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1. INTRODUCTION

This paper is essentially a continuation of [4], in which various forms of the
question, “What groups can be embedded in the stability group of a suitable
series (or normal system) of some group ?”’ were considered. Here we shall
determine those locally finite groups which can be embedded in the stability
group of some (not necessarily well-ordered) invariant series.

For the most part we shall continue to use the notation of [4], some of
which we now briefly recall. If 2 is a totally ordered set, then by a series of
type 2 of a group G we shall mean a set

(4,,V,;0e8) (1)
of pairs of subgroups 4, , I of G, such that

(i) V, <14, forall ceQ

i) A4, <V, f o<

(i) 1=, -7,

e

where G — 1 denotes the set of elements # [ of G and A, — V_ the set of
elements of /1 which do not lie in V. (1) is an ascending series if 2 is well-
ordered, and a descending series if £2 is inversely well-ordered. The series is
said to be inwariant if each A, and V, is normal in G, and central if the
commutator subgroup [4 , G]is contained in V_for all o € 2. We refer to [4],
section 1.2, for a fuller discussion of these terms.

As in [4], we define the stability group of (1) to be

I =) CAAV), @

oef2

187

481/3/2-5


https://core.ac.uk/display/82117524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

188 HARTLEY

where A - Aut Gand C (A /1) consists of all « € 4 such that [x, x™] e I,
whenever x € A, . If we are given a homomorphism ¢ of a group B into I,
then we shall say that B stabilizes (1) with respect to @; usually it will be clear
which homomorphism is meant and ¢ will not be explicitly mentioned.
If ¢ is (1.1), then we shall say that B faithfully stabilizes (1). 'The statement
that B can faithfully stabilize a series of a certain kind thus means that there
1s an isomorphism of B into the stability group of a suitable series of this
kind.

As usual, when we speak of a class of groups €, we shall understand that ¢
ts closed under isomorphisms and contains all the groups of order [ In this
paper we shall principally be concerned with the four classes of groups

Y, 9% 1, 30 ()

9 and 9? arc defined by: 4 € Y (respectively 92) iff A can faithtully stabilize
some Invariant series (respectively invariant descending series). of some group.
T and T? are correspondingly defined with “group’ replaced by “‘abelian
group’’, the word “invariant” becoming redundant of course. We note the
relations

P LINY? . (4)

We shall use throughout the notation for standard group classes and
closure operations as set out in [4], section 1.3, (cf. also [3], p. 533). Briefly.
the group classes we shall use are: ¥ = finite, ¥, == finite w-groups (where @
is always a sct of primes), A = abelian, ® :- finitely-generated, % = nilpotent,
9, - nilpotent groups of class =T k (where & is an integer = 0). As for closurc
operations, if € is any class of groups, then s€ consists of all groups which can
be embedded in some €-group, Q€ consists of all homomorphic images of
§-groups, LU is the class of locally-€ groups, and R€ is the class of residually-€
groups. Finally, if € and D are two group classes, then % is defined to be
the class of all extensions of a €-group by a D-group.

(Note that our use of the symbol T differs from its use in [4], however.)
With this notation, we have

¢ === RSE (5)

where € is any of the classes (3) (cf. [4], Lemma ).

For the statement of our main results we require to define another group
class. For any periodic group G and integer & > 0, let m(G) == N G-,
where the intersection is taken over all sets w consisting of & distinct primes.
w’, as usual, denotes the set of primes not lying in w, and G- is the subgroup
generated by the w'-elements of G. Now if L is a normal subgroup of the
periodic group G, then G/L is a w-group iff G- <C L; the class of periodic
groups G satisfying m,(G) = | may therefore be naturally described as the
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class of periodic residually A-prime groups. A finite residually one-prime
group 1s clearly nilpotent, and this shows that the class of periodic residually
one-prime groups 18 just L(F M MN). We shall nced to show that, like this
class, the class of periodic vesidually two-prime groups is L-closed (L.emma 5).
Our main results are stated in terms of the class N defined by: Ge NP
it G e F N AN and 7,(G) = 1. In Lemma 2, we shall deduce some interesting
alternative characterizations of the class %2 from a recent paper of
B. Huppert [5].
Our main result is

THEOREM 1. LFN Y = LFN T == LRAD,

Thus a locally finite group can faithfully stabilize an invariant series if
and only if it can faithfully stabilize a series of some abelian group, and
all such groups lie in a certain class of abelian-by-locally nilpotent groups.
It does not seem to be known whether the first part of this assertion continues
to hold without the restriction of local finiteness. But for finite groups we
have the following even stronger result.

Turorem 2. Every N?-group can faithfully stabilize a descending series
of tvpe (w -+ n)* of some finitely-generated abelian group.

Here w is the first infinite ordinal, # an integer 20, and (w + n)* denotes
the inverse ordered set of the ordered set w -+ n.

Theorems | and 2 together give the following result.

CoroLLaRy.  The intersection with § of any of the classes (3) is just the
class N,

We should perhaps point out here that %® is not the whole of the class
FNAN. To see this, consider the wreath product G = H K, where
H and K are cyclic groups of orders p and gr respectively, p, ¢ and r being
distinct primes. This is a metabelian group. If I == {x} and « and B are
elements of K of orders ¢ and 7 respectively, then [x, «, 8] is a nontrivial
element of 7,(G). Thus G ¢ N,

The intersections with LT of the classes (3) do not all coincide. In fact

LFNY? - LFN T (6)

To see this, it is only necessary to consider any perfect LF,-group 4 # 1,
for example, the one constructed by D.H. MacLain [7]. By Theorem I,
4 € T. But A cannot lie in 9, since all groups of this class have a descending
series with abelian factors. (Cf. [4], section 2.6.) The precise relationship
between the classes L N T and LF N 92 is not known, so far as we are
aware.



