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INTRODUCTION 

Let R be a commutative noetherian Gorenstein local ring with maximal 
ideal m and an infinite residue field k. In studying minimal Cohen- 
Macaulay approximation of a finitely generated R-module C, M. Auslander 
introduced in [l] the numerical invariant 6(C) which is defined to be the 
smallest integer n such that there is an epimorphism X IJ R” + C with X 
a maximal Cohen-Macaulay module with no free summands. This gives 
rise to the new numerical invariants 6(R/m’) for i= 1,2, . . . . for the ring R. 
We show there is always an integer n such that &R/m”) # 0 and we define 
index(R) to be the smallest integer n such that 6(R/m”) # 0. In general one 
has that mult(R) Z index(R), where mult(R) is the multiplicity of R. Our 
main objective in this paper is to show that mult(R) = index(R) if and only 
if R is an abstract hypersurface, i.e., the completion R of R can be written 
as S/(x) with S a regular local ring. 

Our proof is based on the following general result about hypersurfaces 
R = S/(x) with x # 0 in m$ Let a be an ideal of R and let A be its preimage 
in S. Then 6(R/a) = 0 if and only if x E m,A. 

In Section 1 we recall some definitions and results about the theory of 
minimal Cohen-Macaulay approximations over a Gorenstein local ring, 
which were initiated by M. Auslander and R.-O. Buchweitz [ 1, 21. 
Section 2 is devoted to studying conditions for an R-module C to have the 
property 6(C) = 0. In Section 3 we show our main result. We end the paper 
with a discussion of the structure of the minimal Cohen-Macaulay 
approximations of finitely generated modules over hypersurfaces and its 
connection with minimal free resolutions. 
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1. CM APPROXIMATIONS AND INDEX OF R 

Throughout this section we assume that R is a commutative Gorenstein 
local ring with maximal ideal m and residue field k. We denote by mod R 
the category of all finitely generated R-modules and by CM(R) the 
category of all maximal CM R-modules. For C in mod R, we say C is 
stable if C has no non-zero free summands. 

In this section we recall some definitions and results about the theory of 
minimal Cohen-Macaulay (CM) approximations of a Gorenstein local 
ring which will be used in the rest of the paper. We then introduce a new 
numerical invariant index(R) and show that there is an inequality 
connecting the index of R with the multiplicity of R and other standard 
invariants of R. 

Let C be in mod R. Then the stable CM trace of C is the submodule z(C) 
of C which is generated by the homomorphic images in C of all stable 
maximal CM modules. Since C is noetherian, it follows that there is a 
morphism f: X+ C such that X is a stable maximal CM module and 
Imf= r(C). Therefore we have that C = r(C) if and only if C can be 
covered (i.e., there is an epimorphism) by a stable maximal CM module. 
For any C in mod R, the number 6(C) is defined to be the minimal number 
of generators of the factor module C/r(C). It is clear that 6(C) is an 
invariant of C and 6(C) = 0 if and only if C is a homomorphic image of a 
stable maximal CM module. 

Let C be in mod R. A CM approximation of C is an exact sequence 
O+A+B/-C+O with BECM(R) and pdA<co. It is called a CM 
approximation of C because it has the universal mapping property that any 
morphism h: X+ C with XE CM(R) factors through f: A CM approxima- 
tion of C is called minimal if the morphism J B + C is right minimal in the 
sense that morphism g: B + B is an isomorphism whenever f=fg. 

Dually, an exact sequence 0 --, C 4 A + B + 0 is called a finite projec- 
tive hull of C if BE CM(R) and pd A < co. This exact sequence has the 
universal mapping property that any morphism h: C -+ Y with pd Y < cc 
can be extended to A. A finite projective hull of C is called minimal if 
the morphism g: C + A is left minimal, i.e., morphism h: A + A is an 
isomorphism whenever g = hg. 

THEOREM 1.1 [ 1, 23. Let R be a commutative Gorenstein local ring. 
Then each C in mod R has a minimal CM approximation and a minimal 

finite projective hull. They are unique up to isomorphisms. 

Let C be in mod R. Since the minimal CM approximation of C is unique 
(up to isomorphisms), we usually use the notation 0 + Y, + X, LC + 0 
to denote a minimal CM approximation of C. We also denote by p(C) the 
minimal number of generators of C over R. 
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The following proposition gives a criterion of when a CM approximation 
is minimal. 

