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I. INTRODUCTION 

This paper is essentially a continuation of [4], in which various forms of the 
question, “What groups can be embedded in the stability group of a suitable 
series (or normal system) of some group ?” were considered. Here we shall 
determine those locally finite groups which can be embedded in the stability 
group of some (not necessarily well-ordered) invariant series. 

For the most part we shall continue to use the notation of [4], some of 
which we now briefly recall. If Q is a totally ordered set, then by a series of 
type Q of a group G we shall mean a set 

b?.?, J,;i,ueq (1) 

of pairs of subgroups A0 , V, of G, such that 

(i) Vg U A, for all aE Q 

(ii) A, < Vi if U<T 

(iii) G - 1 = ,i;! (A0 - I’,), 

where G - 1 denotes the set of elements # I of G and A0 ~ I’, the set of 
elements of A, which do not lie in I’, . (I ) is an ascending series if Q is well- 
ordered, and a descending series if Q is inversely well-ordered. The series is 
said to be inau~iunt if each AU and lb is normal in G, and central if the 
commutator subgroup [An , G] is contained in I’, for all (T E Q. We refer to [4], 
section 1.2, for a fuller discussion of these terms. 

As in [4], we define the stability group of (I) to be 

r = n C/lvLPJ1 (2) 
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where --f Aut G and C’,(A,, 1;,) consists of all iy E z-l such that [,Y, .t “1 E I ;, 
wtienevcr .X E Au . If we are given a homomorphism <p of ;I group 11 into I’. 
then WC shall say that B stab&es (I) with respect to CT; usually it xsi11 be clcal 
which homomorphism is mcant and C+ xvi11 not bc explicitly mentioned. 
If e is (I, I), then \VC‘ shall sag. that H faitl~fully stabilizes (I ). ‘I’hc statenlent 
that JZ cu~~fuitk~ully stnbilize a series of a cc&n kind thus means that there 
is an isomorphism of ZI into the stability group of a suitable acries of this 
kind. 

As usual, when w-e speak of a cluss of proups K. WC shall ullder~t:nld that ti 
is closed under isomorphisms and contains all the groups of ot-dcr I. in this 
paper we shall principally bc conccrncd with the four classes of group.; 

‘1), 90, 2, xD. (3) 

2) and ‘g” arc defined by: =Z E ‘I) (respectively 2)“) iff .J can faithfully stabilize 
some invariant series (respcctivcly invariant descending series). of some group. 
‘Z and TD are correspondingly defined with “group” replaced by “abelian 
group”, the word “invariant” becoming redundant of course. \Te note the 
relations 

2” 5g 2 n gD --. 2). (4) 

iZ‘e- shall use throughout the notation for standard group classes and 
closure operations as set out in [4], section 1.3, (cf. also [3], p. 533). Briefly. 
the group classes we shall use are: 6 -mm finite, 3, finite m-groups (where ZD 
is always a set of primes), YI = abelian, (5 finitely-generated, ‘3; = nilpotent, 
‘li, nilpotent groups of class ‘-< /< (where k is an integer 0). Bs for closure 
operations, if K is any class of groups, then SK consists of all groups which can 
he embedded in some K-group, Q(1- consists of all homomorphic images of 
c-groups, LK is the class of locally-C groups, and HK is the class of residually-K 
groups. Finally, if 0 and T, arc two group classes, then CT is defined to be 
the class of all extensions of a K-group by a Z-group. 

(Note that our use of the symbol 1 differs from its use in [4], however.) 
With this notation, we have 

c -: KSC (5) 

where (5 is any of the classes (3) (cf. [4], Lemma 1). 
For the statement of our main results we require to define another group 

class. For any periodic group G and integer k x 0, let T,(G) em n G,, , 
where the intersection is taken over all sets CD consisting of k distinct primes. 
a’, as usual, denotes the set of primes not lying in a, and G,, is the subgroup 
generated by the a’-elements of G. Now if L is a normal subgroup of the 
periodic group G, then G,‘L is a zu-group ifT G,, < L; the class of periodic 
groups G satisfying n,(G) = I may therefore be naturally described as the 
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class of periodic residually k-prime groups. A finite residually one-prime 
group is clearly nilpotent, and this shows that the class of periodic residually 
one-prime groups is just I,(S n IX). \F’e shall need to show that, like this 
class, the class of periodic residually two-prime grouts is L-closed (Lemma 5). 
Our main results are stated in terms of the class 9;‘“) defined by: GE %“) 
iif G E 3 n 21% and n,(G) = 1. In Lemma 2, WC shall deduce some interesting 
alternative characterizations of the class Vi”’ from a recent paper of 
13. Huppert [.5]. 

Our main result is 

I'IIEORE~I 1. ~3 n g Lisy n z -: 1~91"'. 

Thus a locally finite group can faithfully stabilize an invariant series if 
and only if it can faithfully stabilize a series of some abelian group, and 
all such groups lie in a certain class of abelian-by-locally nilpotent groups. 
It does not seem to be known whether the first part of this assertion continues 
to hold without the restriction of local finiteness. But for finite groups we 
hare the follo\ving even stronger result. 

1'HEOREM 2. hery SP-group can faithfully stabilize a descending series 
of t!pe (W + n)* ?f some jFn&lygenevated abelian poup. 

Here w is the first infinite ordinal, II an integer -rO, and (w + n)* denotes 
the inverse ordered set of the ordered set Q + ?z. 

Theorems 1 and 2 together give the following result. 

COROLLARY. The intersection z&h is: of any of the classes (3) is just the 
class W). 

M’e should perhaps point out here that 91 f2) is not the whole of the class 
3 n 41%. To see this, consider the wreath product G = HI K, where 
H and K are cyclic groups of orders p and (II’ respectively, p, q and r being 
distinct primes. This is a metabelian group. If N =-m {x) and ol and /3 are 
elements of K of orders q and r respectively, then [s, oi, /3] is a nontrivial 
element of n,(G). Thus G $ W). 