190 HARTLEY

The following special case of Theorem 1 is perhaps of interest in its own
right. It will follow from our proof of Theorem I.

Tueorem 3.  Suppose that the group G has an tnvariant series faithfully
stabilized by the locally finite group A. If G is either torsion-free or locally
Sfinite, then A is locally milpotent.

In Section 2 we shall give some alternative characterizations of the class
N3 and obtain some propertics of this class which we shall need. In Section 3
we prove Theorem 2 and show that every L9 -group lies in T. The remainder
of the paper is devoted to the other half of Theorem 1, which consists in
showing that & N 9 < N2,

2. FiniTE 'I'wo-PRIME GROUPS

LemMa | Let A be a finite group. For each prime p, let B, be the group
generated by the p-elements of A,.. Then A € N2 iff, for each prime p, B, e U
and foreach | #xe B,,3 K <1 4, suchthat x ¢ K and A, |K is a two-prime

group.

Proof. 'The condition is clearly necessary, since the class 9t® is s-closed
and so will contain each 4, if it contains A. Thus B, which lies in the last
term of the lower central series of 4., will be abelian.

Now suppose the last condition to be satisfied. Then, in the first place,
A e AN. This was effectively proved in [4], Lemma 16, but we have thought
it desirable to give the proof here. Let B == n A, over all primes p. Then
B <1 A. Now every p-element of A, lies in A, for every g +# p and so lies
in B; consequently B, <{ B. Furthermore, every p-clement of B lies in 4,
and so in B,. Thus, since B, is by assumption abelian and so a p-group,
B, is precisely the set of p-elements of B. It follows that B is the direct
product of the subgroup B, and so is abelian. Now every Sylow p-subgroup
of A/B is of the form PB/B for a suitable Sylow p-subgroup P of 4. But if
Q is a Sylow ¢-subgroup of 4, where g 7 p, then P <{ A, for every r 7 p,
and Q < 4,, whence [P, (] < N, 4,- —= B. Thus, in 4/B any two Sylow
subgroups of coprime orders commute elementwise, and so A/B e N.

To show that A € B2, it is clearly sufficient to show that, if 1 # x€ B,
then AL <1 4 such that x ¢ L and A/L is a two-prime group. Since x has a
nontrivial power lying in some subgroup B, , we may suppose at the outset
that x € B, . However, by hypothesis, 3L <1 4, such that x ¢ L and 4,/L
is a two-prime group. Now since xL is a nontrivial p-element of A /L, it
follows that | 4,-/L | is divisible only by p and possibly one other prime g.
By replacing L by the subgroup of 4, generated by the (p, g)'-elements
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of A,,, we may suppose that L is characteristic in A4,  and so normal in A4.
But 4/4, is a p-group and so A/Lis a (p, g)-group. This concludes the
proof of Lemma 1.

The following properties of the class 9® may perhaps be regarded as
generalizations of similar properties of the class of finite nilpotent groups.
I am indebted to Professor B. Huppert for a helpful discussion of these
results.

Lemma 2. Let Ge § N UN. Then the following conditions are equivalent.

(i) 7(G) =1, that is, G € N2,
(it) In G, any two Sylow subgroups of coprime orders permute.
(1i1) For each prime p, each chief p-factor of G is centralized by some G ,
where w consists of p and one other prime.
(iv) Each chief factor HIK of G is avoided by some G (|w | = 2), in the
sense that H N G < K.

Proof. By Satz 1 of [5], (i1} and (iii) are equivalent and are implied by (i).
We shall first show that (ii) implies (i).

Suppose the contrary, and let & be an abelian-by-nilpotent group of
minimal order satisfying (i) but not (i). Let B be a minimal normal subgroup
of G, and 1 = C <] G. Now by [5], Hilfsatz 1, the property (ii) passes to
quotient groups, hence both G/B and G/C lie in @, Therefore

m(G) < BN C,

and so BN C % 1. Hence C = B, and B is the unique minimal normal
subgroup of G.

Let K be the last term of the lower central series of G. By assumption,
K e ¥, and since 4 has only one minimal normal subgroup we must in fact
have K e, for some prime p (where 9, denotes the class of abelian
p-groups), and B < K.

Now if ¢ # p, then G is evidently a ¢'-group. If G, < G, then G- € NP,
and G would then satisfy the hypotheses of Lemma 1 and so would itself
lie in W, Hence G,r = G. G/K, being nilpotent and generated by p’-
elements, therefore lies in §,-. By a well known theorem of Schur (cf. [6],
p. 201), G splits over K, that is, G = KL, K n L = 1, for some subgroup
L of G. L =~ G/K is a nilpotent p'-group and so is the direct product of its
Sylow subgroups, say L = Dr, L, .

