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A b s t r a c t - - B a s e d  on the introduction of some new concepts of semifeamble direction, Feasible 
Degree (FD1) of semifeasible direction, feasible degree (FD2) of illegal points 'belonging to' feasible 
domain, etc., this paper proposed a new fuzzy method for formulating and evaluating illegal points 
and three new kinds of evaluation functions and developed a special Hybrid Genetic Algorithm 
(HGA) with penalty function and gradient direction search for nonlinear programming problems. 
It uses mutation along the weighted gradient direction as its main operator and uses arithmetic 
combinatorial crossover only in the later generation process. Simulation of some examples show that 
this method is effective. (~) 1998 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

No~linear Programming (NLP) is an important branch of Operations Research and has wide 
applications in the areas of military, economics, engineering optlm!~tion, and science manage- 
ment.  There  are several types of traditional methods for nonlinear programming [1], however, 
since there are many  local optimizations for NLP, most  of the solution methods may  solve it 
only on an approximate  basis. Recently, based on strict optimization theory and algorithm, 
many  researchers have proposed some new stochastic optimization methods, such as the genetic 
algorithm [2-4], simulated annealing [5], Tabu search [6], and various hybrid methods [5,6]. 
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The Genetic Algorithm (GA), which was first proposed by Holland [7], is one of the most 
important stochastic optimization methods. As an intelligent optimization method, GA has 
made great achievements in the solution to traveling salesman problems, transport problems, 0-1 
programming problems, and multiobjective optimization problems. However, it has made little 
contribution to nonlinear programming problems [2,4]. 

In fact, in the construction and application of GA to NLP, the coding and decoding processes 
are important and difficult. In addition, the handling with the system constraints, especially 
the measurement and evaluation of illegal chromosomes (points) are key techniques with GA. 
Currently, several methods have been developed to deal with system constraints and have been 
reviewed by Michalewicz in 1995 [8]. Among of which, a large penalty in the construction of the 
fitness function was often used to evaluate the infeasible solutions, but this is essentially narrow 
of the search space, by eliminating all illegal points from the evolutionary process and may lessen 
the ability to find better candidates for the global optimization. Li and Gen [2] developed a 
method for Nonlinear Mixed Integer Programming (NMIP) problems by means of GA and a type 
of penalty function. 

This paper focuses on the application of GA to a type of differentiable nonlinear programming 
problem. By means of introducing some new concepts of semifeasible direction, feasible de- 
gree (FD1) of semifeasible direction, feasible degree (FD2) of illegal points, a new fuzzy method 
for formulating and evaluating illegal points, and three new kinds of evaluation function are 
proposed in this paper. Based on the fuzzy method and new kinds of evaluation functions, we 
have developed a special Hybrid Genetic Algorithm (HGA) with penalty function and gradient 
direction search to solve nonlinear programming problems. 

The rest of this paper is organized as follows. Section 2 explains the basic idea and overall 
procedure of HGA. Finally, simulation results and analysis of some examples and the conclusion 
are given in Sections 3 and 4 .  

2.  H Y B R I D  G E N E T I C  A L G O R I T H M  W I T H  P E N A L T Y  
F U N C T I O N  A N D  G R A D I E N T  D I R E C T I O N  S E A R C H  

2.1. Canonical  Form of  N L P  

NLP problems with n variables and m constraints may be written as the following Canonical 
form NLP: 

max f ( x )  = f ( x l , x 2 , . . . , X n ) ,  

s.t. x e Q = {x • E ,  I g~(x) < 0, i = 1 , 2 , . . . , m } .  (1) 

In this paper, we assume that f ( x )  and gi(x) are differentiable in En. 

