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0. Introduction :nd preliminaries

This paper was initiated by considering Michael Barr’s conjecture that commu-
tative regular rings form the equational completion of (i.e., are the resuit of ap-
plying structure semantics (see [S] and [6]) to) the category of products of fields
and ring homomorphisms. This is shown to be true and also that strongly regular
rings form the equational completion of products of skew fields. In the process we
find a canonical way of representing a strongly regular ring with unit as an equalizer
of maps between products of skew fields. A close look at this representation shows
that strongly regular rings with unit are coalgebras under the category K of products
of fields and “coordinated™ unitary ring homomorphisms. The proof shows that the
category of sheaves of skew fields over compact Hauvsdorff spaces is cotripleable
under X . Incidentally, X is tripleable over sets, see [S]. The Appelgate—Tierney
iterated cotriple construction (see [1]) starting with the left adjoint of the forgetful
functor from ‘X to Rings arrives at strongly regular rings with unit after two stages.

The last two sections of this paper contain some somments about equational
completions and describe the free regular ring generated by a given ring (in the com-
mutative case).

]

0.1. Terminology and preliminary remarks

(1) In any ring R, we define s to be the semi-inverse of r if r = r2s, s = s2r and
rs = sr. It is easily shown (see [5]) that semi-inverses are unique and preserved by
homomorphisms. We use 7 to denote the semi-inverse of r. Occassionally, for a
longer expression such as 1 — x we use (1 — x)~ to denote the semi-inverse.

(2) The word ideal means two-sided ideal. However, for strongly re.gular rings
every left or right ideal is two-sided.

(3) The word map means *“morphism in the appropnate category™.

(4) In a topological space a subset is clopen if it is both closed and open. It is
well known that a compact Hausdorff space is totally disconnected iff it has a base
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of clopen sets. Also, the quotient of a compact Hausdorff space by the relation of
“being in the same component” is Hausdorff and totally disconnected.

(5) A ring R is strongly regular iff for every a € R there exists an x witha = alx.
This and other characterizations are given in [2]. Some known properties of strongly
regular rings are listed below and for convenience a proof is sketched.

0.2. Proposition. If R is a strongly regular ring, then:
(1) every nilpotent is 0;
(2)ab=0iffba=0,
(3) every idempotent is central,,
(4) if a = a®x, then ax = xa is idempotent;
(5) every element has a semi-inverse,
(6) R is embeddable in a product of skew fields.

Proof. (1) If 2 = a2x, then a = a"* x" for all n,

(2) If ab = 0, then (ba)2 = 0.

(3) Let e2 = ¢. Then (exe — ex)e =0, so e(exe — ex) = 0 or exe = ex. Similarly
exe = xe.

(4)ad(x — xax) =0, so (x — xax)a? =0, so xa(a — xa2) =0, so (a — xa¥)xa =0
oraxa = xa?, so (ax — xa)a =0 or a(ax — xa) = 0 or a = axa = xa2. So ax = xa’x = xa.

(5) Let a = a2x. Then x2q is the semi-inverse of a.

(6) Givena € R, find a maximal ideal not containing az. J

0.3. Corollary. The strongly regular rings are algebraic over sets. The notions of prime
ideal, primitive ideal, maximal ideal, and maximal left (or right) ideal coincide for such
rings. Moreover, every left or right ideal is two-sided,

1. Canonical representation with limit maps

1.1. Notation and construction. In what follows, R denotes a strongly regular ring

with unit. We let {M | x € X} be a one-to-one indexing of the maximal ideals of R.
For eachr € R we let

Zr)={xex lreM }, arNy=X>2(r).

(We think of Z(r) and (\r) as the “zero-set” and “cozero-set” of 7.) The family
{Z(r) ir € R} is a base for the closed sets of the spec topology on X. Since
C(r)=2Z(1 —rr) and Z(r) = C(1 — r7), we see that {Z(r)} is a clopen base. Also, the
spec topology is compact, Hausdorff and totally disconnected. [We write X = spec R
even if R is not commutative.]