Let P be the subgroup of elements of order p in K. Since G acts on P as a
p’-group, it follows that P is completely reducible under the action of G,
that is, P is the direct product of minimal normal subgroups of G. Hence
P = B. Hence by condition (iii) there is a prime ¢ such that [P, L,] = 1.
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It follows that [K, L,-] = 1. For if not, let y be an element of K of minimal
order p" not centralized by L,. Let a €L,. Now y? is of order p?-!, hence
I = [y", o] = [y, a]?, since K e U. Therefore [v, o] is centralized by ~. But
am = | for some p’-number m and so | - [, o™] = [y, a]”. It follows that
[¥, «] = I, and L, centralizes y, contrary to hypothesis .Hence [K, L] = I.
Consequently L,» <1 G, and so L, = 1. Therefore G is a (p, ¢)-group and
s0 lies in 9*. This contradiction concludes the proof that (i) implies (i).

To see that (iv) implies (iii), let /7/K be a chief p-factor of (7 and suppose
G- avoids it, where | @ | == 2. Now KG_./K is the subgroup generated by
the w’-elements of G/K, and since NG NI < K, there are nontrivial
p-elements of G/K not lying in KG'_,/K. Hence p e w. But

[H,G < HNG, <K,

Hence G- centralizes H|K.

Furthermore, (iv) is implied by the other properties. For as already
pointed out, these properties all pass to quotient groups, hence it is sufficient
to show that every minimal normal subgroup M of G is avoided by some G-
with @ | = 2. But by property (1), if | =4 Z e M, then z lies outside some
such G, and so, as G <G, we must have G "M —= 1. This
concludes the proof of Lemma 2.

We define the closure operation R, to be the “finite version’’ of k—a class €
1s Ry-closed iff, whenever a group G has normal subgroups K and L with
KL | and both G/K and G/L lie in ¢, then G € €. Then

NE = (R, , Q, s}NP (7)

where {X, v, ...} denotes the closure join of the closure operations X, v, ....
(cf. [3], p- 533). The @-closure follows from Lemma 2 and Hilfsatz 1 of [5],
and the others are immediate.

We shall require the following fact.

Lemma 3. Let Ge &N AN and suppose L is a normal subgroup of G.
Suppose further that | =L, < L, < <L, =L is a series of normal
subgroups of G such that, for some prime q, G, centralizes every L, /L, . If
G|L € W2 then G e NP,

Proof. let 1 =G, <G, < <G, =G be a chief series of G
containing all the L; . It is enough to show that, if G, /G, is an r-factor, then
it is centralized by some G-, where w is a set of two primes containing 7.
For by the Jordan-Holder theorem, every chief factor of G is G-isomorphic
to some G,,;/G; (where G is regarded as a group of operators for itself by
conjugation), and Lemma 2 would then give the result.
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However, if G; = L this is true since G/L, which lies in %® by assumption,
satisfies (iii) of Lemma 2. But if G, <Z L, then G, /G, is a factor of some
;.4/L; and so is even centralized by G

We should perhaps point out that Lemmas 2 and 3 depend rather strongly
on the fact that we are working with abelian-by-nilpotent groups, as does the
rather surprising fact that, for abelian-by-nilpotent finite groups, the property
7o(G) == | is preserved under homomorphisms. This will be clear from the
following example.

Lemma 4. There is a finite group K € WA which satisfies (ii) and (iii) of
Lemma 2, but for which my(K) 5 1. | K| is divisible by only three primes, the
center Z of K is of order 2, and K{Z € NP . Further, K is a homomorphic
tmage of a NWM-group N with my(N) = 1.

Proof. Let gbeaprime 2. Let G be the group of class 2 and exponent 4
generated by the elements x; , x,, ..., x,_; subject to the realtions

X2 = a0, %] =1

for 7,7/, k, ! running from | to ¢ — 1. Then G’ is of exponent 2 and has a
basis consisting of the 1g¢(¢ — 1) commutators [x;,x,] with j <k We
identify these to obtain a group H, of class 2 and exponent 4 generated by
the elements x; , %, , ..., ¥, with [x,, x;] = 2 if 7 54, where 2% == | and
z lies in the center of H, . Let Z — {z}. Then Z is the unique minimal normal
subgroup of H,. Also, H, has an automorphism « of order ¢ which maps
;> x4y for 1 <K <<g— 1, and x,_; — %35 .. X,y

Let K, be the natural split extension of i, by {«}. Then Z is the center of
K,, and also its unique minimal normal subgroup. Choose an odd prime
r 7 g and let K, be constructed in the same way as K, . Let K be the central
product (direct product with identified centres) of K, and K,. Then
K=KK, [K,,K]=1 K,NnK, =Z, and it is easy to verify that Z is
the unique minimal normal subgroup of K. But | K | = 2%"~1¢r is divisible
by three distinct primes. Hence K_- > 7 whenever |w| =2, and so
m(K) = Z. In particular, =y(K) = 1.

Now K is a homomorphic image of NV = K, X K, and my(N) = |. By
Satz | of [5], it follows that both NV and K have properties (ii) and (iii) of
Lemma 1. Also, both NV and K lie in R,9. Further, Z is a central subgroup
of order 2of K, and K/Z ~ K, /Z X K,|Z € ®?. K thus has all the properties
which we required of it.

3. EMBEDDING LRP)-GRoOUPS IN STABILITY (GROUPS

~

Before showing that every LR®-group lies I, we need the following
lemma about the structure of LR®)-groups.
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Let P be the class of all groups of the form B Y I', where B € ¥, and I' is
a locally nilpotent (p, ¢)-group for suitable primes p and ¢. Here Y denotes the
complete wreath product.

LEMMA 5.
(i) L(AN) = ALM).

