
Physics Procedia 22 (2011) 20 – 39

1875-3892 © 2011 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee.
doi:10.1016/j.phpro.2011.11.006

ICPST 2011 

Analytic Comparison of Some Epidemic Models with 
Vaccination  

M. De la Sen a *, S. Alonso-Quesada a , A. Ibeas b

a
Department of Electricity and Electronics, UPV/EHU, Leioa, 48080-Bilbao, Spain 

b
Department of Telecommunications and Systems Engineering, Universitat Autònoma de Barcelona, 08193-Bacelona, Spain 

Abstract 

In this paper, we discuss the elementary properties of some simple SI, SR, SIR and SEIR epidemic models whose parameterizing 
functions (such as per-capita death rate, disease transmission, removal rate etc.) might be eventually time-varying but non-
necessarily time-integrable. Vaccination rules based of feedback, measuring the numbers of some of the partial populations defining 
the disease progress, are also discussed. 
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1.  Introduction 

     Important control problems nowadays related to Life Sciences are the control of ecological  models  
like, for instance, those of population evolution (Beverton-Holt model, Hassell model, Ricker model etc.) 
via the online adjustment of the species environment carrying capacity,  that of the population growth or 
that of the regulated harvesting quota as well as the disease propagation via vaccination control.  In a set 
of papers, several variants and generalizations of the Beverton-Holt model (standard time–invariant, time-
varying parameterized, generalized model or modified generalized model) have been investigated at the 
levels of stability, cycle- oscillatory behavior, permanence and control through the manipulation of the 
carrying capacity (see, for instance,  [1-5]). The design of related control actions has been proved to be 
important in those papers at the levels, for instance, of aquaculture exploitation or plague fighting. On the 
other hand, the literature about epidemic mathematical models is exhaustive in many books and papers . 
A non-exhaustive list of references is given in this manuscript, cf. [6-14] (see also the references listed 
therein). The sets of models include the most basic ones, [6-7]: 

-  SI- models where not removed- by – immunity population is assumed. In other words, only 
susceptible and infected populations are assumed. 
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- SIR models, which include susceptible plus infected plus removed- by –immunity populations.  
- SEIR- models where the infected population is split into two ones (namely, the “ infected” which  

incubate the disease but do not still have any disease symptoms and the “ infectious” or “ infective” 
which do have the external disease symptoms). 

    Those models have also two major variants, namely, the so-called “pseudo-mass action models”, where 
the total population is not taken into account as a relevant disease contagious factor and the so-called 
“true-mass action models”, where the total population is more realistically considered as an inverse factor 
of the disease transmission rates.  There are many variants of the above models, for instance, including 
vaccination of different kinds: constant [8], impulsive [12], discrete – time etc., incorporating point or 
distributed delays [12-13], oscillatory behaviours  [14-18] etc. On the other hand, some ´ad- hoc´ variants 
of such models are known to become  considerably simpler for the disease transmission among plants [6-
7]. In [19], a control point of view of a vaccination strategy in continuous- time has been proposed for the 
true mass action (namely, the whole population numbers influence the rate of disease transmission) so-
called SEIR (i.e. susceptible/infected/infectious and immune populations) epidemic model under constant 
whole population assumption. This model generalizes simpler SIR epidemic models where infected (i.e. 
those still without symptoms) and infectious (i.e. those already with disease symptoms) are not mutually 
distinguished. The vaccination strategy involves an auxiliary control being proportional to either the 
susceptible or to the whole population so that the unsuitable dynamics is removed and replaced for an 
asymptotically stabilizing term of the susceptible dynamics. The disease propagation is studied in a 
number of papers (see, for instance, [20-27] and references there in). In this paper, we first discuss three 
elementary epidemic models of respective types as follows: SI (susceptible/infectious), SR (susceptible/ 
immune) and SIR (susceptible /infected/ immune) models whose parametrizing functions (as for instance, 
per-capita death rate, disease transmission etc.) might be eventually time-varying but  either time-
integrable or not. Furthermore, a more general SEIR (susceptible/infected/infectious/immune) model is 
also analyzed in this paper. Finally, the effect of some vaccination policies on the populations is discussed 
for this model. 

