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Abstract 

We present efficient parallel algorithms for the domination problem on strongly chordal 
graphs and related problems, such as the set cover problem for a-acyclic hypergraphs and the 
dominating clique problem for strongly chordal graphs. Moreover, we present an efficient 
parallel algorithm which checks, for any chordal graph, whether it has a dominating clique. 

0. Introduction 

Chordal graphs are graphs where each cycle has an edge joining two vertices, that 

are not neighbors in the cycle. Such an edge is called a chord. The DOMINATING SET 

problem is to find, for any graph G = (V, E), a subset V’ of the vertex set of minimum 

cardinality that dominates the whole vertex set, that means each vertex is in V’ or is 

joined by an edge to a vertex of v’. 

The DOMINATING SET problem is NP-complete even for chordal graphs [ 171. But for 

so-called strongly chordal graphs, one can find a polynomial solution. An exact 

definition will be given later. 

Since many problems on chordal graphs such as recognizing chordal graphs, 

finding an elimination ordering characterizing chordal graphs, finding a clique tree, 

finding a minimum coloring and a maximum clique can be parallelized [27, 241, we 

are interested in finding a parallel algorithm for the DOMINATING SET problem for 

strongly chordal graphs. Farber introduced strongly chordal graphs as a natural 
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subclass of chordal graphs which admits an efficient solution of the DOMINATING SET 

problem. We also consider related problems, such as the existence of a dominating 

clique and the computation of a minimum dominating clique. 

A sequential algorithm for the computation of a minimum dominating clique has 

been developed in [25]. 

Section 1 introduces the necessary notation and fundamental definitions. 

Section 2 discusses the problem of the existence of a dominating clique in a chordal 

graph. Damaschke et al. [ 121 gave a simple criterion for the existence of a dominating 

clique in a chordal graph (the diameter is three) which also induces an O(n3)-processor 

O(log n)-time parallel algorithm. Here we give an O(n + m) processor 0(log3 n) time 

algorithm that constructs a dominating clique, if one exists. 

Section 3 proves the equivalence of the DOMINATING SET problem and the minimum 

dominating clique problem for strongly chordal graphs. Moreover, it will be proved 

that both problems are equivalent to the problem of finding a minimum subset of the 

hyperedge set that covers all vertices of a given /&acyclic hypergraph (the class of 

B-acyclic hypergraphs corresponds to the class of maximal clique sets of strongly 

chordal graphs). The last problem is called the COVER problem. 

In Section 4 we present an efficient parallel algorithm for the COVER problem for 

a-acyclic hypergraphs which induces also an efficient parallel algorithm for the 

domination problems as defined above. 

1. Notation and fundamental definitions 

1.1. Notation from graph theory 

A graph G = (V, E) consists of a vertex set V and an edge set E. Multiple edges and 

loops are not allowed. The edge joining x and y is denoted by xy. 

We say that x is a neighbor of y iff xy E E. The fill neighborhood of x is the set 

{x} u {y: xy EE} consisting of x and all neighbors of x and is denoted by N(x). 

A path is a sequence (x1 . . . XJ of distinct vertices such that XiXi+ 1 E E. 
A cycle is a closed path, that means a sequence (x0 . . .xk_ 1xo) such that 

X&i + 1 (mod k) E E. 

A subgraph of (V, E) is a graph (V’, E’) such that V’ c V, E’ c E. 
An induced subgraph is an edge-preserving subgraph, that means (V’, E’) is an 

induced subgraph of (V,E) iff v’ c V and E’ = {xy~E:x,y~ V’}. 
A graph (V, E) is chordal iff each cycle (x0 . . . xk- 1xo) of length greater than 3 has an 

edge XixjEE, j - i # + 1 mod k (which joins vertices which are not neighbors in the 

cycle). Sometimes they are also called triangulated or rigid circuit graphs. We remark 

that this notion is equivalent to the nonexistence of an induced cycle of length greater 

than 3. 

A subset V’ of the vertex set V is complete iff all vertices of V’ are pairwise joined by 

an edge. 
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An inclusion-maximal complete set is called a maximal clique. 

A theorem of Dirac [14] says: 

Theorem 1.1. A graph is chordal @each induced subgraph has a vertex whose neighbor- 

hood is complete (such a vertex is called simplicial). 

