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Paris, F-75870, France
2Institut National de la Sante et de la Recherche Medicale, U855, Lyon, F-69372, France
3Universite de Lyon, Lyon, F-69008, France
4Universite Lyon I, Villeurbanne, F-69622, France
5Centre National de la Recherche Scientifique, U7059, Université Paris 7, Paris, F-75251, France
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SUMMARY

Unlike the adjustable gastric banding procedure
(AGB), Roux-en-Y gastric bypass surgery (RYGBP)
in humans has an intriguing effect: a rapid and sub-
stantial control of type 2 diabetes mellitus (T2DM).
We performed gastric lap-band (GLB) and entero-
gastro anastomosis (EGA) procedures in C57Bl6
mice that were fed a high-fat diet. The EGA proce-
dure specifically reduced food intake and increased
insulin sensitivity as measured by endogenous glu-
cose production. Intestinal gluconeogenesis in-
creased after the EGA procedure, but not after gas-
tric banding. All EGA effects were abolished in
GLUT-2 knockout mice and in mice with portal vein
denervation. We thus provide mechanistic evidence
that the beneficial effects of the EGA procedure on
food intake and glucose homeostasis involve intesti-
nal gluconeogenesis and its detection via a GLUT-2
and hepatoportal sensor pathway.

INTRODUCTION

The exponential advance of the obesity epidemic has led to a re-

markable increase in surgical procedures for obesity (Stein-

brook, 2004). Two techniques are commonly used in treating

the morbidly obese. Laparoscopic adjustable gastric banding

(AGB) is an increasingly popular, purely restrictive bariatric pro-

cedure used extensively worldwide. This approach involves the

placement of a prosthetic band around the upper stomach to

partition it into a small, proximal pouch and a large, distal rem-
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nant connected by a narrow constriction (Bo and Modalsli,

1983). Roux-en-Y gastric bypass (RYGBP) involves excising

approximately two-thirds of the stomach, and the small bowel

is divided 200 cm from the ileocaecal junction. The proximal

part of the small bowel is anastomosed to the stomach, and

the distal end is anastomosed to the ileum 100 cm from ileocae-

cal junction.

Reduction of the fat mass induced by bariatric surgery has

been generally accepted as the best explanation for the control

and, indeed, the reversal of the diabetes mellitus (Buchwald

et al., 2004; Sjostrom et al., 2004). However, RYGBP has an in-

triguing effect not observed following the AGB procedure: i.e.,

a rapid and substantial control of type 2 diabetes mellitus, often

within days (Pories, 2004). The dramatic speed at which type 2

diabetes mellitus resolves after RYGBP, but not after AGB, has

led to the suggestion that many of the benefits concerning insulin

resistance may be independent of weight loss (Hickey et al.,

1998; Pories et al., 1995; Rubino and Marescaux, 2004; Scopi-

naro et al., 1998) and, indeed, are direct effects of the RYGBP

surgical procedure itself. How the RYGBP procedure can modify

insulin resistance and glucose tolerance so quickly remains

unclear. Recent reports suggest that changes in gut secretion

might, in part, explain the effects of RYGBP. However, caution

is required concerning this hypothesis, based on analysis of

the plasma levels of ghrelin and glucagon-like peptide-1 (GLP-

1), as indicated recently. Thus, in contrast to earlier reports, it

has been shown that active ghrelin levels were unaffected by

RYGBP procedure in obese patients and do not correlate with

daily caloric intake patterns after surgery (Korner et al., 2005).

Results in human studies about a possible beneficial effect of

weight loss on GLP-1 release are contradictory. Whereas GLP-

1 levels are decreased in overweight/obese subjects receiving

a very low-caloric diet (Adam et al., 2005), GLP-1 secretion has
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Figure 1. Effects of Bariatric Surgery in Mice
(A) Evolution of daily food intake by C57Bl6 high-fat diet mice before surgery (n = 15) and after bariatric surgery in pair-fed sham-operated (n = 15), gastric

lap-band (n = 15), and EGA mice (n = 15). Gastric lap-band mice died 11 days after surgery due to food accumulation above the lap-band and considerable

esophagus dilatation.

(B) Evolution of body weight in pair-fed sham-operated, gastric lap-band, and EGA mice (n = 15 per group).

(C) Body composition assessed by a biphotonic absorptiometry method in standard diet, high-fat diet, pair-fed sham-operated, gastric lap-band, and EGA mice

(n = 10 per group). Loss of fat mass was similar in pair-fed sham-operated, lap-band, and EGA groups 10 days postsurgery. *p < 0.05 for the difference between

high-fat diet and standard diet mice. NS: Nonsignificant when compared body weight or fat mass or lean mass in pair-fed sham-operated, lap-band, and EGA

groups. Data are expressed as means ± SEM.
been reported to be increased (le Roux et al., 2007) or decreased

after a RYGBP procedure (Reinehr et al., 2007).

It has become clear that the intestine is more than a digestive

tract. The small intestine can produce glucose and release it

into the portal blood in a process called intestinal gluconeogene-

sis (Mithieux, 2005). The potential importance of this previously

unknown intestinal function has been pointed out by numerous

recent studies. Indeed, key enzymes of gluconeogenesis—glu-

cose-6-phosphatase (Glc6Pase) and phosphoenolpyruvate car-

boxykinase (PEPCK)—and their mRNAs are present in the small

intestine (SI) in both rat and human (Mithieux, 2005; Rajas et al.,

1999; Yanez et al., 2003). In addition, these genes are regulated

by nutrition in several species (Azzout-Marniche et al., 2007;

Cui et al., 2004; Kirchner et al., 2005). Intestinal gluconeogenesis

takes place notably when Glc6Pase and PEPCK genes are in-

duced, such as during fasting and high-protein feedings or

when diabetes occurs (Croset et al., 2001; Mithieux et al.,

2004a and 2005). Moreover, the SI might be an important contrib-

utor to glucose production when the liver is deficient, as in mice

with invalidation of hepatic PEPCK (She et al., 2003) and in hu-
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mans during the anhepatic phase of liver transplantation (Battez-

zati et al., 2004). Lastly, portal sensing of intestinal gluconeogen-

esis induces hypophagia (Mithieux et al., 2005), and infusion of

glucose into the portal vein may modulate the whole-body glu-

cose disposal (Burcelin et al., 2000). This has led us to consider

the attractive hypothesis that the RYGBP procedure may cause

increased intestinal gluconeogenesis, which, in turn, may de-

crease food intake and restore glucose homeostasis.