PROPOSITION 1.2 [ 11. Let 0 + Y -+ XL C + 0 be an exact sequence 
in mod R such that- pd Y < co and XE CM(R). Then the following are 
equivalent: 

(a) f is right minimal. 

(b) Given any decomposition X = U u F such that U has no free 
summand and F is a free module, the induced map F + C/f(U) is a projective 
cover. 

The connections between 6(C) and the minimal CM approximation and 
finite projective hull of C are shown in the following proposition. 

PROPOSITION 1.3 [l]. Let C be in mod R and let O+ Yc+ Xc+ C-+0 
and 0 + C + Y + X + 0 be a minimal CM approximation and a finite 
projective hull of C, respectively. Then the following numbers are the same. 

(a) W). 
(b) Maximum of the ranks of free summands of X,. 

(cl l-4 Y) - PL(W. 

In particular we have 6(C) = 0 if and only if p(Y) = p(X) for any finite 
projective hull of C. Using this proposition we also have a necessary and 
sufficient condition for 6(C) = 0 in terms of morphisms C + B with 
pdB<co. 

COROLLARY 1.4 [l]. Let CbeinmodRandletO+Y,-,Xc+C+O 
be a minimal CM approximation of C. Then the following are equivalent 
for C. 

(a) 6(C)=O. 
(b) X, has no non-zero free summands. 

(c) Given any morphism cp: C+ B with pd B < co, we have 
ImcpcmB. 

Another useful result about the invariant 6(C) is the following. 

PROPOSITION 1.5 [l]. Let C be in mod R. Then 

(a) pd C < co if and only if X, is a free module. In particular, if 
pd C< co, then 6(C)>O. 

(b) Zf D --) C + Q is an epimorphism, then S(D) 2 6(C). 
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Now we define the index of R. It is known that a Gorenstein local ring 
R is a regular local ring if and only if all maximal CM modules over R are 
free modules. Therefore if R is not a regular local ring, then there exists a 
non-zero stable maximal CM module over R. It follows that k = R/m can 
be covered by a stable maximal CM module, i.e., 6(R/m) = 0. On the other 
hand we know that there is an integer n, such that &R/m”) # 0 for all 
n an,,. For let a be an ideal of R generated by a regular sequence of R. 
Then pd a < cc and a is an m-primary ideal of R. Therefore there exists 
an integer no such that m”Oc a. Then we have an epimorphism 
R/m”O --, R/a + 0 and so d(R/m”O) 2 d(R/a) > 0 by Proposition 1.5. Also for 
n>no, we have a natural epimorphism R/m” + R/m”O -+ 0 which shows 
that 6( R/m”) 2 6( R/m”“) > 0. Therefore the integer 

min{ilG(R/m’)#O} 

is well defined which we call the index of R and denote by index(R). For 
any Gorenstein local ring R, we have that index(R) < co and index(R) = 1 
if and only if R is a regular local ring. 

In the rest of this section we assume that R is a Gorenstein local ring 
having infinite residue field. Later in Section 3 we show that this additional 
hypothesis can be removed since the minimal CM approximations behave 
well under faithfully flat local ring extensions. 

Let mult(R) denote the multiplicity of R which is defined in terms of the 
Hilbert polynomial of R. Since R has an infinite residue field and R is CM, 
we have that mult(R) = min(l( R/a)} for ideal a of R which is generated by 
a regular sequence of R. We denote by edim(R) the embedding dimension 
of R (i.e., the minimal number of generators of m). Then we have the 
following result. 

PROPOSITION 1.6. Let R be a local Gorenstein ring having infinite residue 
field. Assume R is not regular. Then 

mult(R) 2 index(R) + (edim R-dim R) - 1. 

In particular, mult( R) 2 index( R ). 

Proof: Let a be an ideal of R generated by a regular sequence of R such 
that mult(R) = I(R/a). Let n be the least integer such that m” E a (n > 1). 
Then 1( R/a) = I( R/m) + /(m/m’ + a) + . . . + I(m” - ’ + a/a) and by a simple 
counting argument, we have 

mult( R) = 1( R/a) 

2 1 +(edim R-dim R)+n-2. 
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Since m” E a and pd Rfa < co, we know index(R) < n and SO 

mult( R) > 1 + (edim R - dim R) + index(R) - 2. 

