
Pergamon
Computers Math. Applic. Vol. 36, No. 5, pp. 11-21, 1998

© 1998 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0898-1221/98 $19.00 + 0.00
PII: S0898-1221(98)00146-1

A Hybrid Genetic Algorithm
for a Type of Nonlinear
Programming Problem

J I A F U T A N G AND D I N G W E I W A N G
P.O. 135, School of Information Science & Engineering

Northeastern University
Shenyang, Liaoning 110006, P.R. China

A. IP
Department of Manufacturing Engineering

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong, S.A.R.

R . Y . K . F U N G
Department of Manufacturing Engineering & Engineering Management

City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong, S.A.R.

CReceived November 1997; revised and accepted May 1998)

A b s t r a c t - - B a s e d on the introduction of some new concepts of semifeamble direction, Feasible
Degree (FD1) of semifeasible direction, feasible degree (FD2) of illegal points 'belonging to' feasible
domain, etc., this paper proposed a new fuzzy method for formulating and evaluating illegal points
and three new kinds of evaluation functions and developed a special Hybrid Genetic Algorithm
(HGA) with penalty function and gradient direction search for nonlinear programming problems.
It uses mutation along the weighted gradient direction as its main operator and uses arithmetic
combinatorial crossover only in the later generation process. Simulation of some examples show that
this method is effective. (~) 1998 Elsevier Science Ltd. All rights reserved.

Keywords---Nonlinear programming, Hybrid genetic algorithm, Weighted gradient direction, Fea-
sible degree, Semifeasible direction.

1. I N T R O D U C T I O N

No~linear Programming (NLP) is an important branch of Operations Research and has wide
applications in the areas of military, economics, engineering optlm!~tion, and science manage-
ment. There are several types of traditional methods for nonlinear programming [1], however,
since there are many local optimizations for NLP, most of the solution methods may solve it
only on an approximate basis. Recently, based on strict optimization theory and algorithm,
many researchers have proposed some new stochastic optimization methods, such as the genetic
algorithm [2-4], simulated annealing [5], Tabu search [6], and various hybrid methods [5,6].

The authors are greatly indebted to the referees for their suggestions and comments on the revision of the paper.
This paper is supported by the National Natural Science Foundation NNSF (Project No. 69684005) of the P.R.
of China.

Type~ by ~ - T ~

11

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82117625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

12 J. TANG et al.

The Genetic Algorithm (GA), which was first proposed by Holland [7], is one of the most
important stochastic optimization methods. As an intelligent optimization method, GA has
made great achievements in the solution to traveling salesman problems, transport problems, 0-1
programming problems, and multiobjective optimization problems. However, it has made little
contribution to nonlinear programming problems [2,4].

In fact, in the construction and application of GA to NLP, the coding and decoding processes
are important and difficult. In addition, the handling with the system constraints, especially
the measurement and evaluation of illegal chromosomes (points) are key techniques with GA.
Currently, several methods have been developed to deal with system constraints and have been
reviewed by Michalewicz in 1995 [8]. Among of which, a large penalty in the construction of the
fitness function was often used to evaluate the infeasible solutions, but this is essentially narrow
of the search space, by eliminating all illegal points from the evolutionary process and may lessen
the ability to find better candidates for the global optimization. Li and Gen [2] developed a
method for Nonlinear Mixed Integer Programming (NMIP) problems by means of GA and a type
of penalty function.

This paper focuses on the application of GA to a type of differentiable nonlinear programming
problem. By means of introducing some new concepts of semifeasible direction, feasible de-
gree (FD1) of semifeasible direction, feasible degree (FD2) of illegal points, a new fuzzy method
for formulating and evaluating illegal points, and three new kinds of evaluation function are
proposed in this paper. Based on the fuzzy method and new kinds of evaluation functions, we
have developed a special Hybrid Genetic Algorithm (HGA) with penalty function and gradient
direction search to solve nonlinear programming problems.

