
DISCRETE
APPLIED

ELS&ER Discrete Applied Mathematics 52 (1994) 261-273
MATHEMATICS

The parallel solution of domination problems on chordal
and strongly chordal graphs

Elias Dahlhaus”**, Peter Damaschke’

a Department of Computer Science, University of Bonn, Riimerstrasse 164, W-5300 Bonn 1. Germany

b Department qf Mathematics. Friedrich Schiller University of Jena. O-6900 Jena, Germany

Received 31 May 1990; revised 21 January 1993

Abstract

We present efficient parallel algorithms for the domination problem on strongly chordal
graphs and related problems, such as the set cover problem for a-acyclic hypergraphs and the
dominating clique problem for strongly chordal graphs. Moreover, we present an efficient
parallel algorithm which checks, for any chordal graph, whether it has a dominating clique.

0. Introduction

Chordal graphs are graphs where each cycle has an edge joining two vertices, that

are not neighbors in the cycle. Such an edge is called a chord. The DOMINATING SET

problem is to find, for any graph G = (V, E), a subset V’ of the vertex set of minimum

cardinality that dominates the whole vertex set, that means each vertex is in V’ or is

joined by an edge to a vertex of v’.

The DOMINATING SET problem is NP-complete even for chordal graphs [171. But for

so-called strongly chordal graphs, one can find a polynomial solution. An exact

definition will be given later.

Since many problems on chordal graphs such as recognizing chordal graphs,

finding an elimination ordering characterizing chordal graphs, finding a clique tree,

finding a minimum coloring and a maximum clique can be parallelized [27, 241, we

are interested in finding a parallel algorithm for the DOMINATING SET problem for

strongly chordal graphs. Farber introduced strongly chordal graphs as a natural

*Corresponding author. Present address: Basser Department of Computer Science, University of Sydney,
Australia.
1 Visiting the department of Computer Science of the University of Bonn in the Complexity Year of the
Department of Computer Science of the University of Bonn and the Max Planck Institute of Mathematics.
Present address: Department of Computer Science, Fernuniversitht Hagen.

0166-218X/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved
SSDI 0166-218X(93)E0058-7

262 E. Dahlhaus, P. Damaschke 1 Discrete Applied Mathematics 52 (1994) 261-273

subclass of chordal graphs which admits an efficient solution of the DOMINATING SET

problem. We also consider related problems, such as the existence of a dominating

clique and the computation of a minimum dominating clique.

A sequential algorithm for the computation of a minimum dominating clique has

been developed in [25].

Section 1 introduces the necessary notation and fundamental definitions.

Section 2 discusses the problem of the existence of a dominating clique in a chordal

graph. Damaschke et al. [121 gave a simple criterion for the existence of a dominating

clique in a chordal graph (the diameter is three) which also induces an O(n3)-processor

O(log n)-time parallel algorithm. Here we give an O(n + m) processor 0(log3 n) time

algorithm that constructs a dominating clique, if one exists.

Section 3 proves the equivalence of the DOMINATING SET problem and the minimum

dominating clique problem for strongly chordal graphs. Moreover, it will be proved

that both problems are equivalent to the problem of finding a minimum subset of the

hyperedge set that covers all vertices of a given /&acyclic hypergraph (the class of

B-acyclic hypergraphs corresponds to the class of maximal clique sets of strongly

chordal graphs). The last problem is called the COVER problem.

In Section 4 we present an efficient parallel algorithm for the COVER problem for

a-acyclic hypergraphs which induces also an efficient parallel algorithm for the

domination problems as defined above.

1. Notation and fundamental definitions

1.1. Notation from graph theory

A graph G = (V, E) consists of a vertex set V and an edge set E. Multiple edges and

loops are not allowed. The edge joining x and y is denoted by xy.

We say that x is a neighbor of y iff xy E E. The fill neighborhood of x is the set

{x} u {y: xy EE} consisting of x and all neighbors of x and is denoted by N(x).

A path is a sequence (x1 . . . XJ of distinct vertices such that XiXi+ 1 E E.
A cycle is a closed path, that means a sequence (x0 . . .xk_ 1xo) such that

X&i + 1 (mod k) E E.