Foreachx € X, let K, =R/M, and let ¢, : R - K, be the quotient map. We de-
fine PA(R) to be n{K :x € X}. In the obvious way we identify R as a subring of P(R).
That is, if p, : P(R) - K, is the projection map, then PR =q,.
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Incidentally, P can obviously be regarded as a functor on the category R of
strongly regular rings with unit. To see this,letz: R > S be in“R, and le
{M, | x€ X} be the maxxmal ideals of R and let {N | y € Y} be those ot S. For
eachy €7, note that ¢~ (Ny) is a prime, hence (by 0 3) maximal, ideal of R, so
‘1(Ny) =M, for aunique x. Let 1, : R/M, - §/N,, be the induced map. Then
) : AR) ->P(S) is defined so that Py Pt)y=t 'yDx-
IffEPR), thenZ(f)={xIpf= 0} Clearly this extends the Z(r) notation for
r € R. However, if f ¢ R, then Z( ) need not be open or closed. ((f) is the com-
plement of Z(f).
We let BX denote the set of ultrafilters on X. [Thus X can be regarded as the
Stone—Cech compactification of X when X is given the discrete topology.] For
each U € X we define

M, ={feEPR)IZ(f)E U}, Ky =PR)M,, .
Let qi; : P(R) = K, be the quotient map. Clearly we have
PR =Tk, 1vepxy.

We let py; : P2(R) - K, be the projection.

We do not identify P(R) as a subring of P(R) but rather let 5 : A(R) = PX(R) be
the canonical injection (i.e., for which p;;n = q; for all U € §X).

There is another “reasonable” map from P(R) to PX(R). For each U € X, note
that M;; N R is a maximal ideal of R. It is readily seen that My; N R = M,, where
x =lim U in the spec topology. By the first isomorphism theorem there exists a
map Ay : K, = Ky, for which A\yyq, =qy IR Welet \ : AR) - r'2(R) be defined by
the equations py/A = A, (where x = lim U). The maps {Ay} are called the limit
maps for R.

1.2. Comment. As shown in the next section, P can be regarded as the left adjoint
to an appropriate forgetful functor. Therefore P can be thought of as part of a triple
on the category of strongly regular rings with unit. In this context, n and A would
be denoted by npp and PA(ng), respectively.

1.3. Theorem. R is the equalizer of nand \. That is, for f € P(R) we have f € R iff
() = M) iff qu(f) = Ny P (f) for all U € 8X (in the last equation it is implicit
that x = lim U in order for the composition \yPy to make sense).

Proof. We define f € P(R) to be continuous if q (1) = A\yP,(f) for all UEBX (it
is understood that x must be lim U in this kir.d of equation). Clearly every r ER is
continuous and we must prove the converse, viz. that every continuous fis in R.
We proceed by a series of lemmas. (The term continuous can be given a topological
context, see Remark 1.9.)

1.4. Lemma. If f is continuous, then Z( f) is a closed subset of X.
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Proof. Choose y in the closure of Z(f). This means that there exists U € X with
y =lim Uand Z(f) € U. Since Z(f) € U, we have q;;(f) =0 or )\UP}.(f)=00r
that Py(f ) =0 or that y € Z(f). (Note that A, is one-to-one as it is a unitary ring
homomorphism between skew fields.)

1.5. Lemma. If f is continuous, Z(f — r) is clopen for all r € R,

Proof. Clearly the continuous elements of A(R) form a strongly regular subring
which includes R. By 1.4, each Z(f — r) is closed. Also

XNUf-n=20-(-N(-17).

1.6. Lemma. For each A € X define x4 € P(R) in the obvious way (that is, p, x4 = |
ifx€Aand 0if x & A).Then x4 €R iff A is clopen.