Hence we obtain the result 

mult(R) 2 index(R) + (edim R-dim R) - 1. 

Since R is not regular, we have edim R-dim R 3 1 and so mult(R) > 
index(R). 

2. A SUFFICIENT CONDITION FOR d(C)=0 

Throughout this section we assume that R is in the form R = S/(x), 
where S is a local Gorenstein ring with maximal ideal m, and x E m, is an 
S-regular element. For a finitely generated R-module (resp. S-module) C, 
we denote by Q;(C) (resp. Q’,(C)) the ith syzygy of C in the minimal free 
resolution of C over R (resp. over S). We denote by p(C) the minimal 
number of generators of C as an S-module and by Ann,(C) the annihilator 
of C in S. We write C for the reduction C/XC. We set 8(C) = 6(@(C)) for 
i > 0 with the convention that S”,(C) = C. 

The purpose of this section is to study conditions for an R-module C to 
have the property Si(C) = 0 for i 2 0. 

Our first result is a sufficient condition for Si( C) = 0 for all i >, 0. 

THEOREM 2.1. Let C be in mod R. Ifx~m,Ann,(C), then @(Cj=Ofor 
all i > 0. 

The proof of Theorem 2.1 requires some preparation. The basic idea of 
the proof is as follows. Let C be in mod R. Then the syzygies Q\(C) are 
stable maximal CM R-modules for all i > dim R. Therefore if C can be 
covered by some syzygy Q’,(C) with i > dim R, then we have 6(C) = 0. 
Now let C be in modR and let O+Q~(C)+s”+C+O be a projective 
cover of C over S. Tensoring it with S/(x) over S, we obtain an exact 
sequence 

0 + Tori(C, S/(x)) + sZ!JC) + R” + C + 0. 

Since C~mod R, we have Tori(C, S/(x)) N C. That is, we have an exact 
sequence of R-modules 
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from which we obtain the short exact sequence 

03c+ig@j+Q~(c)+0. 

Now consider the commutative exact diagram 

O-l&(C)- P - Q~(C)---+ 0 

I 
h 

I II 

o- c - Q;(c) - Qs3 - 0, 

where P + Q:(C) + 0 is a projective cover of Q;(C) over R. It follows that 
h is an epimorphism if and only if P+m is an epimorphism. It is 
also easy to see that P+m is an epimorphism if and only if 
p(sZk(C)) = p(Qi(C)). Repeating this procedure, we obtain the following 

LEMMA 2.2. Let C be in mod R. Ifp(Q~(ln~(C)))=p(Q~.‘(C))for UN 
i>O, then s’(C)=Ofor all ia0. 

ProoJ: For anyj30, the above argument shows that p(Qk(@.(C))) = 
p(Q’,’ i(C)) implies that the jth syzygy Q;(C) can be covered by the 
(j + 21th syzygy Q i+‘(C). Since ~(Q~(Qi,(C)))=~(G!i,+‘(C)) for all i>O, 
using the same argument, we have that sZc2(C) can be covered by 
lniff ‘(C), . . . and so on. This shows that for anyja 0, the jth syzygy Sk(C) 
of C can be covered by Qi,+2i(C) f or all i> 0. Then our desired result 
follows from the fact that Qi,‘2i(C) is a stable maximal CM R-module 
whenever i + 2i > dim R. 

Remark. If C in mod R has the property pd,(C) < 00, then the 
converse of Lemma 2.2 holds for C (Proposition 2.6). 

In order to prove Theorem 2.1, we use a construction of Shamash of free 
resolutions of finitely generated modules over a local ring. We denote by 
(Y,d):...4SpLSi-,+ . . . + Si -% Se + C-0 the minimal S-free. 
resolution of C. We also regard (9, d) as a differential graded module, i.e., 
Y= {Si}isZ is a graded module with Si=O for i<O and d= {di}i,z is an 
endomorphism of Y of degree - 1 (di = 0 for i < 0). An endomorphism of 
9’ is a homogeneous homomorphism rp: 9’4 9’ such that dq = cpd. We 
present Shamash’s results in the following proposition. 

PROPOSITION 2.3 .[S]. Let C~mod R. Let (9’, d) be the minimal free 
resolution of C over S. Then there exists a family of endomorphisms (c, > n a 0 
of (9, d) (regarded as a differential graded module) such that 
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(a) degree ofc,=2n-1. 
(b) c,=d. 