A subgraph of (V, E) is a graph (V’, E’) such that V’ c V, E’ c E.
An induced subgraph is an edge-preserving subgraph, that means (V’, E’) is an

induced subgraph of (V,E) iff v’ c V and E’ = {xy~E:x,y~ V’}.
A graph (V, E) is chordal iff each cycle (x0 . . . xk- 1xo) of length greater than 3 has an

edge XixjEE, j - i # + 1 mod k (which joins vertices which are not neighbors in the

cycle). Sometimes they are also called triangulated or rigid circuit graphs. We remark

that this notion is equivalent to the nonexistence of an induced cycle of length greater

than 3.

A subset V’ of the vertex set V is complete iff all vertices of V’ are pairwise joined by

an edge.

E. Dahlhaus, P. Damaschke / Discrete Applied Mathematics 52 (1994) 261-273 263

An inclusion-maximal complete set is called a maximal clique.

A theorem of Dirac [14] says:

Theorem 1.1. A graph is chordal @each induced subgraph has a vertex whose neighbor-

hood is complete (such a vertex is called simplicial).

(V, H) is called a hypergraph iff H is a family of subsets of I’. Each h E H is also called

a hyperedge.
The dual hypergraph (I’, H)* of (I’, H) arises from (V, H), by interchanging hy-

peredges and vertices and reversing the element relation.

We are especially interested in hypergraphs of maximal cliques of a chordal graph.

We call a hypergraph (V, H) cc-acyclic, if there is a tree T with vertex set H (join tree),
such that for any x E V, the set {h E H: x E h} forms a subtree of T [4].

Independently Gavril [19] and Buneman [7] proved the following theorem.

Theorem 1.2. A graph is chordal iff it is the intersection

of a tree.

graph of vertices of subtrees

Moreover, one can prove the following results.

Theorem 1.3 (Gavril[19], Buneman [l] and Beeri et al. [4]). A graph is chordal @its

maximal cliques form an cc-acyclic hypergraph.

As a generalization of the notion of a path and a cycle for hypergraphs, we

introduce the notion of a B-path and a P-cycle for hypergraphs [15]:

A sequence (xOhOxIhI . . .xk_ Ihk_ 1x,) of vertices xi and hyperedges hi is called

aP-pathiffxiEhinhi_1 butx$hjforj#i,i-1.

A sequence (xoho . . . xk_ 1 hk- 1x0) is a P-cycle iff xi E hi n hi_ 1 crnod k), but for j # i,

i - 1, we have xi ~ hj
A hypergraph is f3-acyclic iff it does not have a P-cycle.

Obviously the dual hypergraph of a @-acyclic hypergraph is P-acyclic.

A graph whose maximal cliques form a fi-acyclic hypergraph is called strongly

chordal. This definition of strongly chordal graphs is different from the original

definition of Farber [161, but equivalent to it [131 (see also [3]). We remark that every

strongly chordal graph is chordal but not vice versa. A simple known counterexample

is the so-called 3-trampoline (Fig. 1). That is the graph consisting of a complete set of

Fig. 1. A trampoline

264 E. Dahlhaus, P. Damaschke / Discrete Applied Mathematics 52 (1994) 261-273

size 3 and an independent set of size 3 and an alternating cycle between the indepen-

dent set and the complete set (of length 6).

Farber [163 defined strongly chordal graphs by strongly perfect elimination order-

ings: A graph G = (I’, E) is strongly chordal iff there is an ordering < on the vertices

of V such that

(1) for xy, xz E E, such that x < y and x < z, also yz E E,

(2) for xiy,, x2y1, x1x2 E E, such that x1 < yi and x2 < y,, we have y1y2 E E.

We remark that a graph is chordal iff it has an ordering satisfying 1. In that case

< is called a perfect elimination ordering [28].

Now we present the optimization problems considered in this paper:

(1) DOMINATING SET: For any graph G = (I’, E), find a subset V’ of V of minimum

cardinality which dominates V, that means

I/= V’u {y:3xe I/’ such that xyeE}. (*)

(2) DOMINATING CLIQUE: Find for a graph (I’, E) a complete subset V’ of minimum

cardinality which satisfies (*), if it exists.

(3) COVER: Find for a hypergraph X = (I’, H), a subset H’ of H with minimum

cardinality which covers V, that means

u h=V.
hen’

For any graph, the number of its vertices is denoted by n and the number of its

edges is denoted by m. We represent any hypergraph (V, H) as a bipartite graph

consisting of the vertex set Vu H and the edge set {(x, h)l x E V, h E H, x E h). In the

case of hypergraphs n is the number of vertices and hyperedges, and m is the number of

pairs (x, h) such that x E h.

