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INTRODUCTION

Let R be a commutative noetherian Gorenstein local ring with maximal
ideal m and an infinite residue field k. In studying minimal Cohen-
Macaulay approximation of a finitely generated R-module C, M. Auslander
introduced in [1] the numerical invariant 6(C) which is defined to be the
smallest integer » such that there is an epimorphism X ] R* —» C with X
a maximal Cohen—Macaulay module with no free summands. This gives
rise to the new numerical invariants 6(R/m‘) for i=1, 2, ..., for the ring R.
We show there is always an integer n such that 6(R/m") 0 and we define
index(R) to be the smallest integer » such that 6(R/m”) # 0. In general one
has that mult(R) > index(R), where mult(R) is the multiplicity of R. Our
main objective in this paper is to show that mult(R) = index(R) if and only
if R is an abstract hypersurface, i.c., the completion R of R can be written
as S/(x) with S a regular local ring.

Our proof is based on the following general result about hypersurfaces
R =S/(x) with x # 0 in m%. Let a be an ideal of R and let A be its preimage
in S. Then 6(R/a)=0 if and only if xemgA.

In Section 1 we recall some definitions and results about the theory of
minimal Cohen—Macaulay approximations over a Gorenstein local ring,
which were initiated by M. Auslander and R.-O. Buchweitz [1,2].
Section 2 is devoted to studying conditions for an R-module C to have the
property 8(C)=0. In Section 3 we show our main result. We end the paper
with a discussion of the structure of the minimal Cohen-Macaulay
approximations of finitely generated modules over hypersurfaces and its
connection with minimal free resolutions.
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1. CM APPROXIMATIONS AND INDEX OF R

Throughout this section we assume that R is a commutative Gorenstein
local ring with maximal ideal m and residue field k. We denote by mod R
the category of all finitely generated R-modules and by CM(R) the
category of all maximal CM R-modules. For C in mod R, we say C is
stable if C has no non-zero free summands.

In this section we recall some definitions and results about the theory of
minimal Cohen—Macaulay (CM) approximations of a Gorenstein local
ring which will be used in the rest of the paper. We then introduce a new
numerical invariant index(R) and show that there is an inequality
connecting the index of R with the multiplicity of R and other standard
invariants of R.

Let C be in mod R. Then the stable CM trace of C is the submoduie 7(C)
of C which is generated by the homomorphic images in C of all stable
maximal CM modules. Since C is noetherian, it follows that there is a
morphism f: X —» C such that X is a stable maximal CM module and
Im f=1(C). Therefore we have that C=1(C) if and only if C can be
covered (i.e., there is an epimorphism) by a stable maximal CM module.
For any C in mod R, the number §(C) is defined to be the minimal number
of generators of the factor module C/t(C). It is clear that 6(C) is an
invariant of C and 6(C)=0 if and only if C is a homomorphic image of a
stable maximal CM module.

Let C be in mod R. A CM approximation of C is an exact sequence
0-A4-B-L C-0 with Be CM(R) and pd A <oo. It is called a CM
approximation of C because it has the universal mapping property that any
morphism 4: X —» C with X e CM(R) factors through f. A CM approxima-
tion of C is called minimal if the morphism f: B — C is right minimal in the
sense that morphism g: B — B is an isomorphism whenever /= fg.

Dually, an exact sequence 0 - C %> 4 - B— 0 is called a finite projec-
tive hull of C if Be CM(R) and pd A4 < oo. This exact sequence has the
universal mapping property that any morphism h: C - Y with pd Y < ©
can be extended to 4. A finite projective hull of C is called minimal if
the morphism g: C — 4 is left minimal, ie, morphism A: 4 —» 4 is an
isomorphism whenever g = hg.

THEOREM 1.1 [1,2]. Let R be a commutative Gorenstein local ring.
Then each C in mod R has a minimal CM approximation and a minimal
Sinite projective hull. They are unique up to isomorphisms.

