Omega_S^1(C)) = \mu(\Omega_R^1(C))$. Repeating this procedure, we obtain the following

LEMMA 2.2. Let C be in mod R. If $\mu(\Omega_{\mathcal{S}}^{i}(\Omega_{R}^{i}(C))) = \mu(\Omega_{R}^{i+1}(C))$ for all $i \ge 0$, then $\delta^{i}(C) = 0$ for all $i \ge 0$.

Proof. For any $j \ge 0$, the above argument shows that $\mu(\Omega_S^1(\Omega_R^j(C))) = \mu(\Omega_R^{j+1}(C))$ implies that the *j*th syzygy $\Omega_R^j(C)$ can be covered by the (j+2)th syzygy $\Omega_R^{j+2}(C)$. Since $\mu(\Omega_S^1(\Omega_R^i(C))) = \mu(\Omega_R^{i+1}(C))$ for all $i \ge 0$, using the same argument, we have that $\Omega_R^{j+2}(C)$ can be covered by $\Omega_R^{j+4}(C)$, ... and so on. This shows that for any $j \ge 0$, the *j*th syzygy $\Omega_R^j(C)$ of *C* can be covered by $\Omega_R^{j+2i}(C)$ for all $i \ge 0$. Then our desired result follows from the fact that $\Omega_R^{j+2i}(C)$ is a stable maximal CM *R*-module whenever $j+2i > \dim R$.

Remark. If C in mod R has the property $pd_{S}(C) < \infty$, then the converse of Lemma 2.2 holds for C (Proposition 2.6).

In order to prove Theorem 2.1, we use a construction of Shamash of free resolutions of finitely generated modules over a local ring. We denote by $(\mathcal{G}, d): \dots \to S_i \xrightarrow{d_i} S_{i-1} \to \dots \to S_1 \xrightarrow{d_1} S_0 \to C \to 0$ the minimal S-free resolution of C. We also regard (\mathcal{G}, d) as a differential graded module, i.e., $\mathcal{G} = \{S_i\}_{i \in \mathbb{Z}}$ is a graded module with $S_i = 0$ for i < 0 and $d = \{d_i\}_{i \in \mathbb{Z}}$ is an endomorphism of \mathcal{G} of degree -1 ($d_i = 0$ for i < 0). An endomorphism of \mathcal{G} is a homogeneous homomorphism $\varphi: \mathcal{G} \to \mathcal{G}$ such that $d\varphi = \varphi d$. We present Shamash's results in the following proposition.

PROPOSITION 2.3 [5]. Let $C \in \text{mod } R$. Let (\mathcal{S}, d) be the minimal free resolution of C over S. Then there exists a family of endomorphisms $\{c_n\}_{n \ge 0}$ of (\mathcal{S}, d) (regarded as a differential graded module) such that

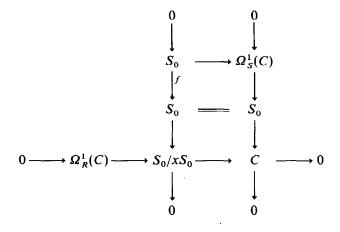
- (a) degree of $c_n = 2n 1$.
- (b) $c_0 = d$.
- (c) $c_0c_1 + c_1c_0 = x$.
- (d) $\sum_{i=0}^{n} c_i c_{n-i} = 0$ for $n \ge 2$.

In particular, if $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$, then $\operatorname{Im} c_n \subset \mathbf{m}_S^n \mathscr{G}$.

As a consequence, we show that $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$ implies that $\mu(\Omega_S^1(C)) = \mu(\Omega_R^1(C))$.

LEMMA 2.4. Let $C \in \text{mod } R$. Then $\mu(\Omega_S^1(C)) = \mu(\Omega_R^1(C))$ if and only if there exists a map $c: S_0 \to S_1$ such that $d_1c = f$ and $c(S_0) \subset \mathbf{m}_S S_1$, where $f: S_0 \to S_0$ is the scalar multiplication by x.