(1) If G is periodic and wy(H) = | for every G-subgroup H of G, then
m(G) = 1.

(i) LN < RSP.
(iv) RO < RS(F N D).

Proof. (1) Clearly A(LR) < L(UAN). Suppose G e L(AN). Let L = {y(H}},
where H runs over the ®-subgroups of G and y(H) denotes the last term of
the lower central series of H; thus p(H) € A. If H and K are two G-subgroups
of G and J = {H, K3}, then {yp(H), y(K)} < 7(]) € A This makes it clear that
L is an abelian subgroup of G. Also every conjugate of y(H) under K lies in
y(J) < L,and soL <1 G. Clearly G/L € LR, whence G & A(LM).

(11} Let P=ny(G) =N G, overallsetsw of two primes, and suppose if
possible that P 3 . Since G is periodic, it follows that P contains an element
u of prime order p, say. Now u certainly lies in G, and so # can be expressed
as a product of a finite number of elements whose orders are all prime to p.
Thus u € N, , where N is a G-subgroup of G and w, a finite subset of p".
However, for cach ¢ &, , 3 G-subgroup N9 of G such that u lies in the
subgroup generated by the (p, g)'-elements of N@, Let O = {N, N9; g o},
and let @ be any set of two primes. If p ¢ w, then u is a w’'-element and so
lies in Qpr. i w = (p,7)and r ¢ o, then ue N, < Q. If rew,, then
ue NS < Q.. Consequently u € my(Q). But O is finitely-generated and so
m(Q) == | by assumption. This contradiction shows that P = 1, as required.

(i) Let Gerdi®. Then G e A(LN) and =y(G) == 1, by parts (i) and (ii).
Let W =~ G/G,, where w == (p, g). Then W e A1), since this class is
o-closed, and W is a (p, ¢)-group. Thus W has an abelian normal subgroup I/
such that W/l = Ie 1%, Now V = IV, x I, is the direct product of its
Sylow subgroups ¥, and ¥, and W[V is an extension of V, by I'. It is well
known that every extension of a group A by a group B can be embedded in
A B. Consequently W/, e sB. Since V, N V, = 1, we find that W & rs'B,
and so, since my(G) == 1, this class also contains G.

If G is finite, then clearly all the relevant members of P may be supposed
finite, whence (iv) also follows,



LOCALLY FINITE STABILITY GROUPS 195

LEMMA 6.

(1) LAY L 2.

(i) Every N®-group can faithfully stabilize a descending series of type
(w + n)* of some finitely-generated abelian group.

Part (ii), of course, is precisely Theorem 2.

Proof. By Lemma 5 and the relations (5) of Section 1, it is enough to
show that P <C T and that every finite B-group has the property required
in (ii).

Accordingly, let W =B I"be any B-group. Thus B € A, for some prime g,
and I is a locally nilpotent (p, ¢)-group, so that I" = I', x I, is the direct
product of its Sylow p- and g-subgroups I', and I',. Let b-—5&* be an
isomorphism of B onto a group B*, let {x} be an infinite cyclic group, and
let X and Y be the base groups of {x} \ I, and the complete wreath product
B* T, respectively. We shall first embed W in Aut G, where G is the
abelian group

G=XxY. (3)

In the first place, I, is to transform X as in {x} \ I, , and I', is to transform
Y as in B* I',. If we impose the further conditions

[X’Fq]:[yvpp]:lv 9)

we shall clearly obtain an embedding of I" in Aut G. Now any element of I’
has a unique representation in the form én(¢ e I, , p € I',), consequently the
base group B of B \ I" may be written as the cartesian product

Cr(B,,; €Ty, nel).

To represent B by automorphisms of G we require that, if £ ¢ I', and b € B,
then

[«%, b] = ¥, (10)
where y € Y and if, for n e I', , 3, denotes the nth coordinate of y, then

¥y = () *. (I
If we also require

1B, Y] =1, (12)

then we may clearly regard B as a subgroup of Aut G. Transforming (10)
with an element '’ of I', we obtain

[xff" gf’n'J :yn' (13)
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and the »th coordinate of 3 is , = (/;_g”)*. Thus 57 is that element of B
whose ££"py’-coordinate is b,, . This makes it clear that the subgroup B, I'}
of Aut G is isomorphic with B I" and so may be identified with W

It remains to show that there is a series of G whose stability group contains
. We shall first consider the action of I", on ¥, Now since Y is the cartesian
product of a number of abelian g-groups, every periodic element of ¥ is a
g-element. Let 4 be any finitely-generated subgroup of I', and let U be any
finitely-generated subgroup of Y. Since I, ¢ 1%, , 4 is a finite g-group, and so
L lies in a finitely-generated d-invariant subgroup I of Y. Since |7 has no
clements of order prime to ¢, we have m/j 0 1a" 1, where 7" denotes the
subgroup consisting of the ¢”th powers of the elements of F. Consequently
the natural semidirect product I'4 is a RJ,-group, and hence is a Z-group,
that 1s, it has a central series. Let 7' be the natural semidirect product YT, ;
YVo-a oYy I, = 1. Now cvery finitelv-generated subgroup of 7' lies in
one of the form "4, and so is a Z-group. Since the class of Z-groups is
1-closed, by a well known theorem of Mal’cev ([6], p. 218), T itself is a
Z-group. 'The intersections with Y of any central series of 7 then furnish a
series of ) stabilized by I, (cf. also Plotkin [8], p. 1389). Let (A, I, ; o0& Q)
be such a series. We note that if I, and B are finite, then T e &, , and so this
sceries will be finite.