To test this possibility, we performed gastric lap-band (GLB)

and entero-gastro anastomosis (EGA) procedures in C57Bl6

mice on a high-fat diet and compared the consequences of these

two most widely used bariatric surgical procedures.

RESULTS

Entero-Gastro Anastomosis and Inhibition
of Food Intake
In order to better understand the effects of bariatric surgery, we

performed GLB and EGA procedures in 6-month-old C57Bl6

male mice on a high-fat diet (Figures 1 and 2 and Supplemental
Inc.



Cell Metabolism

Intestinal Gluconeogenesis and Gastric Bypass
Figure 2. Metabolic Effects of Bariatric Surgery in Mice

Evolution of glucose (A), insulin (B), and glucagon plasma levels (C) during an OGTT (3g/kg) in standard diet, high-fat diet, pair-fed sham-operated, gastric lap-

band, and EGA mice (n = 10 per group). EGA mice are characterized by higher levels of insulin during the OGTT when compared to the other groups, whereas

glucagon levels decreased similarly in all groups.

(D) Euglycaemic hyperinsulinaemic clamps were performed to measure whole-body insulin sensitivity as assessed by the glucose infusion rate (GIR), endoge-

nous glucose production (EGP), and rate of disappearance of glucose (Rd) (n = 6 per group). GIR and Rd were lower and EGP higher in high-fat diet than standard

diet mice. Rd and GIR were similar in pair-fed sham-operated, gastric lap-band, and EGA groups and were lower than in standard diet mice, indicating the per-

sistence of peripheral insulin resistance after bariatric surgery. In contrast, EGP was similar in pair-fed sham-operated and gastric lap-band mice and was sig-

nificantly lower only in EGA mice, suggesting an increase in hepatic insulin sensitivity in this group. *p < 0.05 for high-fat diet and standard diet mice. $p < 0.05 for

the difference between high-fat diet mice and pair-fed sham-operated, gastric lap-band, or EGA mice . xp < 0.05 for EGA and pair-fed sham-operated mice. #p <

0.05 for EGA and gastric lap-band mice. Data are expressed as means ± SEM.
Data available online). After surgery, the high-fat diet was main-

tained in sham-operated, GLB, and EGA mice. In sham-operated

mice, daily food intake recovered, 3 days after surgery, to the

level observed before surgery (3.5 g/day) (Figure 1A). The evolu-

tion of daily food intake after surgery differed between GLB and

EGA mice (Figure 1A). Food intake decreased sharply and simi-

larly in GLB and EGA mice (0.7 g/day) until 6 days after surgery.

Thereafter, food intake by GLB mice increased. Some GLB mice

died on day 11 due to food accumulation above the lap-band

and considerable esophagus dilatation. In contrast, the de-

creased food intake by EGA mice observed immediately after

surgery persisted at 0.7 g/day for almost 5 months (Figure 1A

and data not shown). To reduce the death rate in the GLB group,

sham-operated, EGA, and GLB mice were pair-fed (0.7 g/day, an

amount equivalent to the daily food intake of EGA mice) through-

out the follow-up. During the follow-up after surgery and on this

diet, pair-fed sham-operated, EGA, and GLB groups similarly

lost body weight (Figure 1B) and fat mass (Figure 1C).
Cell M
EGA Increases Insulin Sensitivity
Fasted and fed, high-fat diet (HFD) mice showed higher levels of

glucose, insulin, triglycerides, free fatty acids, TNF-a, resistin,

and leptin than standard diet mice (Table S1A). By 10 days after

surgery, pair-fed sham-operated, GLB, and EGA mice showed

similar levels of glycerol, free fatty acids, triglycerides, and b-hy-

droxy butyric acid, suggesting a similar induction of lipolysis and

ketogenesis by food restriction (Table S1B). Except for resistin

levels, which were decreased in EGA mice, fasting glucose, insu-

lin, glucagon, total adiponectin, TNF-a, and leptin levels were in

the same range in all groups after surgery (Table S1B).

The area under the curve (AUC) of glucose and insulin plasma

levels during an oral glucose tolerance test were significantly

higher in high-fat diet mice than standard diet mice (Figures

2A, 2B, and S3). By 10 days after surgery, AUC of glucose was

significantly lower in EGA mice than in pair-fed sham-operated

and GLB groups and was as low as in standard diet mice (Figures

2A and S3). The improvement of glucose tolerance in EGA mice
etabolism 8, 201–211, September 3, 2008 ª2008 Elsevier Inc. 203
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Figure 3. Effects of Exendin (9–39) Amide on the Metabolic Effects of Bariatric Surgery

Evolution of daily food intake (A) and body weight (B) before and after the EGA procedure in saline- and exendin (9–39) amide-infused high-fat diet C57Bl6 mice.

(C) Evolution of glucose during an OGTT (3g/kg) in saline- and exendin (9–39) amide-infused high-fat diet C57Bl6 mice after an EGA procedure.

(D) Insulin plasma levels at T40 min of OGTT in saline- and exendin (9–39) amide-infused high-fat diet C57Bl6 mice.