2. A time-varying SI epidemic model 

     Bernouilli proposed in 1760 a simple epidemic model where the infection is  removed instantaneously 
so that all the population  passes from susceptible to removed by immunity (the simplest  SR model), [20]. 
The model was assumed in particular for instantaneous infective effect via inoculation of the smallpox.  
Since then a lot of investigation has been devoted to epidemic models including the incorporation of 
infected and infectious populations (SIR and SEIR epidemic models), the presence of delays in the 
disease transmission etc.  The following simple one-parameter time-varying model is a generalization to 
the time- varying case of the simpler time- invariant SI (susceptible/infectious) epidemic model: 
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where 00: RR cl  (i.e. with the image space being the closure of the nonnegative real numbers so 

that the - point is added) is defined  by )(:
0

tdt
t
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which are nonnegative for all time , so that (1)-(3) is a positive dynamic system ( see [15-17]), and have 
finite nonnegative limits as t  which is a global attractor of the trajectory- solution and it is also a  

globally asymptotically stable endemic ( in the sense that the disease propagates) equilibrium point: 
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which becomes in particular if  the following strongly endemic ( in the sense that the whole 

population becomes infectious) equilibrium point: NI )(   ;     0)(S      if 0)0(I , and    

0)0()()( ItII   ;     NStSS )0()()(      if 0)0(I ; 0Rt                             (8) 

    Thus, the solution of (1)-(2) is nonnegative for all time if the initial conditions are nonnegative and 
converges asymptotically to a stable equilibrium point for any given nonnegative initial conditions 
satisfying a constant population constraint )0()0( ISN . Simple calculations yield: 
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limit decreases (increases) and the infected limit  increases ( decreases).

2) If  or if 0N  (leading to the trivial solution of (1)-(2)) then    
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. Thus, if I (0) increases (decreases) then the limit 

infected increases (decreases) and the limit susceptible decreases (increases). 
    The solution of (1)-(2) may be alternatively written as follows with given upper-bounding functions: 



M. De la Sen et al. / Physics Procedia 22 (2011) 20 – 39 23

)0()()0( 0,0 )(
max

IetIIe
t

t dIN
INt

)0(,0
min

Ie t
INt

 ;  0Rt    (10)                   

NetSIeN
t

t dIN
INt

0,0 )(
min

1)()0(

00 00 IeN)(Se t,
t ImaxNt

d)(IN

                                                                                                                                            ; 0Rt  (11) 

Also, one gets from (6): 
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    Thus, the infected  population at any time t  increases (decreases)  when I (0)  is increased (decreased) . 

The susceptible population behaves in the contrary sense. That is )(´ tItI and )(´ tStS  at any 

time if )0(0´ II and conversely. Also, the infected (susceptible) population is a monotone strictly 

increasing (decreasing) function  for all time for any initial condition in N,0 .

3. A  time-varying SR epidemic model 

    A simple SR (susceptible/ immune –also called removed by immunity-) time-varying epidemic model 
extending its time- invariant counterpart is (see [20]): 
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from which two differential equations are independent. The transmission function is 00: RR  and 

00: RR  is the per capita death ratio at time t . The unique solution of (13)-(15) is: 
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tlim:
t

if and only if 00
1 R,RL ( otherwise, ). From (16), the 

following properties hold: 
1) If then 0)( RSN  irrespective of the initial conditions so that the whole 

and  the two partial populations asymptotically extinguish. 