I .2. Notations from complexity theory

The computation model is the concurrent read exclusive write parallel random

access machine (CREW-PRAM) [18].

It consists of possibly infinitely many processors and of an infinite number of

memory cells. Only a finite number of processors are active. Each processor can access

any memory cell. Two or more processors may read from the same memory cell

simultaneously, but two or more processors may not write into the same memory cell

simultaneously.

Arrays and pointers are represented in a CREW-PRAM as in a random access

machine (RAM) [2].

Graphs are represented as follows: The vertices are numbered by 1, n. The

directed edge set of G = (V, E) consists of the set {(x, y): xy E E} of ordered pairs. That

means each edge appears twice as an ordered pair. We assume that the directed edge

set is represented as a lexicographically ordered array as in [29]:

(x, y) appears before (x’, y’) iff y < y’ or (y = y’ and x < x’).

E. Dahlhaus, P. Damaschke / Discrete Applied Mathematics 52 (1994) 261-273 265

We assume that each arithmetic operation needs one processor and one time unit.

The following known parallel complexity results are used in this paper:

(1) One processor can check for any x and y, whether xy E E in O(log n) time, by

binary search.

(2) The connected components of a graph can be computed in O(log3” n) time

using O(n + m) processors [22] (earlier O(log’ n) time algorithms are due to [29,20]).

(3) For any connected graph, a spanning tree can be computed in O(log’ n) time

using O(n + m) processors [30].

1.2.1. Parallel tree contraction
For any rooted directed tree T, we define a chain of T to be an inclusion-maximal

set of consecutive vertices with degree at most two.

The tree contraction paradigm consists of the repeated application of the two

operations rake and compress (compare [26]):

(1) rake: delete all leaves;

(2) compress: halve the chains.

Proposition 1.4 [l]. After O(log n) rake and contract operations the tree T can be

contracted to one vertex. The number of processors necessary to execute the tree

contraction in parallel in O(log n) time is bounded by O(n/log n).

2. The existence problem of a dominating clique

We describe an algorithm that checks for any chordal graph, whether there is

a maximal clique that dominates all the vertices. In this section we assume that

G = (V, E) is chordal.

We start with the development of an algorithm which is very fast in parallel but not

processor efficient.

Theorem 2.1. A maximal clique dominates all vertices of a chordal graph G ifs it has

a nonempty intersection with all other maximal cliques.

Proof. + : Suppose that the maximal clique c dominates all vertices. Assume that c’ is

another maximal clique and that c n c’ = 0. Then each x’ EC’ has a neighbor x E c.

Then for x’, X”E c’, N(x’) n c and N(x”) n c are comparable by inclusion. Otherwise if

xx’ E E, yx” E E, y, x E c but x’y $ E, xx” 4 E, then xx’x”yx form a chordless cycle. This

is a contradiction.

But each x’ E c’ has a neighbor in c. Let x’ be a vertex such that N(x’) n c is minimal.

Then c’ u (N(x’) n c) is complete (since N(x”) n c contains N(x’) n c, for each x” E c’).

This is a contradiction to the assumption that c’ is a maximal clique.

266 E. Dahlhaus, P. Damaschke 1 Discrete Applied Mathematics 52 (1994) 261-273

-=: If each maximal clique c’ intersects c, then each vertex of c’ is adjacent to

a vertex of c. 0

Using Theorem 2.1 we can conclude the following.

Theorem 2.2. The existence of a (not necessarily minimum) dominating clique can be

decided, for any chordal graph, in O(log n) time by O(n3) processors where n is the
number of vertices. Moreover, a maximal clique which is dominating can be computed in

0(log2 n) time using 0(n3) processors.

Proof. The existence of a dominating clique can be ascertained, by checking whether

the diameter of the given chordal graph is at most three [12]. The set of pairs of

vertices of distance at most three can be computed in O(log n) time using O(nm)

processors, by multiplying the adjacency matrix three times by itself.

To construct a dominating maximal clique we proceed as follows:

(1) We can compute the set of maximal cliques, by the algorithm of Ho and Lee

[21], in O(log2 n) time and with O(n3) processors. Here n is the number of vertices.

(2) Test, for each pair of maximal cliques, whether it has a nonempty intersection.