(E) Evolution of glucose levels during an intraperitoneal insulin tolerance test (0.75 UI/kg) in high-fat diet C57Bl6 mice before surgery (HFD) and in saline- and

exendin (9–39) amide-infused high-fat diet C57Bl6 mice 10 days after an EGA procedure. For all figures, n = 5 mice per group. **p < 0.01 for saline- and exendin

(9–39) amide-infused mice. xp < 0.01 for high-fat diet C57Bl6 mice and saline-infused mice. #p < 0.01 for high-fat diet C57Bl6 mice and exendin (9–39) amide-

infused mice. Data are expressed as means ± SEM.
resulted from a substantial increase in insulin secretion (Figures

2A and 2B). Glucagon levels were similarly reduced during oral

glucose tolerance tests (OGTT) in all groups (Figure 2C).

Insulin sensitivity of peripheral glucose uptake and endoge-

nous glucose production (EGP) was assessed by the euglycae-

mic hyperinsulinaemic clamp method. As expected, in HFD

mice, the glucose infusion rate (GIR) and rate of disappearance

(Rd) were lower and endogenous glucose production (EGP)

was higher than in standard diet mice (Figure 2D). By 10 days af-

ter surgery, the rate of disappearance of glucose (Rd) was not

improved in pair-fed sham-operated, GLB, and EGA mice, sug-

gesting that food restriction by itself is unable to improve periph-

eral insulin sensitivity (Figure 2D). In contrast, EGA mice showed

a higher suppression of EGP by insulin than pair-fed sham-oper-

ated and GLB mice (Figure 2D). Indeed, the GIR of EGA mice in-

creased and reached the level observed in standard diet mice

(Figure 2D), and EGP was lower than that in GLB and pair-fed

sham mice. In summary, these findings indicate that EGA has

a specific effect on insulin sensitivity of EGP, contrasting with un-

changed insulin resistance in peripheral tissues. The reduction of

EGP in EGA mice correlated with the reduction in hepatic glu-

cose-6 phosphatase activity, suggesting a decrease in hepatic

gluconeogenesis (Figure S4). Lipotoxicity is a key mechanism

in insulin resistance. Surprisingly, the hepatic triglyceride con-

tent was similar in pair-fed sham-operated, GLB, and EGA
204 Cell Metabolism 8, 201–211, September 3, 2008 ª2008 Elsevier
mice 10 days after surgery (Table S1B). In addition, triglycerides,

free fatty acid levels (Table S1B), and body composition

(Figure 1C) were also similar in these groups. Therefore, the

specific effect of EGA on hepatic insulin sensitivity is probably

not related to changes in the lipotoxic network.

Effect of GLP-1 Antagonist in EGA Mice
The increase of active GLP-1 levels has been proposed to be

a possible factor for the reduction of food intake and the meta-

bolic improvement observed after the RYGBP procedure. Rela-

tive to standard diet mice, the high-fat diet significantly reduced

GLP-1 levels both in the fasted state and at 40 min after initiation

of an OGTT (Figure S5). By 10 days after surgery, fasting active

GLP-1 levels were similar in pair-fed sham-operated, GLB, and

EGA mice and were increased at T40 min of the OGTT only in

EGA mice (Figure S5).

Exendin (9–39) amide, a GLP-1 antagonist, is known to block

the whole-body GLP-1 action. To specify the physiological role

of GLP-1 in the metabolic adaptation after the gastric bypass

procedure, the intraperitoneal cavity of EGA mice was continu-

ously infused for 10 days with exendin (9–39) amide or NaCl

(0.9%) from an osmotic minipump. Exendin (9–39) amide or sa-

line infusion was started during the EGA procedure. Exendin

(9–39) amide had a small effect, relative to NaCl, on food intake

inhibition associated with the EGA procedure (Figure 3A). Body
Inc.
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Figure 4. Changes in Intestinal Glc6Pase and PEPCK Enzymes following Bariatric Surgery

Intestinal Glc6Pase activity was assayed in segments n�1 (duodenum), n�3 (distal jejunum), and n�4 (distal ileum) in high-fat diet, pair-fed sham-operated, gastric

lap-band, and EGA groups (n = 6 mice per group) (A and B). In high-fat diet, pair-fed sham-operated and gastric lap-band groups, Glc6Pase activity was high in

segment 1 and progressively decreased from the duodenum to the distal ileum. In contrast, in EGA mice, Glc6Pase activity was strongly expressed in all intestinal

segments studied. Glc6Pase and PEPCK protein were analyzed by Western blotting in the ileal segment in the four groups of mice (C). *p < 0.05 for the difference

between EGA and high-fat diet or pair-fed sham-operated or gastric lap-band groups. Data are expressed as means ± SEM.
weight loss after surgery was similar in EGA mice receiving saline

or exendin (9–39) amide intraperitoneal infusion (Figure 3B). Dur-

ing the OGTT, exendin (9–39) amide-EGA mice failed to increase

their insulin secretion, and the resulting glucose curve was signif-

icantly higher than that observed in NaCl-EGA mice (Figures 3C

and 3D). However, insulin sensitivity, assessed by an intraperito-

neal insulin injection, was equivalent in NaCl-EGA and exendin

(9–39) amide-EGA mice (Figure 3E). These data indicate that

GLP-1 may account for the enhancement of insulin secretion

during a glucose challenge but is not essential for the regulation

of food intake or the regulation of insulin sensitivity after EGA

procedure.

EGA May Involve Enhanced Intestinal Gluconeogenesis
Glc6Pase and PEPCK, two major enzymes of liver gluconeogen-

esis, are present in the small intestine, exhibiting a decreasing

gradient of expression from the duodenum to the ileum (Mithieux

et al., 2004b). Glc6Pase and PEPCK are key regulatory enzymes

in the triggering of glucose release by the small intestine, which

takes place when both enzymes are induced (Mithieux et al.,

2004a, 2004b). So we first focused our attention on the expres-

sion of the Glc6Pase and PEPCK genes. Glc6Pase activity was

similar in segment 1 of all groups of mice, but it was markedly

higher in more distal segments (3 and 4) of the bowel of EGA

mice, compared to the same segments of pair-fed GLB, sham-

operated, or HFD groups (Figures 4A and 4B). Western blot stud-
Cell M
ies performed for both PEPCK and Glc6Pase enzymes strongly

suggested that increased expression of both proteins took place

in EGA mice and not in the other groups (Figure 4C).