Let C be in mod R. Since the minimal CM approximation of C is unique
(up to isomorphisms), we usually use the notation 0 - Y. — X, C—f>C -0
to denote a minimal CM approximation of C. We also denote by u(C) the
minimal number of generators of C over R.
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The following proposition gives a criterion of when a CM approximation
is minimal.

PROPOSITION 1.2 [1]. Let 0> Y- X 2L, €50 be an exact sequence
in mod R such that pd Y<oo and Xe CM(R). Then the following are
equivalent:

(a) fis right minimal.

(b) Given any decomposition X=U]L]F such that U has no free
summand and F is a free module, the induced map F — C/f(U) is a projective
cover.

The connections between 3(C) and the minimal CM approximation and
finite projective hull of C are shown in the following proposition.

PROPOSITION 1.3 [1]. Let Cheinmod Randlet 0> Y= X—>C—-0
and 0> C—->Y—>X->0 be a minimal CM approximation and a finite
projective hull of C, respectively. Then the following numbers are the same.

(a) &(C).
(b) Maximum of the ranks of free summands of X .

(c) w(Y)—p(X).

In particular we have 6(C)=0 if and only if u(Y)=u(X) for any finite
projective hull of C. Using this proposition we also have a necessary and
sufficient condition for 8(C)=0 in terms of morphisms C— B with
pd B< 0.

COROLLARY 14 [1]. Let CheinmodRandlet0—>Y.—» X—-C—-0
be a minimal CM approximation of C. Then the following are equivalent
Jor C.

(a) 4(C)=0.
(b) X has no non-zero free summands.

(¢) Given any morphism ¢@:C—>B with pd B< oo, we have
Im ¢ cmB.

Another useful result about the invariant 6(C) is the following,

ProrosiTiON 1.5 [1]. Let C be in mod R. Then

(@) pdC< oo if and only if X is a free module. In particular, if
pd C < o0, then 6(C)>0.

(b) If D— C—0 is an epimorphism, then (D)= 6(C).
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Now we define the index of R. It is known that a Gorenstein local ring
R is a regular local ring if and only if all maximal CM modules over R are
free modules. Therefore if R is not a regular local ring, then there exists a
non-zero stable maximal CM module over R. It follows that k= R/m can
be covered by a stable maximal CM module, ie., 5(R/m)=0. On the other
hand we know that there is an integer n, such that 6(R/m")#0 for all
n>=n,. For let a be an ideal of R generated by a regular sequence of R.
Then pda< oo and a is an m-primary ideal of R. Therefore there exists
an integer n, such that m™ca. Then we have an epimorphism
R/m™ — R/a — 0 and so §(R/m™) > §(R/a) >0 by Proposition 1.5. Also for
n>n,, we have a natural epimorphism R/m"” — R/m™ — (0 which shows
that 6(R/m") = 6(R/m™) > 0. Therefore the integer

min{i|5(R/m')#0}

is well defined which we call the index of R and denote by index(R). For
any Gorenstein local ring R, we have that index(R) < oo and index(R)=1
if and only if R is a regular local ring.

In the rest of this section we assume that R is a Gorenstein local ring
having infinite residue field. Later in Section 3 we show that this additional
hypothesis can be removed since the minimal CM approximations behave
well under faithfully flat local ring extensions.

Let mult(R) denote the multiplicity of R which is defined in terms of the
Hilbert polynomial of R. Since R has an infinite residue field and R is CM,
we have that mult(R) =min{/(R/a)} for ideal a of R which is generated by
a regular sequence of R. We denote by edim(R) the embedding dimension
of R (ie., the minimal number of generators of m). Then we have the
following result.

PropPoSITION 1.6.  Let R be a local Gorenstein ring having infinite residue
field. Assume R is not regular. Then

mult(R) > index(R) + (edim R —dim R)—1.

In particular, mult(R) 2 index(R).