(c) c&,+c1co=x. 

(d) ~;=,,~~c,-~=Ofor n>2. 

In particular, ifx E m, Ann,(C), then Im c, c m”,Y. 

As a consequence, we show that XE m, Ann,(C) implies that 
AWCN = Pu(QX(W 

LEMMA 2.4. Let CEmod R. Then p(Q~(C))=c((sZ~(C)) if and only if 
there exists a map c: S, + S1 such that d,c =f and c(S,) c m, S,, where 
f: SO -+ SO is the scalar multiplication by x. 

Proof. Let ..f + Si * S,, + C + 0 be the minimal free resolution of 
C over S. From the above proposition we know that there exists a map 
c: So + S, such that d,c =f: Now consider the following commutative exact 
diagram 

0 0 

I I 
SO - QW) 

f 

I I 

SO = s() 

I I 
0 - a;(c) - SJxS,- c - 0 

I I 
0 0 

This diagram gives rise to an exact sequence 

o- s&+ a;(c)- a;(c)- 0. 
Therefore we have that p(Qk(C)) = p@;(C)) if and only if Imfc ms(C). 
If c(S,)cm,S,, then we have Imfcm,Qk(C) since Qi(C)=Im dl and 
d,c=J On the other hand, if Imfcm,Qk(C), we can always choose c 
such that c(S,) c msSl and d, c =f: 

We are now ready to prove Theorem 2.1; i.e., for C E mod R, the 
condition x E m, Ann,(C) implies Si(C) = 0 for all i > 0. By Lemma 2.2, it 
is enough to show that XE m, Ann,(C) implies that p(Qi(Qk(C)) = 
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p(s2;+ r(C)) for all i> 0. By Lemma 2.4 this is equivalent to showing that 
the condition XE m, Ann,(C) implies that the following condition (G) 
holds for all i 2 0. 

Condition (G). Let p ASln+ Q’,(C) ---) 0 be a minimal free presen- 
tation of Q;(C) over S. Then there exists a morphism cpi: S”‘+ .!?I 
such that rp;(S”‘) ~rn,S”’ and gi(pi=fi, where fi: S”‘-+ Smz is the scalar 
multiplication by x. 

We prove (G) by induction on i. The proof involves a construction of the 
minimal free resolution of Q;(C) over S from the minimal free resolution 
of C over S. 

Before we proceed with the proof, we fix some notation. We denote by 

Y: ...A &A sip, ---Aso-c-o 

the minimal free resolution of C. We regard 9’ = { Si, di} as a differential 
graded module with Sj= 0 for i < 0 and di = 0 for i < 0. We denote by 
c, = {c:}~,~ the endomorphism of Y given in Proposition 2.3, where c; 
denotes the morphism from Sk to S, + Zn ~, . We also denote by f= {f k}k 5 o 
the scalar multiplication by x on 9’. Since x E m, Ann,(C), we have 
1mcf:cmsSk+2n-~ for all k, n B 0 by Proposition 2.3. 

Now we show that the condition XE~~ Ann,(C) implies that 
Condition (G) is true for all i > 0. For the case i = 0, we take IJQ = cy : 
S, + S,. Then we have cy(S,,) c m,S, and d, cy =f” by Proposition 2.3. So 
Condition (G) holds for i = 0. We suppose Condition (G) is true for some 
i 2 0 and Q:(C) has a minimal S-free resolution of the form 

. . . 
+si+3 -si+++ IJ Si+,-,,A u Si--Zk42i,(C)+0, 

ka0 k>O 

where gi is defined as follows: 
Assume V=~kaOVi+I-ZkEUk30 Si+l-Zk. Then 

This definition of gi is due to Shamash [S]. The morphism hi is defined 
by hi(vi+Z)=di+2(vi+Z). It is easy to check that the definitions hi and 
gi are satisfied when i = 0. We define the morphism cpi: uk ao Si- *k + 
ukao si+ Lpzk as follows: 

Assume u=Ck~OUi-2kEUkTOSi--Zk. Then 

cPi(“)= 1 1 Cj(Ui--2k)* 
kg0 OCj<k+ I 

Since x E m, Ann,(C), we have 



COHEN-MACAULAY APPROXIMATION 219 

gi L.l s’ - k,O r+~ 2k)cms(gOSi-2k) 

Vi(kHOSi-*k)c~~(kIJOSi+~-*k). 