By a similar argument we obtain a series (3, @, ; xe ¥) of . stabilized
by I,; this will be of type w* if I',e % Now write > .* -3 x Y;
@ =@, Yifae V. The subgroups A, and IV, (o € £2) form a series of V'
which is extended to a series of G by the addition of the subgroups 3 * and
@, *. It is clear that B lies in the stability group of this series, and therefore
so does I, Further, if W is finite, then the series will be of type (w -+ n)*
where 7 is an integer 7> 0. This concludes the proof of Lemma 6.

4. Some Userul. LEMMAS

To conclude the proof of Theorem 1, we have now to prove

THrEOREM 1*.  Suppose A is a finite subgroup of the stability group of some
tnvariant series of the group G. Then 4 € NP,

This will occupy the remainder of the paper. We shall first prove some
miscellaneous lemmas.

We recall that a group G is said to be finitely-presented if it has a finite
number of generators in terms of which it can be defined by a finite number
of relations. Let us define the closure operator £ by saying that a class € is
E-closed whenever every extension of a €-group by a €-group again lies in €.
It is well known that the class R of finitely-presented groups is E-closed. In fact,



LOCALLY FINTTE STABILITY GROUPS 197

suppose G has a normal subgroup K such that K and G/K = I"both lie in K.

Then K is generated by a finite number of elements a;, a,, ..., a; with
relations fi(a) == -+ = fi{a) = |, and [" is generated by B, ..., 58, with
relations g,(8) = -+ = g,(8) = 1. Choose b; €8, for | <7< m. Then we

have gy(6) = ha) for certain words %, , ..., &, in the a’s. Also a}" = K and
so a¥ - ug(a) (1 <i<Ck, | <j < m). The group G is then generated by
ay s wer Gg, by, oy b, with the defining relations fi(a) = [, g(b) - hfa),
ay —uya)for 1 <i<< 1< s<n | <j<ml<p=<k and thus lies
in R.

For any group G, let f(G) consist of those normal subgroups of G which
are generated by a finite number of classes of conjugate clements in G,

LemMa 7. Suppose Ge G and that K and L are normal subgroups of G
with K < L. If Lef(G) and L/K € R, then K cf(G).

Proof. Suppose G = {x,, ..., x,}, where » is finite, and let G* be freely
generated by elements x,*, ..., x,,%. Let 8 be the homomorphism of G onto G
which maps x,* —>x, for 1 <{i<n, and let M* be its kernel, Write
K* = 0-Y(K), L* = ¢ (L). Now since L € f(G), we have L = {u,°, ..., u}}
for some finite 2. Choose elements u,*, ..., u,* € G* such that w,*® = u,
(1 < i<Ch)andlet U* == {u,*" .. 47"} NowL* <1 G*and U*M~* = L*.
Further, if x* e L*, then * e L. But U* == L, and so x*? - #*? for some
u* e U*. Consequently x* == u* mod M* and so we have L* == U*}]*,

Now M* <L K* << U*M* and so

K* = (K* 0 UM+ (14)
But U*/K* N U* o~ U¥K*/K* =L*¥/K*¥* ~L/Kec R Also G*U*ec R,
clearly, since G*€ ® and U*ef(G*). Hence, since R = ER, we have
G*/K* N U* e N. But if we take any finite set of generators of an R-group

W, then I can be defined by a finite number of relations between those
generators ([6], p. 74). Hence K* n U* g f(G*), and so

K0 U* = {7, L, k59T
for some finite 5. It is now clear from (14) that K == {(kf%), ..., (k2))%, as
required.
Levma 8. Suppose (A, V,; o€ Q) is an invariant series of G with
stability group I, and let K be a finite normal subgroup of G. Then
(A K/K, V. KIK; 6 € 2)

ts an invariant series of G|K. If A is a subgroup of I under which K is invariant,
then A stabilizes this series of G|K.
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This situation contrasts with the fact that nonascending series are not
usually preserved by homomorphisms.

Proof. 1t is only necessary to verify that G — K = UU o UK — T,.K),
since the other conditions are clearly satisfied. Accordingly, let x € G — K.
Now the coset xK is a finite set of elements each of which lies in just one
layer A — V_ of the given series. Therefore only a finite number of layers
meet this coset, and so there is a smallest o such that (A, — F.) N xK +£ ¢.
Then clearly x € 4 K. However 1, N xK = ¢, and so x ¢ VK.

Case (1) of the following lemma cstablishes one half of Theorem 3.

Levwma 9. Suppose that the group G has a series whose stability group
contains the finite group A. Then

(1) If GeLg, then 4 N.
(i) IfGelLF,, then A€F, .
(i) If Gis abelian of finite exponent, then G has a finite series stabilized by A.

Proof. (1) Let xeG. Then x lies in a finitely-generated A-invariant
subgroup H of G. Since G e 1§, H e §. The intersections with H of the
given series of G constitute a finite series of / stabilized by 4. Consequently
by a well known result of P. Hall ([2], p. 787), 4 acts on H as a nilpotent
group, that is, ¥(4) centralizes H. Since x was an arbitrary element of G,
it follows that y(4) = 1.