Proof. Let a be an ideal of R generated by a regular sequence of R such
that mult(R)=1/(R/a). Let n be the least integer such that m"<a (n>1).
Then /(R/a)=I(R/m)+ l(m/m*+a)+ --- +/(m"~ ' 4+ a/a) and by a simple
counting argument, we have

mult(R) =I(R/a)

21+ (edim R—dim R)+n—2.
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Since m”" < a and pd R/a < 0, we know index(R) <n and so

mult(R) > 1+ (edim R — dim R) +index(R) — 2.

Hence we obtain the result

mult(R) > index(R) + (edim R —dim R)— 1.

Since R is not regular, we have edim R—dim R>1 and so muilt(R)>
index(R).

2. A SUFFICIENT CONDITION FOR 6(C)=0

Throughout this section we assume that R is in the form R=S/(x),
where S is a local Gorenstein ring with maximal ideal mg and x emy is an
S-regular element. For a finitely generated R-module (resp. S-module) C,
we denote by Q°(C) (resp. 25(C)) the ith syzygy of C in the minimal free
resolution of C over R (resp. over S). We denote by p(C) the minimal
number of generators of C as an S-module and by Ann(C) the annihilator
of C in S. We write C for the reduction C/xC. We set §/(C) = 5(R%(C)) for
i >0 with the convention that Q%(C)=C.

The purpose of this section is to study conditions for an R-module C to
have the property 6'(C)=0 for i >0.

Our first result is a sufficient condition for '(C)=0 for all i > 0.

THEOREM 2.1. Let C be in mod R. If xemg Anng(C), then 6'(C)=0 for
all i 0.

The proof of Theorem 2.1 requires some preparation. The basic idea of
the proof is as follows. Let C be in mod R. Then the syzygies Q%(C) are
stable maximal CM R-modules for all i>dim R. Therefore if C can be
covered by some syzygy Q%(C) with i>dim R, then we have 6(C)=0.
Now let C be in mod R and let 0 » QL(C)— S"—> C—0 be a projective
cover of C over S. Tensoring it with S/(x) over S, we obtain an exact
sequence

0 - TorL(C, S/(x)) » 25(C) » R"— C - 0.
Since Cemod R, we have Torg(C, S/(x)) ~ C. That is, we have an exact
sequence of R-modules

0-C-Q(C)>R">C-0
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from which we obtain the short exact sequence

0 C—QLC)>QL(C)>0.

Now consider the commutative exact diagram

00— Q3(C)—— P —— QHC)——0

P |

0—— C ——Q(C)—— RLC)—— 0,

where P — Q4(C) — 0 is a projective cover of 2%(C) over R. It follows that
h is an epimorphism if and only if P— Q4(C) is an epimorphism. It is

also easy to see that P—QL(C) is an epimorphism if and only if
wW(RL(C)) = u(R2%(C)). Repeating this procedure, we obtain the following

LemMa 22. Let C be in mod R. If w(QL(Q%(C))) = w(@i \(C)) for all
i=0, then 6'(C)=0 for all i > 0.

Proof. For any j >0, the above argument shows that u(Q25(2%(C)))=
(% 1(C)) implies that the jth syzygy Q4(C) can be covered by the
(J+ 2)th syzygy Q2%2(C). Since u(QL(2%(C)))=u(R45(C)) for all i >0,
using the same argument, we have that QJ*?(C) can be covered by
Q45+4(C), ... and so on. This shows that for any j >0, the jth syzygy Q%(C)
of C can be covered by Q7*%(C) for all i>0. Then our desired result
follows from the fact that Q’F%(C) is a stable maximal CM R-module
whenever j+ 2i > dim R.

Remark. If C in mod R has the property pds(C)< oo, then the
converse of Lemma 2.2 holds for C (Proposition 2.6).

In order to prove Theorem 2.1, we use a construction of Shamash of free
resolutions of finitely generated modules over a local ring. We denote by
(&, d)- =88 _,—» =8 -4 §-C—0 the minimal S-free
resolution of C. We also regard (%, d) as a differential graded module, ic.,
&F ={S,};cz is a graded module with S;,=0 for i<0 and d= {d,},.~ is an
endomorphism of & of degree —1 (d,=0 for i<0). An endomorphism of
& is a homogeneous homomorphism ¢: & - & such that dp =@d We
present Shamash’s results in the following proposition.