The rest of this paper is organized as follows. Section 2 explains the basic idea and overall
procedure of HGA. Finally, simulation results and analysis of some examples and the conclusion
are given in Sections 3 and 4 .

2. H Y B R I D G E N E T I C A L G O R I T H M W I T H P E N A L T Y
F U N C T I O N A N D G R A D I E N T D I R E C T I O N S E A R C H

2.1. Canonical Form of N L P

NLP problems with n variables and m constraints may be written as the following Canonical
form NLP:

max f (x) = f (x l , x 2 , . . . , X n) ,

s.t. x e Q = {x • E , I g~(x) < 0, i = 1 , 2 , . . . , m } . (1)

In this paper, we assume that f (x) and gi(x) are differentiable in En.

2.2. Basic Idea of the Hybrid Genet ic Algor i thm

In the procedure of solution to NLP by means of a penalty function method, we first transmit
NLP into a unconstrained optimization problem by means of a penalty function, then solve a
series of unconstrained optimization problems with a certain penalty multiplier to obtain the
optimal solution or near optimal solution to the original problem. As the penalty multiplier
tends to zero or infinite, the iteration point also tends towards optimal. However, at the same
time, the objective function of the unconstrained optimization problem might gradually become
worse. This lead to computer difficulties in implementing the penalty function methods to solve
NLP.

On the other hand, when we apply traditional GA to solve NLP, a scheme of coding and
decoding processes for optimizing variables is needed. Moreover, due to the complexity and
differences of constraints in actual optimization problems, there is not a general coding method for
all types of optimization problems. Meanwhile, the handling with system constraints, especially
the formulation and evaluation of illegal chromosomes are critical techniques.

Nonlinear Programming Problem 13

Based on the above analysis in this paper, we propose a special hybrid genetic algorithm with
penalty function and gradient direction search to solve NLP. The basic idea may be described
as follows. First, randomly produce an initial population with the size of popsize individuals.
In the process of iteration, for an individual xi ~ Q, give it a less fitness function by means of
embedding information of illegal chromosomes into the evaluation process, so that it may have less
chance than others to be selected as parents to reproduce children in the later generations. Each
individual is selected to reproduce children by mutation along the weighted gradient direction,
according to the selection probability which depends on its fitness function (objective function).
As the generation increases, the individuals with less fitness functions die out gradually, namely,
the individuals xi E Q with less objective functions and individuals xi ~ Q die out gradually, and
the individuals maintained in the population are the individuals with a high value of objective
function. After a number of generations, the individuals' objective function values reach the
optimal or near optimal from the two sides of feasible domain.

2.3. Weigh ted Grad ien t Direc t ion

For an individual x, if x E Q, then the objective function may be improved along the gradient
direction of objective function V f(x).

For an individual x, if x ~ Q, it denotes that x is out of the feasible domain. Let

x + = { i I g , (=) > o, = • E . } .

For i E I +, if x moves along the negative gradient direction -Vgd(x), it may satisfy gd(x) < O.
The greater the weight is, the faster g~(x) < 0 may be achieved.

Based on the above idea, we construct a weighted gradient direction [4,9], denoted by d(x),
which is defined as follows:

d(x) = woV f (x) - ~ w,V g,(x), (2)
/=1

where wd is the weight of the gradient direction, generally, w0 = 1 and wi is defined as

o, g~(z)_<o,
wi = 6~, g, (x) > o, (3)

1
~* = 1 - (g,(x))l(gm~(X) + ~)' (4)

gmax(X) ---- m s x { g i (x) , i = 1, 2 , . . . , m}, (5)

where 6 is a very small positive number.
Formula (4) means that the weight of gradient direction increases as the increase of gi(x) when

g~(z) > 0.
Then _(k+l) generated from x~ k) by mutation along the weighted gradient direction d(x) can J.j

be described as
x(k+l)=x~k) 13(k)d(~k)) + = , (6)

where /~(k) is a step-length of the Erlang distribution random number with declining means,
which is generated by the random number generator

E
= M~ ' (~)

where M1 is a declining coefficient.
From (2)-(7), it can be seen that for an individual x E Q, d(x) = V f(x) , it moves along the

direction of ~7 f (x) , the objective function may be improved, so as to reach the near optimal; for
some other individuals x ~ Q, the bigger the 9,(x), the farther apart these are from the feasible
domain Q, they may require the high weight w, in order to reach or move into feasible domain.