We now show that gi.cpi=fi. For any u=C,.,~~_~~EU~~~S~-*~ we 
have 

gi”cPi(u)=gi 1 E 
( 

cj(ui-Zk) 

k>O Oaj<k+l > 

=cc c c,cj(ui-Zk) 

k,O OCjsk+l O</<(k+l-j) 

= 1 c CICj(Ui-Zk); 

k>O O<j+l<k+ 1 

thus 

gi”~i(“i-2k)= c CICj(Ui-2k) 

Obl+jCk+l 

= c 1 C,Cj(Ui--Zk)? 
O<t<k+l /+j=r 

Sincecoco=O,coc,+c,co=x,and~,~j~,,cjc,~i=Oforn>l byProposi- 
tion2.3, we get gio qi(ui-zk)=fi(Ui-zk) for all k> 1. So we have gicpi=fi. 

Now we want to construct the minimal S-free resolution of Szy ‘(C) 
from the minimal S-free resolution of L&(C) and show that Condition (G) 
is also satisfied for i+ 1. 

For brevity, we write Gi for nkao Sipzk and Fi for ukao Si+ r --Zk and 
Ci for In;(C). Then the following commutative exact diagram 

0 0 

I I 
Gi - a$(ci) 

I 

h 

I 

Gi = Gi 

I I 0 - a;+ '(C) - Gi/xGi - ci -0 
I I 
0 0 
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gives rise to an exact sequence 

O--+ G,A Q;(Ci)- L?;‘(C)- 0. 

Since p(O$( C,)) = p(sZlk+ ‘(C)) by the inductive hypothesis and Lemma 2.4, 
we have that the composition Fi + 4k(Ci) -+ Q:‘(C) gives a projective 
cover of 522 r(C) over S. Now consider the following commutative exact 
diagram 

Gi LI Qi(Ci) = !2$2i,’ ‘(C)) 

I I 
O-G,- GjUF, r ‘Fi -0 

II I 
(f;. a) 

I 
O- Gi x 

’ fwi) - Lq’(C) -0 

I I 
0 0 

From this diagram we obtain the following exact sequence 

. . . 4+4 l s- 
,+3-&+2UGi “‘+‘,f’,~Gi=%Q;(Ci)+O, 

where hi+ r = Cdi+,vOl and t?i+,=(_hqz i ,). From this exact sequence we 
obtain the exact sequence 

. ..4c4. s. [++% Si+2uGi& Fi42n',"(C)+0, (*) 

where gi+ r = II 0 gi+, = ( _h;,). Since all the coeffkients of hi+, and gj+ , are 
in m,, it is easy to see that (*) is a minimal S-free resolution of ai,t r(C) 
of the form 

wheregi+1=~bf2~~iandhi+,=di+,. It is clear that this minimal S-free 
resolution of 52: r(C) has the same form (just change i to i + 1) as the 
minimal S-free resolution of Q’,(C) we started with. We define cpi+ r : 
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~~~~~i+I-Zk~Uk50Si+Z-2k by setting ~i+l=(~f+‘+~~-‘+ ... + 
‘k+l + . . .) IJ gi, i.e., 

(Pi+ 1 (1 ui+l-U)’ 1 c Cj(Ui+l--Zk) 
k>O kP0 O<jsk+l 

for a11 CkBOUi+l--kEUk~OSi+l-*k. Using the same argument as for i, 
we can check that gi+l(pi+l=fi+l. Therefore Condition (G) holds for 
i+ 1. By repeating this procedure, we obtain that (G) holds for all i> 0 
and the proof is complete. 

Recall that a local ring S is called a (codimension i) deformation of R if 
there exists a surjective homomorphism cp: S + R such that ker cp is 
generated by an S-regular sequence (of length i). The deformation is called 
embedded if ker rp c rni. Given a deformation of R, we view every 
R-module as an S-module via cp. Then Theorem 2.1 can be stated in the 
following form: 

THEOREM 2.5. Let R be a Gorenstein local ring and C E mod R. Zf there 
is a deformation S of R such that R = S/(x,, . . . . x,) and the induced 
morphism 

b I, .--, x,)/m&, , . . . . 4 --) AnnsWms Ann,(C) 

is not a monomorphism, then Si( C) = 0 for all i > 0. 