The intersections with ~2 of the classes (3) do not all coincide. In fact 

1~3 n TJD --. ~5 n z (6) 

‘ro see this, it is only necessary to consider any perfect ~S~-group ‘1 + 1, 

for example, the one constructed by D.H. MacLain [7]. By Theorem I, 
.4 E 1. But -1 cannot lie in 21D, since all groups of this class have a descending 
series with abelian factors. (Cf. [4], section 2.6.) The precise relationship 
between the classes ~8 n ZD and ~3 n gD is not known, so far as we are 
aware. 
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The following special case of Theorem I is perhaps of interest in its own 
right. It will follow from our proof of Theorem 1. 

THEOREM 3. Suppose that the group G has an invariant series faithfully 
stabihzed by the locally jinite group A. If G is either torsion-free or locally 
finite, then A is locally nilpotent. 

In Section 2 we shall give some alternative characterizations of the class 
‘%r2) and obtain some propertics of this class which we shall need. In Section 3 
we prove Theorem 2 and show that every r.!lP-group lies in X. The remainder 
of the paper is devoted to the other half of Theorem 1, which consists in 
showing that 3 n $2, < 9P. 

2. FINITE Two-PRInIE GROUPS 

LEMMA I. Let A be a $nite group. FOY each prime p, let B, be the group 
generated by the p-elements of A,,. Then A E ‘W2) iff, for each prime p, B, E 41 
and for each I fx E B,, 3 K -,I d,,, such that x 4 K and A,,/K is a two-prime 
group. 

Proof. The condition is clearly necessary, since the class W) is s-closed 
and so will contain each -4,, if it contains A. ‘I’hus B, , which lies in the last 
term of the lower central series of A,,, will be abelian. 

Now suppose the last condition to be satisfied. Then, in the first place, 
A E ‘?I%. This was effectively proved in [4], Lemma 16, but we have thought 
it desirable to give the proof here. Let B -: n A,, over all primes p. Then 
B 4 A. Now every p-element of A,, lies in -il,, for every q $p and so lies 
in B; consequently B, < B. Furthermore, every p-element of B lies in A,, 
and so in B,. Thus, since B, is by assumption abelian and so a p-group, 
B, is precisely the set of p-elements of B. It follows that B is the direct 
product of the subgroup B, and so is abelian. Now every Sylow p-subgroup 
of A/B is of the form PB/B for a suitable Sylow p-subgroup P of A4. But if 
Q is a Sylow q-subgroup of -2, where y f p, then P .< A4,s for every Y # p, 
and 0 < A,,, whence [P, Q] < n,. B,, : R. Thus, in A/B any two Sylow- 
subgroups of coprime orders commute elementwise, and so A/B E 5%. 

To show that A E W), it is clearly sufficient to show that, if 1 # IF t B, 
then 3 L u ,4 such that x $ L and A/L is a two-prime group. Since x has a 
nontrivial power lying in some subgroup B, , we may suppose at the outset 
that .r: E 13, . However, by hypothesis, 3 L (1 -3,, such that x $L and A,*IL 
is a two-prime group. Now since XL is a nontrivial p-element of A,,/L, it 
follows that 1 A,,/L / is divisible only by p and possibly one other prime q. 
By replacing L by the subgroup of A,, generated by the (p, g)‘-elements 
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of A,*, we may suppose that L is characteristic in A,, and so normal in A. 
But A/A,, is a p-group and so A/L is a (p, q)-group. This concludes the 
proof of Lemma 1. 

The following properties of the class W may perhaps be regarded as 
generalizations of similar properties of the class of finite nilpotent groups. 
I am indebted to Professor B. Huppert for a helpful discussion of these 
results. 

LEMMA 2. Let GE 3 n 391. Then the following conditions are equivalent. 

(i) nz(G) = 1, that is, GE W2). 

(ii) In G, any tzuo Sylow subgroups of coprime orders permute. 

(iii) For each prime p, each chief p-factor of G is centralized by some G,, , 
where P consists of p and one other prime. 

(iv) Each chief factor H/K of G is avoided by some G,, (1 UT / = 2), in the 
sense that H IT G,, < K. 

Proof. By Satz 1 of [.5], (ii) and (“‘) 111 are equivalent and are implied by (i). 
We shall first show that (ii) implies (i). 

Suppose the contrary, and let G be an abelian-by-nilpotent group of 
minimal order satisfying (ii) but not (i). Let B be a minimal normal subgroup 
of G, and 1 # C 4 G. Now by [5], Hilfsatz 1, the property (ii) passes to 
quotient groups, hence both G/13 and G/C lie in W). Therefore 

x,(G) < B n C, 
and so B n C # 1. Hence C > B, and B is the unique minimal normal 
subgroup of G. 

Let K be the last term of the lower central series of G. By assumption, 
K E ?t, and since A has only one minimal normal subgroup we must in fact 
have K E 91, for some prime p (where \I[, denotes the class of abelian 
p-groups), and B < K. 

Now if q # p, then G,, is evidently a q’-group. If G,, < G, then G,! E WJ, 
and G would then satisfy the hypotheses of Lemma 1 and so would itself 
lie in W’). Hence G,, = G. G/k’, being nilpotent and generated by p’- 
elements, therefore lies in G,,. By a well known theorem of Schur (cf. [6], 
p. 201), G splits over K, that is, G = KL, K n L = 1, for some subgroup 
I, of G. I, E G/K is a nilpotent p’-group and so is the direct product of its 
Sylow subgroups, say L = DY,, ?) L, . 

Let 1’ be the subgroup of elements of order p in K. Since G acts on P as a 
p’-group, it follows that P is completely reducible under the action of G, 
that is, P is the direct product of minimal normal subgroups of G. Hence 
I’ = B. Hence by condition (iii) there is a prime q such that [P, L,Z,] = 1. 
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It follows that [K, II,,] = I. For if not, let y be an element of K of minimal 
order p” not centralized by I,,),. Let n: EL,,,. Now y” is of order p” *, hence 
1 = [y’,, CY] m== [y, Y][‘, since K E 91. ‘l’herefore [y, a] is centralized by X. Ijut 
(*m I for some p’-number nz and so 1 [T, cP] [y, c$“. It follows that 
[y, a] = I, and&, centralizes y, contrary to hypothesis .Hence [S, L,,,] 1. 
Consequently L,, -:I G, and so L,,, 7 I. ‘l’herefore G is a (p, q)-group and 
so lies in 3P”‘. ‘This contradiction concludes the proof that (ii) implies (i). 