2.2. Basic Idea of  the Hybrid Genet ic  Algor i thm 

In the procedure of solution to NLP by means of a penalty function method, we first transmit 
NLP into a unconstrained optimization problem by means of a penalty function, then solve a 
series of unconstrained optimization problems with a certain penalty multiplier to obtain the 
optimal solution or near optimal solution to the original problem. As the penalty multiplier 
tends to zero or infinite, the iteration point also tends towards optimal. However, at the same 
time, the objective function of the unconstrained optimization problem might gradually become 
worse. This lead to computer difficulties in implementing the penalty function methods to solve 
NLP. 

On the other hand, when we apply traditional GA to solve NLP, a scheme of coding and 
decoding processes for optimizing variables is needed. Moreover, due to the complexity and 
differences of constraints in actual optimization problems, there is not a general coding method for 
all types of optimization problems. Meanwhile, the handling with system constraints, especially 
the formulation and evaluation of illegal chromosomes are critical techniques. 
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Based on the above analysis in this paper, we propose a special hybrid genetic algorithm with 
penalty function and gradient direction search to solve NLP. The basic idea may be described 
as follows. First, randomly produce an initial population with the size of popsize individuals. 
In the process of iteration, for an individual xi ~ Q, give it a less fitness function by means of 
embedding information of illegal chromosomes into the evaluation process, so that it may have less 
chance than others to be selected as parents to reproduce children in the later generations. Each 
individual is selected to reproduce children by mutation along the weighted gradient direction, 
according to the selection probability which depends on its fitness function (objective function). 
As the generation increases, the individuals with less fitness functions die out gradually, namely, 
the individuals xi E Q with less objective functions and individuals xi ~ Q die out gradually, and 
the individuals maintained in the population are the individuals with a high value of objective 
function. After a number of generations, the individuals' objective function values reach the 
optimal or near optimal from the two sides of feasible domain. 

2.3.  Weigh ted  Grad ien t  Direc t ion  

For an individual x, if x E Q, then the objective function may be improved along the gradient 
direction of objective function V f(x). 

For an individual x, if x ~ Q, it denotes that x is out of the feasible domain. Let 

x + = { i  I g , (=)  > o, = • E . } .  

For i E I +, if x moves along the negative gradient direction -Vgd(x),  it may satisfy gd(x) < O. 
The greater the weight is, the faster g~(x) < 0 may be achieved. 

Based on the above idea, we construct a weighted gradient direction [4,9], denoted by d(x), 
which is defined as follows: 

d(x) = woV f (x)  - ~ w,V g,(x), (2) 
/=1 

where wd is the weight of the gradient direction, generally, w0 = 1 and wi is defined as 

o, g~(z )_<o,  
wi = 6~, g, (x)  > o, (3) 

1 
~* = 1 - (g,(x))l(gm~(X) + ~)' (4) 

gmax(X)  ---- m s x  { g i ( x ) ,  i = 1, 2 , . . . ,  m}, (5) 

where 6 is a very small positive number. 
Formula (4) means that the weight of gradient direction increases as the increase of gi(x) when 

g~(z) > 0. 
Then _(k+l) generated from x~ k) by mutation along the weighted gradient direction d(x) can J.j 

be described as 
x(k+l)=x~k) 13(k)d( ~k)) + = , (6) 

where /~(k) is a step-length of the Erlang distribution random number with declining means, 
which is generated by the random number generator 

E 
= M~ ' (~) 

where M1 is a declining coefficient. 
From (2)-(7), it can be seen that for an individual x E Q, d(x) = V f(x) ,  it moves along the 

direction of ~7 f (x) ,  the objective function may be improved, so as to reach the near optimal; for 
some other individuals x ~ Q, the bigger the 9,(x), the farther apart these are from the feasible 
domain Q, they may require the high weight w, in order to reach or move into feasible domain. 
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2.4. Formula t ion  and  Evaluat ion for Illegal Points  

In the application of GA to optimization problems with constraints, it is very important to 
formulate and evaluate the illegal chromosomes. In this section, we introduce some concepts of 
semifeasible direction and feasible degree of illegal points, etc. 