We then tested whether increased expression of gluconeo-

genic enzymes translated into intestinal glucose release in EGA

mice. Because the intestine consumes glucose at a high rate,

we employed arterio-venous glucose balance determination

coupled with 3[3H]-glucose tracer dilution, which is required to

separate the actual uptake and release of glucose. In pair-fed

sham-operated mice, there was no difference in arterial and por-

tal venous 3[3H]-glucose-specific activity (SA) (Table 1). This in-

dicated that no newly synthesized glucose had been released by

the gut. In keeping with the absence of glucose release, the ve-

nous plasma glucose concentration was lower (p < 0.05) than the

arterial plasma concentration (Table 1). This decrease reflected

the intestinal glucose removal. As a consequence, the fractional

extraction (FX) calculated from these data (i.e., the fraction of

3[3H]-glucose removed by the intestine) allowed us to calculate

(from arterial plasma glucose and portal blood flow) an intestinal

glucose uptake (IGU) comparable to the intestinal net glucose

balance (IGB) (Table 1). In keeping with this, the intestine glucose

release (IGR) calculated from these IGU and IGB was not differ-

ent than zero (Table 1). The results markedly differed in pair-fed

EGA mice. The portal 3[3H]-glucose SA was lower than the arte-

rial 3[3H]-glucose SA (p < 0.05) (Table 1). This revealed that newly

synthesized glucose had been released in the portal blood.
etabolism 8, 201–211, September 3, 2008 ª2008 Elsevier Inc. 205
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Table 1. Plasma Glucidic Parameters and Intestinal Glucose Fluxes in Sham-Control Mice and EGA Mice

3[3H] Glucose SA (dpm/mml) Plasma Glucose (mmol/l) FX IGU IGB IGR EGP

Mice group Artery Vein Artery Vein

Pair-fed sham 244787 ± 35274 246667 ± 33761 9.6 ± 1.2 9.0 ± 1.1a 0.04 ± 0.03 37.3 ± 22.1 49.2 ± 14.0 �11.9 ± 18.4 98.0 ± 11.0

EGA 360363 ± 51187 345915 ± 50986a 8.7 ± 0.5 8.6 ± 0.4 0.05 ± 0.03 45.8 ± 25.3 13.4 ± 13.7 32.4 ± 16.8b 94.5 ± 8.9

(FX) fractional extraction; (IGU) intestinal glucose uptake; (IGB) intestinal net glucose balance; (IGR) intestinal glucose release; (EGP) endogenous glu-

cose production. IGU, IGB, IGR, and EGP were expressed as mmole of glucose/min/kg. The results are expressed as mean ± SEM (n = 8 per group).
a Value in vein different than that in artery, p < 0.05 (Student’s t test for paired data).
b Value in EGA different than that in pair-fed sham, p < 0.05 (Mann Whitney’s test).
Moreover, this glucose release counterbalanced the glucose up-

take, because there was no decrease in plasma glucose concen-

tration in the portal blood compared to the arterial blood (Table

1). In keeping with this rationale, the calculated IGR (32.4 ±

16.8 mol/kg/min) was comparable to the calculated IGU (Table

1). It must be noted that total EGP was not higher in EGA mice

than in sham-operated mice, despite the contribution of an intes-

tinal component to EGP (Table 1). This was in agreement with the

previously reported suppression of hepatic glucose production

by portal glucose appearance (Mithieux et al., 2005; Sindelar

et al., 1997). We next questioned, using two approaches,

whether the portal sensing of the EGA-induced intestinal glucose

release might be a crucial link in the EGA effects on food intake

and insulin sensitivity.

Hepato-portal glucose sensing requires the presence of a spe-

cific glucose transporter (GLUT-2), and the effects of portal glu-

cose infusion are impaired in GLUT-2 knockout mice (Burcelin

et al., 2000). To analyze the contribution of GLUT-2 in EGA ef-

fects, we performed an EGA in GLUT-2 knockout mice after 4

months on a high-fat diet. To this aim, we used GLUT-2 knockout

mice, rescued with a glucose transporter expressed in the b cells

under the control of the rat insulin promoter, which normalizes

glucose-stimulated insulin secretion (Thorens and Larsen,

2004). These mice are not diabetic but exhibit impaired

hepato-portal glucose sensing (Burcelin et al., 2000). Using

C57Bl6 high-fat diet mice as the reference, EGA procedure failed

to strongly inhibit the food intake in GLUT-2 KO mice, as ob-

served in C57Bl6 high-fat diet mice (Figure 5A). As a conse-

quence, the body weight of GLUT-2 knockout mice was moder-

ately affected throughout the follow-up after surgery (Figure 5B).

No significant change in glucose tolerance or in insulin sensitivity

was observed after EGA procedure (Figures 5C and 5D). These

findings strongly suggested that GLUT-2 and hepato-portal glu-

cose sensing are essential for the regulation of food intake and

the metabolic adaptation after EGA procedure in mice.

It was previously demonstrated that the decreased food intake

initiated by portal glucose appearance was dependent on the in-

tegrity of the autonomic nervous system around the portal vein

walls (Mithieux et al., 2005). C57Bl6 high-fat diet mice received

a local application of capsaicin (or saline as a control) around

the portal vein, as previously described (Mithieux et al., 2005),

at the time when the EGA procedure was performed. Capsaicin

is a neurotoxic agent inactivating selectively the afferent fibers of

the autonomic nervous system (Holzer, 1991). Within a few days,

EGA-capsaicin mice recovered a food intake comparable to

what was observed before the surgery (Figure 6A) and ceased

loosing weight (Figure 6B). Moreover, there was a marked atten-
206 Cell Metabolism 8, 201–211, September 3, 2008 ª2008 Elsevier
uation of glucose tolerance and insulin sensitivity in capsaicin-

treated EGA mice compared to EGA-saline mice (Figures 6C

and 6D). This suggested that the integrity of portal nervous affer-

ents was required for the EGA effects on food intake and glucose

homeostasis. Taken together, our data demonstrated that the

specific EGA effect evidenced herein is dependent on a hep-

ato-portal glucose sensing of intestinal gluconeogenesis.