Proof. Let $\dots \to S_1 \xrightarrow{d_1} S_0 \to C \to 0$ be the minimal free resolution of C over S. From the above proposition we know that there exists a map $c: S_0 \to S_1$ such that $d_1c = f$. Now consider the following commutative exact diagram



This diagram gives rise to an exact sequence

 $0 \longrightarrow S_0 \xrightarrow{f} \Omega^1_{\mathcal{S}}(C) \longrightarrow \Omega^1_{\mathcal{R}}(C) \longrightarrow 0.$

Therefore we have that $\mu(\Omega_S^1(C)) = \mu(\Omega_R^1(C))$ if and only if $\operatorname{Im} f \subset \mathbf{m}_S(C)$. If $c(S_0) \subset \mathbf{m}_S S_1$, then we have $\operatorname{Im} f \subset \mathbf{m}_S \Omega_S^1(C)$ since $\Omega_S^1(C) = \operatorname{Im} d_1$ and $d_1c = f$. On the other hand, if $\operatorname{Im} f \subset \mathbf{m}_S \Omega_S^1(C)$, we can always choose c such that $c(S_0) \subset \mathbf{m}_S S_1$ and $d_1c = f$.

We are now ready to prove Theorem 2.1; i.e., for $C \in \text{mod } R$, the condition $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$ implies $\delta^i(C) = 0$ for all $i \ge 0$. By Lemma 2.2, it is enough to show that $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$ implies that $\mu(\Omega_S^1(\Omega_R^i(C))) = 0$

 $\mu(\Omega_R^{i+1}(C))$ for all $i \ge 0$. By Lemma 2.4 this is equivalent to showing that the condition $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$ implies that the following condition (G) holds for all $i \ge 0$.

Condition (G). Let $S^{n_i} \xrightarrow{g_i} S^{m_i} \to \Omega^i_R(C) \to 0$ be a minimal free presentation of $\Omega^i_R(C)$ over S. Then there exists a morphism $\varphi_i: S^{m_i} \to S^{n_i}$ such that $\varphi_i(S^{m_i}) \subset \mathbf{m}_S S^{n_i}$ and $g_i \varphi_i = f_i$, where $f_i: S^{m_i} \to S^{m_i}$ is the scalar multiplication by x.

We prove (G) by induction on *i*. The proof involves a construction of the minimal free resolution of $\Omega_R^i(C)$ over S from the minimal free resolution of C over S.

Before we proceed with the proof, we fix some notation. We denote by

$$\mathscr{G}: \cdots \longrightarrow S_i \xrightarrow{d_i} S_{i-1} \longrightarrow \cdots \xrightarrow{d_1} S_0 \longrightarrow C \longrightarrow 0$$

the minimal free resolution of C. We regard $\mathscr{S} = \{S_i, d_i\}$ as a differential graded module with $S_i = 0$ for i < 0 and $d_i = 0$ for i < 0. We denote by $c_n = \{c_n^k\}_{k \ge 0}$ the endomorphism of \mathscr{S} given in Proposition 2.3, where c_n^k denotes the morphism from S_k to S_{k+2n-1} . We also denote by $f = \{f^k\}_{k \ge 0}$ the scalar multiplication by x on \mathscr{S} . Since $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$, we have $\operatorname{Im} c_n^k \subset \mathbf{m}_S S_{k+2n-1}$ for all $k, n \ge 0$ by Proposition 2.3.

Now we show that the condition $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$ implies that Condition (G) is true for all $i \ge 0$. For the case i = 0, we take $\varphi_0 = c_1^0$: $S_0 \to S_1$. Then we have $c_1^0(S_0) \subset \mathbf{m}_S S_1$ and $d_1 c_1^0 = f^0$ by Proposition 2.3. So Condition (G) holds for i = 0. We suppose Condition (G) is true for some $i \ge 0$ and $\Omega_R^i(C)$ has a minimal S-free resolution of the form

$$\cdots \to S_{i+3} \xrightarrow{d_{i+3}} S_{i+2} \xrightarrow{h_i} \coprod_{k \ge 0} S_{i+1-2k} \xrightarrow{g_i} \coprod_{k \ge 0} S_{i-2k} \to \Omega_R^i(C) \to 0,$$

where g_i is defined as follows:

Assume $v = \sum_{k \ge 0} v_{i+1-2k} \in \coprod_{k \ge 0} S_{i+1-2k}$. Then

$$g_i(\mathbf{v}) := \sum_{k \ge 0} \sum_{0 \le j \le k} c_j(\mathbf{v}_{i+1-2k}).$$

This definition of g_i is due to Shamash [5]. The morphism h_i is defined by $h_i(v_{i+2}) = d_{i+2}(v_{i+2})$. It is easy to check that the definitions h_i and g_i are satisfied when i = 0. We define the morphism $\varphi_i: \coprod_{k \ge 0} S_{i-2k} \rightarrow \coprod_{k \ge 0} S_{i+1-2k}$ as follows:

Assume $u = \sum_{k \ge 0} u_{i-2k} \in \coprod_{k \ge 0} S_{i-2k}$. Then

$$\varphi_i(u) = \sum_{k \ge 0} \sum_{0 \le j \le k+1} c_j(u_{i-2k}).$$

Since $x \in \mathbf{m}_S \operatorname{Ann}_S(C)$, we have

$$g_{i}\left(\coprod_{k \geq 0} S_{i+1-2k}\right) \subset \mathbf{m}_{S}\left(\coprod_{k \geq 0} S_{i-2k}\right)$$
$$\varphi_{i}\left(\coprod_{k \geq 0} S_{i-2k}\right) \subset \mathbf{m}_{S}\left(\coprod_{k \geq 0} S_{i+1-2k}\right).$$

We now show that $g_i \cdot \varphi_i = f_i$. For any $u = \sum_{k \ge 0} u_{i-2k} \in \coprod_{k \ge 0} S_{i-2k}$ we have

$$g_{i} \circ \varphi_{i}(u) = g_{i} \left(\sum_{k \ge 0} \sum_{0 \le j \le k+1} c_{j}(u_{i-2k}) \right)$$
$$= \sum_{k \ge 0} \sum_{0 \le j \le k+1} \sum_{0 \le l \le (k+1-j)} c_{l}c_{j}(u_{i-2k})$$
$$= \sum_{k \ge 0} \sum_{0 \le j+l \le k+1} c_{l}c_{j}(u_{i-2k});$$

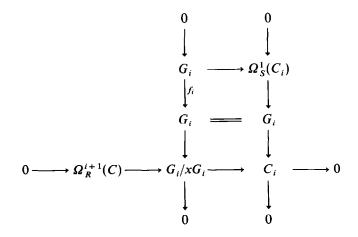
thus

$$g_i \circ \varphi_i(u_{i-2k}) = \sum_{0 \le l+j \le k+1} c_l c_j(u_{i-2k})$$
$$= \sum_{0 \le l \le k+1} \sum_{l+j=l} c_l c_j(u_{i-2k}),$$

Since $c_0c_0 = 0$, $c_0c_1 + c_1c_0 = x$, and $\sum_{o \le j \le n} c_jc_{n-j} = 0$ for n > 1 by Proposition 2.3, we get $g_i \circ \varphi_i(u_{i-2k}) = f_i(u_{i-2k})$ for all $k \ge 1$. So we have $g_i\varphi_i = f_i$. Now we want to construct the minimal S-free resolution of $\Omega_R^{i+1}(C)$

Now we want to construct the minimal S-free resolution of $\Omega_R^{i+1}(C)$ from the minimal S-free resolution of $\Omega_R^i(C)$ and show that Condition (G) is also satisfied for i+1.

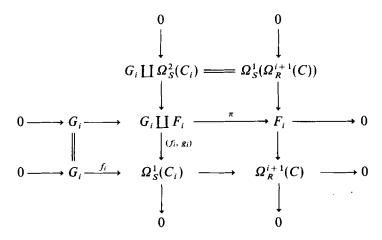
For brevity, we write G_i for $\coprod_{k \ge 0} S_{i-2k}$ and F_i for $\coprod_{k \ge 0} S_{i+1-2k}$ and C_i for $\Omega^i_R(C)$. Then the following commutative exact diagram



gives rise to an exact sequence

$$0 \longrightarrow G_i \xrightarrow{f_i} \Omega^1_S(C_i) \longrightarrow \Omega^{i+1}_R(C) \longrightarrow 0.$$

Since $\mu(\Omega_S^1(C_i)) = \mu(\Omega_R^{i+1}(C))$ by the inductive hypothesis and Lemma 2.4, we have that the composition $F_i \to \Omega_S^1(C_i) \to \Omega_R^{i+1}(C)$ gives a projective cover of $\Omega_R^{i+1}(C)$ over S. Now consider the following commutative exact diagram