DEFINITION 1. The dis tance d(x, Q) between point x and feasible domain Q is the m_a~mum 
violation of constraints at point x. 

According to the definition, d(x, Q) has the following formula: 

d(x, Q) = max{0, gm~(X)). (8) 

The distance reflects the information of the relationship between point x and feasible domain Q; 
if d(x, Q) = o, this indicates that x E Q; conversely, d(x, Q) > 0, and the greater the d(z, Q) is, 
the worse the performance of x 'belong to' Q is, i.e., x is further from the feasible domain Q. 

Let 

G (z) = g (x) 
IlVgjx)ll ' 

Gmax(x) = max{Gi(x), i = 1,2,. . .  ,m}, 

g = arg{i ] Gi(x) = Gmax(x), i = 1,2,. . .  ,m}. 

DEFINITION 2. A nonzero vector VgK(x) is called the domina t ed  semifeasible direct ion.  

DEFINITION 3. A nonzero vector z is detined as point  to feasible domain Q at point z ~ Q, h e 
it  satist~es 

z T ( - v g K ( x ) )  > 0. (9) 

DEFINITION 4. A nonzero vector z is defined as d e p a r t u r e  f rom feasible domain Q at point 
x ~ Q, i f  it satisi~es 

z T ( - V g K ( x ) )  < 0. (10) 

DEFINITION 5. A nonzero vector z is cai/ed the semifeasible d i rec t ion at point x ~ Q, i f  it  is 
a point to feasible domain. 

The relationship between weighted gradient direction, the dominated semifeasible direction 
and semifeasible direction is shown in Figure 1. 

.~,, V fOx) 

-vgxCz) 

0 
Figure 1. The illustration of ~ra i f~ ib le  direction and weighted gradient direction. 
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THEOREM 1. For V x ~ Q, z = - ~,~=1 wiV g~(x) is semifeasible direction. 

PROOF. If z satisfies (9), then z is the semifeasible direction; if not, then we may adjust the 
coefficient & to obtain a semifeasible direction. 

THEOREM 2. For V x ~ Q, the weighted gradient direction d(x) constructed by (2) is the semife~- 
sible direction. 

PROOF. If d(x) satisfies (9), then d(x) is the semifeasible direction; if not, then we may adjust 
the coefficients w0 or & as follow to obtain a semifeasible direction. 

(1) Let w0 = wo/2, and replace it in (2), test the subjection of (9); if it does not hold, repeat 
the process until it does. 

(2) Let & = &/2, and replace it in (4), test the subjection of (9); if it does not hold, repeat 
the process until it does. 

DEFINITION 6. Feasible Degree FD1 of a semifeasible direction at point z ~ Q is defined as 

FD1 = d(z) z ( - V  gK(X)). (11) 

Obviously, the feasible degree FD1 of the semifeasible direction at point x reflects only the 
deviation of the weighted gradient direction from the dominated semifeasible direction, not the 
degree of point far from feasible domain. 

In the follows, we formulate the degree of a point far from feasible domain in fuzzy methodology, 
by means of introducing the concept of feasible degree of an illegal point 'belonging to' feasible 
domain. 

Let 7~ denote the degree of subjection to the ith constraints at point x, which can be defined 
a s  

1, ifg~(x) ~_ O, 

7~ = 1 gi(z) 0 <: g~(x) <: d(z,Q), 
d(x,Q)'  

O, else. 

DEFINITION 7. Feasible degree FD2 of an iHega/point (chromosome) z 'belonging to' feasible 
domain Q is defined as 

m 

FD2 = Z -~" (13) 
i----1 

FD2 reflects the degree of point x 'belonging to' feasible domain. If FD2 = 1, it indicates 
that z belongs completely to the feasible domain, i.e., x E Q; otherwise, if FD2 = 0, it implies 
that x completely does not belong to the feasible domain. If 0 < FD2 < 1, it denotes that 
the membership degree of point z belonging to the feasible domain in the sense of fuzzy theory, 
although it does not belong to the feasible domain in the sense of crisp mathematics. 