DISCUSSION

To elucidate the rapid metabolic improvement observed after

RYGBP in humans, we used a model of bariatric surgery in

mice. The RYGBP procedure performed in humans was impos-

sible in mice, so we excluded the duodenum and the proximal je-

junum from the alimentary tract by EGA, which also translated in

a direct access of food to the distal jejunum. Although the stom-

ach of the mice was not excluded as in RYGBP in humans, the

effects of EGA on food intake, glucose homeostasis, and GLP-

1 secretion were similar to those observed in humans. We also

wanted to compare the effects of EGA to the changes following

a GLB procedure. This comparison was important to provide

a better understanding of the specificities of the two procedures,

independently of body weight loss in pair-fed animals. We dem-

onstrate here that, as observed in humans, only a surgical proce-

dure based on the exclusion of the duodenum and the proximal

jejunum (and consequently a direct access of nutrients to the dis-

tal jejunum) could induce a strong inhibition of food intake and

quickly improve glucose homeostasis. These effects were not

observed in pair-fed GLB mice, suggesting that neither the

food restriction nor the body weight loss are the main cause of

the metabolic effects observed in EGA.

In both GLB and EGA mice, insulin resistance in peripheral tis-

sues was unaffected by the surgery as demonstrated by clamp

studies. In contrast, EGA specifically improved the insulin sensi-

tivity of EGP. In consequence, we studied some of the mecha-

nisms most commonly involved in the modulation of hepatic insu-

lin sensitivity. Thus, GLB and EGA groups had similar plasma

levels of leptin, free fatty acids, and glycerol and similar hepatic tri-

glyceride content. Inflammation in adipose tissue is a major factor

in the regulation of hepatic insulin sensitivity (Schaffler et al.,

2005). It was, therefore, possible that EGA might reduce inflam-

mation inadiposetissuemorequickly thanGLBwithaconsequent

increase in hepatic insulin sensitivity. This was not the case; TNF-

a plasma levels and macrophage infiltration in abdominal white

adipose (data not shown) were similar in EGA and GLB mice 10

days after the surgery. AMP-activated protein kinase (AMPK) is

an important metabolic sensor in various tissues (Viollet et al.,
Inc.
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Figure 5. EGA Procedure Failed to Reduce Food Intake and Improve Glucose Tolerance and Insulin Sensitivity in High-Fat Diet GLUT2

Knockout Mice

Evolution of daily food intake (A) and body weight (B) in high-fat diet C57Bl6 mice and high-fat diet knockout GLUT2 mice before surgery and after the EGA

procedure (n = 6 for each group).

(C) Evolution of glucose levels during an OGTT (3g/kg) in high-fat diet C57Bl6 mice and high-fat diet knockout GLUT2 mice before surgery and after the EGA

procedure (n = 6 for each group).

(D) Evolution of glucose levels during an intraperitoneal insulin tolerance test (0.75 UI/kg) in high-fat diet C57Bl6 mice and high-fat diet knockout GLUT2 mice

before surgery and after the EGA procedure (n = 6 for each group). *p < 0.05 for high-fat diet C57Bl6 mice and high-fat diet knockout GLUT2 mice before surgery.

xp < 0.01 for high-fat diet C57Bl6 mice and high-fat diet knockout GLUT2 mice after surgery. Data are expressed as means ± SEM.
2006). Physiological (as after energy deprivation) or pharmacolog-

ical activation of hepatic AMPK reduces hepatic glucose produc-

tion (Andreelli et al., 2006; Long and Zierath, 2006). We found that

hepatic AMPK activity was similar in sham-operated, GLB, and

EGA mice (data not shown). As resistin levels were significantly

decreased only in EGA mice, this was an unexpected result be-

cause enhanced hepatic AMPK activity has been described in re-

sistin knockout mice (Banerjee et al., 2004). Nevertheless, un-

changed hepatic AMPK activity after the EGA is in accordance

with our previous report showing that hepatic insulin sensitivity

is independent of hepatic AMPK (Andreelli et al., 2006).

It has been proposed that changes in gut hormone secretion

following RYGBP best explain the observed changes in appetite

and the rapid modification of whole-body insulin resistance

(Deacon, 2004; Gutzwiller et al., 1999). However, recent obser-

vations were in disagreement with this hypothesis (Korner

et al., 2005; le Roux et al., 2007; Reinehr et al., 2007). Here, we

confirm that active GLP-1 plasma levels increased after a glu-

cose challenge in EGA mice. More importantly, we show that

blockade of GLP-1 action by exendin (9–39) amide impaired
Cell M
the effect of GLP-1 on insulin secretion but moderately affected

the inhibition of food intake and the changes in insulin sensitivity

following an EGA procedure. These observations argue against

the hypothesis that GLP-1 may be a critical regulator of food

intake and insulin sensitivity in our model.