Proof. Let A be clopen. Since A is open, it is a union of basic open sets of the form
Z(r) for r € R. Since A is compact, there exist ry, ry, ..., 7, for which 4 =UZ(r)).
Letr=ry..r, Thenx,=1-rF.

1.7. Lemma. Let f be continuous, and let r, s € R be given, Then there exists t € R
such that

2(f-1)22(f-nNUZ(f-5).

Proof. Let 4 =Z(f —r)\ Z(f - 5), and let B = Z(f - s). Choose t = x 47 + xps.

1.8. Corollary. Let f be continuous, and let 1, .., Iy € R be given. Then there exists
t € R such that Z(f - t) contains UZ(f - r;).

Proof of 1.3. Let f be continuous. For all x € X there exists r € R with x € Z(f - r).
By compactness there exist 7y, ..., 7, € R with X = UZ(f - r;}. By 1.8 there exists
tER with X =Z(f - t). This implies f=t€R. O

1.9. Remark. The limit maps {A;} can be used to define a topology on the disjoint
union UK, . For each U € §.X we define a U-section to consist of a set 4 € U and
FEN{K, | x € 4}. For each U-sectiou f it makes sense to discuss g HNEKy.
Also the “range” of U-section can be regarded as a subset of UK.

Given b €K, and § & UK, we say that b is in the closure of S if there exists
U € X with x =lim U and a U-section f whose range is in S and for which q v{)=0,b).
Then the projection UK, - X is the sheaf constructed in [4]. The continuous sections
X = UK, correspond to the continuous members of A(R). We soon consider the re-

lated questions of given an “arbitrary” set of {A\;;} when do they define a sheaf top-
ology? First we establish some notation.
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1.10. Notation for ultrafilters
For any set S we let 35 be the set of ultrafilters on S. For each 4 € S we let

1,={UEpS14€U}.

The family {/4 | 4 € S}is a clopen base for a compact Hausdorff topology on 8S.
(In fact this makes S the Stone—Cech compactification of S with the discrete
topology.) For each s € § we let (s) € S denote the “constant ultrafilter” con-
sisting of all 4 € S with s € A, If I1{K | s € S} is a product of fields, then S canon-
ically indexes the maximal ideals (as noted before). The spec topology on S triv-
ially coincides with the topology generated by {/, | 4 € §}. Note that g25 is the
set of ultrafilters on BS. For each Q € §2S we define £, €8S by

Q,={4Csli,€q}.

We note that 2 =lim £ in the {/; }-topology on fS.

In the case of a compact Hausdorff space X, there is another map from g2X to
X. First, for each family of € BX we define lim o to be {lim U | UE A }. Then
if © € §2X, we define 2, € X by

Q, = {limsd | A€ Q}.
It can be shown that (in the topology on X) one always has lim Q4 = lim Q,.

L.11. Problem. When is a set of maps {2} the limit maps of a strongly regular ring?
That is, let X be a compact, Hausdorff, totally disconnected space. Let T={K, |x€X}
be a product of a family of skew fields indexed by X. For each U € gX let M, be the
corresponding maximal ideal; let Ky, = T/My;, and let gy, : T - K, be the quotient
map. We also adopt the other notation defined above (such as p, and Z(f) for fET).
Whenever lim U = x, suppose that a unitary ring homomorphism Ay : K, = K is
given. When does there exist a strongly regular ring R such that T = P(R), specR = X
and such that {A;} are the limit maps of R as in Theorem 1.3?

Solution. Note that A(T) = I1{K, | U € 8.X}. Define two maps A,n : T A(T) so that
Pyn=qy for all Uand py X = Ayp, for all U. We define R to be the equalizer of A
and n. By 1.3 this is the only possible solv tion.