Based on the above analysis, the following three methods may be suggested to evaluate the 
illegal point (chromosome). 

METHOD 1. Embedding the feasible degree of the semifeasible direction, i.e., 

f(x) 
eval(x) -- (1 + 1/FD1)P' P >- 1. (14) 

METHOD 2. Embedding the feasible degree of the illegal point 'belonging to' feasible domain, 
i.e., 

f(x) 
evai(z) = (1 + 1/FD2)P' P ~- I. (15) 

METHOD 3. Embedding the distance far from the feasible domain, i.e., 

l(x) 
eval(x) ---- (1 -I- gmax) p' P ~- 1. (16) 
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2.5. Overall  Scheme of  Hybr id  GA 

1. CHROMOSOME REPRESENTATION. In this problem, the chromosome is schemed as a real 
representation, i.e., x = (xl, x2, . . . ,  In). 

2. INITIAL POPULATION. In order to speed up the search process, select upper (u~) and lower 
bound (l~) for each gene xi, then the initial population is generated as follows. 

Procedure :  Init ialize 

begin 

for k ~- 1 to pop_size do 

for i ~-- 1 to n do 
x~ k) 4- random (li,ui) 

i * - - i + 1 ;  

end 

k * - k + l ;  

end  

end  

where random (a, b) is a random number with unity distribution of (a, b). 

3. CROSSOVER. Crossover is not the main operator, which may only be used in the later gen- 
eration procedures, when the whole individuals are all in the feasible domain and the cases that 
there is not any improvement of objective function for any individuals in continuous more than a 
definite number hum (in general, select num= 2) generations. In this case, the arithmetic com- 
binatorial crossover operator is suggested. It is noted that even though in the case of the feasible 
domain Q is not convex, the effective of the algorithm is not affected, because Pc is selected as 
very small, moreover, the operator need not guarantee the feasibility of the offspring. In fact, 
the feasible chromosome is mostly obtained by mutation operator. The offspring _k+l generated 
by the arithmetic combinatorial operator is described as follows: 

xk+l ---- OtXki .{_ (1 ^ ~_t~+l 
i - -  c~)J . j  , 

where x~ is selected as the strategy of Roulette Wheel, and x~ is selected randomly, a E U(0,1). 

4. MUTATION. Mutation is the main operator, which is also the characteristic of the hybrid GA. 
Mutation along the weighted gradient direction is performed as (6). 

5. EVALUATION OF CHROMOSOME. Evaluation of the chromosome is an important procedure 
of GA. In this paper, we suggest three new methods to evaluate illegal chromosomes. According 
to these methods, the information of illegal chromosomes is embedded into the evaluation function 
in order to measure the degree of illegal chromosomes far from feasible domain so that it could not 
be rejected as parents to reproduce children in the later generation process. Hence, the genetic 
search ensures the optimum from both feasible and infeasible domain. 

Fitness function F(x) is calculated as 

S I(=), <_ 0, F(x) (17) / eval(x), else, 

where eval(x) is referred as (14)-(16). 

6. STOP RULE. According to the degree of precision required, a maximum iteration number NG 
is determined to be the stop rule. 
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3. N U M E R I C A L  E X A M P L E  A N D  A N A L Y S I S  

To clarify the effectiveness of the hybrid GA with penalty function and gradient direction 
search, in this section we give some test examples using linear constraint and nonlinear constraint 
as well as nonconvex constraint. The comparison results obtained by way of Penalty Function 
Method (PFM), traditional GA, and the hybrid GA are also given in this section. 

3.1. The  Design of  the  Test  P r o b l e m  

To justify the performance of the proposed HGA, we select the following three test problems 
as example of comparison, where test P1  and P2  are from [1] and quadratic problems with 
linear and nonlinear constraints, respectively, while the P 3  modified from [1] is a problem with 
nonlinear objective and nonconvex constraints. 