This can be done straightforwardly in O(log n) time and with O(n3) processors

(remember that the number of maximal cliques is bounded by n).
(3) Test if there is a maximal clique which has a nonempty intersection to each

other maximal clique. This can be done straightforwardly in O(log n) time and O(n’)
processors (remember that each maximal clique is determined by its smallest vertex

with respect to the perfect elimination ordering and therefore the number of maximal

cliques is bounded by n). 0

Remark 2.3. In [S] there is an O(log n) time algorithm using O(n3) processors which

computes all maximal cliques of a chordal graph. Therefore we can construct a domi-

nating clique in O(log n) time and 0(n3) processors.

We present a more processor-efficient parallel algorithm.

Using the fact that a perfect elimination ordering can be found by O(n + m)

processors in O(log3 n) time [24], we can show the following more efficient result:

Theorem 2.4. The decision problem for the existence of a (not necessarily minimum)
dominating clique for chordal graphs and the construction problem for it can be solved by
O(n + m) processors in O(log3 n) time.

Proof. We proceed as follows:

Step 1: Compute a perfect elimination ordering < for the chordal graph G (repres-

ented by an enumeration) [24].

Step 2: For each x E I’, we select the < -greatest neighbor F(x) with respect to the

perfect elimination ordering < . Let v be the <-smallest F(x).

E. Dahlhaus, P. Damaschke / Discrete Applied Mathematics 52 (1994) 261-273 261

Lemma 2.5. The complete set N(v) n (yl y 2 v} is dominating ij” a dominating complete
set exists.

Proof. Suppose C is a dominating complete set and u is the smallest element of C with

respect to the perfect elimination ordering < . Since the set of greater neighbors of u is

complete, C is a subset of C’ = N(u) n {ylu < y}. By the definition of a perfect

elimination ordering, C’ is also complete, and since C c C’ is a dominating complete

set, C’ is also a dominating complete set.

We choose a dominating complete set C whose smallest member u is maximal with

respect to < among all complete sets C.

We first claim that u is of the form F(x): Suppose this is not the case. Then for all

x E V, F(x) # u. We then construct a dominating clique with larger smallest vertex.

Suppose uy E E and y > U. Then y E C’\{u}. Suppose uy E E and y < u. Then F(y) > u,
and since < is a perfect elimination ordering and yF(y) and yu are edges in E,

uF(y)~ E. Therefore F(y) E C’\{u}. S’ mce u is a neighbor of all vertices in C’\{u},

C’\{U} is a dominating complete set and its smallest element is greater that U. This is

a contradiction to the assumption that u is as large as possible.

It remains to prove that u is the <-minimum vertex of the form F(x). Otherwise

there is a vertex F(x) < U, and since F(x) is the largest neighbor of x, x is not

a neighbor of any vertex in C’ = N(U) n {y (y 3 u}. 0

Proof of Theorem 2.4 (continued).
Step 3: Test whether N(v) n {yJ y 2 v} is dominating; if this is true, output

N(v) A (yl y 3 v} as the dominating complete set. This can be done in O(log n) time by

O(n + m) processors as follows:

(a) For each xy with x E N (v) n {y(y > u), set y to be in DOM. This can be done by

O(m) processors in O(log n) time using standard methods (in constant time by

a CRCW-PRAM).

(b) For each x E N (v) n (y(y > v}, set x to be in DOM. This can be done in o(log n)

time by O(n) processors using standard methods.

(c) If all x E Vare in DOM, set N(v) n (y) y 3 u} to be dominating. This step is done

in O(log n) time by O(n) processors.

This completes the proof of Theorem 2.4. 0

3. Equivalence of domination problems

We shall prove the following theorem.

Theorem 3.1. The problems
(1) DOMINATING SErfor strongly chordal graphs and DOMINATING CuQuE for strongly

chordal graphs are reducible to COVER in O(log n) time using O(n + m) processors,

provided a strongly perfect elimination ordering is known.

268 E. Dahlhaus, P. Damaschke 1 Discrete Applied Mathematics 52 (1994) 261-273

(2) COVER for /3-acyclic hypergraphs is reducible to DOMINATING CLIQUE and

DOMINATING SErfor strongly chordal graphs in O(log n) time using O(n*) processors.
(3) DOMINATING CLrQuE for strongly chordal graphs is reducible to DOMINATING SET

for strongly chordal graphs in O(log n) time using O(n + m) processors provided a per-

fect elimination ordering is known and a dominating complete set exists.