(i1) In this case, if x € G, then x lies in an A-invariant §,-subgroup H
of G which has a finite series stabilized by 4. It follows that .4 acts on H as a
finite p-group. For if o is a p'-element of A4, then the semidirect product
H{x} 1s nilpotent and so H commutes with «. Consequently 4 € &, .

(iti) Here G is an abelian group of finite exponent and so we may write
G =Dr, G, as the direct product of a finite number of Sylow p-subgroups
G, . Each G, is characteristic in G and so invariant under A; consequently
G, has a series stabilized by 4. By (ii), 4 acts on G, as a finite p-group.
1t is clearly cnough to show that G, has a finite series stabilized by A4, and so
we may suppose that G is an abelian p-group of finite exponent p®and A € §,, .
Suppose | A | = p™. Now if x € G, then x has at most p™ images under A4,
and cach of these is of order at most p”, so that x lies in an A-invariant
subgroup G, of order at most p™*+". Now G, and 4 are both finite p-groups,
and so G, has a finite series stabilized by A; this can be of length at most
m — n. Let it be

l = Gac,o < Gx.l < = Gx,m+n =G,

where the factors need not all be nontrivial, of course. Put G, = {G, ; ; x € G}
forO0< i< m -+ mn
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Then
1=6G, <G, < <G, =G

is a finite series of G stabilized by A.
We shall also need the following well known fact (cf [1], Theorem 10.3.5).

Levmma 10. Let H, K,L be subgroups of a group G. Then awy normal
subgroup of G which contains two of [H, K, L], [K,L, H],[L, H, K] also
contains the third.

We use the convention that repeated commutators are to be bracketed
from the left; thus [H, K, L] = [[H, K], L].

5. Proor oF MaIN THEOREM

We now investigate more closely the situation of Theorem 1*. Let G be a
group having an invariant series (1, I, ; o € ) the stability group of which
contains the group A4, which we do not yet assume finite. We write W for
the natural semidirect product GA; G <1 W, G A = 1. Also let U = [G, A]
and A* = {A%} = {49 = [G, A]A4, so that both U and A* are normal in W.
We shall use this notation throughout the rest of the paper. We require
some results about the structure of IW.

LeMMa 11.

(1) U has a series with factors central in A*.

(i) If K £ | and L are subgroups of W with L < A%, K<L UNL,and
Kef(L), then [K,L] << K.

Proof. (i) If o €2, the subgroups A, N U and V, N U are each normal
in W and hence so is the centralizer in W of the factor A, N UV, N U.
Since this centralizer contains A, it must therefore contain A4*. Thus
(A, N UV, nU;oef)is the required series of U.

(i) Write I, =A N U, 4, =V, N U and let K = {x,*, ..., x,5} where
n # 0 is finite and no x; is 1. Since K < U, 3o, such that x;e I, — 4,
(=12, ..,7n). Let o =maxo,. Then x,el’ for i =1,2,...,n and soj
since L normalizes I’ , we have K <{ I, . However 3j such that x;¢ 4,
and so K < 4 . Since L centralizes I, /4_we obtain

[K,L)<[I,,[]nK<4,nK <K,

as required.
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Lemma 12, Suppose A = Dr, A, is the direct product of its Svlou
p-subgroups A, for various primes p. Then {G, A, , 4] = Vifp # q.

Proof. Write o1,* = {4,%} = |G, A1, . Now [G, A,] < A% which 1s
generated by p-elements, the conjugates of elements of A, under G. It will
thus be enough to take a finite set x; . ..., &, of p-clements of /,* and an
element B of 4, and show that K — [X, B] = [, where X' ={x;, ..., &,
and B = (Al Letl —{X, B, Then K — {[x;, 5] 1 < i< r!, and so
Kef(L). Also 4,* and A, commute clementwise mod U, so that K < U]
and L < A*. Suppose now that K = . Then by Lemma 11, [K, L] == K, - K.

However K/K s generated by the coscts of the elements [, , 8]. The
subgroup of LK, generated by a,K, and SK] is clearly nilpotent of class <2,
since [, fje K and K/K, is centralized by L. Since xK, and K| are
elements of coprime order of this subgroup they thercfore commute, that is,
[;,B8] e K,. Thus K == K, which is a contradiction. Hence K -~ | and
the lemma is established.

We now suppose that A is finite.

Lemnia 130 For each prime p, let A, denote the group generated by the
p'-elements of A and let B, denote the group generated by the p-elements of A, .
Then

(1) [G,B,,4,]=1,
(i) [G, B,] is an abelian p-group of finite exponent lving in the center of
[G’ A p’]v
(1) B, € U for each prime p.

Proof. (1) We prove this result by induction on | 4 {. Let p be any
prime. If 4, <A the result is true by induction, and so we nced only
consider the case A = A .

We shall first show that [G, A, B,,, 4] = 1. Now any clement of [G, 4, B,]
lies in a subgroup of the form [H, B,] where H is a finitely-generated
subgroup of [G, 4]. But if T is the subgroup generated by all elements
[x, «], where x runs through G and o through the p’-elements of A, then
T =[G, A]. For let [x, o] be such an element, and let ye G and g€ 4.
Then [x, a)¥ == [xy, «][y, «] " and [a, «]® = [&®, &]. Since of is a p'-element
of A, it follows that 7' <1 W —= GA. But, modulo 7, G commutes with a set
of generators of 4. Hence [G, A] < T and we clearly have equality. Therefore
we may suppose

H={{x;,0];7i=1,2, .., 1} (15)
where the x; belong to G, the «; are p'-elements of A, and, since A is finite,
we may suppose that H is A-invariant. Let K= [H, B,]. Since B, is charac-
teristic in 4 and H is normalized by 4, we have K <1 HA = L. In fact, if
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v; = [y, ;] (1 <7< n), then K is generated by the conjugates in L of the
elements h , Bl (BeB ), and so K € f(1). Define K, = [K, L], K, = [K,,L].
Then K; 9L, K, <1L,and K 2> K| 2> K, . We 5hall show that K; = 1.