TEST P1. (See [1, p. 413].) 

Max f(x)  = -2x21 + 2X12:2 -- 2X2 2 -I- 4xl + 6X2, 

s.t. xi -~-X2 < 2, 

Xl "}" 5X2 <= 5, 

x l , x 2  >_ O. 

TEST P2. (See [1, p. 419].) 

Max f(:~) -- --22:21 -1- 22:1X2 -- 22:22 4" 4.T1 "{- 6X2, 

s.t.  22:21 -- 2:2 <: 0, 

2:1 Jr" 52:2 < 5, 

2:i,x2 _> 0. 

TEST P3. 

Max 

s.t. 

f(x)  -- - (1  - xl) 2 + 10 (x2 - x~) 2 + x~ - 2xlx2 + exp( -x l  - x2), 

x~ + x~ ~ 16, 

x 2 -  x~ < 1, 
Xl Jr" 372 <= 20, 

x l , z 2  >_ O. 

3.2. I m p l e m e n t a t i o n  of  P F M  and Tradi t ional  G A  

Penalty function method [I] is one of commonly used traditional optimization methods for 
NLP. In implementation of the PFM, the original problem NLP is transmitted into the following 
unconstrained optimization problem by means of penalty function: 

max f (x )  -- ~ P'd. max{O, g./.(X)}, 
d----.1 

x ~ E n ,  

and the steepest descent algorithm is applied to solve the above unconstrained problem. While 
the uniform crossover and position based mutation, as well as the constant penalty are applied 
in the implementation of traditional GA. 
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Table 1. Comparison results of test problems by way of PFM, GA, and HGA. 

Test 
Problenm 

P1 

P2 

P3 

Algorithm 

PFM 

GA 

HGA 

PFM 

GA 

HGA 

PFM 

GA 

HGA 

Optimal 

Solution 

7.160 

7.160 

7.160 

6.613086 

6.613086 

6.613086 

1600039.0 

1600039.0 

1600039.0 

Best 
Solution 

6.995 

7.10 

7.16085* 

6.145 

6.387 

6.61305 

1519431.5 

1600039.0 

1600039.0 

Best 
Error(%) 

2.30 

0.84 

0.000 

3.04 

3.45 

0.001 

5.037 

0.0 

0.0 

Mean 
Error(%) 

8.25 

15.94 

0.15 

10.45 

14.48 

0.088 

11.35 

61.60 

0.0181 

Worst 

Error(%) 

10.3 

21.4 

0.261 

12.5 

19.68 

O. 153 

14.30 

93.33 

0.0748 

PFM--the results over 50 trials with initial point generated by random number 
generator. 
HGA--the results as N G  = 50, popsize = 50. 
*: Best solution is better than the Optimal solution only due to the degree of preci- 
sion. 
Table 2. Comparison results of the test problems by way of different evaluation 
functions for HGA. 

Test 

P1 

P2 

P3 

Method Best Best Mean Worst 

Solution error(%) error(%) error(%) (%) 

Method 0 

Method 1 

Method 2 

Method 8 

Method 0 

Method 1 

Method 2 

Method 8 

Method  0 

Me thod  1 

Me thod  2 

M e t h o d  8 

7.15~6 

7.16085 

7.15~9 

7.15~I 

6.61295 

6.61299 

6.61300 

6.61305 

1600039.0 

1600039.0 

1600039.0 

1600039.0 

0.71 

0.00 

0.028 

0.029 

0.002 

0.501 

0.000 

0.000 

0.0 

0.0 

0.0 

0.0 

40.04 

13.08 

23.56 

0.150 

28.00 

11.15 

4.00 

0.088 

61.60 

41.15 

47.07 

0.0181 

80.01 

50.00 

66.6 

0.261 

80.00 

50.01 

66.1 

0.153 

93.33 

74.99 

83.44 

0.0748 

Inf.per 
(%) 

6O-80 

05-25 

0-15 

O-5 

60-80 

0-15 

0-15 

0-5 

6O-8O 

50-80 

50--8O 

30-50 

Note: The results as N G  = 100, popsize = 50; Inf.per---percent of infeasible chro- 
mceomes in the last genertaion; Me thod  0 - -a  large constant penalty as evaluation 
function. 