(V, H) is called a hypergraph iff H is a family of subsets of I’. Each h E H is also called 

a hyperedge. 
The dual hypergraph (I’, H)* of (I’, H) arises from (V, H), by interchanging hy- 

peredges and vertices and reversing the element relation. 

We are especially interested in hypergraphs of maximal cliques of a chordal graph. 

We call a hypergraph (V, H) cc-acyclic, if there is a tree T with vertex set H (join tree), 
such that for any x E V, the set {h E H: x E h} forms a subtree of T [4]. 

Independently Gavril [19] and Buneman [7] proved the following theorem. 

Theorem 1.2. A graph is chordal iff it is the intersection 

of a tree. 

graph of vertices of subtrees 

Moreover, one can prove the following results. 

Theorem 1.3 (Gavril[19], Buneman [l] and Beeri et al. [4]). A graph is chordal @its 

maximal cliques form an cc-acyclic hypergraph. 

As a generalization of the notion of a path and a cycle for hypergraphs, we 

introduce the notion of a B-path and a P-cycle for hypergraphs [15]: 

A sequence (xOhOxIhI . . .xk_ Ihk_ 1x,) of vertices xi and hyperedges hi is called 

aP-pathiffxiEhinhi_1 butx$hjforj#i,i-1. 

A sequence (xoho . . . xk_ 1 hk- 1x0) is a P-cycle iff xi E hi n hi_ 1 crnod k), but for j # i, 

i - 1, we have xi ~ hj 
A hypergraph is f3-acyclic iff it does not have a P-cycle. 

Obviously the dual hypergraph of a @-acyclic hypergraph is P-acyclic. 

A graph whose maximal cliques form a fi-acyclic hypergraph is called strongly 

chordal. This definition of strongly chordal graphs is different from the original 

definition of Farber [ 161, but equivalent to it [ 131 (see also [3]). We remark that every 

strongly chordal graph is chordal but not vice versa. A simple known counterexample 

is the so-called 3-trampoline (Fig. 1). That is the graph consisting of a complete set of 

Fig. 1. A trampoline 
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size 3 and an independent set of size 3 and an alternating cycle between the indepen- 

dent set and the complete set (of length 6). 

Farber [ 163 defined strongly chordal graphs by strongly perfect elimination order- 

ings: A graph G = (I’, E) is strongly chordal iff there is an ordering < on the vertices 

of V such that 

(1) for xy, xz E E, such that x < y and x < z, also yz E E, 

(2) for xiy,, x2y1, x1x2 E E, such that x1 < yi and x2 < y,, we have y1y2 E E. 

We remark that a graph is chordal iff it has an ordering satisfying 1. In that case 

< is called a perfect elimination ordering [28]. 

Now we present the optimization problems considered in this paper: 

(1) DOMINATING SET: For any graph G = (I’, E), find a subset V’ of V of minimum 

cardinality which dominates V, that means 

I/= V’u {y:3xe I/’ such that xyeE}. (*) 

(2) DOMINATING CLIQUE: Find for a graph (I’, E) a complete subset V’ of minimum 

cardinality which satisfies (*), if it exists. 

(3) COVER: Find for a hypergraph X = (I’, H), a subset H’ of H with minimum 

cardinality which covers V, that means 

u h=V. 
hen’ 

For any graph, the number of its vertices is denoted by n and the number of its 

edges is denoted by m. We represent any hypergraph (V, H) as a bipartite graph 

consisting of the vertex set Vu H and the edge set {(x, h)l x E V, h E H, x E h). In the 

case of hypergraphs n is the number of vertices and hyperedges, and m is the number of 

pairs (x, h) such that x E h. 

I .2. Notations from complexity theory 

The computation model is the concurrent read exclusive write parallel random 

access machine (CREW-PRAM) [18]. 

It consists of possibly infinitely many processors and of an infinite number of 

memory cells. Only a finite number of processors are active. Each processor can access 

any memory cell. Two or more processors may read from the same memory cell 

simultaneously, but two or more processors may not write into the same memory cell 

simultaneously. 

Arrays and pointers are represented in a CREW-PRAM as in a random access 

machine (RAM) [2]. 