Suppose if posmble that K, = 1. Then certainly K 7 1. Since K { U
and L << A* Lemma 11 gives K, «7 K. Since K e f(L) and L centralizes
K/K,, it follows that K/K, e ®. M%o K <L and so K’ < K,. Hence
K/K,; € ® N A But the class M of finitely-presented groups, which is
i-closed and contains every cyclic group, therefore contains & N A, Con-
sequently K/K, € R. Since KN ef(L) and L e ®, Lemma 7 gives K| ef(L).
Since K, # 1 by hypothesis, Lemma 11 now shows that

K, K,. (16)

Now identity [x, of] = [x, B][x, «}¥ shows that, for fixed x € [/, the map
x — [x, «]K; maps B, homomorphically into the abeclian group K/K, .

Since the kernel of t}ns homomorphism contains B,/, the image is an abelian

b
p-group. But K/K is generated by all such images as v runs through H,
and so is an abelian p-group.

Also, for fixed wel, the map y — [y, «]K, maps K homomorphically
into the abelian group K;/K,, with kernel containing K, . The image is
therefore an abelian p-group, and since K /KA, is generated by such images,
K{/K,eq,. K/K, is therefore a p-group of class at most two. Now .
stabilizes the series K/K, > K,/K, > K,/K, of K/K, and therefore, by
L.emma 9, acts on KK, as a p-group. Since A is generated by p’-elements,
it must therefore act trivially on K/K, , that is,

[K, 4] < K,. (17)

But K and K, are each normal in L. Therefore K/K,, being centralized
by A, is also centralized by [H, 4], that is,

K, [H, A <K,. (18)

Let vy, = [x,,«] be one of the generators of H, and let ze K. Now
{2K,, y;K;} is a nilpotent subgroup of H/K, of class at most two. But
3 p'-number m such that o/ = 1. Consequently, 1 = [x,, o] == [x; , o;]™
mod[H, A]. Thus y/™ e [H, A], and (18) shows that 2 commutes with
y;"mod K, . Since 2K, i1s a p-element and m is a p’-number, it follows
that 2K, and y,K, commute, that is, [3, v,] € K, . Therefore K, H] <
In conjunction with (17), this shows that [K, L] <C K, , that is, K, < 1\2.
This contradiction to (16) shows that K; must in fact have been 1.

It follows that [H, B,] is centralizcd by A. Since every element of
[G, A, B,] lies in a subgroup of the form [H, B,], we now have

(G, A B,, 4 =1. (19)
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Let M =[G, 4, B,]. Then M is certainly centralized by B, and so,
being normalized by [G, 4], M is centralized by [G, A, B,]. In other words,
M e . Furthermore, for fixed xe[G, 4], the map a— [x, o] maps B,
homomorphically into the abelian group M; the image therefore lies in 9, ,
and so does M.

Now let N = [G, B,] and let M* = {M?*; xe G} = {M“}. Now M <1 [G, 4]
and so M <1 N <0 G. Hence M* <] G for each x € G. M* is thus generated
by normal A -subgroups of N, and so lies in LF,, . Now N/M* is centralized
by B, and so, since N and M* arc cach normal in G, it is centralized by
(G, B,] = N. Thatis, N/M* € U. Also, if x € G, then the map « — [x, o] M*
maps B, homomorphically into N/M*, and the argument which we have
used several times already shows that N/M* e, <C LF,. But the class
LE, is E-closed, and so NeLF,. However N is d-invariant and so the
intersections with it of the given series of G form a series of NV stabilized by 4.
Therefore by Lemma 9, A4 acts on N as a p-group. Since A is generated by
p'-elements, we therefore have [N, A] = 1. This concludes the proof of (i).

(i) In the first place, [G, B,] is a normal subgroup of G centralized by
A, and so by [G, 4,/]. In particular, [G, B,] is abelian. As usual, for x € G,
the map « — [x, ] maps B, homomorphically into [G, B,]. The image has
exponent at most | B, |, hence so does [G, B,] itself.

(i) By (i), [G, B,, B,] = | for each prime p. By Lemma 10, [G, B',] = |
and so B, = 1, thatis, B, € .

We can now conclude the proof of Theorem 3. For if G is torsion-free,
and even if G has no nontrivial periodic abelian normal subgroups, then
(ii) of Lemma 13 shows that [G, B,] — | and so B, = | for each prime p.
The argument of Lemma 1 now makes it clear that 4 e R, as required.

Proof of Theorem 1*. We shall suppose the theorem false, and take A to
be a counterexample of minimal order.