Proof: If the above induced map is not a monomorphism, then there is 
an element y E (x,, . . . . x,) such that y & m,(x,, . . . . x,) and y E m, Ann,(C). 
We may assume that y = x,. Then set S’ = S/(x,, . . . . x,- 1). We have that S 
is also a deformation of R with R = S/(X,) where X, denotes the image of 
x, in S’. Moreover we have X, E mr Arms(C). Therefore by Theorem 2.1, 
we know hi(C) = 0 for all i 3 0. 

Remark. The converse of Theorem 2.5 is not true, since we know that 
for any Gorenstein local ring R which is not regular, the residue field R/m 
has the property that 6’(R/m) = 0 for all i>O [ 11. Thus if the converse of 
Theorem 2.5 were true, then every non-regular Gorenstein local ring R 
would have a non-trivial embedded deformation which we know is not the 
case. For example, let R be a complete Gorenstein local ring which is not 
a complete intersection such that dim R = edim R - 3. Then such R has no 
non-trivial embedded deformation. 

Our next aim is to give a partial converse of Theorem 2.1. Let R be a 
Gorenstein local ring and C E mod R. Suppose there is a deformation S of 
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R such that R= S/(x) and pd,(C) < co. In this case the induced exact 
sequence 

0+c+zgFw2~(c)+0 

has the property that pd,(m) < in, since pd,(Qk(C)) < % and x is 
Q:(C)-regular. Therefore if S(C) = 0, then we have p(.Qk(C)) = p(Qk( C)) 
by Corollary 1.3. 

To illustrate the above property of the module C, we show that the 
converse of Lemma 2.2 holds in this case. 

PROPOSITION 2.6. Let R be a Gorenstein local ring and CE mod R. 
Suppose there is a deformation S of R such that R = S/(x) and pd,(C) < co. 
Then d’(C)=0 for all i30 iSand onfy ifp(Q~(Q~(C)))=,a(Q~+‘(C)) for 
all i > 0. 

ProojI We have seen by Lemma 2.2 that ~(Q~(Q~(C)))=~(52’,+‘(C)) 
for all i 2 0 implies that Si( C) = 0 for all i 2 0. Now we show the converse. 
Let C E mod R. Then we have an exact sequence 

Since pd,( C) c co, we have pd, s28(c)< co. Thus 6(C) = 0 implies 
p(Qi(C)) = p(QX(C)) by Corollary 1.3. Since pds(C) < co implies 
pd,(Qa(C)) < co for all ia 0, replacing C by Q;(C) we obtain our desired 
result. 

Remark. In particular, if R = S/(x) is a hypersurface, then for all 
C E mod R, the hypothesis of Proposition 2.6 is satisfied. 

Now let R = S/(x) be a hypersurface, where S is a regular local ring and 
x E rni. Then the following result gives a partial converse of Theorem 2.1. 

THEOREM 2.7. Let R = S/(.x) be a hypersurface with x E rni. Let a be an 
ideal of R and let A be its preimage in S. Then 6(R/a) = 0 if and only if 
xemsA. If 6(R/a)=O, then #(R/a)=0 for all i>O. 

ProojI Since Ann,( R/a) = A, Theorem 2.1 asserts that x E m,A implies 
#(R/a) = 0 for all i > 0. Conversely, if 6(R/a) = 0, since pd.(A/xA) < co 
then applying Corollary 1.3 to the exact sequence 

O+R/a+A/xA+a-+O, 

we obtain p(A) =~(a). To show x~rn~A, we consider the following 
commutative exact diagram 
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0 0 

I I 
S-A 

lx I S= S 

I I 
O-a-R-RJa-0 

I I 
0 0 

This diagram gives rise to an exact sequence 

O-S&A-a-O. 

Since p(A) = p(a), we have x E m,A and this completes the proof. 

3. A CHARACTERIZATION OF HYPERSURFACES 

In this section we prove our main result which gives a characterization 
of hypersurfaces in terms of the relation between mult(R) and index(R). 
First we show a result on faithfullly flat local ring extensions which enables 
us to reduce the general case to the case where R is a complete Gorenstein 
local ring having infinite residue field. 

PROPOSITION 3.1. Let cp: R + S be a local homomorphism of rings such 
that (i) R and S are local Gorenstein rings; (ii) dim R = dim S; (iii) m,S = 
m,; (iv)S isfIat over R. Let CEmodR and let O-+ Y+X+C+O be a 
CM approximation of C over R. Then it is minimal if and only if the exact 
sequence O+SQ, Y-+SQ, X+S@, C+O is a minimal CMapproxima- 
tion of SQR C over S. 