‘To see that (iv) implies (iii), let fI!K bc ;I chief p-factcJr of c; and suppose 

G,, avoids it, where m ~ 2. Now K(;,,‘h- is the subgroup generated by 
the a’-elements of G/R, and since KC,‘,, f7 II << K, there are nontrivial 
p-elements of G/k’ not lying in KG,,, I\-. 1Icnce p em. But 

[H, G,,] :’ I1 n G,, < A-. 

Hence G,, centralizes HjK. 
Furthermore, (iv) is implied by the other propertics. For as already 

pointed out, these properties all pass to quotient groups, hence it is sufticient 
to show that every minimal normal subgroup M of G is avoided by some G,, 
with m / ~~ 2. But by property (i), if 1 $ % E M, then z lies outside some 
such G,,, and so. as G,, x_j G, \vt’ must have Gn, CT iv m= 1. This 
concludes the proof of Lemma 2. 

\Ve define the closure operation I+, to be the “finite version” of K-a class C 
is R,-closed iff, whenever a group G has normal subgroups K and L with 
K n L I and both G/k- and G/Z, lie in ti, then GE K. Then 

!)t’“’ ~=: {R,, , Q, s]!]t”’ (7) 

where (x, Y, . . . 1 denotes the closure join of the closure operations x, Y, . . . . 
(cf. [3], p. 533). ‘The Q-dosurc follows from Lemma 2 and Hilfsatz 1 of [5], 
and the others are immediate. 

We shall require the following fact. 

LmfhlA 3. Let GE 5 n ‘21% and suppose L is a normal subgroup of G. 
Suppose further that I = L,, ZC; L, < .‘. -(- L,( -: L is a series of normal 
subgroups of G such that, for some prime q, Gyl centralizes every Li,,/Li . If 
G/L E W), then G E ‘W). 

Proof, Let 1 =-= G, < G, & ... < G, = G be a chief series of G 
containing all the L, . It is enough to show that, if G,+,/G, is an r-factor, then 
it is centralized by some G,,, where m is a set of two primes containing 1’. 
For by the Jordan-Hijlder theorem, every chief factor of G is G-isomorphic 
to some Gi,.,/G, (where G is regarded as a group of operators for itself by 
conjugation), and Lemma 2 would then give the result. 
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However, if Gi 3 I, this is true since G/L, which lies in Yi(” by assumption, 

satisfies (iii) of Lemma 2. But if Gi .:: L, then G,+,iG, is a factor of some 
Lj .l/Lj and so is even centralized by G,,. 

$\\‘c should perhaps point out that Lemmas 2 and 3 depend rather strongly 
on the fact that we are working with abelian-by-nilpotent groups, as does the 
rather surprising fact that, for abelian-by-nilpotent finite groups, the property 
7;,(G) == I is preserved under homomorphisms. This will be clear from the 
following example. 

LEhlMA 4. l’here is a Jinite gvoup K E ~11~91 which satisjks (ii) and (iii) of 
Lemma 2, but for which n,(K) ;i’ I. , K 1 is divisible by only three primes, the 
center Z of R is of order 2, and &Z E R \ cd). Further, K is a homomorphic 
image of a %,%-group N with rig(N) : 1. 

Proof. Let q be a prime f2. Let G be the group of class 2 and exponent 4 
generated by the elements zcr , x2, . . . . xu-r subject to the realtions 

xi2 = [Xj ) x, , x1] = 1 

for ;, j, k, 1 running from 1 to 4 - 1. Then G’ is of exponent 2 and has a 
basis consisting of the iq(q - 1) commutators [xj , x,;] with J’ ~1 k. We 
identify these to obtain a group fZI, of class 2 and exponent 4 generated by 
the elements xi , x2, . . . . xu-i with [sz , x,] = z if i +;i, where z2 := 1 and 
z lies in the center of N,z . Let Z 7 { z). Then Z is the unique minimal normal 
subgroup of H, , Also, H, has an automorphism 01 of order y which maps 
si -+ xiii for 1 < i < 9 ~ 1, and xa-i --j slsz . . . xy-i . 

Let K, be the natural split extension of H, by {a}. Then Z is the center of 
K, , and also its unique minimal normal subgroup. Choose an odd prime 
I- f q and let K, be constructed in the same way as K, . Let K be the central 
product (direct product with identified centres) of K, and K, . Then 
K =h-,h’,, [K,,K,] = I, K,nk’, ==Z, and it is easy to verify that 2 is 
the unique minimal normal subgroup of R. But 1 K 1 = 2*7’-+ is divisible 
by three distinct primes. Hence K,, > Z whenever 1 w I = 2, and so 
n2(K) ,> Z. In particular, T*(K) # 1. 

Kow K is a homomorphic image of 1\; = K, x K, and rrz(;V) := 1. By 
Satz I of [5], it follows that both 1V and K have properties (ii) and (iii) of 
Lemma I. Also, both JV and K lie in Y&X. Further, 2 is a central subgroup 
of order 2 of K, and K/Z g KC/Z x KJZ E R @). K thus has all the properties 
which we required of it. 

3. EMBEDDING LW~)-GROUPS IN STABILITY GKOUPS 

Before showing that every LS2)-group lies X, we need the following 
lemma about the structure of LW2)-groups. 
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Let g be the class of all groups of the form B 7 T, where B E 21, and F is 
a locally nilpotent (p, q)-group for suitable primes p and q. Here 7 denotes the 
complete wreath product. 

LEMMA 5. 

(i) l@%) = %(L!R). 

(ii) If G is periodic and r2(H) == 1 for every B-subgroup H of G, then 
r,(G) = 1. 

(iii) L91f2) < RS?). 