14 J. TANG et al.

2.4. Formula t ion and Evaluat ion for Illegal Points

In the application of GA to optimization problems with constraints, it is very important to
formulate and evaluate the illegal chromosomes. In this section, we introduce some concepts of
semifeasible direction and feasible degree of illegal points, etc.

DEFINITION 1. The dis tance d(x, Q) between point x and feasible domain Q is the m_a~mum
violation of constraints at point x.

According to the definition, d(x, Q) has the following formula:

d(x, Q) = max{0, gm~(X)). (8)

The distance reflects the information of the relationship between point x and feasible domain Q;
if d(x, Q) = o, this indicates that x E Q; conversely, d(x, Q) > 0, and the greater the d(z, Q) is,
the worse the performance of x 'belong to' Q is, i.e., x is further from the feasible domain Q.

Let

G (z) = g (x)
IlVgjx)ll '

Gmax(x) = max{Gi(x), i = 1,2,. . . ,m},

g = arg{i] Gi(x) = Gmax(x), i = 1,2,. . . ,m}.

DEFINITION 2. A nonzero vector VgK(x) is called the domina t ed semifeasible direct ion.

DEFINITION 3. A nonzero vector z is detined as point to feasible domain Q at point z ~ Q, h e
it satist~es

z T (- v g K (x)) > 0. (9)

DEFINITION 4. A nonzero vector z is defined as d e p a r t u r e f rom feasible domain Q at point
x ~ Q, i f it satisi~es

z T (- V g K (x)) < 0. (10)

DEFINITION 5. A nonzero vector z is cai/ed the semifeasible d i rec t ion at point x ~ Q, i f it is
a point to feasible domain.

The relationship between weighted gradient direction, the dominated semifeasible direction
and semifeasible direction is shown in Figure 1.

.~,, V fOx)

-vgxCz)

0
Figure 1. The illustration of ~ra i f~ ib le direction and weighted gradient direction.

Nonlinear Programming Problem 15

THEOREM 1. For V x ~ Q, z = - ~,~=1 wiV g~(x) is semifeasible direction.

PROOF. If z satisfies (9), then z is the semifeasible direction; if not, then we may adjust the
coefficient & to obtain a semifeasible direction.

THEOREM 2. For V x ~ Q, the weighted gradient direction d(x) constructed by (2) is the semife~-
sible direction.

PROOF. If d(x) satisfies (9), then d(x) is the semifeasible direction; if not, then we may adjust
the coefficients w0 or & as follow to obtain a semifeasible direction.

(1) Let w0 = wo/2, and replace it in (2), test the subjection of (9); if it does not hold, repeat
the process until it does.

(2) Let & = &/2, and replace it in (4), test the subjection of (9); if it does not hold, repeat
the process until it does.

DEFINITION 6. Feasible Degree FD1 of a semifeasible direction at point z ~ Q is defined as

FD1 = d(z) z (- V gK(X)). (11)

Obviously, the feasible degree FD1 of the semifeasible direction at point x reflects only the
deviation of the weighted gradient direction from the dominated semifeasible direction, not the
degree of point far from feasible domain.

In the follows, we formulate the degree of a point far from feasible domain in fuzzy methodology,
by means of introducing the concept of feasible degree of an illegal point 'belonging to' feasible
domain.

Let 7~ denote the degree of subjection to the ith constraints at point x, which can be defined
a s

1, ifg~(x) ~_ O,

7~ = 1 gi(z) 0 <: g~(x) <: d(z,Q),
d(x,Q)'

O, else.