The recent observation that the SI has the capacity to synthe-

size glucose and release it into the portal blood has constituted

an important breakthrough in the understanding of EGP (Croset

et al., 2001; Mithieux, 2005; Mithieux et al., 2004b). It is notewor-

thy that, within a few years after the first reports of the expression

of the Glc6Pase gene in rat and human SI and of the demonstra-

tion of gluconeogenesis in the rat intestine (Croset et al., 2001;

Rajas et al., 1999), the existence of this novel function of the

gut has received further support from several groups using dif-

ferent experimental approaches. This includes the confirmation

of the expression of Glc6Pase and/or PEPCK in the human SI

(Yanez et al., 2003) and their increased expression in the SI of

neonatal rats fed on a high-fructose diet (Cui et al., 2004), of pro-

tein-fed trout (Kirchner et al., 2005), and of protein-fed rats (Azz-

out-Marniche et al., 2007). Furthermore, SI glucose production
etabolism 8, 201–211, September 3, 2008 ª2008 Elsevier Inc. 207
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Figure 6. EGA Procedure Failed to Reduce Food Intake and Improve Glucose Tolerance and Insulin Sensitivity in C57Bl6 High-Fat Diet Mice

after Disruption of Hepato-Portal Signaling by Capsaicin

Evolution of daily food intake (A) and body weight (B) before and after the EGA procedure in C57Bl6 high-fat diet mice and capsaicin-treated C57Bl6 high-fat diet

mice.

(C) Evolution of glucose concentration during an OGTT (3g/kg) before and after the EGA procedure in C57Bl6 high-fat diet mice and capsaicin-treated portal vein

C57Bl6 high-fat diet mice.

(D) Evolution of glucose levels during an intraperitoneal insulin tolerance test (0.75 UI/kg) before and after the EGA procedure in C57Bl6 high-fat diet mice

and in capsaicin-treated C57Bl6 high-fat diet mice. For all figures, n = 5 mice per group. Data are expressed as means ± SEM. Symbols for statistical significance

as in Figures 2 and 4.
from glutamine has been suggested to be an important contrib-

utor to EGP when hepatic gluconeogenesis is strongly blunted,

such as in mice with specific invalidation of liver PEPCK, or ab-

sent, as occurred in the anhepatic phase of liver transplantation

in humans (Battezzati et al., 2004; She et al., 2003).

A key observation herein was the marked induction of both

Glc6Pase and PEPCK enzymes in segments 3 and 4 of the SI

(distal jejunum and ileum, respectively), specifically in EGA

mice. A crucial factor in the differentiation of the various intestinal

parts is related to their position along the anterior-posterior axis.

Important redifferentiation may thus occur in response to

a change of this position (Beck, 2002; Traber and Silberg,

1996). Accordingly, placing the distal parts of the intestine (seg-

ments 3 and 4) in a position close to the site of high nutrient avail-

ability (the stomach) might induce their redifferentiation into

a ‘‘duodenal’’-like intestine involved in the absorption of nutri-

ents. In agreement with this hypothesis, the duodenum is the

part of the intestine expressing the highest Glc6Pase activity (Mi-

thieux et al., 2004a). The absence of Glc6Pase change in the by-
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passed segments, devoid of nutrients in EGA mice, is intriguing.

The Glc6Pase gene expression is, indeed, increased in the SI in

response to fasting (Rajas et al., 1999). Actually, Glc6Pase activ-

ity was increased about 2-fold in segment 1 of EGA mice as com-

pared to mice fed on a standard diet (G.M., unpublished data).

The reason why it was also higher in segment 1 of the other

groups of mice is unclear. The SI Glc6Pase gene is suppressed

by insulin in the normal situation (Croset et al., 2001; Rajas et al.,

1999). Thus, Glc6Pase activity could be increased in duodenal

segment 1 in the other groups of mice because of insulin resis-

tance due to HF feeding.

Using a glucose tracer dilution approach, we observed that

this marked increase in expression of Glc6Pase and PECPK en-

zymes translated into a significant glucose release by the SI in

the postabsorptive situation. It must be noted that we calculated

that the IGR in EGA mice might represent approximately one-

third of total EGP (see Table 1). However, we would like to point

out that one must be very cautious regarding the quantitative as-

pect of these calculations. The combination of a glucose tracer
Inc.
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dilution and an arterio-venous glucose balance determination is

a unique method to determine glucose release from a glucose-

utilizing organ. However, a weakness of the approach is its low

accuracy. A crucial data set, indeed, relates to the determination

of glucose SA in the portal vein and the artery. Because of inter-

animal differences and also because of the fact that there is high

blood flow through the SI, differences are difficult to determine

with accuracy. However, this is critical to demonstrate the exis-

tence of glucose release when it takes place. In the absence of

an increase in glucose concentration in the portal blood (this is

the case when the release does not exceed the uptake), the de-

crease in portal glucose SA is the only evidence indicating that

glucose release has occurred. Portal and arterial glucose SA

are obtained from the same animal. Statistical analyses may,

thus, involve a paired test. This allowed us to determine differ-

ences even if the means are very close and obtained from vari-

able data (see Table 1). In addition, the SA values have to be mul-

tiplied or divided by other parameters, which are themselves

variable, to estimate the final fluxes. One must, therefore, be

conscious that, even when differences in glucose SA indicate

glucose release, the calculated glucose fluxes are, at best, rough

estimates and not accurate values. Irrespective of the exact

value of IGR, the latter was sufficient to compensate for the SI

glucose utilization so that portal and arterial glucose concentra-

tions were comparable (Table 1). In our previous study, a SI glu-

cose release counterbalancing the SI glucose uptake was able to

initiate the central processes decreasing food intake via a hepatic

portal signal-dependent mechanism (Mithieux et al., 2005). Por-

tal glucose appearance could also modulate hepatic glucose

production (Sindelar et al., 1997) or whole-body glucose homeo-

stasis (Thorens and Larsen, 2004). It is, therefore, likely that the

portal detection of intestinal glucose production in the post-

absorptive state (from a gluconeogenic pathway) might be

a key mechanistic link in the decreased food intake and in-

creased insulin sensitivity in EGA mice. Strongly supporting

this proposal, no effect on food intake or insulin sensitivity was

detectable in EGA mice in the absence of functional glucose

sensing or functional portal afferents. It was also of interest to as-

sess intestinal glucose production in GLB mice. Unfortunately,

we failed to obtain a steady state of plasma glucose concentra-

tion and glucose-specific activity in these mice, a condition that

is required for the validity of the tracer approach. We have no de-

finitive explanation for this pitfall. This might be due to the possi-

bility that small amounts of food were persistent within the stom-

ach (as also revealed by the presence of gastric juice), probably

because of different characteristics of gastric emptying. How-

ever, because there was no induction of Glc6Pase and PEPCK

in GLB mice, as it was observed in pair-fed sham-operated

mice (see Figure 4), it seems unlikely that they could release in-

testinal glucose from a gluconeogenic origin.