The proof of Theorem 3.1 is carried out as follows. First we reduce DOMINATING

SET to COVER. Then we prove the reducibility of DOMINATING CLIQUE to DOMINATING

SET. Lastly we reduce COVER to DOMINATING CLIQUE.

DOMINATING SET for strongly chordal graphs is reducible to the COVER problem for

j&acyclic graphs using the following result of Brouwer et al. [S]:

Proposition 3.2. For any strongly chordal graph G = (V, E)

~~:=(V,{N(x): XEV)),

is a /?-acyclic hypergraph.

Proof of Theorem 3.1.

First we reduce DOMINATING SET to COVER: To get a minimum dominating set for

a strongly chordal graph, we only have to get a minimum cover for #b : = (V, {N(x):

XE V}).

Now we reduce DOMINATING CLIQUE to DOMINATING SET: By [121, we know in case

that a dominating clique exists that the minimum dominating clique is also a min-

imum dominating set. To compute a minimum dominating clique, we have to transfer

a minimum dominating set D into a minimum dominating clique of the same

cardinality.

We first compute a dominating clique DC as in the proof of Theorem 2.4. Note that

DC is not necessarily of minimum cardinality and also not necessarily a maximal

clique. If we know a strongly perfect elimination ordering we can compute DC by

O(n + m) processors in O(log n) time. If not, we need 0(log3 n) time using Klein’s

algorithm for the construction of a perfect elimination ordering [24]. Knowing

a perfect elimination ordering, we also can determine the set of maximal cliques in

O(log n) time using O(n + m) processors [24]. For each maximal clique C’, we count

the number of x E C’ n DC in O(log n) time using O(n + m) processors. Note that there

are at most m + n pairs (x, C’), such that x E C’. This follows immediately from the fact

that x E C’ iff x is the smallest vertex of C’ or x is a neighbor of the smallest vertex of

C’. We select a maximal clique C, such that DC E C (that means we test whether

\CnDCI = IDCl).
Now we assume that a minimum dominating set D is given. We have to transfer

D to a minimum dominating complete set, say D’, which is a subset of the maximal

clique C. We start with two remarks.

E. Dahlhaus, P. Damaschke / Discrete Applied Mathematics 52 (1994) 261-273 269

Remark 3.3. Let x $ C and y 4 C. Let xy E E. Then N(x) n C and N(y) n C are compar-

able with respect to inclusion: Otherwise there would exist x’~N(x) n C\N(y) and

y’ E N(y) n C\N(x). (x, y, y’, x’, x) would form a chordless cycle of length four.

Remark 3.4. Let x, y, z $ C and xy, xz E E. Let N(y) n C 5 N(x) n C and N(z) n C

s N(x) n C. Then N(y) n C and N(z) n C are comparable with respect to inclusion.

To prove this remark, we make use of the fact that the given graph is strongly

chordal. Assume that N(y) n C and N(z) n C are not comparable with respect to

inclusion. Then we find y’ E N(y) n C\N(z) and z’ E N(z) n C\N(y). Since C is a maxi-

mal clique, we find a vertex w E C\N(x). Note that w is also not in the neighborhood of

y and z. But they {y, z, w, y’, z’} from a trampoline with T, = (y, z, w} as independent

set and T2 = {x, y’, z’} as complete set. The alternating cycle between TI and T2 is
(y,x,z,z’, w, y’, y). This is a contradiction to the assumption that the given graph is

strongly chordal.

Note that it was essential that C be a maximal clique to prove Remark 3.4.

We continue the description of the algorithm as follows: For each x E D\C, we select

a vertex 2 EN(X) with a minimal number of neighbors in C and select a vertex

x’ E N(f) n C. This can be done in O(log n) time using O(n + m) processors, by

counting the neighbors in C, for each v$ C, selecting, for each XE D, the vertex

2 afterwards, and selecting the neighbor x’ of 2 in C at the end.

For each vertex in x E D n C, we set x’ = x.

We can replace x by x’ and (D u {x’})\{x} is still dominating: Consider a vertex

y such that xy E E. If y E C then y = x’ or x’y E E, because also x’ is in the maximal

clique C.