Graphs are represented as follows: The vertices are numbered by 1, . . . . n. The 

directed edge set of G = (V, E) consists of the set {(x, y): xy E E} of ordered pairs. That 

means each edge appears twice as an ordered pair. We assume that the directed edge 

set is represented as a lexicographically ordered array as in [29]: 

(x, y) appears before (x’, y’) iff y < y’ or (y = y’ and x < x’). 
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We assume that each arithmetic operation needs one processor and one time unit. 

The following known parallel complexity results are used in this paper: 

(1) One processor can check for any x and y, whether xy E E in O(log n) time, by 

binary search. 

(2) The connected components of a graph can be computed in O(log3” n) time 

using O(n + m) processors [22] (earlier O(log’ n) time algorithms are due to [29,20]). 

(3) For any connected graph, a spanning tree can be computed in O(log’ n) time 

using O(n + m) processors [30]. 

1.2.1. Parallel tree contraction 
For any rooted directed tree T, we define a chain of T to be an inclusion-maximal 

set of consecutive vertices with degree at most two. 

The tree contraction paradigm consists of the repeated application of the two 

operations rake and compress (compare [26]): 

(1) rake: delete all leaves; 

(2) compress: halve the chains. 

Proposition 1.4 [l]. After O(log n) rake and contract operations the tree T can be 

contracted to one vertex. The number of processors necessary to execute the tree 

contraction in parallel in O(log n) time is bounded by O(n/log n). 

2. The existence problem of a dominating clique 

We describe an algorithm that checks for any chordal graph, whether there is 

a maximal clique that dominates all the vertices. In this section we assume that 

G = (V, E) is chordal. 

We start with the development of an algorithm which is very fast in parallel but not 

processor efficient. 

Theorem 2.1. A maximal clique dominates all vertices of a chordal graph G ifs it has 

a nonempty intersection with all other maximal cliques. 

Proof. + : Suppose that the maximal clique c dominates all vertices. Assume that c’ is 

another maximal clique and that c n c’ = 0. Then each x’ EC’ has a neighbor x E c. 

Then for x’, X”E c’, N(x’) n c and N(x”) n c are comparable by inclusion. Otherwise if 

xx’ E E, yx” E E, y, x E c but x’y $ E, xx” 4 E, then xx’x”yx form a chordless cycle. This 

is a contradiction. 

But each x’ E c’ has a neighbor in c. Let x’ be a vertex such that N(x’) n c is minimal. 

Then c’ u (N(x’) n c) is complete (since N(x”) n c contains N(x’) n c, for each x” E c’). 

This is a contradiction to the assumption that c’ is a maximal clique. 
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-=: If each maximal clique c’ intersects c, then each vertex of c’ is adjacent to 

a vertex of c. 0 

Using Theorem 2.1 we can conclude the following. 

Theorem 2.2. The existence of a (not necessarily minimum) dominating clique can be 

decided, for any chordal graph, in O(log n) time by O(n3) processors where n is the 
number of vertices. Moreover, a maximal clique which is dominating can be computed in 

0(log2 n) time using 0(n3) processors. 

Proof. The existence of a dominating clique can be ascertained, by checking whether 

the diameter of the given chordal graph is at most three [12]. The set of pairs of 

vertices of distance at most three can be computed in O(log n) time using O(nm) 

processors, by multiplying the adjacency matrix three times by itself. 

To construct a dominating maximal clique we proceed as follows: 

(1) We can compute the set of maximal cliques, by the algorithm of Ho and Lee 

[21], in O(log2 n) time and with O(n3) processors. Here n is the number of vertices. 

(2) Test, for each pair of maximal cliques, whether it has a nonempty intersection. 

This can be done straightforwardly in O(log n) time and with O(n3) processors 

(remember that the number of maximal cliques is bounded by n). 
(3) Test if there is a maximal clique which has a nonempty intersection to each 

other maximal clique. This can be done straightforwardly in O(log n) time and O(n’) 
processors (remember that each maximal clique is determined by its smallest vertex 

with respect to the perfect elimination ordering and therefore the number of maximal 

cliques is bounded by n). 0 

Remark 2.3. In [S] there is an O(log n) time algorithm using O(n3) processors which 

computes all maximal cliques of a chordal graph. Therefore we can construct a domi- 

nating clique in O(log n) time and 0(n3) processors. 