2) If  then 0)(S  and )0()( NeNR  so that the susceptible population 

asymptotically extinguishes and the whole one is asymptotically immune identical to a finite limit 

which depends on the initial total population and the value .  If  then such a limit is 

zero so that the whole population again asymptotically extinguishes as in the above case 1. 
3) It follows from (13)-(15) that   
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     Thus, the whole population and  the susceptible and immune populations are monotone decreasing 
functions  so that they have finite limits. Also, the immune population increases (decreases) as the 
susceptible one increases (decreases). An  equivalent result to (16.b)  for the immune population is 
calculated directly from (15) and (16.a) as follows 0Rt :
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4. A time-varying SIR epidemic model 

     A simple SIR (susceptible/infectious/immune)  time-varying epidemic model extending its time- 
invariant counterpart (Kermack-McKendrick model - 1927), [20] is: 
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)(tIttR                                                                                                                                   (21) 

where  00: RR  is the removal rate with initial conditions 
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so that the susceptible population is also nonnegative for all time under the same sufficiency – type 
condition  as the infectious one is nonnegative, that is, )(/ tStt  for all time.  On the other hand, 

it also follows directly from  integration of (22)-(23) through time that:  
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which is  nonnegative for all time if  the infectious population is also nonnegative for all time which is 
guaranteed if  the disease transmission function is sufficiently small to satisfy the upper- bounding 
condition )(/ tStt ; 0Rt . Then, it follows as a global result that if  )(/ tStt ;

0Rt  then  NtRtItS )(,)(),(0 for all time. Since this condition is always guaranteed for t=0, it 
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26  M. De la Sen et al. / Physics Procedia 22 (2011) 20 – 39

0Rt  implies that  )(tR  if R)(t for  all time what makes the epidemic mathematical 

model to be  ill-posed. However, those conditions can fail on time intervals of finite measures remaining 
still the model well-posed. A necessary condition for a well-posed model is )0()0()0()( RISNtR ;

0Rt  for any given initial conditions what in view of (27) translates into the following constraint:  
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where (21) has been used and provided that the model is well-posed so that the infectious population is 
nonnegative for all time what implies: 
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so that the joint susceptible plus infected population is a monotone decreasing real function  independent 
of initial conditions and the whole population is constant [the constant property of the whole population 
was already known from simple inspection of (19)-(21)]. Equivalently, (20) may be integrated via 
integration by parts as follows by also using (19): 
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irrespective of any well-posed set of initial conditions. Now, one can easily obtain from (19) to (21): 
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     If )(/ tStt ; 0Rt or Ntt / ; 0Rt for any set of well-posed initial 
conditions, this leads to the following integral constraint:  
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what  follows directly by contradiction arguments by choosing  initial conditions NS )0( ,

0)0()0( RI  so that if (38) is false for some time t then 0)(tR  under the positivity constraint for  

the model (19)-(21) )(/ tStt ; 0Rt or Ntt / ; 0Rt  what is impossible. 
Note that positivity, [28-30] is an important property, as it is that of positive realness of transfer matrices,  
of the solution in some kinds of problems concerning dynamic systems. Some simple concerns with the 
spreading or not of the disease are now discussed. 

1) From (20) and (23), 0;0)()(0)0(0)0( RttItIII   and the disease does not 
spread through time. 
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function: 
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    This condition is weaker than  (41) but still guarantees that the disease does not spread with the 
infectious population being a monotone decreasing  function including eventually to be a constant 
function defined by the initial conditions. 
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and ttR p /)(: is said to be the basic reproduction ratio of the disease at time t  which allows its 

propagation. This condition implies also from (20)-(21) that 01
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so that the infected population is a monotone increasing function with respect to the immune one. Since 
the above derivative is strictly positive on the time interval IT then the infected population is a strictly 
monotone increasing function with respect to the immune on the time interval IT.