ProPOSITION 2.3 [5]. Let Cemod R. Let (&, d) be the minimal free
resolution of C over S. Then there exists a family of endomorphisms {c,},50
of (¥, d) (regarded as a differential graded module) such that
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(a) degree of c,=2n—1.
(b) co=d.
(c) coci+cico=x.
(d)y X _ocica_;=0fornz2
In particular, if xemg Anng(C), then Im c,c mt%.

As a consequence, we show that xemgAnng(C) implies that
1(R5(C)) = w(RR(C)).

LEMMA 24. Let Cemod R. Then u(QL(C))=u(Q%(C)) if and only if
there exists a map c: Sq— S, such that d,c=f and ¢(S,) =mg S,, where
1 So— S, is the scalar multiplication by x.

Proof. Let --- - 8,44 S;— C—0 be the minimal free resolution of
C over S. From the above proposition we know that there exists a map
c: So — S, such that d,c =f. Now consider the following commutative exact
diagram

0—— QL(C)—— So/xSg—— C ——0

0 0

This diagram gives rise to an exact sequence
0— So—Ls QL(C) — 2L(C)— 0.

Therefore we have that u(25(C)) = pu(2%(C)) if and only if Im f< mg(C).
If ¢(S,) =mgS,, then we have Im fcmgQ4(C) since 2L(C)=1Imd, and
dic=f. On the other hand, if Im fcmzQ5(C), we can always choose ¢
such that ¢(Sy)=mgS, and d,c=f.

We are now ready to prove Theorem 2.1; ie., for Cemod R, the
condition x emg Anng(C) implies 6/(C)=0 for all i> 0. By Lemma 2.2, it
is enough to show that xemgAnng(C) implies that u(QL(Q%(C))=
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w2 HC)) for all i>0. By Lemma 2.4 this is equivalent to showing that
the condition xemgAnng(C) implies that the following condition (G)
holds for all i=0.

Condition (G). Let $"—258™ - Q%(C)— 0 be a minimal free presen-
tation of Q%(C) over S. Then there exists a morphism ¢;: §™ — S™
such that ¢,(S™)cmgS" and g,¢,=f;, where f;: ™ — S™ is the scalar
multiplication by x.

We prove (G) by induction on i. The proof involves a construction of the
minimal free resolution of Q%(C) over S from the minimal free resolution
of C over S.

Before we proceed with the proof, we fix some notation. We denote by

P S, iil__,..._"_'. So— C— 0

the minimal free resolution of C. We regard & = {S,, d,} as a differential
graded module with S;=0 for i<0 and d,=0 for i<0. We denote by
¢, = {c*};>0 the endomorphism of & given in Proposition 2.3, where c*
denotes the morphism from S, to Sy, ,,_ - We also denote by f={f*},.,
the scalar multiplication by x on %. Since xemgAnng(C), we have
Im c¥cmgS,,,,_, for all k, n>0 by Proposition 2.3.

Now we show that the condition xemgAnng(C) implies that
Condition (G) is true for all i>0. For the case i=0, we take @o=c?:
So— S,. Then we have ¢(S,) =mgS, and d,c?=f° by Proposition 2.3. So
Condition (G) holds for i=0. We suppose Condition (G) is true for some
i20 and Q%(C) has a minimal S-free resolution of the form

dii3 hl 8i i
oS3 S I_[ Sivi—u— ]_[ Si_ o= 2R(C)>0,
k=0 k=0
where g, is defined as follows:
Assume v=3;.0V;y1-%€l1kz0 Sis1 -2 Then

gl(v Z Z l+l 2k

k>0 0< <k

This definition of g; is due to Shamash [5]. The morphism #; is defined
by h;(v;.2)=d; 2(v;,;). It is easy to check that the definitions 4; and
g; are satisfied when i=0. We define the morphism ¢;: [ 1508 _%—
Ili-0 S, 12 as follows:

Assume u=3 .04, €[ Ir50S:_ % Then

o)=Y Y cilu_un)

k20 0<jsk+1

Since xemg Ann¢(C), we have
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gi( | Si+1—2k)CmS( i Si—zk)

kz0 k=0

oo 1L Si-a)em( 1T Sieroa)

k=0 k=20

We now show that g,-¢,=f;. For any u=2Y .o u,_ 2 €[ 1xn0Si_ 2 We
have

g.-o(ﬂ.»(u)=g.~(Z > Cj(“i—lk))

k20 0gj<k+1

= Z Z Z crc;(u;_ )

k20 0<j<k+1 O<I<(k+1—))

= Z Z ¢ (u; 2 );

k20 0<j+i<k+1
thus
gio@i(uU;_y)= 2 clcj(ui—Zk)

O<iI+jsk+1

= Z Z clcj(ui—Zk)a

Ost<k+1 I+j=1

Since ¢yco =0, coc; + ¢ co=X,and ¥, ;< ¢;¢,_;= 0 for n>1 by Proposi-
tion 2.3, we get g;° @;(u;_ )= fi(u;_ ) for all k > 1. So we have g,0,=/,.
Now we want to construct the minimal S-free resolution of Q4 '(C)
from the minimal S-free resolution of 2%(C) and show that Condition (G)
is also satisfied for i+ 1.
For brevity, we write G, for [ I, S;_% and F, for [ 1,50 Sis1-2 and
C; for Q%(C). Then the following commutative exact diagram

0

Q
By

Qe O — Q — —~

i

1

i
gf.-
l

L

00— QU H(C)— G,

|

Se—x
Q



280 SONGOQING DING

gives rise to an exact sequence

0— G,—I5 QYC,)— QFH(C)— 0.

Since u(Q2L(C,)) = u(Q% '(C)) by the inductive hypothesis and Lemma 2.4,
we have that the composition F; - Q(C;) — Q% '(C) gives a projective
cover of 2°!(C) over S. Now consider the following commutative exact
diagram

0 0
l l
G, 11 25(C;) == Q25(Q% ()
L
0—— G,—— G, 11F, — F, - 0
“ l(ﬁ,gi) l

0—— G, —I— QLC) —— QFY(C) ——0

S

0
From this diagram we obtain the following exact sequence

diva S,+3 hivy S1+2]_[Gi i+l Fi]_[Gi (fiv i) Q;(C,)—’O,

where h,,,=[d,,;,0] and &, ,=(", 2). From this exact sequence we
obtain the exact sequence '

5 8,3 S, [1 G5 Fo 2 (0) 50, (%)

where g, =nog,,,=(",). Since all the coefficients of 4, , and g, , are
in myg, it is easy to see that () is a minimal S-free resolution of Q% '(C)
of the form

divq S x+1 I_[ S,+2 P (L U g:+1 ]_I S1+l 2k_’gl+l(c)"’0

k=0 k=0

where g, =ci*?11 ¢;and h,,, =d,, 5. It is clear that this minimal S-free
resolution of Q*‘(C) has the same form (just change i to i+ 1) as the
minimal S-free resolution of Q%(C) we started with. We define ¢, ,:
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I_Ikzo Siv1-2=Llkz0Sii2-2 by setting @, =(ci*'+ci7 I+ +
i+ ) g e,

Piv1 ( Z ui+1—2k)= z 2 ity — i)

k=0 k=20 0</j<sk+1

for all 3 pootisy—2%€Lks0Sis1_2- Using the same argument as for
we can check that g;,,¢,,=f;,,. Therefore Condition (G) holds for
i+ 1. By repeating this procedure, we obtain that (G) holds for all i>0
and the proof is complete.