We can assume that y$ C. Note that, by Remark 3.3, N(x) n C and N(y) n C are

comparable with respect to inclusion. Also N(2) n C c N(x) n C. If N(x) n C

E N(y)n C then trivially N(i)n C c N(y)n C. If N(y)n C E N(x)n C then, by

Remark 3.4, N(2) n C E N(y) n C. Therefore x’ E N(y) and x’ is a neighbor of y. This

statement is true for any neighbor y of x. Therefore (D\(x)) u {x’} is a dominating set.

Replacing all x E D\C by x’, we get the result that D’ = {x’ Ix E D} is dominating.

Since each x’ is in C, D’ is a dominating clique. Clearly 1 D’I < 1 DJ. Since D is

a minimum dominating set, D’ is a minimum dominating clique.

Lastly we haue to reduce COVER to DOMINATING CLIQUE: That can be done, by

identifying the set H of hyperedges with a complete set, identifying the set Vof vertices

of the P-acyclic hypergraph with an independent set, and joining a hyperedge h and

a vertex x by an edge iff x E h. This graph GcV,H) forms a strongly chordal graph,

because its maximal clique set consists of a clique, containing all hEH and the

maximal cliques C, = {x} u (h EH: XE h} with x E V. Since the dual hypergraph of

a p-acyclic hypergraph is P-acyclic, the maximal cliques C, together with H form

a B-acyclic hypergraph, and therefore G(,,,, is strongly chordal.

A minimum covering set of hyperedges corresponds to a minimum dominating clique.

This completes the proof of Theorems 3.1. 0

270 E. Dahlhaus, P. Damaschke 1 Discrete Applied Mathematics 52 (1994) 261-273

4. An efficient parallel algorithm for the COVER problem for u-acyclic hypergraphs

Since domination problems above are mutually equivalent, we need only address

the parallel complexity of one of them. We choose here the problem COVER. We

present an algorithm which works not only for fi-acyclic hypergraphs but, moreover,

for all a-acyclic hypergraphs. The algorithm is very much in the spirit of the minimum

clique cover algorithm for chordal graphs of Klein [24].

Theorem 4.1. COVER restricted to a-acyclic hypergraphs can be solved in O(log’ n) time

using O(n + m) processors, provided an underlying join tree is known.

Remark 4.2. By [8], a perfect elimination ordering and a join tree for an a-acyclic

hypergraph can be computed in 0(log3 n) time using O(n + m) processors.

Therefore COVER can be solved within the same processor and time bounds, if an

a-acyclic hypergraph is given.

Proof of Theorem 4.1. We proceed as follows:

Step 1: We compute an enumeration n of the hyperedges of X = (V, H) which

corresponds to an extension of the underlying join tree T to a total ordering, which we

call < . For example, the postorder enumeration is such an enumeration and can be

computed in O(log n) time using O(n) processors [30].

Step 2: For each vertex VE I’, let h, be the < -largest hyperedge that v belongs to.

That means h, is the root of the subtree of T with vertex set {h E H: v E h}.
Step 3: We sort the vertices v of V with respect to the ordering < of the hyperedges

h, obtaining an ordering i. One who is familiar with the connections to chordal

graphs, can easily verify that < is a perfect elimination ordering of the corresponding

chordal graph.

To compute h, for all v E V simultaneously, we have to compute max, (h: v E h)
for all VE V simultaneously. For each UE I’, this can be done in O(log n) time using

1 {h E H: v E h} 1 processors. Recall that m is the number of pairs (x, h) such that x E h.

Then for all v simultaneously, h, can be computed in O(log n) time using O(n + m)
processors.

Before we continue, we state the following lemma.

Lemma 4.3. For all hyperedges h containing v, h n {u’\v < v’} c h,.

Proof. Consider any hyperedge h which contains v. Let v’ be a vertex in h satisfying

v < v’. If h, = h,. then v’ E h, and the Lemma is proved.

Assume now that this is not the case. Then h,, is not a vertex of the maximal subtree

T’ of T having h, as its root. Since v E h and h, is the root of {h’: v E h’}, h is in T’.

Therefore the unique path from h to h,. in T passes through h,. Since T,, = {h’: v’ E h’}

forms a subtree of T, all hyperedges on this unique path contain v’, and therefore also

v’eh,. 0

E. Dahlhaus, P. Damaschke / Discrete Applied Mathematics 52 (1994) 261-273 271

Corollary 4.4. v < w are in a common hyperedge ifs w E h,.

Denote by Gx = GcV,Hj the graph consisting of the vertex set V and the edge set

E = {xy)i’hEH, xeh and yeh}.