For each Q € p2X let M, be the corresponding maximal ideal of A(T), and let
qq : AT) -~ K g be the corresponding quotient map. Recall the above definitions
of 2 and Q,. Then it is readily shown that n"l(Mn) = Mﬂo’ so n induces a map
Mg : Kq = Kg for whichqqn =ngqgq . Similarly, A l(Mg) = M, , so \ induces
amaplg : K o, - K, for whichqg A = afq, We can now state the required con-
ditions on A.

1.12. Theorem. With the above notation, {\y}is the set of limit maps of R and
spec R = X and P(R) =T in the obvious way iff the following coherence conditions
are satisfied:
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(CC 1) If U = (x), the constant ultrafilter, then X, is the obvious isomorphism.
That is, A\ 3y Py = Qxy-
(CC 2) For all Q € %X, we have

Mg Ag, =g Aq, -

1.13. Comments.

(a) These two conditions are suggestive of the rules of behavior for the limits of
ultrafilters in a compact Hausdorff space. That is, the limit of a constant ultrafilter
must be the obvious one and a “limit of limits™ can be evaluated in two way's which
must coincide.

(b) The maps {A\;;} can be used to topologize UK, as a space over X. The coher-
ence conditions are what is needed to make this a sheaf of rings in the sense of [3}.

(c) A concise way of stating (CC 1) and (CC 2) is to simply state that Ais a
costructure map for the cotriple associated with P. See Section 2 for details.

Proof of 1.12. Let f € T. Then, by definition, f € R iff () = Nf) iff g ;(f) = A\ypLf)
for all U € BX. We proceed by a series of lemmas.

1.8. Lemma. For each A & X, let x , be defined in the obvious way (cf. 1.6). Then
X4 € R iff A is clopen.

Proof. The kind of argument used in (1.6) works.
1.15. Lemma. R has {\y} for the limit maps iff each p, maps R onto K .

Proof. Clearly it is necessary for each p, to map R onto K. Conversely, assume that
each p, is onto, and let M be a maximal ideal of R. Define F as the set of all clopen

A C X for which x4 & M. Clearly Fis closed under finite intersections, so by com-
pactness there exists x ENVF . As X is totally disconnected, one can show that x is
unique. It is readily seen that M is the kernel of p, | R. Also the spec topology on X
coincides with the given topology since they have the same clopen sets (by 1.14

and 1.6). Since p, maps R onto K, we see that P(R) = T, and since A/(p, [R)=(qy!R)
by choice of R we see that {A;;} are the limit maps.

1.16. Lemma. (CC 1) and (CC 2) are necessary.

Proof. Since every element of K, would have to be the image under p, of an element
of R (if R has the desired properties) one can verify (CC 1) and (CC 2) by diagram
chasing.

1.17. Lemma. Assume (CC 1) and (CC 2). Let x € X and b € K, be given. Then there
exists f€ T with p,(f) = b and q(f) = Ny (b) for all U with lim U = x.
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Proof. Let
N, = {f€T I Z(f)is a neighborhood of x}.

Let T, = T/N,,and lets: T - T, be the quotient map. T, is a strongly regular ring
to which we shall apply Theorem 1.3. We must find the maximal ideals and limit
maps for T,.

Clearly the maximal ideals of T, correspond to the maximai ideals of T which
contain N,. But N, € M, iff lim U = x. Let

L ={U€pX|limU=x}.
Then
AT )=T{K,IUEL,}.

Foreach UEL,,letqy : T, - K, be the associated quotient map for which
Jus =qy. Let py : AT,) = K; be the projection map. Lete : T, = (T, ) be the
natural embedding for which py,e =g;. Let t : A(T) - T, ) be determxned by
PUt py forall UE L, . It follows that es = 1.