5) The  susceptible population can be calculated  through time independent of the other populations 
as follows. One gets combining (19) and (21) by using (23): 
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5. SEIR epidemic model 

    The following SEIR- model distinguishes as two separate populations the “infected” E(t) which do not  
still have external disease symptoms from the “infectious” I(t) (also so-called “ infective” ) which exhibit 
already such symptoms. Let S (t) be the “susceptible” population of infection at time t, E (t) the 
“infected” (i.e. those which incubate the illness but do not still have any symptoms) at time t, I (t ) is the 
“ infectious” (or “infective”) population at time t, and  R (t) is the “removed by immunity ” (or 
“ immune”) population at time t. Consider the SEIR-type  epidemic model:  
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subject to initial conditions 000 SS , 000 EE , 000 II and 000 RR  under  

the vaccination function 00: RRV . The vaccination control is either the vaccination function itself 
or some appropriate four dimensional vector depending on it defined “ad –hoc” for some obtained  
equivalent representation of the SEIR- model as a dynamic system.  In the above SEIR – model, N(t) is 
the total population,  is the rate of deaths from causes unrelated to  the infection,  is the rate of losing 

immunity,  is the transmission constant (with the total number of infections per unity of time at time t  

being 
tN
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), 1  and 1 are, respectively,  the average durations of the latent and infective 

periods. All the above parameters are nonnegative. The parameter  is that of rate of immunity lost since 
it makes the susceptible to increase and then the immune to decrease. The usual simplified SEIR- model 
is obtained with  and 0 . In that case 

tRtItEtStN
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           0tRtItEtStN ; 0Rt
                                                        00 0 NN)(NtRtItEtS:tN

If  then the new-born lost of maternal immunity is considered in the model. If  then there is a 

considered mortality incidence by external causes to the illness. The parameter 10 ,  is the per- capita 

probability of dying from the infection.  If either  and 0  or and 0 , and otherwise, 

tN
tI  occurs eventually on a set of zero measure only then the total population varies 

through time as obtained by correspondingly summing- up both sides of (45)-(48). Furthermore, (45) and 
(48) and (46) and (47) might be separately summed up to obtain the evolution dynamics of the separate  
populations of joint susceptible and immune and joint infected and infectious. This leads to:  

tItNtN                                                                                                                  (49) 

tRtS tNtI
tN

tS
)t(RtS 1                                                      (50) 

tI
tN

tS
)t(ItEtItE                                                                               (51) 

      Note that (49) is identically zero if 0 ,and  

d)(Ie)(Ne)t(N t tt
00

)(RSe)t(RtS t 00

dI
N

S
)(Net t 10

                                                                              (52) 

)(IEe)t(ItE t 00

             dI
N

S
et t

0                                                                                          (53) 

     In order to further solve (52), an integration by parts is performed as follows: 
tt d,tqp,tqdp 00

                         de)(Nt t
0

d)(N,tq,tq)(N tt
00

                                    (54) 

where 
t

,tq
,tq , and  

00
0

ttt
t t ,tq

e
de:tq 0

1
,tqt,tq

e t
                                (55) 

so that /)t,t(q 1  and /e),t(q t0  and  then using (49) in (54) yields 

)(NetNde)(N tt t 0
1

0
dINet t

0
1

which, after grouping identical terms,  leads to  

de)(Nt t
0 dIe)(NetN t tt

00
1                                          (56)                     
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Thus, one gets: 
                                                                                                                                                         

tI)t(EtN)t(RtS te dI
N

S
e)(N)(RS t

0000

                                      dI
N

S
e)(IEe tt

000                             (57)                            

6. Vaccination control 

   If the control objective /)t(N)t(S  for all time is achieved with a positive vaccination control in 

10 , , it is proven below that the whole population converges exponentially to the sum of the susceptible 
population plus the immune population while  both the infectious and infective  converge exponentially to 
zero. This is theoretically the ideal objective since the infection is collapsing as time increases while the 
susceptible plus the immune populations are approximately integrating the whole population for large 
time. Other alternative objective has been that the immune population be the whole one but this is a more 
restrictive practical objective since the whole susceptible population should asymptotically track the 
immune one even those of the susceptible who  are not contacting the  disease. 
Theorem 1. Assume that 0 and that the vaccination function is such that /)t(N)t(S  ; 