(iv) %(') < R$(g n 'p). 

Proof. (i) Clearly a(~%) < ~(Wlt). Suppose G E L('U%). Let L = {y(H)), 
where W runs over the O-subgroups of G and y(H) denotes the last term of 
the lower central series of H; thus y(H) E 91. If H and K are two &subgroups 
of G and J = {H, K), then {y(H), y(K)] < r(J) E ‘II. This makes it clear that 
L is an abelian subgroup of G. Also every conjugate of y(H) under K lies in 
p(J) < L, and so L 4 G. Clearly GIL E L%, whence G E ?)I(L%). 

(ii) Let P=rr2(G) = r\ G,, over all setsm of two primes, and suppose if 
possible that Y # I. Since G is periodic, it follows that P contains an element 
u of prime order p, say. Now u certainly lies in G,,, and so u can be expressed 
as a product of a finite number of elements whose orders are all prime to p. 
Thus u E N”, , where N is a B-subgroup of G and mirl a finite subset of p’. 
However, for each q E ~01, 3 B-subgroup N(q) of G such that u lies in the 
subgroup generated by the (p, q)‘-elements of Arc@. Let Q = (IV, N(q); q E wi}, 
and let w be any set of two primes. If p 4 VJ, then u is a a’-element and so 
lies in Q,,. If w == (p, r) and Y $ m, , then u E NO, < QD,. If Y E wi , then 
ll E iV”;j ?g Q,,. n Consequently u E rrz(Q). But Q is finitely-generated and so 
rr@) = I by assumption. This contradiction shows that P = I, as required. 

(iii) Let G E t’Ji’“J. Then GE %(L%) and V,(G) = I, by parts (i) and (ii). 
Let W - G/C;,,, where w --= (p, q). Then WE X(L%), since this class is 
q-closed, and W is a (p, q)-group. Thus W has an abelian normal subgroup I’ 
such that W/V = P E L!Q. Now V = FD x C‘, is the direct product of its 
Sylow subgroups V, and V, , and W/I7D is an extension of I’, by r. It is well 
known that every extension of a group A by a group B can be embedded in 
A 7 B. Consequently W/I, E sq. Since V, n V, = 1, we find that WE RS'$, 

and so, since nz(G) -m: 1, this class also contains G. 

If G is finite, then clearly all the relevant members of 1, may be supposed 
finite, whence (iv) also follows. 
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LEMMA 6. 

(i) LW2) < %. 

(ii) Every !V2)-group can faithfully stabilize a descending series of type 
(W T n) * of some finitely-generated abelian group. 

Part (ii), of course, is precisely Theorem 2. 

Proof. By Lemma 5 and the relations (5) of Section 1, it is enough to 
show that !J3 < ‘Z and that every finite ‘@-group has the property required 
in (ii). 

Accordingly, let W= B 7 F be any ‘&group. Thus B E ‘3, for some prime y, 
and r is a locally nilpotent (p, q)-group, so that r = I’, x To is the direct 
product of its Sylow p- and q-subgroups r, and r, . Let b ---f b* be an 
isomorphism of B onto a group B*, let {x} be an infinite cyclic group, and 
let X and E’ be the base groups of {x} 1 I’, and the complete wreath product 
B* 7 ru respectively. We shall first embed W in Aut G, where G is the 
abelian group 

G := X x k-. (8) 

In the first place, r, is to transform X as in {x} 1 r, , and r, is to transform 
Y as in B* T r4. If we impose the further conditions 

[x, r,] = [Y, r,] = I, (9) 

we shall clearly obtain an embedding of r in Aut G. Now any element of r 
has a unique representation in the form (~(5 E r, ,T E r,), consequently the 
base group B of B i r may be written as the Cartesian product 

CY(B, ; 6 E r, , rl E a. 
To represent B by automorphisms of G we require that, if [ E r, and 6 E R, 
then 

[xf, F] = y, (10) 

where y E Y and if, for q E r. , y7 denotes the 7th coordinate of y, then 

(11) 
If we also require 

[B, Y] = 1, W) 

then we may clearly regard B as a subgroup of Aut G. Transforming (10) 
with an element [‘v’ of r, we obtain 

[xff’, jjf’“‘] = y’ (13) 



and the TT’th coordinate of $1 is -I’,, -~ (6,,)*. ‘Uius &“Tj’ is that element of B 
whose t[‘Tq’-coordinate is ger . This makes it clear that the subgroup (E3, r; 
of Aut G is isomorphic with h 7 T and so mav bc identified with II,‘. 

It remains to show that there is a series of G whose stability group contains 
II’. M’e shall tirst consider the action of I’,, on I-. Now since 1’ is the cartcsian 
product of a number of abelian y-groups, every periodic element of IT is a 
q-element. I& A be any finitely-gcneratcd subgroup of T,, and let C. be an\ . 
finitely-generated subgroup of 1.. Since r,,c r.Z, , A is a finite q-group, and 41 

1 lies in a finitely-geueratcd A-inr,ariant subgroup I of IT. Since I I has no 
elemenls of order prime to q, we have ,q’ 1 -,,‘I 1 , u here I .‘lli denotes the 
subgroup consisting of the y”th powcrs if :he elements of I ‘. (‘onsequcntl~ 
the natural semidirect product I,‘.4 is a R3,,-pup, and hence is a Z-group, 
that is, it has a central series. Let ‘I’ IW the natural semidirect product J’T, ; 
1’ ; T, 1~ n r<, = I. No\\- cverl- finitely-generated subgroup of 7’ lies in 
one ot the form I-A, and so is a Z-group. Since the class of Z-groups is 
I.-closed, by a well known theorem of XIal’cc\’ ([6], p. 218), T itself is a 
%-group. ‘I‘hc intersections with 1. of any central series of 7’ then furnish a 
series of 1‘ stabilized by To (cf. also Plotkin [a], 1). 1389). Let (~1~ , lYCj ; 0 e Q) 
be such a series. JVe note that if I’(, and H are finite, then T E g,, , and SO this 
series will be finite. 