Recall that a local ring S is called a (codimension i) deformation of R if
there exists a surjective homomorphism ¢:S— R such that ker ¢ is
generated by an S-regular sequence (of length i). The deformation is called
embedded if ker (pcmzs. Given a deformation of R, we view every
R-module as an S-module via ¢. Then Theorem 2.1 can be stated in the
following form:

THEOREM 2.5. Let R be a Gorenstein local ring and C emod R. If there
is a deformation S of R such that R=S/(x,,.., x,) and the induced
morphism

(xy5 o X, )Mg(xy, ..., x,) > Anng(C)/mg Anng(C)

is not @ monomorphism, then 6'(C)=0 for all i20.

Proof. 1If the above induced map is not a monomorphism, then there is
an element ye(x,, .., x,) such that y¢mg(x,, .., x,) and yemg Anny(C).
We may assume that y = x,. Then set S’ = S/(x,, .., x,_,). We have that §’
is also a deformation of R with R=S’/(x,) where %, denotes the image of
x, in S’. Moreover we have X, € mg Anng(C). Therefore by Theorem 2.1,
we know 64(C)=0 for all i 0.

Remark. The converse of Theorem 2.5 is not true, since we know that
for any Gorenstein local ring R which is not regular, the residue field R/m
has the property that 6'(R/m)=0 for all ;>0 [1]. Thus if the converse of
Theorem 2.5 were true, then every non-regular Gorenstein local ring R
would have a non-trivial embedded deformation which we know is not the
case. For example, let R be a complete Gorenstein local ring which is not
a complete intersection such that dim R =edim R — 3. Then such R has no
non-trivial embedded deformation.

Our next aim is to give a partial converse of Theorem 2.1. Let R be a
Gorenstein local ring and Cemod R. Suppose there is a deformation S of
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R such that R=.S/(x) and pd¢(C)<oc. In this case the induced exact
sequence

0—»C—>Q;(C)—>.Q;(C)—>O

has the property that pd;z(2L(C)) < oo, since pdg(25(C))<ov and x is
QL(C)-regular. Therefore if §(C)=0, then we have u(24(C))=u(2%(C))
by Corollary 1.3.

To illustrate the above property of the module C, we show that the
converse of Lemma 2.2 holds in this case.

PROPOSITION 2.6. Let R be a Gorenstein local ring and Cemod R.
Suppose there is a deformation S of R such that R= S/(x) and pd¢(C) < o0.
Then 6'(C)=0 for all i=0 if and only if p(QL(Q%(C)))=u(Q:F(C)) for
alliz0.

Proof. We have seen by Lemma 2.2 that u(25(2%(C))) = u(Q%(C))
for all i >0 implies that 6'(C) =0 for all i >0. Now we show the converse.
Let Cemod R. Then we have an exact sequence

0 C—R25C) - QL(C)—0.

Since pdg(C)< oo, we have pdgpQ4(C)<oo. Thus §(C)=0 implies
wR5(C)) = u(R%(C)) by Corollary 1.3. Since pdg(C) < oo implies
pd(2%(C)) < oo for all i >0, replacing C by Q2% (C) we obtain our desired
result.

Remark. In particular, if R=.S/(x) is a hypersurface, then for all
Cemod R, the hypothesis of Proposition 2.6 is satisfied.

Now let R=S/(x) be a hypersurface, where S is a regular local ring and
xem?. Then the following result gives a partial converse of Theorem 2.1.

THEOREM 2.7. Let R=S/(x) be a hypersurface with xem?. Let a be an
ideal of R and let A be its preimage in S. Then 5(R/a)}=0 if and only if
xemgA. If 6(R/a)=0, then 6'(R/a)=0 for all i >0.

Proof. Since Anng(R/a)=A, Theorem 2.1 asserts that x e mgA implies
6'(R/a)=0 for all i>0. Conversely, if 5(R/a)=0, since pdg(A/xA)< oo
then applying Corollary 1.3 to the exact sequence

0> R/a—>A/xA—-a—(,

we obtain u(A)=yu(a). To show xemgA, we consider the following
commutative exact diagram
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x

—_— U e— O
Ne— Pp «— O

|

=]
V
-]

L
SEH— W —
4
O(—*—%(———

L
[=]

This diagram gives rise to an exact sequence

0—S—A—a—0.