We present a more processor-efficient parallel algorithm. 

Using the fact that a perfect elimination ordering can be found by O(n + m) 

processors in O(log3 n) time [24], we can show the following more efficient result: 

Theorem 2.4. The decision problem for the existence of a (not necessarily minimum) 
dominating clique for chordal graphs and the construction problem for it can be solved by 
O(n + m) processors in O(log3 n) time. 

Proof. We proceed as follows: 

Step 1: Compute a perfect elimination ordering < for the chordal graph G (repres- 

ented by an enumeration) [24]. 

Step 2: For each x E I’, we select the < -greatest neighbor F(x) with respect to the 

perfect elimination ordering < . Let v be the <-smallest F(x). 
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Lemma 2.5. The complete set N(v) n (yl y 2 v} is dominating ij” a dominating complete 
set exists. 

Proof. Suppose C is a dominating complete set and u is the smallest element of C with 

respect to the perfect elimination ordering < . Since the set of greater neighbors of u is 

complete, C is a subset of C’ = N(u) n {ylu < y}. By the definition of a perfect 

elimination ordering, C’ is also complete, and since C c C’ is a dominating complete 

set, C’ is also a dominating complete set. 

We choose a dominating complete set C whose smallest member u is maximal with 

respect to < among all complete sets C. 

We first claim that u is of the form F(x): Suppose this is not the case. Then for all 

x E V, F(x) # u. We then construct a dominating clique with larger smallest vertex. 

Suppose uy E E and y > U. Then y E C’\{u}. Suppose uy E E and y < u. Then F(y) > u, 
and since < is a perfect elimination ordering and yF(y) and yu are edges in E, 

uF(y)~ E. Therefore F(y) E C’\{u}. S’ mce u is a neighbor of all vertices in C’\{u}, 

C’\{U} is a dominating complete set and its smallest element is greater that U. This is 

a contradiction to the assumption that u is as large as possible. 

It remains to prove that u is the <-minimum vertex of the form F(x). Otherwise 

there is a vertex F(x) < U, and since F(x) is the largest neighbor of x, x is not 

a neighbor of any vertex in C’ = N(U) n {y ( y 3 u}. 0 

Proof of Theorem 2.4 (continued). 
Step 3: Test whether N(v) n {yJ y 2 v} is dominating; if this is true, output 

N(v) A (yl y 3 v} as the dominating complete set. This can be done in O(log n) time by 

O(n + m) processors as follows: 

(a) For each xy with x E N (v) n {y( y > u), set y to be in DOM. This can be done by 

O(m) processors in O(log n) time using standard methods (in constant time by 

a CRCW-PRAM). 

(b) For each x E N (v) n (y( y > v}, set x to be in DOM. This can be done in o(log n) 

time by O(n) processors using standard methods. 

(c) If all x E Vare in DOM, set N(v) n (y ) y 3 u} to be dominating. This step is done 

in O(log n) time by O(n) processors. 

This completes the proof of Theorem 2.4. 0 

3. Equivalence of domination problems 

We shall prove the following theorem. 

Theorem 3.1. The problems 
(1) DOMINATING SErfor strongly chordal graphs and DOMINATING CuQuE for strongly 

chordal graphs are reducible to COVER in O(log n) time using O(n + m) processors, 

provided a strongly perfect elimination ordering is known. 
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(2) COVER for /3-acyclic hypergraphs is reducible to DOMINATING CLIQUE and 

DOMINATING SErfor strongly chordal graphs in O(log n) time using O(n*) processors. 
(3) DOMINATING CLrQuE for strongly chordal graphs is reducible to DOMINATING SET 

for strongly chordal graphs in O(log n) time using O(n + m) processors provided a per- 

fect elimination ordering is known and a dominating complete set exists. 

The proof of Theorem 3.1 is carried out as follows. First we reduce DOMINATING 

SET to COVER. Then we prove the reducibility of DOMINATING CLIQUE to DOMINATING 

SET. Lastly we reduce COVER to DOMINATING CLIQUE. 