0Rt with a vaccination control in 10 ,  for all time. Then, the SEIR model (45)-(49) is positive for 
all time. Furthermore,  

tI)t(EtN)t(RtS )(N)(RSe t 000 )(IEe t 00
(58) 
for all time what implies the following constraint for the initial conditions: 

)(R)(I)(E
)(N

)(S 000
0

0

     As a result, 

)(IEe)t(S)t(N)t(R t 00 )(IEe)t(N t 00

         )t(N)(SRe)t(N t 00 ; 0Rt

and )t(N)t(R  as t .Furthermore, the following two limits exist: 

0tI)t(ElimtN)t(RtSlim
tt

                                                                            (59) 

  If , in addition, 0 then

)t(RtSlimN)(N)t(N
t

0 ; 0)t(Ilim)t(Elim
tt

                                                (60) 

Proof: The mathematical SEIR- model (45)-(49) is positive since the vaccination control is in 10 ,  for 
all time so that no population takes negative values at any time. On the other hand, Eqs. 58-59 follow 
directly from (57) and /)t(N)t(S  for all time. Eqs. 60 follow from (58)-(59) since 0

imply N(0)N(t) , 0tN from (49).                                                                                                            
An associate stability result follows: 
Theorem 2. Assume that 0 .Then, the following properties hold: 
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(i) The SEIR model is globally  stable if 0  and  the vaccination law fulfils 100 ,:V R .

(ii) If /)t(N)t(S  and 0 then the following conditions are jointly necessary for global 
stability under Theorem 1 

; 0 d)(Ie)(N 00 , 0)t(Nlim
t

 (iii) If 0 and )t(NtI ; 00 Rfinitett  then global stability of the SEIR-

model (45)-(48) is guaranteed if 100 ,:V R . If 0 , 100 ,:V R  and 

)t(NtI  is replaced with the weaker condition teo)t(NtI  for some 

R then the SEIR – model (45) –(48) is globally stable. 

Proof: (i) If 0  and 0  then 0tNtItNtN ; 0Rt  so 

that )(N)t(N 0 ; 0Rt . Since the SEIR – model is positive if 100 ,:V R  then all the 
populations are nonnegative  and upper-bounded by N(0).  
(ii)  On the other hand, the solution of (49) for any initial conditions is  

dIe)(Ne)t(N tt
00

which is uniformly bounded for all time only if dIe)(N 00 since 0 . Also, 

)t(N ; 0Rt  only if 0)t(N  on a non-necessarily connected set of infinite Lebesgue measure. 
Thus, there is a finite sufficiently large finite time “ t” such that : 

)t(R)t(I)t(E)t(S)t(NtI

        )t(R)t(E)t(S)t(I1 )t(R)t(E)t(S)t(I

which requires the parametrical conditions 0  and .  Since  I(t) is of exponential 

order of at most  from Theorem 1 [Eq. (58)] then )t(R)t(E)t(S  is also  of exponential of 

order of at most  so that N(t) extinguishes exponentially  as they do all the populations of 
susceptible, infected , infectious and immune.     

 (iii)   If )t(NtI  with   after some finite time 0t  then 00 tt;)t(N)t(N

and the SEIR -model is positive since 100 ,:V R .  Thus, global stability follows. If 

teo)t(NtI  replaces the above stronger condition )t(NtI  after a finite 

time then tN  is of exponential order so that )t(N is uniformly bounded for all time and the 

global stability still holds.                                           
     Note that the case  is not  feasible in practice for 0 since the population diverges . If 