In conclusion, our study provides new findings about the

mechanisms by which the gastric bypass rapidly improves glu-

cose homeostasis. Using a gastric bypass model in mice, our

data suggest that this procedure is able to promote intestinal glu-

coneogenesis and stimulate the hepatoportal glucose sensor via

a GLUT2-dependent pathway. Consequently, the gastric bypass

procedure quickly modifies the insulin sensitivity of hepatic glu-

cose production and food intake independently of body weight

loss and GLP-1 action. This leads us to propose that intestine
Cell
glucose metabolism, especially through its gluconeogenic func-

tion, may be a crucial actor not only in the control of food intake

but also for the regulation of glucose homeostasis.

EXPERIMENTAL PROCEDURES

Animals and Diet

Two-month-old male C57Bl6 mice (Janvier, Le Genest Saint Isle, France) and

RIPGLUT1 3 GLUT2�/�mice backcrossed for seven generations with C57BL/

6 mice (provided by B. Thorens) were acclimated to our animal house under

controlled temperature (22�C) and light conditions (light/dark, 12 hr/12 hr)

and were fed ad libitum a high-fat diet (45 kcal% fat, 35 kcal% carbohydrate,

20 kcal% protein) (Research Diets, New Brunswick, NJ) for 16 weeks. At 6

months of age, mice underwent the surgical procedures as described below.

All procedures were performed in accordance with the principles and guide-

lines established by the European Convention for the Protection of Laboratory

Animals.

Surgical Procedures

C57Bl6 and RIPGLUT1 3 GLUT2�/� high-fat diet mice undergoing surgery

were fasted overnight and anaesthetized with 2% isoflurane (Abbott, Rungis,

France) and air/oxygen. The gastric lap-band was made from a piece of poly-

ethylene catheter, positioned around the upper stomach, closed, and then su-

tured to the abdominal wall. For the EGA procedure, the pyloric sphincter was

ligatured, followed by an entero-gastric anastomosis allowing the exclusion of

the duodenum and the proximal jejunum of the alimentary tract. Sham-oper-

ated mice underwent the same duration of anesthesia as GLB or EGA mice.

After surgery, sham-operated, GLB, and EGA mice were pair-fed with the

same high-fat diet used before surgery and studied 10 days after the surgery.

For exendin (9–39) amide infusion experiments, the intraperitoneal cavity of

high-fat diet C57Bl6 mice was continuously infused for 10 days with exendin

(9–39) amide (at the rate of 2 pmol 3 kg�1 3 min�1) or NaCl (0.9%) by an

osmotic minipump (Alzet Model 2004; Alza, Palo Alto, CA) (Cani et al., 2006).

Exendin (9–39) amide and saline infusions were started during the EGA proce-

dure. In mice intended for inactivation of portal vein innervation, a reabsorbable

gauze compress moistened with NaCl (0.9%) or 80 ml of a solution of capsaicin

(10 mg/ml) in water: ethanol: tween 20 (8: 1: 1, vol/vol) was applied for 10 min

around the portal vein during the EGA surgery procedure, as previously

described (Mithieux et al., 2005).

Food Intake Measurement and Body Composition Analysis

For food intake measurements, mice were individually housed with food and

water ad libitum. Food consumption was monitored every day for 15 days.

Body composition analysis was performed on anaesthetized living mice by

a dual-energy X-ray absorptiometry method using a small animal densitometer

(PIXImus Lunar; GE Medical Systems, Madison, Wisconsin, USA).

Metabolic Measurements

Blood was withdrawn from the tail vein for both fed and fasted experiments us-

ing EDTA-aprotinin as the anticoagulant. In the fed state, blood was collected

at 23:00 hr. For fasting experiments, food was removed at 18:00 hr, and the

mice were kept in a different clean cage for 5 hr before collecting blood. For

the oral glucose tolerance test, blood glucose levels were evaluated using

a glucometer (Glucotrend II; Roche Laboratories, Indianapolis, IN). Serum in-

sulin, glucagon, active GLP-1, leptin, total adiponectin, TNF-a, and resistin

concentrations were assessed by Lincoplex assays (Linco Research, St.

Charles, MO). Serum concentrations of triglycerides, free fatty acids (FFAs),

ketone bodies, and glycerol were determined using an automated Monarch

device (CEFI, IFR02, Paris, France) as described previously (Viollet et al.,

2003).

Glucose and Insulin Tolerance Tests

A glucose tolerance test (3 g/kg body weight) was performed on mice fasted

for 12 hr. Blood glucose levels were determined at 0, 20, 40, and 60 min. For

the insulin tolerance test, animals fasted for 5 hr were injected intraperitoneally

with 0.75 units of insulin/kg body weight, and glucose levels were measured 0,

15, 30, and 60 min postinjection.
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Glucose Turnover Analysis during Hyperinsulinemic-Euglycaemic