The maximal ideals of P(T,) are indexed by BL, which can be easily identified
with the set of Q € §2X for which L, € Q. For each such £ there obviously exists
4 ATy~ K, for which gt = qq. It is readily verified that {nq, | L, € Q}
are the limit maps for T,.. Therefore by 1.3, in effect, we see that e is an isomorphism
between T, and the set of all f€ AT, ) for which @ (f) = ngpn (f) for all
QepX with L. e

Define m : K =T, ) by pym =\ for all U € L,. We claim that m factors
through e. It sufﬁces to show that §om = ngpg_m for all Q with L, € Q. Since
P, is onto, it suffices to show that g mp, = nﬂ%nompx. But mp, = tA (by com-
positions with 5, ) so

On the other hand,
NaPqo,MPx = Ngdq Py =AgAq Py

by using (CC 2). So it suffices to show that knqn =N\ An P, But L, €52, s0
{x}=1im L, € Q; which means that Q; = (x), therefore kn,px dq, by {CC1).

This venf es our claim, so there exists n : K, - T, for whichm = en. Choose
FET for which s(f) = n(b). Then, as is easily shown [ is the desired element.

Proof of 1.12. Assume (CC 1) and (CC 2). Let b € K be given. By 1.15 we must
find h €R with p,(h) = b. Let fE T be asin 1.17, so that p,(f) = b and gy (f)=2y(d)
whenever x = lim U. Let

= {U€BX L qy(f)# Ayp,(f), where y =1lim U} .
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If D is empty, then f € R, and we are finished. For each neighborhood N of x de-
fine

DN={Ue(DlNeU}.

We claim that there exists N for which Dy, is empty. Assume the contrary. Then
since Dy ND; 2 Dyny , there exists Q € B2X such that Dy € £ for all neighbor-
hoods N. Clearly

x =lim Q,=1im &, .
Therefore by choice of f we have
10, N=2q, @)  ag (N=2g ®).

It follows that gqm(f) = o Mf) (using the choice of f and (CC 2)). This means
that n(f) — M(f) is in Mg, so there exists s{ € Q such that for all U € o we have
pyn(f) =pyNf). In othier words, g/ (f) = Ayp, (), where y = lim U. This means
that A is disjoint from D hence from each Dy, , contradicting that s{€ & and
DyEQ.

Using the verified claim, we can readily find a clopen neighborhood N of x such
that whenever NE U, then qy(f) = Appy(f)(fory =lim ). Leth =xy f. Itis
clear thath€R and p, () =b. O

2. Coalgebras under products of skew fields

2.1. Notation and preliminary remarks

(1) A function f from the product set I1{S; | i €/} 10 thx product set
ﬂ{T’. | j €J}is said to be coordinated iff for each j € J the:e exists i = f*(j)€ I and
a mapf,- 8-> T, such that p; f= iji- The function f* : J = I is an index for f and is
uniquely determined if the sets involved are fields and if f is 2 unitary ring homomor-
phism. The maps f; are the coordinates of f.

(2) We let A be the category of products of skew fields and coordinated unitary
ring homomorphisms. This category is tripleable over sets {see [S], and note that
coordinated is equivalent to continuous in topology defined in (5]).

(3) Let ‘R be the category of strongly regular rings with unit. There is an obvious
forgetful functor AR and it has left adjoint P, the functor described in the be-
ginning of the previous section. We continue to use the notation X, M,, K, p,. g,
developed in that section. The front adjunction g - R = P(R) was previously called
the “obvious” embedding of R into P(R). Thus nR is defined by p, ng = q, for all
x € X. The maps called n and A ir Theorem 1.3 would be np(r)and P(ng) respec-
tively, in the present context.

(4) The above adjointness generates a cotriple (P, €,5) on X . If
K=1{K, | x€X}, then P(K)=I{Ky; | UEBX}, and e : P(K) = K is defined so
that py€ = p . The map & : P(K) - PXK) is defined as P(ny). Notice that we are
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gently abusing the language by letting “P” denote both a functor from K to X as
well as the restriction to a functor from X to K. For example ng : K > P(K) is a
unitary ring homomorphism but is not coordinated (unless X is finite).