From this diagram we obtain the following exact sequence

$$\cdots \xrightarrow{d_{i+4}} S_{i+3} \xrightarrow{h_{i+1}} S_{i+2} \coprod G_i \xrightarrow{\tilde{g}_{i+1}} F_i \coprod G_i \xrightarrow{(f_i, g_i)} \Omega^1_{\mathcal{S}}(C_i) \to 0,$$

where $h_{i+1} = [d_{i+3}, 0]$ and $\tilde{g}_{i+1} = \begin{pmatrix} h_i & 0 \\ -\varphi_i & I_{G_i} \end{pmatrix}$. From this exact sequence we obtain the exact sequence

$$\cdots \xrightarrow{d_{i+4}} S_{i+3} \xrightarrow{h_{i+1}} S_{i+2} \coprod G_i \xrightarrow{g_{i+1}} F_i \to \mathcal{Q}_R^{i+1}(C) \to 0, \qquad (*)$$

where $g_{i+1} = \pi \circ \tilde{g}_{i+1} = \begin{pmatrix} h_i \\ -\varphi \end{pmatrix}$. Since all the coefficients of h_{i+1} and g_{i+1} are in \mathbf{m}_S , it is easy to see that (*) is a minimal S-free resolution of $\Omega_R^{i+1}(C)$ of the form

$$\cdots \xrightarrow{d_{i+4}} S_{i+3} \xrightarrow{h_{i+1}} \coprod_{k \ge 0} S_{i+2-2k} \xrightarrow{g_{i+1}} \coprod_{k \ge 0} S_{i+1-2k} \rightarrow \Omega_R^{i+1}(C) \rightarrow 0,$$

where $g_{i+1} = c_0^{i+2} \coprod \varphi_i$ and $h_{i+1} = d_{i+3}$. It is clear that this minimal S-free resolution of $\Omega_R^{+1}(C)$ has the same form (just change *i* to *i*+1) as the minimal S-free resolution of $\Omega_R^i(C)$ we started with. We define φ_{i+1} :

280

 $\coprod_{k \ge 0} S_{i+1-2k} \to \coprod_{k \ge 0} S_{i+2-2k}$ by setting $\varphi_{i+1} = (c_1^{i+1} + c_2^{i-1} + \dots + c_{k+1}^{i+1-2k} + \dots) \coprod g_i$, i.e.,

$$\varphi_{i+1}\left(\sum_{k \ge 0} u_{i+1-2k}\right) = \sum_{k \ge 0} \sum_{0 \le j \le k+1} c_j(u_{i+1-2k})$$

for all $\sum_{k\geq 0} u_{i+1-2k} \in \prod_{k\geq 0} S_{i+1-2k}$. Using the same argument as for *i*, we can check that $g_{i+1}\varphi_{i+1}=f_{i+1}$. Therefore Condition (G) holds for i+1. By repeating this procedure, we obtain that (G) holds for all $i\geq 0$ and the proof is complete.

Recall that a local ring S is called a (codimension *i*) deformation of R if there exists a surjective homomorphism $\varphi: S \to R$ such that ker φ is generated by an S-regular sequence (of length *i*). The deformation is called embedded if ker $\varphi \subset m_S^2$. Given a deformation of R, we view every R-module as an S-module via φ . Then Theorem 2.1 can be stated in the following form:

THEOREM 2.5. Let R be a Gorenstein local ring and $C \in \text{mod } R$. If there is a deformation S of R such that $R = S/(x_1, ..., x_r)$ and the induced morphism

$$(x_1, ..., x_r)/\mathbf{m}_S(x_1, ..., x_r) \rightarrow \mathrm{Ann}_S(C)/\mathbf{m}_S \mathrm{Ann}_S(C)$$

is not a monomorphism, then $\delta^i(C) = 0$ for all $i \ge 0$.

Proof. If the above induced map is not a monomorphism, then there is an element $y \in (x_1, ..., x_r)$ such that $y \notin \mathbf{m}_S(x_1, ..., x_r)$ and $y \in \mathbf{m}_S \operatorname{Ann}_S(C)$. We may assume that $y = x_r$. Then set $S' = S/(x_1, ..., x_{r-1})$. We have that S'is also a deformation of R with $R = S'/(\bar{x}_r)$ where \bar{x}_r denotes the image of x_r in S'. Moreover we have $\bar{x}_r \in \mathbf{m}_{S'} \operatorname{Ann}_{S'}(C)$. Therefore by Theorem 2.1, we know $\delta^i(C) = 0$ for all $i \ge 0$.

Remark. The converse of Theorem 2.5 is not true, since we know that for any Gorenstein local ring R which is not regular, the residue field R/m has the property that $\delta^i(R/m) = 0$ for all $i \ge 0$ [1]. Thus if the converse of Theorem 2.5 were true, then every non-regular Gorenstein local ring R would have a non-trivial embedded deformation which we know is not the case. For example, let R be a complete Gorenstein local ring which is not a complete intersection such that dim R = edim R - 3. Then such R has no non-trivial embedded deformation.

