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In this work, the effects of a nonminimally coupled model of gravity on a perturbed Minkowski metric 
are presented. The action functional of the model involves two functions, f 1(R) and f 2(R), of the Ricci 
scalar curvature R: the former extends the usual linear term found in the Einstein–Hilbert Lagrangian, 
while the latter is multiplied by the matter Lagrangian density, thus introducing an explicit nonminimal 
coupling.
Based upon a Taylor expansion around R = 0 for both functions, we find that the metric around a spheri-
cal object is a perturbation of the weak-field Schwarzschild metric: the perturbation of the tt component 
of the metric tensor is shown to be a Newtonian plus Yukawa term, which can be constrained using the 
available experimental results. It is shown that this effect can be canceled or made arbitrarily small when 
the characteristic mass scales of the two functions are similar. We conclude that the Starobinsky model 
for inflation complemented with a generalized preheating mechanism is not experimentally constrained 
by observations. The geodetic precession effects of the model are also shown to be of no relevance for 
the constraints.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Modern physics uses the concepts of dark matter and dark 
energy to advance an explanation for the astrophysical problem 
of the flattening of galactic rotation curves and the cosmological 
problem of the accelerated expansion of the universe, respectively. 
Dark energy, which is supposed to account for 74% of all the mat-
ter of the universe, has many theories on its basis, as the so-called 
“quintessence” models [1–3] and the existence of scalar fields that 
account for both dark matter and dark energy [4].

More recent approaches start from the idea of the incomplete-
ness of the fundamental laws of General Relativity (GR), involving, 
for example, corrections to the Einstein–Hilbert action. Such the-
ories involve a non-linear correction to the geometry part of the 
action, being thus called f (R) theories. In the last decade, work 
on f (R) theories has been very profitable, as thoroughly discussed 
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in Ref. [5]. These can be extended to also include a nonminimum 
coupling (NMC) between the scalar curvature and the matter La-
grangian density.

Indeed, these NMC theories have many interesting features, as 
can be seen by several studies, such as the impact on stellar 
observables [6], the energy conditions [7], the equivalence with 
multi-scalar–tensor theories (with only one degree of freedom 
arising from the f (R) term, as the NMC gives rises to an auxilia-
ry scalar field with no kinetic term) [8], the possibility to account 
for galactic [9] and cluster [10] dark matter, cosmological pertur-
bations [11], a mechanism for mimicking a Cosmological Constant 
at astrophysical scales [12], post-inflationary reheating [13] or the 
current accelerated expansion of the universe [14,15], the dynam-
ical impact of the choice of the Lagrangian density of matter [16,
17], gravitational collapse [18], its Newtonian limit [19], the ex-
istence of closed timelike curves [20] and, the most recent one, 
a determination of Solar System constraints to a cosmological 
NMC [21].

For other NMC gravity theories and their potential applications, 
see e.g. [22–26].
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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One of the first motivations that brought f (R) theories into the 
physicists daily work was the Starobinsky inflation model, where 
f (R) = R + R2/(6m2) was considered [27,13], with WMAP nor-
malization of the CMB temperature anisotropies indicating that 
m ∼ 3 × 10−6 M P , where M P is the Planck mass [28].

Without directly mentioning the Starobinsky inflation, Ref. [29]
considers a quadratic f (R) function and develops an expansion in 
powers of (1/c) of an asymptotically flat Minkowski metric, show-
ing the presence of a Yukawa correction to the tt component of 
the latter [29]. Following the equivalence between scalar–tensor 
and f (R) theories [30–32], this can be interpreted as due to the 
additional gravitational contribution of the massive degree of free-
dom embodied in a non-linear f (R) function.

In this work we follow a similar procedure of Ref. [29] where 
we instead consider a NMC model. We consider that the additional 
degree of freedom arising from a non-trivial f (R) function is suf-
ficiently massive so that its effects are not extremely long-ranged, 
and as such we can neglect the background cosmological setting — 
this point (which shall be developed in the following) shows that 
this work is complementary to the recent study on the compati-
bility between cosmological and Solar System dynamics of a NMC 
model [21].

In Section 2 such a model is presented and in Section 3 the 
solution of the linearized field equations is computed. We obtain 
the solutions for the perturbative potentials Ψ (r) and Φ(r) of the 
metric, which contain a form factor specific of the Yukawa po-
tential that is addressed in Section 4. The tt component of the 
metric yields the modified gravitational potential, which includes 
a Newtonian plus a Yukawa contribution. The comparison of these 
results with available experimental constrains is presented in Sec-
tion 5. This section also addresses the radial potential through the 
constraints obtained to the geodetic precession values. Finally, con-
clusions are drawn.