Bq‘ a similar argument we obtain a series (1, , @‘, ; .Y E Y) of .Y stabilized 
bv I’!, ; this will be of type W* if T,, E 3. niow write xX,* x:I \* ‘t?; 
4,’ = @, 1 1. if u E Y. The subgroups ilo and I?,; (u E Q) form a series of 1. 
which is extended to a series of G by the addition of the subgroups CUT and 
cD~‘@. It is clear that B lies in the stability group of this series, and therefore 
so does TI: Further, if W is finite, then the series will be of type (o !- TZ)* 
where n is an integer 0. ‘This concludes the proof of Lemma 6. 

To conclude the proof of Theorem 1, we have now to prove 

THEOREM I*. Suppose A is a finite subgroup of the stability group of some 

incaviant series vf the group G. Theu :3 E YP. 

This will occupy the remainder of the paper. We shall first prove some 
miscellaneous lemmas. 

We recall that a group G is said to be jkitely-presented if it has a finite 
number of generators in terms of which it can be defined by a finite number 
of relations. Let us define the closure operator E by saying that a class 0. is 
E-closed whenever every extension of a K-group by a C-group again lies in K. 
It is well known that the class % of finitely-presented groups is E-closed. In fact, 
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suppose G has a normal subgroup K such that K and G,‘K -= I’ both lie in 91. 
Then K is generated by a finite number of elements ai , aa, . . . . a/, with 
relations fi(u) .~-= ... q : fi(a) = 1, and r is generated by 8, , . . . . ,B,,, with 
relations gr(p) = ... 7 g&3) =: 1. Choose bj ~/3, for 1 < i zg nr. ‘J’hcn wc 
have gi(n) z &(a) for certain words lz, , . . . . h,, in the 0’s. Also NtT E K and 
so a;J Uii(U) (I < i<> h, I 5;j-i xv). The group C is then generated by 

a, , . . . . at , b, , . . . . b,,, with the defining relations .f>(u) = I, AT,(~) /j,(a), 
a? ~-- ullj(a) for 1 .< i .5X I, 1 52 s 5: n, 1 2’: j 5: 771, 1 ..:. p -1 k, and thus lies 
in ‘3. 

For any group G, let f(G) consist of those normal subgroups of G which 
are generated by a finite number of classes of conjugate elements in G. 

LEhIhlA 7. Suppose G E 6 arad that KT and L nre normal suh~~~oups C$ G 
with K 5~ L. If L E.f(G) and L/KE !U, then KEY. 

Proof. Suppose G r {xi > ..., .%I, I where n is finite, and let G* be freely- 
generated by elements ,x1*, . . . . x,, *. Let 0 be the homomorphism of Gx nnto G 
which maps xi* - x, for 1 ( i < 11, and let ;lZ* be its kernel. 1\:ritc 
K* =- f’(K), L* =- bl- I(L). IXow since L Ed, WY ha\c I, :- iu,“, . . . . UT: 
for some finite k. Choose elements ui*, . . . . u;,* E G* such that ui*li =~ U, 
(1 6 i < k) and let U* == {rli*‘*, . . . . u;“*). iTowL* -3 G* and L;*!lT* :; I,*. 
Further, if x* EL*, then xt”*’ EL. But C:*’ -= L, and so x*O u*’ for some 
24* E Cr*. Consequently x* z=- u* mod M* and so wc have I,* ::: P,M”. 

NOW AI” -< K* < Cr*Ad” and so 

K* = (K* n u*)iJf* (14) 

Hut U*iR* n U* s Z!*KT”/K* =1,*/K* s L/K E !I{. Also G*/C’” E %. 
clearly, since G* E (5 and CT* Ed. H cnce, since % = E!l$ \ve have 
G*/K* n IT* E X. But if xve take any finite set of generators of an :I{-group 
IV, then T$’ can be defined by a finite number of relations between those 
generators ([6], p. 74). Hence K* r? l;* ~,f(c*), and so 

K* n c7* L (ky*, .-., ,y*j. 

for some finite S. It is now clear from (14) that K :: ((,$Te)‘;, . . . . (k;“)‘T{, as 
required. 

LENMA 8. SuPPose (A0 , D , Y CT E 12) is an invariant series of G with 
stability group r, and let K be n jnite ~~ormal subgroup qf G. Then 

&K/K, T;K/K; o E Q) 

is an invariant series of G/K. If A is a s@roup of r under which K is invariant, 
then 4 stabilizes this series of G/K. 
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This situation contrasts with the fact that nonascending series are not 
usually preserved by homomorphisms. 

Proof. It is only necessary to verify that G ~ K = UoER (&K - V,K), 
since the other conditions are clearly satisfied. Accordingly, let x F; G ~~ K. 
Iiow the coset xK is a finite set of elements each of which lies in just one 
layer 4” -- l’, of the given series. l’hereforc only a finite number of layers 
meet this coset, and so there is a smallest o such that (,I,, I,) n .xK :/- 4. 
Then clearly x E AOK. However I*” n SK --~ (b, and so .X $ I’“K. 

Case (i) of the following lemma establishes one half of ‘Theorem 3. 

LEMMA 9. Suppose that the group G has a series whose stability group 
contains the finite group A. Then 

(i) If GE ~5, then A E 91. 

(ii) If G E ~3 n , then A t ;Yi, . 

(iii) If G is abelian of$nite exponent, then G has a$nite series stabilized by A. 

Proof. (i) Let x E G. Then s lies in a finitely-generated ,4-invariant 
subgroup H of G. Since GE ~5, HE 5. The intersections with H of the 
given series of G constitute a finite series of II stabilized by A. Consequently 
by a well known result of P. Hall ([2], p. 787), rl acts on H as a nilpotent 
group, that is, y(A) centralizes H. Since x was an arbitrary element of G, 
it follows that y(A) = 1. 

(ii) In this case, if x E G, then x lies in an d-invariant k,-subgroup H 
of G which has a finite series stabilized by A. It follows that .4 acts on Has a 
finite p-group. For if a is a p’-element of A4, then the semidirect product 
H(a) is nilpotent and so H commutes with oi. Consequently A E 3,. 