DOMINATING SET for strongly chordal graphs is reducible to the COVER problem for 

j&acyclic graphs using the following result of Brouwer et al. [S]: 

Proposition 3.2. For any strongly chordal graph G = (V, E) 

~~:=(V,{N(x): XEV)), 

is a /?-acyclic hypergraph. 

Proof of Theorem 3.1. 

First we reduce DOMINATING SET to COVER: To get a minimum dominating set for 

a strongly chordal graph, we only have to get a minimum cover for #b : = (V, {N(x): 

XE V}). 

Now we reduce DOMINATING CLIQUE to DOMINATING SET: By [ 121, we know in case 

that a dominating clique exists that the minimum dominating clique is also a min- 

imum dominating set. To compute a minimum dominating clique, we have to transfer 

a minimum dominating set D into a minimum dominating clique of the same 

cardinality. 

We first compute a dominating clique DC as in the proof of Theorem 2.4. Note that 

DC is not necessarily of minimum cardinality and also not necessarily a maximal 

clique. If we know a strongly perfect elimination ordering we can compute DC by 

O(n + m) processors in O(log n) time. If not, we need 0(log3 n) time using Klein’s 

algorithm for the construction of a perfect elimination ordering [24]. Knowing 

a perfect elimination ordering, we also can determine the set of maximal cliques in 

O(log n) time using O(n + m) processors [24]. For each maximal clique C’, we count 

the number of x E C’ n DC in O(log n) time using O(n + m) processors. Note that there 

are at most m + n pairs (x, C’), such that x E C’. This follows immediately from the fact 

that x E C’ iff x is the smallest vertex of C’ or x is a neighbor of the smallest vertex of 

C’. We select a maximal clique C, such that DC E C (that means we test whether 

\CnDCI = IDCl). 
Now we assume that a minimum dominating set D is given. We have to transfer 

D to a minimum dominating complete set, say D’, which is a subset of the maximal 

clique C. We start with two remarks. 
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Remark 3.3. Let x $ C and y 4 C. Let xy E E. Then N(x) n C and N(y) n C are compar- 

able with respect to inclusion: Otherwise there would exist x’~N(x) n C\N(y) and 

y’ E N(y) n C\N(x). (x, y, y’, x’, x) would form a chordless cycle of length four. 

Remark 3.4. Let x, y, z $ C and xy, xz E E. Let N(y) n C 5 N(x) n C and N(z) n C 

s N(x) n C. Then N(y) n C and N(z) n C are comparable with respect to inclusion. 

To prove this remark, we make use of the fact that the given graph is strongly 

chordal. Assume that N(y) n C and N(z) n C are not comparable with respect to 

inclusion. Then we find y’ E N(y) n C\N(z) and z’ E N(z) n C\N(y). Since C is a maxi- 

mal clique, we find a vertex w E C\N(x). Note that w is also not in the neighborhood of 

y and z. But they {y, z, w, y’, z’} from a trampoline with T, = (y, z, w} as independent 

set and T2 = {x, y’, z’} as complete set. The alternating cycle between TI and T2 is 
(y,x,z,z’, w, y’, y). This is a contradiction to the assumption that the given graph is 

strongly chordal. 

Note that it was essential that C be a maximal clique to prove Remark 3.4. 

We continue the description of the algorithm as follows: For each x E D\C, we select 

a vertex 2 EN(X) with a minimal number of neighbors in C and select a vertex 

x’ E N(f) n C. This can be done in O(log n) time using O(n + m) processors, by 

counting the neighbors in C, for each v$ C, selecting, for each XE D, the vertex 

2 afterwards, and selecting the neighbor x’ of 2 in C at the end. 

For each vertex in x E D n C, we set x’ = x. 

We can replace x by x’ and (D u {x’})\{x} is still dominating: Consider a vertex 

y such that xy E E. If y E C then y = x’ or x’y E E, because also x’ is in the maximal 

clique C. 

We can assume that y$ C. Note that, by Remark 3.3, N(x) n C and N(y) n C are 

comparable with respect to inclusion. Also N(2) n C c N(x) n C. If N(x) n C 

E N(y)n C then trivially N(i)n C c N(y)n C. If N(y)n C E N(x)n C then, by 

Remark 3.4, N(2) n C E N(y) n C. Therefore x’ E N(y) and x’ is a neighbor of y. This 

statement is true for any neighbor y of x. Therefore (D\(x)) u {x’} is a dominating set. 