DEFINITION 7. Feasible degree FD2 of an iHega/point (chromosome) z 'belonging to' feasible
domain Q is defined as

m

FD2 = Z -~" (13)
i----1

FD2 reflects the degree of point x 'belonging to' feasible domain. If FD2 = 1, it indicates
that z belongs completely to the feasible domain, i.e., x E Q; otherwise, if FD2 = 0, it implies
that x completely does not belong to the feasible domain. If 0 < FD2 < 1, it denotes that
the membership degree of point z belonging to the feasible domain in the sense of fuzzy theory,
although it does not belong to the feasible domain in the sense of crisp mathematics.

Based on the above analysis, the following three methods may be suggested to evaluate the
illegal point (chromosome).

METHOD 1. Embedding the feasible degree of the semifeasible direction, i.e.,

f(x)
eval(x) -- (1 + 1/FD1)P' P >- 1. (14)

METHOD 2. Embedding the feasible degree of the illegal point 'belonging to' feasible domain,
i.e.,

f(x)
evai(z) = (1 + 1/FD2)P' P ~- I. (15)

METHOD 3. Embedding the distance far from the feasible domain, i.e.,

l(x)
eval(x) ---- (1 -I- gmax) p' P ~- 1. (16)

16 J. TANG et al.

2.5. Overall Scheme of Hybr id GA

1. CHROMOSOME REPRESENTATION. In this problem, the chromosome is schemed as a real
representation, i.e., x = (xl, x2, . . . , In).

2. INITIAL POPULATION. In order to speed up the search process, select upper (u~) and lower
bound (l~) for each gene xi, then the initial population is generated as follows.

Procedure : Init ialize

begin

for k ~- 1 to pop_size do

for i ~-- 1 to n do
x~ k) 4- random (li,ui)

i * - - i + 1 ;

end

k * - k + l ;

end

end

where random (a, b) is a random number with unity distribution of (a, b).

3. CROSSOVER. Crossover is not the main operator, which may only be used in the later gen-
eration procedures, when the whole individuals are all in the feasible domain and the cases that
there is not any improvement of objective function for any individuals in continuous more than a
definite number hum (in general, select num= 2) generations. In this case, the arithmetic com-
binatorial crossover operator is suggested. It is noted that even though in the case of the feasible
domain Q is not convex, the effective of the algorithm is not affected, because Pc is selected as
very small, moreover, the operator need not guarantee the feasibility of the offspring. In fact,
the feasible chromosome is mostly obtained by mutation operator. The offspring _k+l generated
by the arithmetic combinatorial operator is described as follows:

xk+l ---- OtXki .{_ (1 ^ ~_t~+l
i - - c~)J . j ,

where x~ is selected as the strategy of Roulette Wheel, and x~ is selected randomly, a E U(0,1).

4. MUTATION. Mutation is the main operator, which is also the characteristic of the hybrid GA.
Mutation along the weighted gradient direction is performed as (6).

5. EVALUATION OF CHROMOSOME. Evaluation of the chromosome is an important procedure
of GA. In this paper, we suggest three new methods to evaluate illegal chromosomes. According
to these methods, the information of illegal chromosomes is embedded into the evaluation function
in order to measure the degree of illegal chromosomes far from feasible domain so that it could not
be rejected as parents to reproduce children in the later generation process. Hence, the genetic
search ensures the optimum from both feasible and infeasible domain.

Fitness function F(x) is calculated as

S I(=), <_ 0, F(x) (17) / eval(x), else,

where eval(x) is referred as (14)-(16).

6. STOP RULE. According to the degree of precision required, a maximum iteration number NG
is determined to be the stop rule.

Nonlinear Programming Problem 17

3. N U M E R I C A L E X A M P L E A N D A N A L Y S I S

To clarify the effectiveness of the hybrid GA with penalty function and gradient direction
search, in this section we give some test examples using linear constraint and nonlinear constraint
as well as nonconvex constraint. The comparison results obtained by way of Penalty Function
Method (PFM), traditional GA, and the hybrid GA are also given in this section.