Our next aim is to give a partial converse of Theorem 2.1. Let R be a Gorenstein local ring and $C \in \text{mod } R$. Suppose there is a deformation S of

R such that R = S/(x) and $pd_S(C) < \infty$. In this case the induced exact sequence

$$0 \to C \to \overline{\Omega^1_S(C)} \to \Omega^1_R(C) \to 0$$

has the property that $pd_R(\overline{\Omega_S^1(C)}) < \infty$, since $pd_S(\Omega_S^1(C)) < \infty$ and x is $\Omega_S^1(C)$ -regular. Therefore if $\delta(C) = 0$, then we have $\mu(\Omega_S^1(C)) = \mu(\Omega_R^1(C))$ by Corollary 1.3.

To illustrate the above property of the module C, we show that the converse of Lemma 2.2 holds in this case.

PROPOSITION 2.6. Let R be a Gorenstein local ring and $C \in \text{mod } R$. Suppose there is a deformation S of R such that R = S/(x) and $\text{pd}_S(C) < \infty$. Then $\delta^i(C) = 0$ for all $i \ge 0$ if and only if $\mu(\Omega^1_S(\Omega^i_R(C))) = \mu(\Omega^{i+1}_R(C))$ for all $i \ge 0$.

Proof. We have seen by Lemma 2.2 that $\mu(\Omega_S^i(\Omega_R^i(C))) = \mu(\Omega_R^{i+1}(C))$ for all $i \ge 0$ implies that $\delta^i(C) = 0$ for all $i \ge 0$. Now we show the converse. Let $C \in \text{mod } R$. Then we have an exact sequence

$$0 \to C \to \overline{\Omega^1_S(C)} \to \Omega^1_R(C) \to 0.$$

Since $\operatorname{pd}_{S}(C) < \infty$, we have $\operatorname{pd}_{R} \overline{\Omega_{S}^{1}(C)} < \infty$. Thus $\delta(C) = 0$ implies $\mu(\Omega_{S}^{1}(C)) = \mu(\Omega_{R}^{1}(C))$ by Corollary 1.3. Since $\operatorname{pd}_{S}(C) < \infty$ implies $\operatorname{pd}_{S}(\Omega_{R}^{i}(C)) < \infty$ for all $i \ge 0$, replacing C by $\Omega_{R}^{i}(C)$ we obtain our desired result.

Remark. In particular, if R = S/(x) is a hypersurface, then for all $C \in \text{mod } R$, the hypothesis of Proposition 2.6 is satisfied.

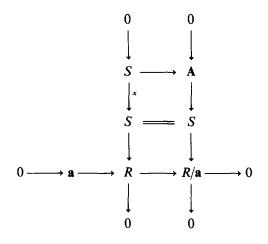
Now let R = S/(x) be a hypersurface, where S is a regular local ring and $x \in \mathbf{m}_S^2$. Then the following result gives a partial converse of Theorem 2.1.

THEOREM 2.7. Let R = S/(x) be a hypersurface with $x \in \mathbf{m}_S^2$. Let **a** be an ideal of R and let **A** be its preimage in S. Then $\delta(R/\mathbf{a}) = 0$ if and only if $x \in \mathbf{m}_S \mathbf{A}$. If $\delta(R/\mathbf{a}) = 0$, then $\delta^i(R/\mathbf{a}) = 0$ for all $i \ge 0$.

Proof. Since $\operatorname{Ann}_{S}(R/\mathbf{a}) = \mathbf{A}$, Theorem 2.1 asserts that $x \in \mathbf{m}_{S}\mathbf{A}$ implies $\delta^{i}(R/\mathbf{a}) = 0$ for all $i \ge 0$. Conversely, if $\delta(R/\mathbf{a}) = 0$, since $\operatorname{pd}_{R}(\mathbf{A}/x\mathbf{A}) < \infty$ then applying Corollary 1.3 to the exact sequence

$$0 \rightarrow R/a \rightarrow A/xA \rightarrow a \rightarrow 0$$
,

we obtain $\mu(\mathbf{A}) = \mu(\mathbf{a})$. To show $x \in \mathbf{m}_S \mathbf{A}$, we consider the following commutative exact diagram



This diagram gives rise to an exact sequence

 $0 \longrightarrow S \xrightarrow{x} \mathbf{A} \longrightarrow \mathbf{a} \longrightarrow 0.$

Since $\mu(\mathbf{A}) = \mu(\mathbf{a})$, we have $x \in \mathbf{m}_S \mathbf{A}$ and this completes the proof.