2.1. Theorem. Let K = TI{K, | x € X'}. Let \ : K = P(K) be a morphism of K. Then
A is a costructure map for a coaigebra with respect to the cotriple (P, €, 8) iff the
coordinates of \ (that is, the induced maps \()) satisfy the coherence conditions of
Theorem 1.12. In this case \ defines a compact Hausdorff topology on X and a
topology on UK, makin* UK, = X a sheaf. Thus the category of sheaves of skew
fields (L.e., the stalks are skew fields) over compact Hausdorff spaces is cotripleable
under K. The full subcategory of sheaves with totally disconnected base is coreflec-
tive and is equivalent to ‘R .

[Note: We call a subcategory “coreflective” if its inclusion functor has a right
adjoint. Other authors call such a category “reflective”.]

Proof. That the property of A being a costructure map is equivalent to the coherence
condition of 1.12 is a matter of straightforward verification.

If A is such a map, then the index for A, namely A* : X = X is easily seen to be
a structure map for the triple 8. (One easily verifies that A*»* = (¥A)* and
[P(A)]* = B(A*).) This induces a compact Hausdorff topology on X. The “limit
maps” {Ay} then define a sheaf topology because of the arguments in the proof
of 1.12. For example Lemma 1.17 still holds and all but the last paragraph of the
proof of 1.12 still applies.

If X should be totally disconnected, then 1.12 says in effect that X is the coal-
gebra arising from a strongly regular ring. If X is not totally discor.nected, it can be
made totally disconnected by identifying components. If 4 € X is a component,
then the equalizer of X and n “restricted” to [1{K, | x € A} must be a skew field J 4.
(For J 4 is certainly strongly regular and any non-trivial idempotent would give rise
to a clopen subset of A.) It is a straightforward verification to show that I/, can
be given a compatible costructure map and coreflecis (K, A) into the full subcategory
of coalgebras with totally disconnected index setz. U

2.3. Comments

(1) The cotripleability of shzaves is suggestive of the cotripleability obtained by
van Osdol [3]. However, there the base space X was fixed. Here X can vary among
the compact Hausdorff spaces, but the stalks must all be skew fields. We should
point out that the morphisms between two such sheaves must be the cohomomor-
phism from p to q turns out to be a pair (f; h), where f : Y = X is continuous and
where for each y € Y there exists h,,, a unitary ring homomorphism from the field
p-1(f,) to the field ¢~1(»), such that continuous sections over cpen sets are pre-
servedv (Tha is, given U open in X and a continuous s : U - E with ps = 1, there
exists ¢ : f~}(U) - F defined by t(») = hy,sf(»). It is required that  be continuous.)
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(2) If we apply the iterated cotriple machine of [1] to the functor P: ‘R »>°K,
we arrive at sheaves of fields over compaci Hausdorff spaces and then at the core-
ﬂectwe subcategory of sheaves with totally disconnected base, which is isomorphic

Lo emalelon ¢dasceinndnn afbae turn ctanne
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3, On eguational completions

e .-v-—- il g da L

Theorem 1.3 easily enables us to conclude that the category of strongly regular
rings with unit is the equational completion of the category of products of skew fields
and all unitary ring homomorphisms. (Note that this is not the category X, as maps
are not required to be coordinated.) Clearly, commutative regular rings from the
equational completion of the subcategory of products of fields.

It is also easily shown that the equational completion of the category of products
of skew fields and ring homomorphisms is the category of strongly regular rings
(not necessarily with unit). This is so, roughly because every such ring is a filtered
union of strongly regular subrings with unit. The arguments are facilitated by using
the propositions below. In this section we use the definitions from [5}].

3.1. Pronsition. Let T be a triple over S (= Sets), and let WL be a full subcategory
of Ty-algebras, closed under finite products. Let I : W - S be the underlying set
functor, and let T be the equational structure of I. Assume that every T-subobject
of an object of ‘M is also a T-subobject. Then Ty is, in effect, a separating triple
for T. That is, we can augment M by adjoining all Ty-subobjects and all Ty-homo-
morphisms without affecting the equational structure.