3.1. The Design of the Test P r o b l e m

To justify the performance of the proposed HGA, we select the following three test problems
as example of comparison, where test P1 and P2 are from [1] and quadratic problems with
linear and nonlinear constraints, respectively, while the P 3 modified from [1] is a problem with
nonlinear objective and nonconvex constraints.

TEST P1. (See [1, p. 413].)

Max f(x) = -2x21 + 2X12:2 -- 2X2 2 -I- 4xl + 6X2,

s.t. xi -~-X2 < 2,

Xl "}" 5X2 <= 5,

x l , x 2 >_ O.

TEST P2. (See [1, p. 419].)

Max f(:~) -- --22:21 -1- 22:1X2 -- 22:22 4" 4.T1 "{- 6X2,

s.t. 22:21 -- 2:2 <: 0,

2:1 Jr" 52:2 < 5,

2:i,x2 _> 0.

TEST P3.

Max

s.t.

f(x) -- - (1 - xl) 2 + 10 (x2 - x~) 2 + x~ - 2xlx2 + exp(-x l - x2),

x~ + x~ ~ 16,

x 2 - x~ < 1,
Xl Jr" 372 <= 20,

x l , z 2 >_ O.

3.2. I m p l e m e n t a t i o n of P F M and Tradi t ional G A

Penalty function method [I] is one of commonly used traditional optimization methods for
NLP. In implementation of the PFM, the original problem NLP is transmitted into the following
unconstrained optimization problem by means of penalty function:

max f (x) -- ~ P'd. max{O, g./.(X)},
d----.1

x ~ E n ,

and the steepest descent algorithm is applied to solve the above unconstrained problem. While
the uniform crossover and position based mutation, as well as the constant penalty are applied
in the implementation of traditional GA.

18 J. TANG et aL

Table 1. Comparison results of test problems by way of PFM, GA, and HGA.

Test
Problenm

P1

P2

P3

Algorithm

PFM

GA

HGA

PFM

GA

HGA

PFM

GA

HGA

Optimal

Solution

7.160

7.160

7.160

6.613086

6.613086

6.613086

1600039.0

1600039.0

1600039.0

Best
Solution

6.995

7.10

7.16085*

6.145

6.387

6.61305

1519431.5

1600039.0

1600039.0

Best
Error(%)

2.30

0.84

0.000

3.04

3.45

0.001

5.037

0.0

0.0

Mean
Error(%)

8.25

15.94

0.15

10.45

14.48

0.088

11.35

61.60

0.0181

Worst

Error(%)

10.3

21.4

0.261

12.5

19.68

O. 153

14.30

93.33

0.0748

PFM--the results over 50 trials with initial point generated by random number
generator.
HGA--the results as N G = 50, popsize = 50.
*: Best solution is better than the Optimal solution only due to the degree of preci-
sion.
Table 2. Comparison results of the test problems by way of different evaluation
functions for HGA.

Test

P1

P2

P3

Method Best Best Mean Worst

Solution error(%) error(%) error(%) (%)

Method 0

Method 1

Method 2

Method 8

Method 0

Method 1

Method 2

Method 8

Method 0

Me thod 1

Me thod 2

M e t h o d 8

7.15~6

7.16085

7.15~9

7.15~I

6.61295

6.61299

6.61300

6.61305

1600039.0

1600039.0

1600039.0

1600039.0

0.71

0.00

0.028

0.029

0.002

0.501

0.000

0.000

0.0

0.0

0.0

0.0

40.04

13.08

23.56

0.150

28.00

11.15

4.00

0.088

61.60

41.15

47.07

0.0181

80.01

50.00

66.6

0.261

80.00

50.01

66.1

0.153

93.33

74.99

83.44

0.0748

Inf.per
(%)

6O-80

05-25

0-15

O-5

60-80

0-15

0-15

0-5

6O-8O

50-80

50--8O

30-50

Note: The results as N G = 100, popsize = 50; Inf.per---percent of infeasible chro-
mceomes in the last genertaion; Me thod 0 - -a large constant penalty as evaluation
function.