2. The model

The action functional of gravity for the NMC case is of the 
form [33]

S =
∫ [

1

2
f 1(R) + [

1 + f 2(R)
]
Lm

]√−gd4x, (1)

where f i(R) (i = 1, 2) are functions of the Ricci scalar curvature R , 
Lm is the Lagrangian density of matter and g is the metric deter-
minant. The standard Einstein–Hilbert action is recovered by taking

f 1(R) = 2κ(R − 2Λ), f 2(R) = 0, (2)

where κ = c4/16πG , G is Newton’s gravitational constant and Λ is 
the Cosmological Constant.

The variation of the action functional with respect to the metric 
gμν yields the field equations

(
f 1

R + 2 f 2
RLm

)
Rμν − 1

2
f 1 gμν

= (
1 + f 2)Tμν + (�μν − gμν�)

(
f 1

R + 2 f 2
RLm

)
, (3)

where f i
R ≡ df i/dR and �μν ≡ ∇μ∇ν .

In the following we assume that matter behaves as dust, i.e.
a perfect fluid with negligible pressure and an energy–momentum 
tensor described by

Tμν = ρc2uμuν, uμuμ = −1, (4)

where ρ is the matter density and uμ is the four-velocity vector. 
The trace of the energy–momentum tensor is T = −ρc2. We use 
Lm = −ρc2 for the Lagrangian density of matter (see Ref. [16] for 
a discussion).

We consider a spherically symmetric body with a static radial 
mass density ρ = ρ(r) and we assume that the function ρ(r) and 
its first derivative are continuous across the surface of the body,

ρ(R S) = 0 and
dρ

dr
(R S) = 0, (5)

where R S denotes the radius of the spherical body. These con-
ditions will play a crucial role in the following sections, when 
integrals that have R S as an integration limit will appear.

The metric used is one that describes the spacetime around a 
spherical star like the Sun and it is given by the following pertur-
bation of the Minkowski metric, in spherical coordinates:

ds2 = −[
1 + 2Ψ (r)

]
c2dt2 + [

1 + 2Φ(r)
]
dr2 + r2dΩ2, (6)

where Ψ and Φ are perturbing functions such that |Ψ (r)| � 1 and 
|Φ(r)| � 1.

For the purpose of the present paper the functions Ψ and Φ
will be computed at order O(1/c2).

We assume that the functions f i(R) admit the following Taylor 
expansions around R = 0, which coincide with the forms used in 
Ref. [13]:

f 1(R) = 2κ

(
R + R2

6m2

)
+O

(
R3), f 2(R) = 2ξ

R

m2
+O

(
R2),

(7)

where m is a characteristic mass scale and ξ a dimensionless pa-
rameter specific of the NMC, indicating the relative strength of the 
latter with respect to the quadratic term in f 1(R).

Notice also that the Cosmological Constant is dropped, con-
sistent with the assumption that the metric is asymptotically 
flat — i.e. no cosmological background with a time-dependent, 
non-vanishing curvature R0 �= 0 is assumed, contrary to what was 
considered in Ref. [21]. In that study, a set of viability criteria for 
the form of f 2(R) was developed based upon the compatibility of 
the large scale effects (i.e. description of dark energy) and allowed 
Solar System impact: it is worth mentioning that the validity of 
such criteria required a very light additional degree of freedom, 
m0r � 1, with mass given by

m2
0 = 1

3

[
f 1

R0 − f 2
R0Lm

f 1
R R0 + 2 f 2

R R0Lm
− R0

− 3�( f 1
R R0 − 2 f 2

R R0ρ
cos) − 6ρ� f 2

R R0

f 1
R R0 + 2 f 2

R R0Lm

]
, (8)

where the subscript 0 indicates that the quantities are evaluated 
at their background cosmological value R = R0 (e.g. f i

R0 ≡ f i
R(R0)) 

and ρcos is the corresponding background cosmological density.