0 , it requires a collapsing effect of the illness on the population which is also unfeasible in 

practical situations. It is now discussed how the vaccination law is generated to keep simultaneously the 
SEIR- model positivity plus the tracking objective of Theorem 1 which requires positivity. The tracking 
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objective /)t(N)t(S  for all time is equivalent for all time to any of the subsequent equivalent 
identities below: 

)t(R)t(I)t(E/)t(N)t(N

)t(R)t(I)t(E)t(N )t(R)t(I)t(E)t(N

)t(I)t(E)t(N)t(R                                                                                                      (61) 

which requires as necessary condition 0 . Although unrelated to the physical problem at hand, the 

necessary condition will be also accomplished with 0 and 0 with /)t(N)t(S . From 
Theorem 1, Eqs. 50-51 imply that  

0tI)t(ElimtN)t(RtSlim
tt

   The solution of (51) is: 

tetItE dI
N

S
e)(IE t

000                                                    (62) 

Then, the solution of (48) matches (61) for all time if and only if: 

)t(N)t(I)t(E)t(N)t(R dI
N

S
e)(IEe tt

0
00

         te dVN)(Ie)(R t
0 10                                          (63) 

Define an everywhere time- differentiable auxiliary function RR 0:h  defined as  

dVN)(Ihth t
0 10

such that 

tVtN)t(Ith 1 )t(Ith
)t(N

tV 1
1

                                         (64) 

for all time so that  the last right-hand – side additive term in (63) becomes after integration by parts: 
ttt edhee 0 dhehthe tt

0
0          (65) 

    The replacement of (65) into (63) yields: 

tt e)t(Ne dI
N

S
e)(IE t

000

               dVN)(Ie)(R t
0 10

              dhehthe)(R tt
0

00                                                    (66) 

and equivalently, and since /)t(N)t(S  for all time: 

te)t(Nth dhe)(Rh t t
000

             dI
N

S
e)(IEe tt

0
00

     dhe)t(N t t
0 )(IE)(Rhee tt 0000    (67) 
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generated from: 

)t(I)t(Nth )(IEe)(Rhe tt 0000

          thdhet t
0

2
                                                           (68)   

so that  

)t(N)t(Ith 1 )(Rhe)t(I t 001     

                             200 )(IEe t thdhet t
0              (69) 

      The vaccination law which ensures the positivity of the mathematical SEIR- model (45)–(48) is 
generated as the subsequent saturation rule: 

0tVif0

1tVif1

1,0tViftV

)t(V                                                                                                   (70) 

where 

)t(IthtV 1                                                                                                                  (71) 
     Define the indicator function i(t) as follows: 

0)t(i if 1,0tV and 1)t(i , otherwise                                                                                    (72) 
     Then, one has instead of (57) 

tetI)t(EtN)t(RtS

diI
N

S
e)(N)(RS t

0
000

                                    te diI
N

S
e)(IE t

000                     (73) 

which coincides with (57) for all time if the indicator function is identically zero, that is, if th  is such 

that the auxiliary vaccination law (71) is in 10 ,  for all time. Also, for any given real 0  and 

)(TT such that  

)(R)(S)(N
lnT

0001

and Tt ,   one gets from (57) that 

)t(RtStN diI
N

S
et t

0                                          (74)      

and the right-hand-side integral  takes into account the tracking deterioration  if there is a time interval of 
nonzero Lebesgue measure such that tV)t(V ; 0Rt . The following result is important to 

discuss stability when the vaccination law 10 ,)t(V  but it is not identically equal to tV . In fact the 

positivity part of Theorem 1 still holds since the SEIR- model is positive since 10 ,)t(V ;

0Rt and the whole population evolution is independent of the vaccination law according to (49). 
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However, the whole susceptible plus immune does not asymptotically track the whole population. In 
summary, one has: 
Theorem 3. The vaccination law (68), (70)-(71) makes the SEIR – model (1-(4) positive and globally 
stable under Theorem 2.   Furthermore 