3 .3 . T h e A n a l y s i s o f t h e R e s u l t s f o r T e s t P r o b l e m s b y H G A

T h e compar i son resul t s of the t e s t p rob lems by way of t he P e n a l t y Func t ion M e t h o d (P F M) ,

t r a d i t i o n a l G A , and t h e p roposed hybr id genet ic a lgo r i thm (H G A) are shown in Tab le 1. T h e

compar i son resul t s of t h e t es t p rob lems by way of the th ree new eva lua t ion funct ion m e t h o d s

and c o n s t a n t p e n a l t y me thod , and t h e bes t so lu t ion as different popu l a t i on size a n d m a x i m u m

gene ra t ions a re shown in Tables 2 and 3, respect ively. T h e bes t , mean , and t h e wors t solut ion,

as well t h e n u m b e r of infeasible chromosomes a t each i t e ra t ion for P 2 by H G A are shown in
Tab le 4.

F r o m Tab le 1, we can see t h a t H G A is much more effective t h a n P F M in view of pe r fo rmances of

t h e bes t er ror , mean error , and wors t error , especia l ly when the re a re no d i s t ingu ished differences

Nonlinear Programming Problem

Table 3. The best solution as different population size and maximum generations.

Test Popsize Best* Test
Problem Solution Problem

P1

P2

P3

10

20

30

40

50

60

80

100

10

20

30

40

50

60

80

100

10

20

30

40

50

60

80

100

7.15395

7.15759

7.15820

7.15666

7.16085

7.15732

7.15798

7.15789

6.61299

6.61292

6.61289

6.61306

6.61308

6.61308

6.61307

6.61308

1600039.0

1600039.0

1600039.0

1600039.0

1600039.0

1600039.0

1600039.0

1600039.0

P1

P2

P3

NG Best**
Solution

15 3.06378

25 3.06355

40 3.06355

50 7.16085

75 7.15715

100 7.15868

125 7.15877

150 7.15887

15 3.06387

25 3.06387

40 6.61287

50 6.61295

75 6.61296

100 6.613080

125 6.613080

150 6.613083

15 1600039.0

25 1600039.0

40 1600039.0

50 1600039.0

75 1600039.0

100 1600039.0

125 1600039.0

150 1600039.0

as popsize = 50. *: the best solution as NG = 100; **: the best solution

19

between the best error, mean error, and worst error for HGA, while there exist great differences

between them by way of traditional heuristic method, i.e., PFM, which indicate tha t P F M is
great ly affected by the selection of initial points. As well, it is shown from Table 1 tha t H G A is

more effective than traditional GA.
Table 2 is the comparison results of the test problems between the new evaluation function

methods and tradit ional constant penalty method, from which we can see tha t the new evaluation
function methods are all superior than constant penalty method from the point of both the best

error, mean error and the worst error.
I t can be seen from Table 3 tha t the best solution is slightly affected by the population size

popsize, and is greatly affected by the maximum generation N G untill it reaches a suitable level,
such as NG = 50.

I t can be seen from Table 4 tha t the best error becomes smaller and smaller as the increase of
generations and there is almost no difference in the best error from the generation of 80 th, which
indicates the convergency of HGA. In the meantime, the difference between the best error and
the worst error approaches zero as the increase of generation, which implies tha t solutions in the
last generation are all in the near domain of the optimal solution, i.e., they are all accepted as a
sat isfactory solution. Additional, it can reflects the percentage of infeasible chromosomes in the
population at each iteration, the number of infeasible chromosomes decreases as the increases of

20

ItNo

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

45

J. TANG et al.

Table 4. The best, mean, the worst solution and number of infeasible solutions for
P 2 at each iteration by HGA.