3. A CHARACTERIZATION OF HYPERSURFACES

In this section we prove our main result which gives a characterization of hypersurfaces in terms of the relation between mult(R) and index(R). First we show a result on faithfully flat local ring extensions which enables us to reduce the general case to the case where R is a complete Gorenstein local ring having infinite residue field.

PROPOSITION 3.1. Let $\varphi: R \to S$ be a local homomorphism of rings such that (i) R and S are local Gorenstein rings; (ii) dim $R = \dim S$; (iii) $\mathfrak{m}_R S = \mathfrak{m}_S$; (iv) S is flat over R. Let $C \in \operatorname{mod} R$ and let $0 \to Y \to X \to C \to 0$ be a CM approximation of C over R. Then it is minimal if and only if the exact sequence $0 \to S \otimes_R Y \to S \otimes_R X \to S \otimes_R C \to 0$ is a minimal CM approximation of $S \otimes_R C$ over S.

Proof. Since $\varphi: R \to S$ is a flat extension, we have

$$0 \to S \otimes_R Y \to S \otimes_R X \to S \otimes_R C \to 0$$

is an exact sequence and $\operatorname{pd}_S Y < \infty$. Since $\operatorname{Ext}_S^i(S \otimes_R X, S) \simeq$

 $S \otimes_R \operatorname{Ext}^i_R(X, R) = 0$ for $i \ge 0$, we have that $S \otimes_R X$ is a maximal CM S-module and so

$$0 \to S \otimes_R Y \to S \otimes_R X \to S \otimes_R C \to 0$$

is a CM approximation of $S \otimes_R C$ over S. We now show it is also minimal.

Suppose $X = U \coprod F$ such that U has no free summands and F is a free *R*-module. Since U has no free summands over R if and only if the natural inclusion $\mathbf{m}_R \to R$ induces an isomorphism $\operatorname{Hom}_R(U, \mathbf{m}_R) \cong \operatorname{Hom}_R(U, R)$, tensoring with S over R, we obtain an isomorphism $\operatorname{Hom}_S(S \otimes_R U, \mathbf{m}_S) \cong$ $\operatorname{Hom}_S(S \otimes_R U, S)$ since $\mathbf{m}_R S = \mathbf{m}_S$. Therefore $S \otimes_R U$ has no free summands over S. Put $M = \operatorname{coker}(U \to C)$. Then $S \otimes_R M = \operatorname{coker}(S \otimes_R U \to S \otimes_R C)$. Since $\mathbf{m}_R S = \mathbf{m}_S$, we have that $F \to M \to 0$ is a projective cover over R if and only if $S \otimes_R F \to S \otimes_R M \to 0$ is a projective cover of $S \otimes_R M$ over S. By Proposition 1.2 this shows that

$$0 \to S \otimes_R Y \to S \otimes_R X \to S \otimes_R C \to 0$$

is a minimal CM approximation of $S \otimes_R C$ over S.

An immediate consequence of Proposition 3.1 is the following.

COROLLARY 3.2. Hypotheses as in Proposition 3.1. Let $C \in \text{mod } R$. Then $\delta_R(C) = \delta_S(S \otimes_R C)$.

For a Gorenstein local ring R, let k = R/m denote the residue field of R. If k is infinite, we set $\tilde{R} = \hat{R}$, the m-adic completion of R. If k is finite, we set $\tilde{R} = (R[z]_{(mR)[z]})^{\wedge}$, where z is an indeterminate over R. Our main result is the following theorem.

THEOREM 3.3. The following are equivalent for a Gorenstein local ring R.

- (a) index(R) = mult(R).
- (b) \tilde{R} is a hypersurface.