Replacing all x E D\C by x’, we get the result that D’ = {x’ Ix E D} is dominating. 

Since each x’ is in C, D’ is a dominating clique. Clearly 1 D’I < 1 DJ. Since D is 

a minimum dominating set, D’ is a minimum dominating clique. 

Lastly we haue to reduce COVER to DOMINATING CLIQUE: That can be done, by 

identifying the set H of hyperedges with a complete set, identifying the set Vof vertices 

of the P-acyclic hypergraph with an independent set, and joining a hyperedge h and 

a vertex x by an edge iff x E h. This graph GcV,H) forms a strongly chordal graph, 

because its maximal clique set consists of a clique, containing all hEH and the 

maximal cliques C, = {x} u (h EH: XE h} with x E V. Since the dual hypergraph of 

a p-acyclic hypergraph is P-acyclic, the maximal cliques C, together with H form 

a B-acyclic hypergraph, and therefore G(,,,, is strongly chordal. 

A minimum covering set of hyperedges corresponds to a minimum dominating clique. 

This completes the proof of Theorems 3.1. 0 
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4. An efficient parallel algorithm for the COVER problem for u-acyclic hypergraphs 

Since domination problems above are mutually equivalent, we need only address 

the parallel complexity of one of them. We choose here the problem COVER. We 

present an algorithm which works not only for fi-acyclic hypergraphs but, moreover, 

for all a-acyclic hypergraphs. The algorithm is very much in the spirit of the minimum 

clique cover algorithm for chordal graphs of Klein [24]. 

Theorem 4.1. COVER restricted to a-acyclic hypergraphs can be solved in O(log’ n) time 

using O(n + m) processors, provided an underlying join tree is known. 

Remark 4.2. By [8], a perfect elimination ordering and a join tree for an a-acyclic 

hypergraph can be computed in 0(log3 n) time using O(n + m) processors. 

Therefore COVER can be solved within the same processor and time bounds, if an 

a-acyclic hypergraph is given. 

Proof of Theorem 4.1. We proceed as follows: 

Step 1: We compute an enumeration n of the hyperedges of X = (V, H) which 

corresponds to an extension of the underlying join tree T to a total ordering, which we 

call < . For example, the postorder enumeration is such an enumeration and can be 

computed in O(log n) time using O(n) processors [30]. 

Step 2: For each vertex VE I’, let h, be the < -largest hyperedge that v belongs to. 

That means h, is the root of the subtree of T with vertex set {h E H: v E h}. 
Step 3: We sort the vertices v of V with respect to the ordering < of the hyperedges 

h, obtaining an ordering i. One who is familiar with the connections to chordal 

graphs, can easily verify that < is a perfect elimination ordering of the corresponding 

chordal graph. 

To compute h, for all v E V simultaneously, we have to compute max, (h: v E h) 
for all VE V simultaneously. For each UE I’, this can be done in O(log n) time using 

1 {h E H: v E h} 1 processors. Recall that m is the number of pairs (x, h) such that x E h. 

Then for all v simultaneously, h, can be computed in O(log n) time using O(n + m) 
processors. 

Before we continue, we state the following lemma. 

Lemma 4.3. For all hyperedges h containing v, h n {u’\v < v’} c h,. 

Proof. Consider any hyperedge h which contains v. Let v’ be a vertex in h satisfying 

v < v’. If h, = h,. then v’ E h, and the Lemma is proved. 

Assume now that this is not the case. Then h,, is not a vertex of the maximal subtree 

T’ of T having h, as its root. Since v E h and h, is the root of {h’: v E h’}, h is in T’. 

Therefore the unique path from h to h,. in T passes through h,. Since T,, = {h’: v’ E h’} 

forms a subtree of T, all hyperedges on this unique path contain v’, and therefore also 

v’eh,. 0 
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Corollary 4.4. v < w are in a common hyperedge ifs w E h,. 

Denote by Gx = GcV,Hj the graph consisting of the vertex set V and the edge set 

E = {xy)i’hEH, xeh and yeh}. 