(iii) Here G is an abelian group of finite exponent and so we may write 
G = Dr, G,] as the direct product of a finite number of Sylow p-subgroups 
G, . Each G,, is characteristic in G and so invariant under A; consequently 
G,, has a series stabilized by .4. By (ii), ;3 acts on G, as a finite p-group. 
It is clearly enough to show that G, has a finite series stabilized by ijI, and so 
we may suppose that G is an abelian p-group of finite exponent p” and ii E sV . 
Suppose , z-1 / -= pm. Now if x E G, then .r has at most p”’ images under A, 
and each of these is of order at most pli, so that x lies in an A-invariant 
subgroup G,. of order at most P~+~. Now G,. and 4 are both finite p-groups, 
and so G, has a finite series stabilized by <4; this can be of length at most 
m - II. Let it be 

1 = G,,, < G,,, < ... < G,,,,,, = G, 

where the factors need not all be nontrivial, of course. Put Gi = (GzVi ; x E Gj 
for 0 < i < m + n. 
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Then 

1 = G,, < Gl < .-. < G,, n = G. 

is a finite series of G stabilized by A. 
We shall also need the following well known fact (cf [I], Theorem 10.3.5). 

LEMMA 10. Let H, k’, L be subgroups of a group G. Then any normal 
subgroup of G which contains two of [H, K, L], [K, L, H], [L, H, K] also 
contains the third. 

We use the convention that repeated commutators are to be bracketed 
from the left; thus [H, K, L] = [[H, K], L]. 

5. PROOF OF MAIN THEOREM 

We now investigate more closely the situation of Theorem I*. Let G be a 
group having an invariant series (AC, VU ; 0 E Q) the stability group of which 
contains the group iz, which we do not yet assume finite. We write W for 
the natural semidirect product GA; G <1 IV, G n A = 1. Also let CT = [G, A] 
and A* = (AW} = {A’) = [G, AlA, so that both U and A * are normal in W. 
We shall use this notation throughout the rest of the paper. We require 
some results about the structure of IV. 

LEMMA 11. 

(i) U has a series with factors central in d *. 

(ii) If K # I and L aye subgroups of W zuith L < A *, K < U n L, and 
k’~f(L), then [K, L] G: K. 

Proof. (i) If CJ E Q, the subgroups A, n U and V, n U are each normal 
in W and hence so is the centralizer in W of the factor A6 n U/V,, n U. 
Since this centralizer contains A, it must therefore contain A*. Thus 
(A,, n U, I;, n U; 0 E Q) is the required series of li. 

(ii) Write r, = AC n U, A0 = I,, n b’ and let K = (x,~, . . . . x~“} where 
n # 0 is finite and no xi is 1. Since K < U, 3 (J? such that xi E TV< ~~ AC, 
(i = 1, 2, . . . . n). Let CF = max 0, . Then zi E TV for i = I, 2, . . . . n and so, 
since L normalizes r0 , we have K ,< I’, . However 3j such that .x, 6 A 0 
and so K 5 A0 . Since L centralizes FuiAo we obtain 

as required. 



LEMMA 12. Suppow A = Dr, A,, is the direct product of its ,Sylou 
p-subgroups A ,’ for various primes p. TherL [C, --II, , ../,,I I if p ;’ q. 

Proof. l\.rite ..1,,x [-I,,“; 7 ]G, --I,,]-I, . Xow [G, -=I,] < ‘-I,,*, which is 
generated by p-elements, the conjugates of elements of ‘-1, under G. It will 
thus bc enough to take a finite set s, . . . . . ‘v? of +cments of :I,,* and an 
element p of .dC, and show that A [S, B] I, lvhcrc AiT ~~ {x1 , . . . . ,A~; 
and L: i/3). Let 1, ~ [-I-, B:. ‘I’hcn K ~~ {,[‘T, , 81”; 1 < i ~1. 1.1, and so 
K t,f(L). ills0 .I,, * and A, commute eltnicntwise mod l,‘, so that K c I ‘, 
and 1, 5.: .-I *. Suppose now that K S I. ‘I‘l~cn by- 1,cmma I I , [K,L] Ki K. 

However K/l<, is generated by the cosets of the elements [s, , $1. The 
subgroup of 1, K, generated bv s,K, and /3K, is clearly nilpotent of class 5’2, 
since [,v, , ,8] c I< and K,‘K, is cctntralizcd bv 1,. Since .v,K, and PA?, are 
elements of coprime order of this subgroup they therefore commute, that is, 
[A, . ,B] t h-, . ‘1’11~s K em h-, , which is a contradiction. Hence K .~ I and 
the lemma is established. 

\Vc now suppose that .4 is finite. 

LEalnih 13. liar each prime p, let A,,’ denote the group generated by the 
p'-elcmenfs of A and let B, denote the group generated by the p-elements of A,,. 
Then 

(i) [G, H,, , AT,,] = I, 

(ii) [C, H,,] is an abelian p-group of jinite exponent lying in the center qf 
iG, -J,,,L 

(iiij B,, E II fey each prime p. 

I'wlof. (i) We prove this result by induction on I d ;. Let p be any- 
prime. If -Iv, .’ A the result is true by induction, and so we need only 
consider the case A :- A,,,. 

Tl’c shall first show that [G, -4, H, , =1] 1. Kow any element of [G, -4, B,] 
lies in a subgroup of the form [H, H,,] where H is a finitely-generated 
subgroup of [G, -41. But if T is the subgroup generated by all elements 
[x, ~1, where x runs through G and N through the p’-elements of -4, then 
I’ = [G, A4]. For let [xc, a] be such an element, and let y t G and /3 t A. 
‘I’hen [x, ~1” = [xy, a][~, a]-’ and [I, a]fl [x”, a”]. Since nB is ap’-element 
of rl, it follows that T c:\ II - GA. But, modulo II’, G commutes with a set 
of generators of A. Hence [G, A] <; I’ and we clearly have equality. ‘I’hcrefore 
we may supposc 

II = {[xi , q]; i -: I, 2, . . . . 12) (15) 

uhere the xi belong to G, the a, arc p’-elements of 4, and, since A is finite, 
we may suppose that FZ is A-invariant. 1,et K:: [H, B,]. Since B, is charac- 
teristic in A and H is normalized by A, we have R <J IfA = L. In fact, if 
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y, := [xi , a,] (1 < i < n), th en K is generated by the conjugates in I, of the 
elements [yl , p] (p E B,), and so K of. Define AC, = [K, L], K, = [K, , L]. 
‘Then K, 4 I,, K, ~3 L, and K 5, K, - - k’s . \I:e shall show that K, 7 I. 