3 .3 .  T h e  A n a l y s i s  o f  t h e  R e s u l t s  f o r  T e s t  P r o b l e m s  b y  H G A  

T h e  compar i son  resul t s  of  the  t e s t  p rob lems  by  way  of  t he  P e n a l t y  Func t ion  M e t h o d  ( P F M ) ,  

t r a d i t i o n a l  G A ,  and  t h e  p roposed  hybr id  genet ic  a lgo r i thm ( H G A )  are  shown in Tab le  1. T h e  

compar i son  resul t s  of  t h e  t es t  p rob lems  by  way  of  the  th ree  new eva lua t ion  funct ion  m e t h o d s  

and  c o n s t a n t  p e n a l t y  me thod ,  and  t h e  bes t  so lu t ion  as different  popu l a t i on  size a n d  m a x i m u m  

gene ra t ions  a re  shown in Tables  2 and  3, respect ively.  T h e  bes t ,  mean ,  and  t h e  wors t  solut ion,  

as well  t h e  n u m b e r  of  infeasible chromosomes  a t  each i t e ra t ion  for P 2  by  H G A  are  shown in 
Tab le  4. 

F r o m  Tab le  1, we can  see t h a t  H G A  is much more  effective t h a n  P F M  in view of  pe r fo rmances  of  

t h e  bes t  er ror ,  mean  error ,  and  wors t  error ,  especia l ly  when the re  a re  no d i s t ingu ished  differences 
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Table 3. The best solution as different population size and maximum generations. 

Test Popsize Best* Test 
Problem Solution Problem 

P1 

P2 

P3 

10 

20 

30 

40 

50 

60 

80 

100 

10 

20 

30 

40 

50 

60 

80 

100 

10 

20 

30 

40 

50 

60 

80 

100 

7.15395 

7.15759 

7.15820 

7.15666 

7.16085 

7.15732 

7.15798 

7.15789 

6.61299 

6.61292 

6.61289 

6.61306 

6.61308 

6.61308 

6.61307 

6.61308 

1600039.0 

1600039.0 

1600039.0 

1600039.0 

1600039.0 

1600039.0 

1600039.0 

1600039.0 

P1 

P2 

P3 

NG Best** 
Solution 

15 3.06378 

25 3.06355 

40 3.06355 

50 7.16085 

75 7.15715 

100 7.15868 

125 7.15877 

150 7.15887 

15 3.06387 

25 3.06387 

40 6.61287 

50 6.61295 

75 6.61296 

100 6.613080 

125 6.613080 

150 6.613083 

15 1600039.0 

25 1600039.0 

40 1600039.0 

50 1600039.0 

75 1600039.0 

100 1600039.0 

125 1600039.0 

150 1600039.0 

as popsize = 50. *: the best solution as NG = 100; **: the best solution 

19 

between the best  error, mean error, and worst error for HGA, while there exist great differences 

between them by way of traditional heuristic method,  i.e., PFM, which indicate tha t  P F M  is 
great ly affected by the selection of initial points. As well, it is shown from Table 1 tha t  H G A  is 

more effective than  traditional GA. 
Table 2 is the comparison results of the test  problems between the new evaluation function 

methods  and tradit ional  constant penalty method,  from which we can see tha t  the new evaluation 
function methods are all superior than  constant penalty method from the point of both  the best 

error, mean error and the worst error. 
I t  can be seen from Table 3 tha t  the best solution is slightly affected by the population size 

popsize, and is greatly affected by the maximum generation N G  untill it reaches a suitable level, 
such as NG = 50. 