1. We first show, with the notation of Lemma 13, that 4/B,e R if
B, # 1. Let H be any A-invariant -subgroup of [G, A, ]and let | =[H, B,].
By Lemma 13 (ii), J is an abelian ¢-group of finite exponent lying in the
center of H. Now ] is generated by the conjugates in H of the set of elements
[%;, ], where x, runs through a finite set of generators of /7 and « through B, .
Since ] is central in H, it follows that J€ ®, and so Je § N ¥, . Now H is
A-invariant and so has an invariant series stabilized by A. Since [ is a finite
normal subgroup of H, Lemma 8 shows that H/] also has such a series.
However |1 # B, << C (H]]) and so by induction, 4/C (H/])e N,

Let C = N C(H]]), wherc H runs over the finitely-generated A-invariant
subgroups of [G, 4,]. Now by Lemma 13 (iii), B, € U for each prime 7,
and the argument of Lemma 1 shows that the subgroup B generated by the B,
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is their direct product, and A/B € M. Since N << R = NP, we therefore
have

AJC A Be R, (20)

Now B, << C and so CNn B = B, x R, say, where R <] A is an abelian
g'-group. Let « € R and x € [G, 4,.]. Let H be an A-invariant G-subgroup
of [G, 4,] containing x. Then [x, o] € [H, B,]. By Lemma 13 (i), [x, o] is
centralized by the ¢'-element o. Now o = 1 for some ¢’-number s, and so
1 =[x, ] =[x, oJ%. But by Lemma 13 (ii), [H, B,] is a g-group, and so
[x, «] = 1. Since x and « were arbitrary elements of [G, A,/] and R respec-
tively, it follows that R centralizes [G, 4, ].

Now V =[G, B] is generated by the subgroups [G, B}, only a finite
number of which are nontrivial. By Lemma 13 (ii), these are of finite exponent
and commute elementwise in pairs. Hence I is abelian of finite exponent.
But 7 is A-invariant and so has a series stabilized by 4. Therefore by
I.emma 9, 1" has a finite series

=V, <V< < V,=V
stabilized by A.

Fori =0, 1, ..., n, let R; be the set of elements « € R such that [x, «] € V;
for all x € G. The equations [x, o8] = [, B][x, «Jf and [x, «"1] = [x, o]
show, since V; is A-invariant, that R; 1s a subgroup of 4. Also, if a € R;
and Be 4 then [x, of] = [* ', afeV, andso R; <1 A4 for i =0, 1, ..., 1.
Now let £ >0, xe G, e 4,, B R;. Then

[o, &, BT, B, oF[B, o, 4T = 1

by a well known identity. The first factor is 1 since R centralizes [G, A,].
The second lies in [G, R; , AP < [V, AP < V,_, . Hence

[/8’ a xje g ; =Vig-

f—

Since this is true for any x € G, and since R <] 4, it follows that [8, « '] e R;_, .
R,/R,_, is thus centralized by all the ¢'-elements of 4. Since R, = 1, Lemma 3
and (20) now show that A/B, € N2

2. Consequently at most one of the subgroups B, can be nontrivial.
For if B, # 1 and B, # 1 (g # p), then A/B, and A/B, both lie in N?,
and B, N B, = 1. Therefore 4 € RN = N which was supposed not to
be the case.

3. Since not all the B, can be trivial, it follows that, for some prime p,
A has a normal % -subgroup B such that A/B € M. This implies that 4 = 4.
For if not, then 4,y € N, But if ¢ = p, then A, is a ¢’-group, and therefore
A satisfies the hypotheses of Lemma 1, and so lies in .

481/3/2-6
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Lemma 13 (ii) now shows that [G, B] is an abelian p-group of finite
exponent lying in the center of [G, A]. Let S be a finitely-generated A-
invariant subgroup of [G, 4], and let T == [S, B]. Then T is central in S,
and is generated by a finite number of classes of conjugate elements in S;
consequently 7' is finitely-generated and so finite. But .S is 4-invariant and
so has an invariant scries stabilized by 4. Since T € &, Lemma 8 shows that
S/T also has such a series.

However, B centralizes S/7, and so 4 acts on S/7 as a finite nilpotent
group. Let D = C (S/T), and, for each prime g, let A, be the group generated
by the g-elements of 4. Then 4/D is the direct product of its Sylow subgroups
A,D/D. By Lemma 12,

[S, 4., 4] < T if g7 Q1)
A,

For each prime ¢, let W, =[S, 4,]7. Then W is A-invariant, and by (21),
AjC (W, [T)is a g-group. But T'e€ §, and is centralized by A. If x € W and
e e C (W, T), then % — xu for some u € T, and for any integer n, ¥ = xu".
Consequently, if pt - | T'|, then ¢? centralizes W, . This makes it clear
that A/C (V) is a (p, g)-group and so lies in NP, Now [S, 4] =11, [S, 4,]
and so ﬂa C(W,) = CA[S, 4]) = E, say, and 4/E € RN, Since 4/Be N,
weeven have A/E e N where I, = E N B. But | =[S, 4, E)] =[S, E,, 4]
and so Lemma 10 gives [S,[F,, A]] =1, that 1, [E,, A] << C(S).
Lemma 3 now shows that 4/C (S} e 0. Since this is true for every finitely-
generated A-invariant subgroup S of [G, 4], we therefore have A/F e N>
where I7 = BN C([G, A]). But 1| =[G, A, F] = [G, F, 4] and so another
application of Lemma 10 gives [G, [F, .4]] = 1. Therefore F' lies in the center
of A, and Lemma 3 now shows that 4 € W™, This contradiction to the
assumption that 4 was a minimal counterexample to Theorem 1* shows
that no such counterexamples exist. Therefore the proof of Theorem 1* is
complete, and with it Theorem 1.
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