Proof Since cp: R + S is a flat extension, we have 

O+SQ, Y+sQ,x~sQ,c+o 

is an exact sequence and pd, Y< co. Since Exti(S@, X, S)2: 
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S@,ExtX(X, R)=O for i>O, we have that SORX is a maximal 
CM S-module and so 

is a CM approximation of SOR C over S. We now show it is also minimal. 
Suppose X= U IJ F such that U has no free summands and F is a free 

R-module. Since U has no free summands over R if and only if the natural 
inclusion mR + R induces an isomorphism Hom,( U, mR) 7 Hom,( U, R), 
tensoring with S over R, we obtain an isomorphism Hom,(S@, U, m,) 3 
Hom,(S@, U, S) since m,S=m,. Therefore SOR U has no free sum- 
mands over S. Put M=coker(U+C). Then SORM=coker(S@, U+ 
S @ R C). Since mR S = mS, we have that F + M + 0 is a projective cover 
overRifandonlyifSQ,F~SO,M~OisaprojectivecoverofS6,M 
over S. By Proposition 1.2 this shows that 

is a minimal CM approximation of SOR C over S. 

An immediate consequence of Proposition 3.1 is the following. 

COROLLARY 3.2. Hypotheses as in Proposition 3.1. Let C E mod R. Then 
6,(C) = 6,(SQR C). 

For a Gorenstein local ring R, let k = R/m denote the residue field of R. 
If k is infinite, we set i? = R, the m-adic completion of R. If k is finite, we 
set R= (RCzl~mR~CrI)A~ where z is an indeterminate over R. Our main 
result is the following theorem. 

THEOREM 3.3. The following are equivalent for a Gorenstein local ring R. 

(a) index(R) = mult( R). 

(b) i? is a hypersurface. 

Proof: It is easy to see that i? is a ring extension of R satisfying the 
hypotheses of Proposition 3.1. Since m,i?=mR, we have i?Q, R/mk= 
@mk. Then we have index(R) = index(k) by Corollary 3.2. Since 
dim R=dim i? and kQ, (m~/mi,c’)=mk/m~+‘, we also have mult(R)= 
mult(i?) and edim R = edim R. Therefore we have the following inequality 
by Proposition 1.6: 

mult(R) -index(R) 2 (edim R-dim R) - 12 0. 

(a) => (b). By the above comments, we have that mult(R) = index R 
implies m&(R) =index(i?). Thus the above formula shows edim w= 
dim i? + 1. By Cohen’s structure theorem, we have a= S/I where S is a 



COHEN-MACAULAY APPROXIMATION 285 

regular local ring whose dimension is dim R + 1. Since R is Gorenstein, we 
have that I is a principal ideal and hence i? is a hypersurface. 

(b)=>(a). If R=S/( ) x is a hypersurface, then we have m&(R) = 
max(ilxEmk}. Theorem 2.7 shows that s(i?/mk) =0 if and only if 
x E rn? ‘. It follows that index(R) = mult(i?). Since mult(R) = mult(i?) and 
index(R) = index( ii), we obtain our result. 

In the rest of this section we consider the structure of CM approxi- 
mations of modules over a hypersurface. Let R = S/(x) be a hypersurface 
with S a regular local ring and x E m,. ’ Our next result is that for any 
CE mod R, we have Xc z Q:(C) u F for some n 2 dim R and free 
module F. 

LEMMA 3.4. Let R = S/(x) be a hypersurface and CE mod R. Then fur 
every i 2 0, there exists an exact sequence of the form 

0-t YpQ~(C)U F,+C+O 

such that Fi is a free R-module and pd Yi < co. 

ProofI We prove this by induction on i. When i= 1, consider the 
commutative diagram 

0---&(c)- P - Q;(c) - 0 

where P + Q:(C) is a projective cover of sZk( C) over R. It is easy to see 
that P is also a part of the projective cover of m over R. Let F, u P + 
m + 0 be a projective cover of m over R. We obtain the following 
commutative exact diagram 

0 0 

I I 
Yl sz2,o 

I I 
0---&2,(C)~ F1- PDFl- Q;(c) - 0 

I I I/ 
o-c -Zg?j - Q;(c) - 0 

I I 
0 0 

481/153,2-2 
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Since S is a regular local ring, we have pd,(Q$( C)) < w for ali i 2 1. 
Therefore pd, Y, < ;o and the left column gives the result for i= 1. 