I t  can be seen from Table 4 tha t  the best error becomes smaller and smaller as the increase of 
generations and there is almost no difference in the best error from the generation of 80 th, which 
indicates the convergency of HGA. In the meantime, the difference between the best  error and 
the worst error approaches zero as the increase of generation, which implies tha t  solutions in the  
last generation are all in the near domain of the optimal  solution, i.e., they are all accepted as a 
sat isfactory solution. Additional, it can reflects the percentage of infeasible chromosomes in the 
population at  each iteration, the number of infeasible chromosomes decreases as the increases of 
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ItNo 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

3O 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

45 

J. TANG et al. 

Table 4. The  best, mean, the worst solution and number  of infeasible solutions for 
P 2  at each iteration by HGA. 

Infeasible Best 

Number  Solution 

48 

46 

41 

40 

27 

32 

2 

36 

50 

26 

28 

10 

9 

36 

50 

14 

42 

4O 

10 

50 

49 

12 

49 

47 

4 

43 

20 

33 

35 

27 

25 

34 

20 

36 

29 

23 

32 

24 

34 

34 

27 

29 

28 

23 

26 

37 

UeSLrl 

Solution 

3.063556 -1,963721 

3.923996 -8.951345 

0.00000 -5.939373 

3.940441 -2.193960 

3.517756 -1.104784 

3.882819 -0.024352 

3.946857 0.202615 

0.000000 -0.263667 

0.470409; -0.974160 

3.958498 0.669238 

0.565742 0.097536 

0.822507 -0.077686 

Worst 

Solution 

- 14.507540 

- 18.406640 

-17.596200 

-11.424870 

-6.317472 

-2.313398 

0.000000 

-0.625713 

-2.644845 

-3.865976 

-0.242842 

-0.873723 

3.967764 

1.376387 

1.089149 

6.334483 

3.797592 

2.286361 

4.378037 

3.814319 

3.691129 

5.486464 

5.952384 

4.652226 

5.761828 

6.093210 

6.262978 

6.580002 

6.402060 

6.321744 

6.444650 

6.330513 

6.557756 

6.589750 

6.415943 

6.483630 

6.553962 

6.553856 

6.571466 = 

6.578858 

6.566411 

6.599164 

6.561859 

6.603125 

6.602304 

6.557187 

1.639398 0 . ~  

0.558994 0.000000 

0.303759 -0.428773 

1.344784 0.000000 

1,444057 0.000000 

0.717346 0.000000 

2.420234 0,000000 

2.213592 0.701667 

1.650333 0.571107 

3.196831 1.742391 

3.171359 1.514548 

3.268739 1.609322 

3.606856 2.181158 

4.325548 2.618724 

4.172750 2.970258 

5.281199 2.736286 

4.791120 2.995108 

4.869431 3.473816 

5.520216 3.933339 

5.036617 3.791852 

5.895343 4.400737 

5.734688 4.151553 

5.654635 4.436711 

5.857147 4.916823 

6.013317 5.000106 

6.173467 5.151730 

6.274135 5.542740 

6.211339 5.312654 

6.288830 5.718469 

6.340402 5.750092 

6.382557 5.717593 

6.465948 6.131230 

6.442135 6.034008 

6.366481 5.971469 

ItNo 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

9O 

91 

92 

93 

94 

95 

96 

Infeasible Best Mean Worst 

Number  Solution Solution Solution 

32 6.602537 6.540881 6.351209 

24 6.603416 6.560880 6.407640 

42 6.601602 6.535637 6.439693 

11 6.609656 6.585100 6.475861 

31 6.612067 6.583463 6.499317 

33 6.610638 6.576521 6.501623 

16 6.610380 6.599028 6.577125 

42 6.6106381 6.579856 6.518928 

9 6.611909 6.600630 6.545513 

32 6.612026 6.597582 6,559607 

30 6.610950 6.597780 6.560095 

34 6.611289 6.597525 6.565237 

21 6.612717 6.604111 6.583730 

20 6.612951 6,606650 6.578149 