)t(RtStN diI
N

S
esuplim t t

t
0

 as t                                   

An alternative vaccination law replaces the saturating function (70), subject to (68), by: 

tV tRtKtRtKtItK)t(NtK
)t(N

*
dR

*
RIN

1
                                  (75) 

)t(NthtR *   ; )(RR * 00                                                                                                         (76) 

7. Simulation results 

     This section illustrates through simulation examples the theoretical results stated in the previous 
Sections 5 and 6 for the SEIR controlled system. Notice that the SEIR model is the most general one 
being the SI, SR and SIR models, described in Sections 2, 3 and 4 respectively, reduced versions of this. 
Moreover, the SEIR model also experiences the richest dynamic behaviour and, for this reason, it is the 
model considered in the numerical examples. The first example in Section 7.1 is concerned with the 
saturated vaccination law described by (70) while the second one in Section 7.2 is related to the 
unsaturated modified vaccination law introduced in Eq.75 and close equations. The SEIR model is 
described by the following parameters: 

25550
1

days, 9.1
1 days, 10

1 days, 15.0  , 12775
1 days 5.1 days 1

while . The initial conditions are given by, S(0) = 400, E(0) = 150, I(0) = 250 and R(0) = 200 

individuals so that the total population at initial time is N(0) = 1000 individuals. The function h(t) for Eq. 

(76) is defined by ctct etNRe
tN

th 1)()0(
)(

1
)( with 5/1 c days. Notice that 1)(th  as 

t  and, therefore, )t(N)t(*R .  The evolution of the model without vaccination is represented in 
Figure 1 in order to compare this evolution with the ones associated with different vaccination policies.  
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Figure 1. Evolution of populations without vaccination 

    Figure 1 displays the evolution of all the partial populations through time. In particular, the numerical 
simulation shows a number of infected and infectious individuals, 62 of each, which correspond in total to 
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a 19.03% of the total population at the end of the simulation. The vaccination policies introduced in this 
work are implemented in order to reduce this percentage of infected and infectious population.  
7.1 Saturated vaccination law  
     Firstly, we consider the saturated vaccination policy whose basic feature is that the vaccination effort 
is restricted to the interval [0, 1]. The nonzero controller parameters are selected as 1rdr KK . The 
results are shown in Figures 2 and 3. 
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Figure 2. Evolution of the populations with saturated vaccination 

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

time (days)

P
op

ul
at

io
ns

Vaccination law

Figure 3. Vaccination law for the saturated case 
      Figures 1 and 2 point out the similarity between the vaccination-free and the saturated vaccination 
policies: for both of them, the populations reach a steady-state where there exists a non-zero value of 
infected and infectious population. In particular, each population of infective and infectious is now of 61 
individuals which make together a 19% of the total population. It is appreciated that the vaccination effort 
is not large enough to eradicate the illness as it is restricted to the interval [0, 1]. In fact, Figure 3 shows 
that the control law is always saturated to its largest value trying to cope with the infectious and infective 
populations.
7.2 Unsaturated modified vaccination law 
     In this subsection, the saturation to unity of the previous vaccination law is removed under the 
restriction of all the populations being nonnegative for all time. The results are depicted in Figures 4, 5 
and 6 below: 
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Figure 4. Evolution of the populations under unsaturated vaccination
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Figure 5. Reference immune trajectory tracking and convergence to the total population 
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Figure 6. Unsaturated vaccination law  

     Figure 4 shows that the infectious and infective populations tend to zero when the vaccination is not 
saturated to unity. Thus, the vaccination law depicted in Figure 6 is powerful enough to eradicate the 
illness and make all the population immune. Furthermore, Figure 5 shows how the proposed control law 
is able to make the immune population perfectly track the desired one converging to the total population 
N. Moreover, Figure 6 also explains why the saturated control law is not enough to eradicate the illness 
since the unity value of the saturated vaccination function is very small in comparison with the 
vaccination depicted in Figure 6.  
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