Clamp Condition

To determine the rate of glucose use, a catheter was indwelled into the jugular

vein under anesthesia, sealed under the back skin, and glued onto the top of

the skull (Viollet et al., 2003). The mice were then housed individually. The

mice were allowed to recover for 4–6 days, and, after 2 days, they showed nor-

mal feeding behavior and motor activity. On the day of the experiment, the

mice were fasted for 6 hr. The whole-body glucose use rate was determined

in hyperinsulinaemic euglycaemic conditions. Under the physiological hyper-

insulinaemic condition, insulin was infused at a rate of 4 mU/kg 3 min for

3 hr, and 3-(3H) glucose was infused at a rate of 30 mCi/kg 3 min, higher

than for the basal condition, to ensure a detectable plasma 3-(3H) glucose en-

richment. Throughout the infusion, the blood glucose concentration in blood

samples (3.5 ml) collected as appropriate from the tip of the tail vein was mon-

itored with a glucose meter. Euglycaemia was maintained by periodically ad-

justing a variable infusion of 16.5% (weight/volume) glucose. Plasma glucose

concentrations and 3-(3H) glucose-specific activity were determined in 5 ml of

blood sampled from the tip of the tail vein every 10 min during the last hour of

the infusion. Mice showing variations in specific activity greater than 15% were

excluded from the study. Tritiated H2O and 3-(3H) glucose enrichments were

determined in total blood after deproteinization as follows and as described

previously (Andreelli et al., 2006). Five microliters of tail venous blood were

mixed with 250 ml of 0.3 M ZnSO4. Then, 250 ml of 0.3 M Ba(OH)2 were added

to precipitate the proteins and blood cells, and the precipitate was spun down.

The supernatant was evaporated to dryness at 50�C to remove tritiated water.

The dry residue was dissolved in 0.5 ml water to which 10 ml Aqualuma plus

scintillation solution was added (Lumac LSC, Groningen, Netherlands), and ra-

dioactivity was determined in a Packard Tri-Carb 460C liquid scintillation sys-

tem (Rabalot, France). In a second aliquot of the same supernatant, the glu-

cose concentration was assayed by the glucose oxidase method (Trinder;

Sigma, St. Louis, MO). Under the conditions of hyperinsulinemic-euglycaemic

clamp, the rate of endogenous glucose production was equal to the glucose

disposal rate (Rd, reflecting glucose utilization) and glucose infusion rate. Rd

was calculated according to the formula Rd = EGP + GIR = [3-(3H)] glucose in-

fusion rate (disintegrations per minute [dpm/min]) divided by blood glucose

specific activity (dpm/mg) during the last 20 min of the glucose clamp

(50–70 min after the onset of insulin infusion).

Intestinal Glucose Flux Determinations

Anesthetized mice in the postabsorptive state (6 hr after food removal) were

fitted with two catheters in the left carotid artery and the right regular vein

and infused with 3-(3H) glucose in the regular vein at a rate of 8 kBq/min. A lap-

arotomy was performed to allow access to the portal vein at the time of blood

removal. After 90 min, a time when a steady state of glucose SA was obtained,

blood was gently sampled simultaneously in the carotid artery and the portal

vein as previously described (Mithieux et al., 2005). Total EGP was calculated

from the 3-(3H) glucose infusion rate and the arterial glucose SA. The fractional

extraction of glucose across the intestine (Fx) was calculated as: Fx = ((3-[3H]

glucose SA artery 3 glucose concentration artery)� (3-[3H] glucose SA portal vein 3

glucose concentration portal vein)) / (3-[3H] glucose SA artery 3 glucose concen-

tration artery). The total intestinal blood flow (IBF, considered to be equivalent to

the portal blood flow) was determined from the same mice (6 hr fasted) some

days before the 3-(3H) glucose infusion experiment from a Pulse Wave Doppler

echography approach using a Visualsonics (Vevo 770 High-Resolution Imag-

ing System) apparatus. Mice were anaesthetized with 2% isoflurane and air/

oxygen, and the portal vein blood flow was determined at an angle of 30�

(Huck, 2005). The mean intestinal blood flow was not different in EGA mice

(2.1 ± 0.3 ml/min) and pair-fed sham control mice (2.0 ± 0.2 ml/min). The

intestinal glucose uptake was calculated as: IGU = IBF 3 glucose concentra-

tion artery 3 Fx. The intestinal glucose balance was calculated as: IGB = IBF 3

(glucose concentration artery � glucose concentration portal vein). The intestinal

glucose release was deduced from IGU and IGB according to the equation:

IGB = IGU � IGR.

Hepatic Triglyceride Content

Lipids were extracted by the Folch method in a mixture of 2:1 chloroform/

methanol (vol/vol) as previously described (Villena et al., 2004). The extract

was washed with 0.2 volumes of saline (NaCl 0.9%) and centrifuged at
210 Cell Metabolism 8, 201–211, September 3, 2008 ª2008 Elsevier
2,000 rpm for 10 min. The organic phase was then recovered, and triglyceride

content was determined using the Infinity triglyceride reagent (Sigma, St.

Louis, MO).

Glc6Pase and PEPCK Analyses

Hepatic and intestinal Glc6Pase enzyme activities were measured in 6 hr

fasted sham-operated, GLB, and EGA mice as previously described (Andreelli

et al., 2006; Rajas et al., 1999). In summary, small intestine and liver samples

frozen in liquid nitrogen were powdered and homogenized by sonication in

20 mM HEPES and 0.25 M sucrose (pH 7.3) (100 mg of wet tissue per milliliter).

Homogenates were diluted 1 in 10 and Glc6Pase at maximal velocity (20

mmol/liter glucose-6 phosphate) determined at 30�C on complex formation

of Pi produced from Glc6Pase. Specific Glc6Pase activity was cleared of the

contribution of nonspecific phosphohydrolase activities by subtracting the ac-

tivity toward b-glycerophosphate (20 mmol/liter) (Andreelli et al., 2006; Rajas

et al., 1999). Glc6Pase and PEPCK protein amounts were studied by western

blotting according to previously described procedures (Croset et al., 2001;

Mithieux et al., 2005; Rajas et al., 1999).

Statistical Analyses

Data are expressed as means ± SE. The statistical significance of differences

between groups was assessed using two-tailed Student’s t test for unpaired

values. Student’s t test for paired samples and the Mann Whitney test were

used in the studies relating to intestinal glucose fluxes, as appropriate.

SUPPLEMENTAL DATA

Supplemental Data include five figures and one table and can be found online

at http://www.cellmetabolism.org/cgi/content/full/8/3/201/DC1/.
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