36 6.611935 6.603707 6.589171 

29 6.612157 6.607095 6.595370i 

27 6.612237 6.608098 6.598180 

22 6.612535 6.607291 6.597160 

20 6.612622 6.610566 6.601147 

33 6.612540 6.609030 6.601996 

32 6.612876 6.609776 6.602560 

13 6.612928 6.611180 6.605491 

36 6.612814 6.610794 6.605368 

10 6.612985 6.611877 6.608129 

17 6.612953 6.611842 6.668649 

37 6.612969 6.611675 6.608157 

29 6.612937 6.612007 6.609680 

27 6.612792 6.612007 6.610425 

18 6.612975 6.612590 6.611485 

30 6.6129361 6.612047 6.610817 

17 6.613067 6,612520 6.611129 

15 6,613078 6.612683 6.611564 

11 6.613064 6.612794 6.611892 

13 6.613031 6.612749 6.611916 

14 6,613067 6.612813 6.612110 

19 6.613071 6.612784 6.612139 

8 6.613067 6.612915 6.612493 

6 6.613069 6.612909 6.612663 

5 6.613073 6.612957 6.612496 

6 6.613079 6.612958 6.612568 

4 6.613083 6,612985 6.612669 

3 6.613069 6.612998 6.612786 

0 6.613081 6.613004 6.612864 

0 6.613081 6.613040 6.612833 

0 6.613068 6.613035 6.612905 

0 6.613079 6.613052 6.612929 
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Table 4. (cont.) 

ItNo Infeasible 
Number 

47 21 

48 37 

49 22 

50 32 

Best 
Solution 

6.602222 

6.603067 

6.611194 

6.610987 

Mean 
Solution 

6.529334 

6.495034 

6.528231 

6.532200 

Worst ItNo 
Solution 

6.311711 97 

6.151949 98 

6.246696 99 

6.353410 100 

Infeasible Best Mean Worst 
Number Solution Solution Solution 

0 6.613083 6.613043 6.612932 

0 6.613084 6.613045 6.612927 

0 6.613082 6.613054 6.612963 

0 6.613081 6.613061 6.612971 

Popsize = 50, optimal solution is 6.13086; ItNo-iteration number, infeasible number- 
number of infeasible chromosome. 

genera t ion ,  which  impl ies  t h a t  t h e  genet ic  search can converge to  t he  o p t i m a l  or  near  o p t i m a l  

so lu t ion  f rom b o t h  sides of  t he  feasible and  infeasible d o m a i n  due  to  t h e  i n t roduc t i on  of  new 

eva lua t ion  funct ion  me thods .  

4. C O N C L U S I O N  

By means of embedding a penalty function method and a gradient direction search into the GA, 
this paper developed a special hybrid genetic algorithm (HGA) with mutation along the weighted 
gradient direction for a type of NLP. It is the first time that these new concepts of semifeasible 
direction, feasible degree (FD1) of semifeasible direction, feasible degree (FD2) of illegal points 
'belonging to' feasible domain, etc., have been proposed for formulating and measuring the illegal 
point. Three new kinds of evaluation functions are also proposed in this paper. Convergency 
analysis and some simulation results for some test problems shown that the HGA is effective for 
the differentiable NLP. In comparison with the traditional genetic algorithm, the HGA has the 
following characteristics. 

(1) It uses a special mutation along the weighted gradient direction as the main operator, and 
the arithmetic combinative crossover is only used in the later generation process, in which 
the whole individuals are all in the feasible domain. 

(2) Embedding the information of illegal chromosomes into the evaluation process to develop 
three new kinds of evaluation function. 

(3) I t  can  converge to  t he  o p t i m u m  from b o t h  sides of  the  feasible d o m a i n  and  t h e  infeasible  

doma in .  
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