Proof. It is easy to see that \tilde{R} is a ring extension of R satisfying the hypotheses of Proposition 3.1. Since $\mathbf{m}_R \tilde{R} = \mathbf{m}_{\tilde{R}}$, we have $\tilde{R} \otimes_R R/\mathbf{m}_{\tilde{R}}^i = \tilde{R}/\mathbf{m}_{\tilde{R}}^i$. Then we have $\operatorname{index}(R) = \operatorname{index}(\tilde{R})$ by Corollary 3.2. Since dim $R = \dim \tilde{R}$ and $\tilde{R} \otimes_R (\mathbf{m}_R^i/\mathbf{m}_R^{i+1}) = \mathbf{m}_{\tilde{R}}^i/\mathbf{m}_{\tilde{R}}^{i+1}$, we also have $\operatorname{mult}(R) = \operatorname{mult}(\tilde{R})$ and edim $R = \operatorname{edim} \tilde{R}$. Therefore we have the following inequality by Proposition 1.6:

$$\operatorname{mult}(\tilde{R}) - \operatorname{index}(\tilde{R}) \ge (\operatorname{edim} \tilde{R} - \operatorname{dim} \tilde{R}) - 1 \ge 0.$$

 $(a) \Rightarrow (b)$. By the above comments, we have that $\operatorname{mult}(R) = \operatorname{index} R$ implies $\operatorname{mult}(\tilde{R}) = \operatorname{index}(\tilde{R})$. Thus the above formula shows $\operatorname{edim} \tilde{R} = \operatorname{dim} \tilde{R} + 1$. By Cohen's structure theorem, we have $\tilde{R} = S/I$ where S is a regular local ring whose dimension is dim $\tilde{R} + 1$. Since R is Gorenstein, we have that I is a principal ideal and hence \tilde{R} is a hypersurface.

(b) \Rightarrow (a). If $\tilde{R} = S/(x)$ is a hypersurface, then we have mult(\tilde{R}) = max{ $i | x \in \mathbf{m}_{S}^{i}$ }. Theorem 2.7 shows that $\delta(\tilde{R}/\mathbf{m}_{\tilde{R}}^{i}) = 0$ if and only if $x \in \mathbf{m}_{S}^{i+1}$. It follows that index(\tilde{R}) = mult(\tilde{R}). Since mult(R) = mult(\tilde{R}) and index(R) = index(\tilde{R}), we obtain our result.

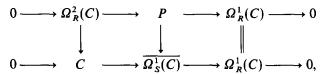
In the rest of this section we consider the structure of CM approximations of modules over a hypersurface. Let R = S/(x) be a hypersurface with S a regular local ring and $x \in \mathbf{m}_S^2$. Our next result is that for any $C \in \text{mod } R$, we have $X_C \simeq \Omega_R^n(C) \coprod F$ for some $n \ge \dim R$ and free module F.

LEMMA 3.4. Let R = S/(x) be a hypersurface and $C \in \text{mod } R$. Then for every $i \ge 0$, there exists an exact sequence of the form

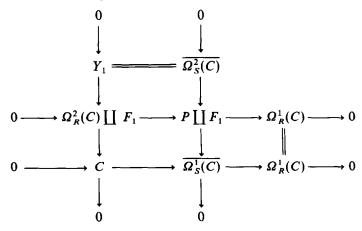
$$0 \to Y_i \to \Omega^{2i}_R(C) \coprod F_i \to C \to 0$$

such that F_i is a free R-module and pd $Y_i < \infty$.

Proof. We prove this by induction on *i*. When i = 1, consider the commutative diagram



where $P \to \Omega_R^1(C)$ is a projective cover of $\Omega_R^1(C)$ over *R*. It is easy to see that *P* is also a part of the projective cover of $\overline{\Omega_S^1(C)}$ over *R*. Let $F_1 \coprod P \to \overline{\Omega_S^1(C)} \to 0$ be a projective cover of $\overline{\Omega_S^1(C)}$ over *R*. We obtain the following commutative exact diagram



Since S is a regular local ring, we have $pd_R(\overline{\Omega_S^i(C)}) < \infty$ for all $i \ge 1$. Therefore $pd_R Y_1 < \infty$ and the left column gives the result for i = 1.

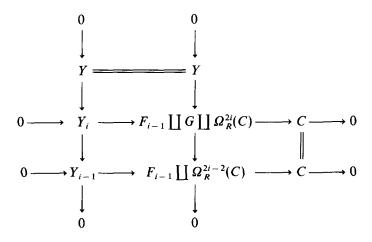
Suppose the Lemma is true for all j < i. Then there is an exact sequence

$$0 \to Y_{i-1} \to \Omega_R^{2i-2}(C) \coprod F_{i-1} \to C \to 0$$

with F_{i-1} a free *R*-module and $\operatorname{pd}_R Y_{i-1} < \infty$. Applying the result of the case i = 1 to $\Omega_R^{2i-2}(C)$, we obtain an exact sequence of the form

$$0 \to Y \to G \coprod \Omega_R^{2i}(C) \to \Omega_R^{2i-2}(C) \to 0$$

with $pd_R Y < \infty$ and G a free R-module. Then we have the following commutative exact diagram



Since $pd_R Y_i < \infty$, the middle row gives our desired exact sequence and finishes the proof.