By [4], the graph G, is chordal.

Corollary 4.5. Gx = (V, {xy 1 x 6 h, or y E h,}).

Corollary 4.6. < is a perfect elimination ordering of Gx.

Proof of Theorem 4.1 (Continued).

Step 4. To solve COVER we nearly can imitate the algorithm of P. Klein for the

minimum clique cover problem. We only have to take care that the number of

processors is bounded by O(n + m).

Step 4.1: We compute the following tree ? with the parent function P, called the

elimination tree:

P(v) = min{w: vweE, u< w} = min{w: w~h”, v<w}.
< <

This can be done in O(log n) time using O(n + m) processors as follows:

(1) For each h E H, sort the vertices in h with respect to i.

(2) P(v) is the successor of u with respect to the sorting of h,.

Step 4.2: We compute, for each UE V, the vertex m(v), which is the < minimum

vertex w, such that v < w, VW E E, and VP(W) $ E.

We set b(v) = P(m(v)).

To compute m(v) in the claimed time and processor bounds, we first observe that

m(v)=min{wEh,lv<w, P(w)$h,}.
<

To compute m(v), we first compute, for each h, the set M, of vertices u E h such that

P(v) +! h. This can be done in O(log n) time using O(n + m) processors.

To compute m(v) we compute the smallest WE h, which is in M,,, and satisfies the

condition v 4 w. This can be done in O(log n) time using O(n + m) processors, for all

v E V simultaneously.

Step 4.3: Using the pointer function b computed in 4.2. and the elimination tree

? with parent function P, we compute the lexicographically first maximal independent

set, called X, of GS with respect to the perfect elimination ordering <. We can

proceed as in [24].

l Each leaf of F is set to be in X.

l We call an inclusion-maximal set of consecutive vertices of F of degree < 2

a chain. We select chains ending at a leaf, called leaf chains.

212 E. Dahlhaus, P. Damaschke / Discrete Applied Mathematics 52 (1994) 261-273

l We compute the vertices of X in a leaf chain: Starting with the leaves we set b(v) E X.

This can be done, by pointer jump techniques, in O(log n) time using O(n) processors.

l We erase all vertices u which are adjacent to some x E X in G,. That means, for

each x E X, we erase all vertices in h,. This can be done in O(log n) time using O(n + m)

processors.

l For the remaining vertices, we compute a new elimination tree: For any

nonerased vertex x, we set P(x) as the next ancestor of x, which is not erased. This can

be done in logarithmic time using O(n + m) processors.

We repeat all these steps in 4.3. until the vertex set is empty. We need at most

O(log n) repetitions of these steps [24]. Therefore for the computation of X, we need

O(n + m) processors and O(log2 n) time.

Step 4.4. We set MZN = (II,: x E X} as the minimum cover. One can easily see that

it can be computed in O(log n) time using O(n + m) processors.

We can see that MZN is a minimum cover of Z, as follows: First each hyperedge of

%’ is contained in some maximal clique of G,. Secondly, each maximal clique of G% is

some hyperedge of Z’. Therefore any (minimum) covering of V by maximal cliques of

G* defines a (minimum) covering by hyperedges. By [27], we have to take, for each

x E X, some maximal clique C, containing all neighbors of x at least as large as x with

respect to i, to get a minimum covering by maximal cliques. By construction, all

vertices are covered by some h, such that x E X. Therefore MIN is a minimum cover

of V by hyperedges of s.

This completes the proof of Theorem 4.1. 0

Corollary 4.7. DOMINATING SET and DOMINATING CLIQUE restricted to strongly chordal
graphs can be solved by O(n + m) processors in 0(log3 n) time.

5. Conclusion

We have given parallel algorithms for the dominating set problem and the dominat-

ing clique problem on strongly chordal graphs, such that the processor-time-product

is optimal up to a polylogarithmic factor. For chordal graphs, we gave a parallel

algorithm for testing the existence of a dominating clique. It is also of interest to

parallelize the problem of minimum Steiner trees for strongly chordal graphs, which

also works in linear time [32]. A parallel algorithm to compute a minimum Steiner

tree has been developed recently [9].

Acknowledgement

We are grateful to an anonymous referee who indicated the connections between

the COVER problem and the minimum clique cover problem. We would like to thank

Jeffrey Kingston helping us to improve our English language.