Suppose if possible that A, ~4 1. Tl ren certainly K # I. Since K -S C’ 
and I. < -4*, Lemma 11 gives ki; ’ K. Since K ~-f(l,) and 1, centralizes 
h-:K I , it follows that K/K1 E 6. Also K -<I, and so K’ < K, . Hence 
K;K, E (5 n ?I. But the class Yi of finitely-presented groups, which is 
E-closed and contains every cyclic group, therefore contains 6 n ‘II. Con- 
sequently K/K, E 91. Since K E f(L) and L E 6, I,emma 7 girts K, E~(!I,). 
Since K, f 1 bv hvpothesis, I,cmma 1 I no\\- shows that 

II-, < h-, . (16) 

Now identity [x, ~$3 = [x, /3][~, ulB .l s lows that, for fixed s E N, the map 
s + Is, u]k; maps R, homomorphically into the abclian group K/h?, . 
Since the kernel of this homomorphism contains R,,‘, the image is an abelian 
p-group. But K/k; is generated by all such images as .I’ runs through H, 
and so is an abelian p-group. 

Also, for fixed u EL, the map J --L [y, u]& maps K l~omon~orphically 
into the abelian group K1/KZ, with kernel containing K, . The image is 
therefore an abelian p-group, and since K,jK, is generated by such images, 
K/K, E ‘!I,, . K/h’, is therefore a p-group of class at most two. Now .1 
stabilizes the series K/k’, K,iK, K,iK, of K,‘K, and therefore, by- 
I,emma 9, acts on K/A?, as a p-group. Since .-I is generated by p’-elements, 
it must therefore act trivially on K,‘K2 , that is, 

[h-, A-11 < K, . (17) 

But R and K, are each normal in L. Therefore K/K,, being centralized 
by A, is also centralized by [H, A-1], that is, 

[K, [H, A]] < h-., . (18) 

I,et yi = [xi , ai] be one of the generators of H, and let z E K. NOM 

WG > y&z,: is a nilpotent subgroup of H,‘k’, of class at most two. But 
3 p’-number m such that ailn =:= 1. Consequently, 1 == [xi , n+7r1] G [x1 , OIJ’~ 
mod[H, A]. Thus yl” E [H, A], and (18) shows that x commutes with 
yiTn mod K, . Since xK, is a p-element and 171 is a $-number, it follows 
that zK, and yiK2 commute, that is, [z, yJ E K, . Therefore [K, H] < K, . 
In conjunction with (17), this shows that [K, L] < K, , that is, K, < K, . 
This contradiction to (16) shows that k-i must in fact have been 1. 

It follows that [H, B,,] is centralized by A. Since every element of 
[C, A, B,] lies in a subgroup of the form [H, II,,], we now have 

[G, A, B, , A] = 1. (19) 



202 HARTLEY 

1,et M = [G, A, B,]. Then M is certainly centralized by B, and so, 
being normalized by [G, A], M is centralized by [G, A, R,]. In other words, 
ME 41. Furthermore, for fixed s t [G, L1], the map ,Y + [Y, CX] maps B,, 
homomorphically into the abelian group iv’; the image therefore lies in XI,, , 
and so does M. 

Now let -V = [G, B,] and let IM* -: {Ma; x E G} :m: {M”). Now TiZ -c~ [G, A] 
and so M --I N u G. Hence M” ~1 G for each Y E G. M* is thus generated 
by normal %,-subgroups of A’, and so lies in LZ,, . ,Now N/M* is centralized 
by B, and so, since N and M* arc each normal in G, it is centralized by 
[G, B,] -~ K. That is, IV/M* E ‘21. Also, if x E G, then the map i?~ ---f [x, a]M* 
maps B,, homomorphically into A’;‘M * and the argument which we have , 
used several times already shows that :\‘/J9* t ‘!I,, d: ~3~) . But the class 
LZ,, is E-closed, and so iVr I-Z,~. Howcvcr X is .I-invariant and so the 
intersections with it of the given series of G form a series of X stabilized by 4. 
Therefore by Lemma 9, A acts on N as a p-group. Since .-1 is generated by 
p’-elements, we therefore have [N, A] ~~ I. This concludes the proof of (i). 

(ii) In the first place, [G, B,,,] is a normal subgroup of G centralized by 
A,, and so by [G, A,,,]. In particular, [G, H,,] is abelian. As usual, for x E G, 
the map CY - [x, a] maps B,, homomorphically into [G, B,,]. The image has 
exponent at most 1 B, 1, hence so does [G, B,] itself. 

(iii) By(i), [G, B,,, B,] == 1 f or each primep. By Lemma 10, [G, B’,] = I 
and so B,,! ~ 1, that is, B,,, E \(I. 

\ve can now conclude the proof of Theorem 3. For if G is torsion-free, 
and even if G has no nontrivial periodic abelian normal subgroups, then 
(ii) of Lemma 13 shows that [G, B,] ~~ I and so B,, 1 for each prime p. 
The argument of Lemma I now makes it clear that L-l E 91, as required. 

Proof of Theorem I*. We shall suppose the theorem false, and take A to 
be a counterexample of minimal order. 