Infeasible Best

Number Solution

48

46

41

40

27

32

2

36

50

26

28

10

9

36

50

14

42

4O

10

50

49

12

49

47

4

43

20

33

35

27

25

34

20

36

29

23

32

24

34

34

27

29

28

23

26

37

UeSLrl

Solution

3.063556 -1,963721

3.923996 -8.951345

0.00000 -5.939373

3.940441 -2.193960

3.517756 -1.104784

3.882819 -0.024352

3.946857 0.202615

0.000000 -0.263667

0.470409; -0.974160

3.958498 0.669238

0.565742 0.097536

0.822507 -0.077686

Worst

Solution

- 14.507540

- 18.406640

-17.596200

-11.424870

-6.317472

-2.313398

0.000000

-0.625713

-2.644845

-3.865976

-0.242842

-0.873723

3.967764

1.376387

1.089149

6.334483

3.797592

2.286361

4.378037

3.814319

3.691129

5.486464

5.952384

4.652226

5.761828

6.093210

6.262978

6.580002

6.402060

6.321744

6.444650

6.330513

6.557756

6.589750

6.415943

6.483630

6.553962

6.553856

6.571466 =

6.578858

6.566411

6.599164

6.561859

6.603125

6.602304

6.557187

1.639398 0 . ~

0.558994 0.000000

0.303759 -0.428773

1.344784 0.000000

1,444057 0.000000

0.717346 0.000000

2.420234 0,000000

2.213592 0.701667

1.650333 0.571107

3.196831 1.742391

3.171359 1.514548

3.268739 1.609322

3.606856 2.181158

4.325548 2.618724

4.172750 2.970258

5.281199 2.736286

4.791120 2.995108

4.869431 3.473816

5.520216 3.933339

5.036617 3.791852

5.895343 4.400737

5.734688 4.151553

5.654635 4.436711

5.857147 4.916823

6.013317 5.000106

6.173467 5.151730

6.274135 5.542740

6.211339 5.312654

6.288830 5.718469

6.340402 5.750092

6.382557 5.717593

6.465948 6.131230

6.442135 6.034008

6.366481 5.971469

ItNo

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

96

Infeasible Best Mean Worst

Number Solution Solution Solution

32 6.602537 6.540881 6.351209

24 6.603416 6.560880 6.407640

42 6.601602 6.535637 6.439693

11 6.609656 6.585100 6.475861

31 6.612067 6.583463 6.499317

33 6.610638 6.576521 6.501623

16 6.610380 6.599028 6.577125

42 6.6106381 6.579856 6.518928

9 6.611909 6.600630 6.545513

32 6.612026 6.597582 6,559607

30 6.610950 6.597780 6.560095

34 6.611289 6.597525 6.565237

21 6.612717 6.604111 6.583730

20 6.612951 6,606650 6.578149

36 6.611935 6.603707 6.589171

29 6.612157 6.607095 6.595370i

27 6.612237 6.608098 6.598180

22 6.612535 6.607291 6.597160

20 6.612622 6.610566 6.601147

33 6.612540 6.609030 6.601996

32 6.612876 6.609776 6.602560

13 6.612928 6.611180 6.605491

36 6.612814 6.610794 6.605368

10 6.612985 6.611877 6.608129

17 6.612953 6.611842 6.668649

37 6.612969 6.611675 6.608157

29 6.612937 6.612007 6.609680

27 6.612792 6.612007 6.610425

18 6.612975 6.612590 6.611485

30 6.6129361 6.612047 6.610817

17 6.613067 6,612520 6.611129

15 6,613078 6.612683 6.611564

11 6.613064 6.612794 6.611892

13 6.613031 6.612749 6.611916

14 6,613067 6.612813 6.612110

19 6.613071 6.612784 6.612139

8 6.613067 6.612915 6.612493

6 6.613069 6.612909 6.612663

5 6.613073 6.612957 6.612496

6 6.613079 6.612958 6.612568

4 6.613083 6,612985 6.612669

3 6.613069 6.612998 6.612786

0 6.613081 6.613004 6.612864

0 6.613081 6.613040 6.612833

0 6.613068 6.613035 6.612905

0 6.613079 6.613052 6.612929

Nonlinear Programming Problem 21

Table 4. (cont.)