3. Solution of linearized modified field equations

3.1. Solution for the curvature R

The trace of the field equations (3) is

(
f 1

R + 2 f 2
RLm

)
R − 2 f 1 = −3�

(
f 1

R + 2 f 2
RLm

) + (
1 + f 2)T . (9)

After expanding the trace with the respective expressions, the 
equation is linearized: this is done by neglecting terms of order 
O(1/c3) or smaller. It yields the following equation,
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∇2 R − m2 R = −8πG

c2
m2

[
ρ − 6

(
2ξ

m2

)
∇2ρ

]
, (10)

which, by the variable substitution u = rR , enables the more 
straightforward expression

d2u(r)

dr2
− m2u(r) = s(r), (11)

where

s(r) = −8πG

c2
m2r

[
ρ − 6

(
2ξ

m2

)
∇2ρ

]
(12)

is the source function.
The boundary conditions on u(r) are

• u(0) = 0, so that the curvature R may have a finite value ev-
erywhere;

• limr→∞ u(r)/r = 0, so that the curvature vanishes asymptoti-
cally as one recovers the Minkowski metric.

The Green function of Eq. (11) solves the following equation in the 
sense of distributions

d2G(r, r′)
dr2

− m2G
(
r, r′) = δ

(
r − r′), (13)

where δ(r − r′) is the Dirac delta distribution. The Green function 
G(r, r′) is used to determine the solution of the curvature equation 
in the form (11) by means of the integral u(r) = ∫ R S

0 G(r, r′)s(r′)dr′ . 
Due to the different boundary conditions, the curvature is written 
as a twofold solution:

R(r) =
{

R↑(r) if r > R S ,

R↓(r) if 0 ≤ r ≤ R S ,
(14)

where R↓(r) is the curvature inside the star,

R↓(r) = −4πG

c2m

[
e−mr

r
I1(r) + 2 sinh(mr)

r
I2(r)

]
, (15)

the quantities I1(r) and I2(r) have been computed by using the 
properties (5) of the mass density ρ(r) and are given by

I1(r) = 2(12ξ − 1)m2

r∫
0

sinh
(
mr′)r′ρ

(
r′)dr′

− 24ξ cosh(mr)mrρ(r),

I2(r) = (12ξ − 1)m2

R S∫
r

e−mr′
r′ρ

(
r′)dr′ − 12ξe−mrmrρ(r), (16)

and R↑(r) is the curvature outside the star, given by

R↑(r) = 2GM S

c2r
m2(1 − 12ξ)A(m, R S)e−mr, (17)

with M S the mass of the spherical body and A(m, R S ) a form fac-
tor defined as

A(m, R S) = 4π

mM S

R S∫
0

sinh(mr)rρ(r)dr, (18)

which will be discussed in a subsequent section.
The expression (17) vanishes as r → ∞ and it is considered 

to be valid only at Solar System scales, since spacetime should 
assume a de Sitter metric with curvature R0 �= 0 at cosmological 
scales. Note also that in the limit m → 0 we have R↑(r) → 0 for 
any r > R S .
3.2. Solution for Ψ

The tt component of the Ricci tensor at order O(1/c2) is given 
by

Rtt = 2Ψ ′

r
+ Ψ ′′ +O

(
1

c3

)
= ∇2Ψ +O

(
1

c3

)
. (19)

Then, neglecting all terms smaller than O(1/c2) in the tt compo-
nent of the field equations (3), and using the curvature equation 
(10), we get the equation ruling Ψ :

∇2Ψ = c2

3k
ρ − R

6
. (20)

This is solved outside the spherical body, r ≥ R S , by decomposing 
it into a sum,

∇2Ψ = ∇2Ψ0 + ∇2Ψ1, (21)

where

∇2Ψ0 = c2

3k
ρ, ∇2Ψ1 = − R

6
. (22)

The first equation is easily solved using the divergence theorem, 
which gives

Ψ0(r) = −4

3

GM S

c2r
. (23)

The second one is more cumbersome: a tedious integration even-
tually shows that

Ψ1(r) = GM S

3c2r

[
1 − (1 − 12ξ)A(m, R S)e−mr], (24)

so that for r ≥ R S the solution is

Ψ (r) = − GM S

c2r

[
1 +

(
1

3
− 4ξ

)
A(m, R S)e−mr

]
. (25)

3.3. Solution for Φ

By the same token, being the mass distribution static, we insert 
the expressions

Rrr = 2

r
Φ ′ − Ψ ′′ +O

(
1

c3

)
, Trr = 0, (26)

into the rr component of the field equations, along with the f i(R)

expressions from (7), obtaining

2Φ ′ − rΨ ′′ − rR

2
+ 2R ′

3m2
− 4ξc2

m2k
ρ ′ = 0. (27)