I. WC first show, with the notation of Lemma 13, that A/B, E %I’) if 
B, # 1. Let II be any A-invariant Q-subgroup of [G, A,?.] and let J = [W, B,]. 
by Lemma 13 (ii), J is an abelian q-group of finite exponent lying in the 
center of H. Now J is generated by the conjugates in H of the set of elements 
[,zi , 013, where xi runs through a finite set of generators of II and N through B, . 
Since / is central in H, it follows that J E 6, and so / E 3 n X, . Now H is 
-g-invariant and so has an invariant series stabilized by A. Since J is a finite 
normal subgroup of H, Lemma 8 shows that H/J also has such a series. 
However 1 f B, -< C,(H/J) and so by induction, .JjC,(H/J) E 3”‘. 

Let C := n C,(H/J), where H runs over the finitely-generated A-invariant 
subgroups of [G, ,&,.I. Now by Lemma 13 (iii), B, E ‘U for each prime r, 
and the argument of Lemma 1 shows that the subgroup B generated by the B, 
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is their direct product, and A/B E X. Since ‘YI < SW) = R,,%2(2), we therefore 
have 

A/C n B E ‘W’. (20) 

Now B, < C and so C n B = B, x R, say, where R u A is an abelian 
q’-group. Let LY. E R and x E [G, A,,]. Let N be an A-invariant B-subgroup 
of [G, A,.] containing X. Then [N, a] E [H, B,]. By Lemma 13 (i), [x, a] is 
centralized by the q’-element 01. Now Ly8 = 1 for some q’-number s, and so 
1 = [x, ~~1 = [x, nlS. But by Lemma 13 (ii), [H, BP] is a q-group, and so 
[x, U] = 1. Since x and 01 were arbitrary elements of [G, A,,] and R rcspec- 
tively, it follows that R centralizes [G, A,,]. 

Now V = [G, B] is generated by the subgroups [G, B,], only a finite 
number of which are nontrivial. By Lemma 13 (ii), these are of finite exponent 
and commute elementwise in pairs. Hence V is abelian of finite exponent. 
But V is A-invariant and so has a series stabilized by A. Therefore by 
Lemma 9, I/ has a finite series 

I = v,, < v, < **. < v, z=z v 
stabilized by A. 

For i = 0, I, . . . . n, let Ri be the set of elements 01 E R such that [x, a] E Vi 
for all x E G. The equations [x, $71 = [x, fl][x, ol]fl and [x, a-‘] = [x, a]~“-’ 
show, since Vi is A-invariant, that R, is a subgroup of A. Also, if 01 E Iii 
and B E 4 then [x, aB] = [x6-l, 011~ E Vi and so Ri -CI A for i = 0, 1, . . . . n. 
Now let i > 0, x E G, u: E A,,, /3 E Ri . Then 

1 cx, x-1, fl]“[x, p-1, cqyp, a-1, x]” = 1 

by a well known identity. The first factor is 1 since R centralizes [G, A,!]. 
The second lies in [G, R, , AJB ,( [Vi , AID < VieI . Hence 

Since this is true for any x E G, and since R 4 A, it follows that [/3, a-l] E Riel. 
RJR,-, is thus centralized by all the q’-elements of A. Since R, = I, Lemma 3 
and (20) now show that A/B, E GW2). 

2. Consequently at most one of the subgroups B, can be nontrivial. 
For if B, # 1 and B, # 1 (q # p), then *4/B, and A/B, both lie in R(2), 
and B, n B, = 1. Therefore A E R,W) = W), which was supposed not to 
be the case. 

3. Since not all the B, can be trivial, it follows that, for some prime p, 
.+I has a normal X,-subgroup B such that A/B E %. This implies that A = A;. 
For if not, then A,, E 9P. But if q f p, then A,, is a q’-group, and therefore 
*4 satisfies the hypotheses of Lemma 1, and so lies in n(2). 
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Lemma 13 (ii) now shows that [G, U] is an abelian p-group of finite 
exponent lying in the center of [G, A]. I,ct S be a finitely-generated =1- 
invariant subgroup of [G, A], and let T : [S, U]. Then T is central in S, 
and is generated by a finite number of classes of conjugate elements in S; 
consequently 7’ is finitely-generated and so finite. But S is .-I-invariant and 
so has an invariant series stabilized by -4. Since 7’ E 3, Lemma 8 shows that 
SIT also has such a series. 

However, B centralizes S/T, and so .-I acts on S/7’ as a finite nilpotent 
group. Let fl =: C,(S/T), and, for each prime q, let A, be the group generated 
by the q-elements of A. Then AjD is the direct product of its Sylow subgroups 
A,DjD. By Lemma 12, 

[S, A, , A,] < 7’ if q -# Y. (21) 

For each prime q, let W, = [S, .3,]7’. Th cn M’, is A-invariant, and by (21), 
AIC,(W,/T) is a q-group. But T E 5, and is centralized by A. Ifs E IV, and 
F t C,( WC/Y’), then XV ~~ xu for some u E 7’, and for any integer n, XT” = XZP. 
Consequently, if ~9 ~~ 1 II’ /, then @ centralizes W, . This makes it clear 
that A/C,(W& is a (p, q)-group and so lies in 9P. Now [S, -41 = II, [S, A,] 
and so n C,( IV,) = C,([S, A]) = E, 
we even h&e A/E, E WI 

say, and z4iB E OP. Since .-l/H E 91, 
, where E, = B n B. But 1 : [S, -4, E,,] m= [S, EO, A] 

and so Lemma 10 gives [S, [E,, , A]] :~= 1, that is, [& , A] .< C,(S). 
Lemma 3 now shows that &C’,(S) E ‘31”‘. Since this is true for every finitely- 
generated A-invariant subgroup S of [G, -41, we therefore have LJiF E SC”‘, 
where F mm. B n C,([G, A]). Hut I -= [G, :I, F] [G, I;, ;2] and so another 
application of Lemma 10 gives [G, [1”, A]] 1. Therefore P’ lies in the center 
of A, and Lemma 3 now shows that .-I E IV”‘. This contradiction to the 
assumption that A was a minimal counterexample to Theorem I* shows 
that no such counterexamples exist. ‘l’herefore the proof of Theorem 1 * is 
complete, and with it Theorem 1. 
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