Since u(A)= pu(a), we have xemgA and this completes the proof.

3. A CHARACTERIZATION OF HYPERSURFACES

In this section we prove our main result which gives a characterization
of hypersurfaces in terms of the relation between mult(R) and index(R).
First we show a result on faithfullly flat local ring extensions which enables
us to reduce the general case to the case where R is a complete Gorenstein
local ring having infinite residue field.

PROPOSITION 3.1. Let ¢: R— S be a local homomorphism of rings such
that (i) Rand S are local Gorenstein rings; (i) dim R=dim S; (iii) m,S =
mg; (iv) S is flat over R. Let Cemod R and let 0 - Y- X > C -0 be a
CM approximation of C over R. Then it is minimal if and only if the exact
sequence 0 > S@r Y > S®z X > S®z C— 0 is a minimal CM approxima-
tion of S® g C over S.

Proof. Since ¢: R— S is a flat extension, we have
0-SRrY->S®X->S®,C—-0

is an exact sequence and pdgY<oo. Since Exti(S®zJX, S)~
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S®g Exti(X, R)=0 for i>0, we have that S®;X is a maximal
CM S-module and so

0-S®RY—>S® g X>S5®,C—0

is a CM approximation of S® z C over S. We now show it is also minimal.

Suppose X = U] F such that U has no free summands and F is a free
R-module. Since U has no free summands over R if and only if the natural
inclusion m; — R induces an isomorphism Hom z(U, mg) = Homg(U, R),
tensoring with .S over R, we obtain an isomorphism Hom (S®, U, mg) >
Hom(S® U, S) since mgS=mg. Therefore S®z U has no free sum-
mands over S. Put M =coker(U— C). Then S® M =coker(S®, U —
S®x C). Since mzS=mS, we have that F— M — 0 is a projective cover
over Rif and only if S® . F > S®z M — 0 is a projective cover of S@ M
over S. By Proposition 1.2 this shows that

0-oSRrY-> SR X->S®C—-0

is a minimal CM approximation of S®& » C over S.

An immediate consequence of Proposition 3.1 is the following.

COROLLARY 3.2. Hypotheses as in Proposition 3.1. Let Cemod R. Then
5R(C) =05(S®x C).

For a Gorenstein local ring R, let k = R/m denote the residue field of R.
If k is infinite, we set R = R, the m-adic completion of R. If k is finite, we
set R'=(R[z](mm[z])“, where z is an indeterminate over R. Our main
result is the following theorem.

THEOREM 3.3. The following are equivalent for a Gorenstein local ring R.
(a) index(R)=mult(R).
(b) R is a hypersurface.

Proof. It is easy to see that R is a ring extension of R satisfying the
hypotheses of Proposition 3.1. Since mzR=m3, we have R® R/ms=
R/m,. Then we have index(R)= index(R) by Corollary3.2. Since
dim R=dim R and RQ@, (m%/mi ) =m’%/m% "', we also have mult(R)=
mult(R) and edim R =edim R. Therefore we have the following inequality
by Proposition 1.6:

mult(R) — index(R) > (edim R —dim R)—1>0.

(a)=(b). By the above comments, we have that mult(R)=index R
implies mult(R) =index(R). Thus the above formula shows edim R=
dim R+ 1. By Cohen’s structure theorem, we have §=S/I where S is a
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regular local ring whose dimension is dim R + 1. Since R is Gorenstein, we
have that I is a principal ideal and hence R is a hypersurface.

(b)=(a). If R=5/(x) is a hypersurface, then we have muit(R)=
max{i|xem}. Theorem 2.7 shows that §(R/m%)=0 if and only if
xemi L It follows that index(R)=mult(R). Since mult(R) = mult(R) and
index(R) = index(R), we obtain our result.

In the rest of this section we consider the structure of CM approxi-
mations of modules over a hypersurface. Let R=§/(x) be a hypersurface
with S a regular local ring and xem?2. Our next result is that for any
Cemod R, we have X.>~Q%(C)IIF for some n>dimR and free
module F.