Suppose the Lemma is true for all j< i. Then there is an exact sequence 

with Fi-, a free R-module and pd, YiPI < XI. Applying the result of the 
case i= 1 to Q:.‘(C), we obtain an exact sequence of the form 

O-+ Y+G~R2,'(C)42"d'-'(C)+O 

with pd, Y < co and G a free R-module. Then we have the following 
commutative exact diagram 

0 0 

I I 

o- Yi -Fi-lUGUQg(C)-C-O 

I I II 
O-Y,-,- Fi-, u Q%-*(C) - C- 0 

I I 
0 0 

Since pd, Yi < CO, the middle row gives our desired exact sequence and 
finishes the proof. 

As an easy consequence of Lemma 3.4, we have the following. 

PROPOSITION 3.5. Let R = S/(x) be a hypersurface and CE mod R. Then 
Xc N Qi( C) u F for some n >, dim R and free module F. 

This also gives us a characterization of hypersurfaces. 

PROPOSITION 3.6. Let R be a Gorenstein local ring. Then the following 
are equivalent: 

(a) 8 is a hypersurface. 
(b) XRIm 2: Q”,(R/m) for some n 2 dim R. 
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Proof: (a) * (b). Proposition 3.5 shows that X,,, ‘v G?“,(R/m) 1l. F 
for some n 2 0, where F is a free R-module. Since we assume that R is not 
regular, we have 6(R/m) = 0 and so F = 0. Since XRIm E CM(R), we have 
n 2 dim R. 

(b)*(a). Since Ext\(R/m, )%Exti(XRlm, ) for all i>dim R, we 
have Qi,-1(R/m)=i2i,-1(X,,,) for all i>dim R+ 1. Then the fact that 
X ~,m=GW m ) f or some n 2 dim R shows that the minimal free resolu- 
tion of R/m over R is eventually periodic. In particular the ranks of free 
modules in the minimal free resolution of R/m are bounded, J. Herzog has 
shown in [4] that in this case, R is a hypersurface. This completes the 
proof. 

In [3], L. L. Avramov studied the periodic property of a module in 
terms of its virtual projective dimension. Let R be a complete local ring 
having infinite residue field. Then the virtual projective dimension of a 
finitely generated R-module C is defined to be 

vpd,C=min{pdoCIQisadeformationofR}. 

One of the results on vpd, C [3, Theorem 4.41 is that if vpd, C c 00 and 
the ranks of free modules in the minimal free resolution of C are bounded, 
then there exists a local ring S such that R = S/(x) for some S-regular 
element x and pd,(C) < co. Combining this result and Proposition 3.5, we 
obtain the following. 

PROPOSITION 3.7. Let R be a complete local Gorenstein ring with infinite 
residue field. Let C E mod R such that vpd, C < co. Then the following are 
equivalent. 

(a) xc=Q”R(C)LIFf or some n > dim R and free module F. 

(b) There exists a local ring S such that R = S/(x) for some S-regular 
element x and pds(C) c co. 

ACKNOWLEDGMENTS 

This paper is based on part of my doctoral thesis written under the supervision of Professor 
M. Auslander at Brandeis University. I would like to thank him for his constant inspiration 
and encouragement throughout this work. I also want to thank Professor R.-O. Buchweitz for 
his suggestion to look at Shamash’s work in connection with the proof of the characterization 
of hypersurfaces. 



288 SONGQING DING 

REFERENCES 

1. M. AUSLANDER, Minimal Cohen-Macaulay approximations, in preparation. 
2. M. AUSLANDER AND R.-O. BUCHWEITZ. The homological theory of maximal Cohen- 

Macaulay approximations, Sot. Math. France Mem. 38 (1989), 5-37. 
3. L. L. AVRAMOV, Modules of tinite virtual projective dimension, Inoenr. Math. % (1989), 

71-101. 
4. J. HERZOG, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren 

Cohen-Macaulay-Moduln, Mad Ann. 223 (1978). 21-34. 
5. J. SHAMASH, The Poincare series of a local ring, J. Algebra 12 (1969), 453470. 