This equation is easily integrated outside the spherical body, 
r ≥ R S , leading to

Φ(r) = GM S

c2r

[
1 −

(
1

3
− 4ξ

)
A(m, R S)e−mr(1 + mr)

]
. (28)

In the GR limit, ξ = 0 and m → ∞, the exponential term in both 
Ψ and Φ vanishes and we recover the weak-field approximation 
of the Schwarzschild metric, as expected.
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4. Discussion of Yukawa potential

As it has been shown, from the tt component of the metric we 
identify a Newtonian potential plus a Yukawa perturbation:

U (r) = − GM S

r

(
1 + αA(m, R S)e−r/λ), (29)

defining the characteristic length λ = 1/m and the strength of the 
Yukawa addition

α = 1

3
− 4ξ, (30)

so that, if ξ = 0, we get the Yukawa strength for pure f (R) the-
ories, α = 1/3 [29]; also, notice that a positive NMC (as assumed 
in Refs. [6,18]) yields α ≤ 1/3. Strikingly, a NMC with ξ = 1/12
cancels the Yukawa contribution.

4.1. The form factor A(m, R S)

As defined before, the form factor is

A(m, R S) = 4π

mM S

R S∫
0

sinh(mr)rρ(r)dr. (31)

This dimensionless form factor was found by integrating the field 
equations of NMC gravity but it is not specific of the NMC gravity 
nor of f (R) theories of this kind, but of any Yukawa model [34], 
as it arises from the integral

U Y (�x) = −Gα

∫
B R S

exp[−m|�x − �x′|]
|�x − �x′| ρ

(�x′)d3x′, (32)

where B R S is a sphere with radius R S and center at the origin. 
In the case of a spherically symmetric distribution of mass ρ(r), 
evaluation of the integral (32) in spherical coordinates yields the 
Yukawa contribution to U (r) in Eq. (29), so that Gα can be in-
terpreted as the strength of the Yukawa potential generated by a 
point source.

The form factor can be evaluated in several ways, according 
to the function of mass density ρ(r). Taking the limit of a point 
source, R S → 0, which allows us to expand around mr � 1, so that 
sinh(mr) ≈ mr[1 + (mr)2/6] and

A(m, R S) ≈ 4π

M S

R S∫
0

[
1 + (mr)2

6

]
r2ρ(r)dr

= 1 + 2m2π

3M S

R S∫
0

r4ρ(r)dr ∼ 1. (33)

This can be verified explicitly by making all computations with 
a test mass density (such as a uniform profile) and, in the end, 
taking the limit R S → 0. Indeed, taking

ρ0 = 3M S

4π R3
S

(34)

we obtain

A(m, R S) = 3
mR S cosh(mR S) − sinh(mR S)

(mR S)3
, (35)

which admits the limiting cases
Fig. 1. Numerical plot of form factor A(m, R�) for a constant density, Eq. (35) (full), 
and a fourth-order density profile for the Sun, Eq. (38) (dashed).

A(m, R S) ≈ 1 + (mR S)
2

10
∼ 1, mR S � 1,

A(m, R S) ≈ 3

2

emR S

(mR S)2
, mR S � 1. (36)

If the central body is the Sun (with radius R�), we may instead 
consider the more accurate density profile [35] (which obeys con-
dition ρ(R�) = 0, while (dρ/dr)(R�) � 0),

ρ(r) = ρ0

[
1 − 5.74

(
r

R�

)
+ 11.9

(
r

R�

)2

− 10.5

(
r

R�

)3

+ 3.34

(
r

R�

)4]
, (37)

obtaining

A(m, R�) = x−7[4.6 × 104x + 2.1 × 103x3

+ (
2.7 × 104 + 131x2)x cosh x

− (
7.3 × 104 + 3.6 × 103x2 − 14.6x4) sinh x

]
(38)

(with x = mR� , for brevity), with the limiting cases

A(m, R�) ≈ 1 + 6 × 10−2(mR�)2 ∼ 1, mR� � 1,

A(m, R�) ≈ 7.3
emR�

(mR�)3
, mR� � 1. (39)

Both forms for A(m, R�) are plotted in Fig. 1, showing that it 
grows with m. Although, for values of the lengthscale λ � R� , 
this effectively boosts the form factor, the contribution from the 
Yukawa term in Eq. (29) is nevertheless suppressed by the factor 
exp(−r/λ).