E. Dahthaus, P. Damaschke / Discrete Applied Mathematics 52 (1994) 261-273 273

References

[l] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick and T. Przyticka, A simple parallel tree contraction

algorithm, J. Algorithms 10 (1989) 287-302.

[2] A. Aho, J. Hopcroft and J. Ullman, Data Structures and Algorithms (Addison-Wesley, Reading, MA, 1983).

[S] H. Bandelt and E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory Ser. B 51(1991) 3445.

[4] C. Beeri, R. Fagin, D. Maier and M. Yannakakis, On the desirability of acyclic database schemes,
J. ACM 30 (1983) 479-513.

[S] A. Brouwer, P. Duchet and A. Schrijver, Graphs, whose neighborhood has no special cycles, Discrete

Math. 47 (1983) 1777182.

[6] A. Brouwer and A. Kolen, A super-balanced hypergraph has a nest-point, Rept. ZW 146/80,

Mathematisch Centrum, Amsterdam.

[7] P. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974) 205-212.

[S] E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf parallele Algorithmen, Habilitation

Thesis, University of Bonn (1991).

[9] E. Dahlhaus, A parallel algorithm for computing Steiner trees in strongly chordal graphs, to appear.

[IO] E. Dahlhaus and M. Karpinski, Fast parallel computation of perfect and strongly perfect elimination

schemes, Forschungsbericht Nr. 8513-(X, Universitat Bonn (1987).

[11] E. Dahlhaus and M. Karpinski, The matching problem for strongly chordal graphs is in NC,

Forschungsbericht Nr. 8555CS, Universitat Bonn (1987).

[12] P. Damaschke, D. Kratsch and A. Lubiv, Dominating cliques in chordal graphs, Manuscript (1989).

[13] A. D’Atri and Moscarini, On hypergraph acyclicity and graph chordality, Rept. IASI-CNR R (1986)
1141 G. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76.

[15] R. Fagin, Degrees of acyclicity and relational database schemes, J. ACM 30 (1983) 514550.

[16] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189.

[17] M. Farber, Domination, independent domination and duality in strongly chordal graphs, Discrete

Appl. Math. 7 (1984) 115-130.

[lS] S. Fortune and J. Wyllie, Parallelism in random access machines, in: Proc. 10th ACM Symp. on

Theory of Computing (1978) 114-l 18.

[19] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin.

Theory Ser. B 16 (1974) 47-56.

[20] D. Hirschberg, A. Chandra and D. Sarwate, Computing connected components on parallel com-

puters, Comm. ACM 22 (1979) 461464.

[21] C.W. Ho and R.C.T. Lee, Efficient parallel algorithms for finding maximal cliques, clique trees, and
minimum coloring on chordal graphs, Inform. Process. Lett. 28 (1988) 301-309.

[22] D. Johnson and P. Metaxas, Connected components in 0(logI V()t3”’ parallel time for the CREW-

PRAM, in: Proc. 32nd Symp. on Foundations of Computer Science (1991) 6888697.

[23] R. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, J. van Leeuwen ed.,

Handbook of Theoretical Computer Science (Elsevier, Amsterdam, 1990) 871-941.

[24] P. Klein, Efficient parallel algorithms for chordal graphs, in: Proc. 29th Symp. on Foundation of

Computer Science (1988) 150-161.

[25] D. Kratsch, A linear time algorithm for the minimum dominating clique problem on strongly chordal

graphs, Forschungsergebnisse der Friedrich-Schiller-Universitat Jena, No 87/29 (1987).

[26] G. Miller and J. Reif, Parallel tree contraction in: Proc. 26th Symp. on Foundation of Computer
Science (1985) 4788489.

[27] J. Naor, M. Naor and A. Schliffer, Fast parallel algorithms for chordal graphs, SIAM J. Comput. 18

(1989) 3277349.

[28] D. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (1970) 597--609.

[29] Y. Shiloach and U. Vishkin, An O(1og n) parallel connectivity algorithm, J. Algorithms 3 (1982) 57-67.

[30] R. Tarjan and U. Vishkin, Finding biconnected components in logarithmic parallel time, SIAM J.
Comput. 14 (1985) 862-874.

[31] U. Vishkin, Implementation of simultaneous memory address access in models that forbid it, J.
Algorithms 4 (1983) 45-50.

[32] K. White, M. Farber and W. Pulleyblank, Steiner trees, connected domination, and strongly chordal
graphs, Networks 15 (1985) 109-124.