LEMMA 3.4. Let R=S/(x) be a hypersurface and Cemod R. Then for
every i 20, there exists an exact sequence of the form
0-Y,-Q¥C)[[F,-C-0
such that F, is a free R-module and pd Y ;< co.

Proof. We prove this by induction on i When i=1, consider the
commutative diagram

0— Q3(C)—— P —— Q}(C)——0

|

0—— C —— QC)—— QK(C)—— 0,

where P — Q4(C) is a projective cover of Q3(C) over R. It is easy to see
that P is also a part of the projective cover of Q5(C) over R. Let F, [ P —»
QL(C)— 0 be a projective cover of Q5(C) over R. We obtain the following
commutative exact diagram

0 0
! l
Y, =—— 25(C)

l l

0—— Q%O [ Fi—— PIF, > QR(C) >0

| |

0 L C — Q1(C) 5 QL(C) » 0
| |
0 0

481/1532-2
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Since S is a regular local ring, we have pdR(Q5(C))< o for all iz 1.
Therefore pd; Y, < oo and the left column gives the result for /= 1.
Suppose the Lemma is true for all j < i Then there is an exact sequence

0¥, Q% AC)F »C-0

with F,_, a free R-module and pd, Y, | < oo. Applying the result of the
case i=1 to 2%~ %(C), we obtain an exact sequence of the form

0 Y- G Q%(C)» Q% }C) -0

with pdg Y<oo and G a free R-module. Then we have the following
commutative exact diagram

.
|

——F,_,]I6]l]Q2%Cc)—— C——0

1 H

0——Y, ,—— F,_,[]2%%C) —— C——0

l

0

[

— M~ — O

S —

Since pd Y;< oo, the middle row gives our desired exact sequence and
finishes the proof.

As an easy consequence of Lemma 3.4, we have the following.

PROPOSITION 3.5. Letr R=S/(x) be a hypersurface and C e mod R. Then
X~ Q%(C) LI F for some n=dim R and free module F.

This also gives us a characterization of hypersurfaces.

PROPOSITION 3.6. Let R be a Gorenstein local ring. Then the following
are equivalent:

(a) R is a hypersurface.
(b) Xr/m = Q7%(R/m) for some n>dim R.
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Proof. (a)=(b). Proposition 3.5 shows that X, ~Q%(R/m)[]F
for some n >0, where F is a free R-module. Since we assume that R is not
regular, we have 6(R/m)=0 and so F=0. Since X, € CM(R), we have
n>=dim R

(b)=>(a). Since Extiy(R/m, ) Exty(Xg,, ) for all i>dim R, we
have Q% '(R/m)=~ Q% '(Xg,,) for all i>dim R+ 1. Then the fact that
X gjm = Qr(R/m) for some n>dim R shows that the minimal free resolu-
tion of R/m over R is eventually periodic. In particular the ranks of free
modules in the minimal free resolution of R/m are bounded. J. Herzog has
shown in [4] that in this case, R is a hypersurface. This completes the
proof.

In [3], L. L. Avramov studied the periodic property of a module in
terms of its virtual projective dimension. Let R be a complete local ring
having infinite residue field. Then the virtual projective dimension of a
finitely generated R-module C is defined to be

vpdg C=min{pd, C|Q is a deformation of R}.

One of the results on vpd, C [3, Theorem 4.4] is that if vpdz C < o0 and
the ranks of free modules in the minimal free resolution of C are bounded,
then there exists a local ring S such that R=S/(x) for some S-regular
element x and pdg(C) < oo. Combining this result and Proposition 3.5, we
obtain the following.

PROPOSITION 3.7. Let R be a complete local Gorenstein ring with infinite
residue field. Let Cemod R such that vpd, C < 00. Then the following are
equivalent.

(a) X~ Q%WC)LIF for some n>dim R and free module F.

(b) There exists a local ring S such that R= S/(x) for some S-regular
element x and pd4(C) < c0.
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