4.2. PPN parameters

Similarly to the present work, the Parameterized Post-Newto-
nian formalism posits an expansion of the metric elements and 
other quantities (energy–momentum tensor, equations of motion, 
etc.) in powers of 1/c2 [36]; the eponymous PPN metric reads, for 
a spherical central body,

ds2 = −
[

1 − 2
GM S

c2r
+ 2β

(
GM S

c2r

)2]
c2dt2

+
(

1 + 2γ
GM S

c2r

) (
dr2 + r2dΩ2), (40)

where β and γ are two PPN parameters, which measure the 
amount of non-linearity affecting the superposition law for gravity 
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and the spatial curvature per unit mass, respectively; GR is sig-
nalled by β = γ = 1. Other PPN parameters also appear in a more 
evolved version of the metric above, signalling violation of mo-
mentum conservation, existence of a privileged reference frame, 
amongst others deviations from GR.

Clearly, such a formalism is incompatible with the presence of 
a Yukawa term in the gravitational potential, since the latter can-
not be expanded in powers of 1/r; furthermore, the discussion 
after Eq. (17) highlights that, in the limit m → 0, we must con-
sider the background cosmological curvature and cannot assume 
the asymptotically flat Ansatz (6) for the metric: this was per-
formed in Ref. [21], as already mentioned.

Nevertheless, we can consider what happens if the condition 
mr � 1 is valid throughout the region of interest (e.g. the Solar 
System), for consistency: in this case, the metric (6) with the solu-
tions (25) and (28) is well approximated by

ds2 = −
[

1 − 2GM S

c2r

(
4

3
− 4ξ

)]
c2dt2

+
[

1 + 2GM S

c2r

(
2

3
+ 4ξ

)]
dr2 + r2dΩ2, (41)

which, upon comparison with Eq. (40) (or, mathematically, the 
adequate constant rescaling of both time and radial coordinates), 
yields

γ = 1

2

1 + 6ξ

1 − 3ξ
, (42)

a result which could be directly obtained if one considers that the 
γ PPN parameter can be directly read from

γ = −Φ(r)

Ψ (r)
= 1 − (1 + mr)( 1

3 − 4ξ)e−mr

1 + ( 1
3 − 4ξ)e−mr

≈ 1

2

1 + 6ξ

1 − 3ξ
, (43)

in the limit of a light field, mr � 1. In the absence of a NMC, ξ = 0, 
this yields γ = 1/2, a strong departure from GR that is disallowed 
by current experimental bounds, γ = 1 + (2.1 ± 2.3) × 10−5 [37]. 
This apparent disagreement between f (R) theories and observa-
tions was noted early on (as discussed e.g. in Refs. [38–40]), and 
can be avoided if the additional degree of freedom arising from a 
non-linear f (R) function is massive enough (as, for mr � 1, the 
expression above yields γ ≈ 1).

The expression above appears to show that a NMC allows f (R)

theories to remain compatible with observations, as long as ξ =
1/12 + (2.625 ± 2.875) × 10−6 — which is just a restatement of 
the previously obtained result. Again, the path towards obtaining 
the γ PPN parameter depicted above is presented for illustration 
only, as it relies on an approximation of a Yukawa perturbation 
and disregards the fact that, in the limit mr � 1, the background 
cosmological dynamics cannot be neglected. As such, no conclu-
sions can be drawn from comparison with the experimental bound 
on γ mentioned above.

5. Experimental constraints to NMC gravity parameters

The Yukawa potential (29) is not new in physics as an alterna-
tive way to account for deviations from Newtonian gravity or other 
forces of nature [41,34,42,37]. Fig. 2 shows the exclusion plot for 
the phase space (λ, α), which may be used to constraint the phase 
space of the model (1) under scrutiny.

In doing so, we recall that the results obtained in Eqs. (25), 
(28), (29) are not exact, but only accurate to order O(c−2), and are 
based upon the assumption of a perturbation to a Minkowski met-
ric: a future analysis should expand this framework to also include 
terms O(c−4), as well as establish some matching criteria between 
Fig. 2. Yukawa exclusion plot for α and λ. Adapted from Refs. [41,46].

Fig. 3. Exclusion plot for the dimensionless relative strength ξ and characteristic 
mass scale m.

the static, spherically symmetric spacetime here considered and 
the evolving background spacetime [43] (see also Ref. [44]). In-
deed, Ref. [45] has found that in f (R) theories, O(c−4) terms can 
arise that are not exponentially suppressed, and as such may play 
a role at large distances, particularly if the O(c−2) Yukawa inter-
action here obtained is short-ranged.