(So using the augmented category T, would be a separating triple as defined in
[51)

Proof. The proof of [5, 1.3(a)l still enables us to deduce that Ty(n) is dense in T(n), so
for Hausdorff algebras the T-homomorphisms are simply the continuous T3-homo-
morphisms. For the augmented category, the topology is clearly discrete, so for

these models the T-homomorphisms are just the T(,-homomorphisms. O

3.2. Proposition Let ‘M be 1 full subcutegory of Tyy-algebras, closed under all prod-
ucts. Let T be the equational structure of ‘M. If every Ty-subobject of an object of

M is also a T-subobject, then ST is the Birkhoff subcategory of sTo generated
by M.

Proof. Since M is closed under the formation of all prc *ncts, it can be seen that
the limit topology on T'(n) is discrete, so all the Q-topologies are discrete. Since T},
is in effect a separating triple, it follows that the T-homomorphisms coincide with
the Tj-homomorphisms. The T-algebras are therefore a full subcategory of the Ty-
algebras and closed under subobjects and quotients in view of (5, 1.3(c), 1.6]. C]
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3.3. Examples

(1) Let M be the category of products of skew fields and unitary ring homomor-
phisms. Let T be the theory of strongly regular rings with unit. Then let R be a
Ty-subobject of a model [1K;. Let @ : P(R) - I1K; be the obvious projection. Then R
is the image under & of the equalizer of n and X of 1.3. Applying 3.2 we see that T,
is the equational structure of M.

(2) Let M’ have the same object as above and all ring homomorphisms for maps.
Let To be the theory of strongly regular rings (not necessarily with unit). Let 7"’ be
the equatlonal structure of M . Then T" is a subtheory of T (of the above example),
so T is finitary. Also every T)-subobject is a filtered union of Tj-subobjects, so is
a T'-subobject. Using 3.2 we can determine that To T.

4. Free objects in the commutative case

Using [6, Proposition 5], we know that the forgetful functor from regular com-
mutative rings to commutative rings has a left adjoint. Thus each commutstive
ring R can be thought of as “freely generating™ a regular commutative ring. In fact
it suffices to adjoin to R a semi-inverse for each element. First let us ¢bserve that
it suffices to consider commutative rings without non-zero nilpotents:

4.1. Lemma. A commutative ring R can be embedded in a regular commustative ring
iff R has no non-zero nilpotents.

Proof. If R has no non-zero nilpotents, then R can be embedded in a product of
integral domains, hence in a product of (quotient) fields. O

4.2. Propasition. Let R be a commutative ring with unit and no non-zero nilpotents.
Let R#® be the commutative ring obtained by adjoining a semi-inverse for each ele-
ment of R. Then R is a unitary subring of R¥, and R* is regular and is the regular
commutative ring freely generated by R

Proof. Notice that R¥ is generated by R U {7 | r € R} subject to the relations
r=r2F, ¥ =F2r, commutativity and that the existing operations on R still hold.
Using 4.1 it is readily shown that R is a unitary subring of R¥. A typical element
x € R¥ can be written as x =a,b, +... +a,b,. We must show that x has a semi-in-
verse. For each subset S € {1, 2, ..., n} we let

BS?-I]{biHE'L
ThenEs =[1{b; | i €S}. We define
E¢=BB N{(1-bb,1i¢ S}.
Then Eg is idempotent and EgE =0 for S # T. Also ZEg= 1 (which can be proved
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by induction on n). Finally we define

Notice that if x is “evaluated” in a field and S = {il b;# 0}, then by adding frac-
tions, x = AgBg. It can then be shown that xEg = AgBgEg. Lety = ZBsAgEy.
Using the above rules one can readily show thaty =x.[1
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