As an easy consequence of Lemma 3.4, we have the following.

PROPOSITION 3.5. Let R = S/(x) be a hypersurface and $C \in \text{mod } R$. Then $X_C \simeq \Omega_R^n(C) \coprod F$ for some $n \ge \dim R$ and free module F.

This also gives us a characterization of hypersurfaces.

PROPOSITION 3.6. Let R be a Gorenstein local ring. Then the following are equivalent:

- (a) \hat{R} is a hypersurface.
- (b) $X_{R/\mathbf{m}} \simeq \Omega_R^n(R/\mathbf{m})$ for some $n \ge \dim R$.

Proof. (a) \Rightarrow (b). Proposition 3.5 shows that $X_{R/m} \simeq \Omega_R^n(R/m) \coprod F$ for some $n \ge 0$, where F is a free R-module. Since we assume that R is not regular, we have $\delta(R/m) = 0$ and so F = 0. Since $X_{R/m} \in CM(R)$, we have $n \ge \dim R$.

(b) \Rightarrow (a). Since $\operatorname{Ext}_{R}^{i}(R/\mathbf{m},) \cong \operatorname{Ext}_{R}^{i}(X_{R/\mathbf{m}},)$ for all $i > \dim R$, we have $\Omega_{R}^{i-1}(R/\mathbf{m}) \simeq \Omega_{R}^{i-1}(X_{R/\mathbf{m}})$ for all $i > \dim R + 1$. Then the fact that $X_{R/\mathbf{m}} = \Omega_{R}^{n}(R/\mathbf{m})$ for some $n \ge \dim R$ shows that the minimal free resolution of R/\mathbf{m} over R is eventually periodic. In particular the ranks of free modules in the minimal free resolution of R/\mathbf{m} are bounded. J. Herzog has shown in [4] that in this case, \hat{R} is a hypersurface. This completes the proof.

In [3], L. L. Avramov studied the periodic property of a module in terms of its virtual projective dimension. Let R be a complete local ring having infinite residue field. Then the virtual projective dimension of a finitely generated R-module C is defined to be

 $\operatorname{vpd}_{R} C = \min \{ \operatorname{pd}_{O} C | Q \text{ is a deformation of } R \}.$

One of the results on $\operatorname{vpd}_R C$ [3, Theorem 4.4] is that if $\operatorname{vpd}_R C < \infty$ and the ranks of free modules in the minimal free resolution of C are bounded, then there exists a local ring S such that R = S/(x) for some S-regular element x and $\operatorname{pd}_S(C) < \infty$. Combining this result and Proposition 3.5, we obtain the following.

PROPOSITION 3.7. Let R be a complete local Gorenstein ring with infinite residue field. Let $C \in \text{mod } R$ such that $\text{vpd}_R C < \infty$. Then the following are equivalent.

(a) $X_C \simeq \Omega_R^n(C) \coprod F$ for some $n \ge \dim R$ and free module F.

(b) There exists a local ring S such that R = S/(x) for some S-regular element x and $pd_S(C) < \infty$.

ACKNOWLEDGMENTS

This paper is based on part of my doctoral thesis written under the supervision of Professor M. Auslander at Brandeis University. I would like to thank him for his constant inspiration and encouragement throughout this work. I also want to thank Professor R.-O. Buchweitz for his suggestion to look at Shamash's work in connection with the proof of the characterization of hypersurfaces.

SONGQING DING

References

- 1. M. AUSLANDER, Minimal Cohen-Macaulay approximations, in preparation.
- M. AUSLANDER AND R.-O. BUCHWEITZ, The homological theory of maximal Cohen-Macaulay approximations, Soc. Math. France Mem. 38 (1989), 5-37.
- 3. L. L. AVRAMOV, Modules of finite virtual projective dimension, *Invent. Math.* 96 (1989), 71-101.
- 4. J. HERZOG, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, *Math. Ann.* 223 (1978), 21-34.
- 5. J. SHAMASH, The Poincaré series of a local ring, J. Algebra 12 (1969), 453-470.