From Fig. 2 (as discussed after (30)), one sees a NMC with ξ =
1/12 cancels this contribution, as shown by the values of |α| → 0
overlaid on the exclusion plot. Also, notice that large values of ξ
lead to a large, negative strength α ∼ −4ξ (the cases ξ = 25 and 
ξ = 2500 are shown).

We may transform into the phase space (m, ξ) of the model 
under scrutiny, (7), using

m = 1

λ
, ξ = 1

12
− α

4
, (44)

to get the exclusion plot depicted in Fig. 3.
Further insight may be obtained by casting the NMC presented 

in Eq. (7) as

f 2(R) = R

6M2
, (45)

so that it is characterized by a distinct mass scale M , instead of 
the relative strength parameter ξ : by making the transformation 
ξ = (m/M)2/12, we thus obtain the suggestive form

α = 1

3

[
1 −

(
m

M

)2]
, (46)

which, inverting, allows us to plot the exclusion plot for the phase 
space (m, M) in Fig. 4.



30 N. Castel-Branco et al. / Physics Letters B 735 (2014) 25–32
Fig. 4. Exclusion plot for the characteristic mass scales M and m.

Figs. 2–4 show us that, if m falls within the range 10−22 eV <

m < 1 meV (corresponding to lengthscales λ ranging from the mil-
limeter to Solar System scales), then the strong constraints avail-
able on the Yukawa strength, |α| � 1, require that ξ ∼ 1/12 — or, 
equivalently, that both characteristic mass scales are very similar, 
m ∼ M .

5.1. Geodetic precession

In this section we assume that the Earth can be approximated 
as a spherically symmetric body. In order to assess the impact of 
the obtained expression for Φ(r), Eq. (28), we now consider a gy-
roscope in a circular orbit with radius r around the Earth. The 
intrinsic angular momentum vector Sμ = (S0, �S) precesses accord-
ing to the equation of parallel transport:

dSμ

dτ
= −Γ

μ
νσ Sν dxσ

dτ
, (47)

where τ is the proper time. We write the metric tensor around the 
Earth in rectangular isotropic coordinates, for convenience

ds2 = −
[

1 − 2GM S

c2r

(
1 + αA(m, R S)e−mr)]c2dt2

+
[

1 + 2GM S

c2r

(
1 − αA(m, R S)e−mr)]dV 2. (48)

The standard method of computation of gyroscope precession in 
GR yields for the secular part of d�S/dt in NMC gravity, in the slow 
motion and weak field approximation,
(

d�S
dt

)
sec

= 3

2

GM S

c2r3

[
1 − αA(m, R S)

3
(1 + mr)e−mr

]
(�r × �v) × �S,

(49)

where �r is the radius vector of the center of mass of the gyroscope 
and �v is its velocity vector. By imposing the equality between the 
acceleration v2/r of the center of mass of the gyroscope and the 
sum of the Newton plus Yukawa forces per unit mass, we get

vr =
√

GM Sr
[
1 + αA(m, R S)(1 + mr)e−mr

]
. (50)

Since (d�S/dt)sec = �ΩG × �S , the angular velocity vector �ΩG of 
geodetic precession is given by

�ΩG = 3

2

(GM S)
3/2

c2r5/2

[
1 + αA(m, R S)(1 + mr)e−mr]1/2

×
[

1 − αA(m, R S)
(1 + mr)e−mr

]
�n, (51)
3

where �n is the unit vector perpendicular to the plane of the
orbit.

If ξ = 0, the above expression reduces to the case for f (R)

models, as expected [29].

5.1.1. Gravity Probe B results
The final results of the Gravity Probe B experiment report an 

accuracy of 0.28% in the measurement of geodetic precession [47]. 
This corresponds to the following constraint on NMC gravity pa-
rameters:∣∣∣∣ΩG − ΩGR

G

ΩGR
G

∣∣∣∣ < 0.0028, (52)

where only the modulus of angular velocity is considered, and ΩGR
G

denotes the value of geodetic precession in GR. Substituting the 
expression of NMC geodetic precession in this constraint we find∣∣∣∣
√

1 + αA(m, R S)(1 + mr)e−mr

×
[

1 − αA(m, R S)