ItNo Infeasible
Number

47 21

48 37

49 22

50 32

Best
Solution

6.602222

6.603067

6.611194

6.610987

Mean
Solution

6.529334

6.495034

6.528231

6.532200

Worst ItNo
Solution

6.311711 97

6.151949 98

6.246696 99

6.353410 100

Infeasible Best Mean Worst
Number Solution Solution Solution

0 6.613083 6.613043 6.612932

0 6.613084 6.613045 6.612927

0 6.613082 6.613054 6.612963

0 6.613081 6.613061 6.612971

Popsize = 50, optimal solution is 6.13086; ItNo-iteration number, infeasible number-
number of infeasible chromosome.

genera t ion , which impl ies t h a t t h e genet ic search can converge to t he o p t i m a l or near o p t i m a l

so lu t ion f rom b o t h sides of t he feasible and infeasible d o m a i n due to t h e i n t roduc t i on of new

eva lua t ion funct ion me thods .

4. C O N C L U S I O N

By means of embedding a penalty function method and a gradient direction search into the GA,
this paper developed a special hybrid genetic algorithm (HGA) with mutation along the weighted
gradient direction for a type of NLP. It is the first time that these new concepts of semifeasible
direction, feasible degree (FD1) of semifeasible direction, feasible degree (FD2) of illegal points
'belonging to' feasible domain, etc., have been proposed for formulating and measuring the illegal
point. Three new kinds of evaluation functions are also proposed in this paper. Convergency
analysis and some simulation results for some test problems shown that the HGA is effective for
the differentiable NLP. In comparison with the traditional genetic algorithm, the HGA has the
following characteristics.

(1) It uses a special mutation along the weighted gradient direction as the main operator, and
the arithmetic combinative crossover is only used in the later generation process, in which
the whole individuals are all in the feasible domain.

(2) Embedding the information of illegal chromosomes into the evaluation process to develop
three new kinds of evaluation function.

(3) I t can converge to t he o p t i m u m from b o t h sides of the feasible d o m a i n and t h e infeasible

doma in .

R E F E R E N C E S

1. M.S. Bazaraa and L.M. Shetty, Non-Linear tb'ogmmming: Theory and Algorithms, John Wiley & Sons, New
York, (1985).

2. Y. Li and Mitsuo Gen, Non-linear mixed integer programming problems using genetic algorithm and penalty
function, In Proceedings of 1996 IEEE Int. Conf. on SMC, pp. 2677-2682.

3. Y. Talmo, G. Mitsuo, T. Takeaki and Y. Li, A method for interval 0-1 number non-linear programming
problems using genetic algorithm, Computers ~ Industrial Engineering 29, 531-535, (1995).

4. J. Tang and D. Wang, A new genetic algorithm for non-linear programming problems, In the Proceedings of
the 36 ~a IEEE Confe,-e~ce on Decision and Contro~ pp. 4906-4907, (1997).

5. T.C. Lin et aL, Applying the genetic approach to simulated annealing in solving some NP-hard problems,
IEEE Trans. on SMC23, 1752-1766, (1993).

6. F. Glover et aL, Genetic algorithm and Tabu search: Hybrid for optimizations, Computers ~ Operations
Research 22, 111-134, (1995).

7. J.H. Holland, Adaptation in natural and artificial systems, The University of Michigan Press, (1975).
8. Z. Michalewiez, A survey of constraint handling techniques in evolutionary computation methods, In Evolu-

tionary Frog~mming IV, pp. 135-155, MIT Press, (1995).
9. J. Tang and D. Wang, An interactive approach based on GA for a type of quadratic programming problems

with fuzzy objective and resources, Computers ~ Operations Research 24 (5), 413--422, (1997).
10. G.P. McCormick, Nonlinear Programming: Theory, Algorithm8 and Applications, John Wiley & Son, New

York, (1983).