By [4], the graph G, is chordal. 

Corollary 4.5. Gx = (V, {xy 1 x 6 h, or y E h,}). 

Corollary 4.6. < is a perfect elimination ordering of Gx. 

Proof of Theorem 4.1 (Continued). 

Step 4. To solve COVER we nearly can imitate the algorithm of P. Klein for the 

minimum clique cover problem. We only have to take care that the number of 

processors is bounded by O(n + m). 

Step 4.1: We compute the following tree ? with the parent function P, called the 

elimination tree: 

P(v) = min{w: vweE, u< w} = min{w: w~h”, v<w}. 
< < 

This can be done in O(log n) time using O(n + m) processors as follows: 

(1) For each h E H, sort the vertices in h with respect to i. 

(2) P(v) is the successor of u with respect to the sorting of h,. 

Step 4.2: We compute, for each UE V, the vertex m(v), which is the < minimum 

vertex w, such that v < w, VW E E, and VP(W) $ E. 

We set b(v) = P(m(v)). 

To compute m(v) in the claimed time and processor bounds, we first observe that 

m(v)=min{wEh,lv<w, P(w)$h,}. 
< 

To compute m(v), we first compute, for each h, the set M, of vertices u E h such that 

P(v) +! h. This can be done in O(log n) time using O(n + m) processors. 

To compute m(v) we compute the smallest WE h, which is in M,,, and satisfies the 

condition v 4 w. This can be done in O(log n) time using O(n + m) processors, for all 

v E V simultaneously. 

Step 4.3: Using the pointer function b computed in 4.2. and the elimination tree 

? with parent function P, we compute the lexicographically first maximal independent 

set, called X, of GS with respect to the perfect elimination ordering <. We can 

proceed as in [24]. 

l Each leaf of F is set to be in X. 

l We call an inclusion-maximal set of consecutive vertices of F of degree < 2 

a chain. We select chains ending at a leaf, called leaf chains. 
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l We compute the vertices of X in a leaf chain: Starting with the leaves we set b(v) E X. 

This can be done, by pointer jump techniques, in O(log n) time using O(n) processors. 

l We erase all vertices u which are adjacent to some x E X in G,. That means, for 

each x E X, we erase all vertices in h,. This can be done in O(log n) time using O(n + m) 

processors. 

l For the remaining vertices, we compute a new elimination tree: For any 

nonerased vertex x, we set P(x) as the next ancestor of x, which is not erased. This can 

be done in logarithmic time using O(n + m) processors. 

We repeat all these steps in 4.3. until the vertex set is empty. We need at most 

O(log n) repetitions of these steps [24]. Therefore for the computation of X, we need 

O(n + m) processors and O(log2 n) time. 

Step 4.4. We set MZN = (II,: x E X} as the minimum cover. One can easily see that 

it can be computed in O(log n) time using O(n + m) processors. 

We can see that MZN is a minimum cover of Z, as follows: First each hyperedge of 

%’ is contained in some maximal clique of G,. Secondly, each maximal clique of G% is 

some hyperedge of Z’. Therefore any (minimum) covering of V by maximal cliques of 

G* defines a (minimum) covering by hyperedges. By [27], we have to take, for each 

x E X, some maximal clique C, containing all neighbors of x at least as large as x with 

respect to i, to get a minimum covering by maximal cliques. By construction, all 

vertices are covered by some h, such that x E X. Therefore MIN is a minimum cover 

of V by hyperedges of s. 

This completes the proof of Theorem 4.1. 0 

Corollary 4.7. DOMINATING SET and DOMINATING CLIQUE restricted to strongly chordal 
graphs can be solved by O(n + m) processors in 0(log3 n) time. 

5. Conclusion 

We have given parallel algorithms for the dominating set problem and the dominat- 

ing clique problem on strongly chordal graphs, such that the processor-time-product 

is optimal up to a polylogarithmic factor. For chordal graphs, we gave a parallel 

algorithm for testing the existence of a dominating clique. It is also of interest to 

parallelize the problem of minimum Steiner trees for strongly chordal graphs, which 

also works in linear time [32]. A parallel algorithm to compute a minimum Steiner 

tree has been developed recently [9]. 
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