3
(1 + mr)e−mr

]
− 1

∣∣∣∣ < 0.0028. (53)

Defining x ≡ αA(m, R S)(1 + mr)e−mr , this is written as∣∣∣∣
√

1 + x

(
1 − x

3

)
− 1

∣∣∣∣ < 0.0028. (54)

If x � 1, we get |x| < 0.04, which is contradictory. Since substitu-
tion shows that x ∼ 1 breaks the above relation, we are left with 
the natural constraint x � 1, so that a first order expansion of the 
above yields |x| < 0.0168. This last condition is translated as

|α| < 0.0168

1 + mr

emr

A(m, R S)
. (55)

In order to satisfy the assumption (5) of continuity of mass den-
sity and its derivative across the surface of the Earth, we model 
the density with a constant value in an interior region (i.e. mantle 
plus core) and a sharp transition in a thin crustal layer. When the 
thickness of the latter tends to zero, the form factor A(m, R S ) con-
verges to the value corresponding to the uniform density model, 
Eq. (36), hence the inequality (55) reads

|α| < 0.0168, mR⊕ � 1,

|α| < 0.0112
mR2⊕

r
em(r−R⊕), mR⊕ � 1, (56)

where R⊕ ≈ 6371 km is the radius of the Earth. Knowing that the 
Gravity Probe B orbits the Earth at a height of ∼ 650 km, this 
condition can be plotted in the (λ, α) exclusion plot, as shown in 
Fig. 2: we find that it is well-within the already excluded phase 
space, so that the current bounds on geodetic precession do not 
add any new constraint on the model parameters.

5.1.2. Measurement of the LAGEOS II perigee precession
A recent analysis of the perigee precession of the LAGEOS II 

satellite reported a much stronger constraint on the strength of the 
Yukawa perturbation, |α| � |(1.0 ± 8.9)| × 10−12 for a range λ = 1/

m = 6081 km = 0.95R⊕ (since the experiment is more sensitive 
to forces with range close to the distance of the satellite from the 
central body, i.e. Earth) [48]: a striking improvement over previ-
ous Earth-LAGEOS and Lunar-LAGEOS measurements (at the level 
of 10−5 and 10−8), and comparable to the Lunar Laser Ranging 
constraint on α for λ ∼ 60R⊕ [49].

Non-gravitational perturbations, mainly thermal perturbative ef-
fects, can strongly affect the precession of the perigee of LAGEOS II: 
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in [48], solar radiation pressure and Earth’s albedo are taken into 
account, while Rubincam and Yarkovsky–Schach (YS) thermal ef-
fects (which need the satellite spin modeling) have not been 
considered. Nevertheless, the residuals in the perigee rate of the 
satellite are fitted with a linear trend (which represents the secu-
lar total GR precession) plus four periodic terms which correspond 
to the main spectral lines of the unmodeled YS effect [48].

This said, if the impressive bound on α quoted above is indeed 
confirmed, no qualitative changes occur in our previous analysis: 
as long as the Yukawa coupling strength lies below unity suffi-
ciently, we must have ξ ∼ 1/12 → M ∼ m, so that lowering the 
upper bound on the former only brings the two mass scales of the 
functions f 1(R) and f 2(R) closer together.

6. Discussion and outlook

In this work we have computed the effect of a NMC model, 
specified by (7), in a perturbed weak-field Schwarzschild metric, as 
depicted in Eq. (25) and (28). In the weak-field limit, this translates 
into a Yukawa perturbation to the usual Newtonian potential, with 
characteristic range and coupling strength

λ = 1

m
, α =

(
1

3
− 4ξ

)
= 1

3

[
1 −

(
m

M

)2]
. (57)

This result is quite natural and can be interpreted straightfor-
wardly: a minimally coupled f (R) theory introduces a new mas-
sive degree of freedom (as hinted by the equivalence with a scalar–
tensor theory [30–32]), leading to a Yukawa contribution with 
characteristic lengthscale λ = 1/m and coupling strength α = 1/3.

The introduction of a NMC has no dynamical effect in the vac-
uum, as there is no matter to couple the scalar curvature to: as 
a result, we do not expect any modification in the range of this 
Yukawa addition; notwithstanding, the effect of the NMC on the 
interior of the source body (illustrated in Refs.[6,12,17]) impacts 
the strength of the outer curvature and metric solutions (due to 
continuity of the corresponding functions across the surface of the 
spherical body), as seen with Eqs. (17) and (25): the correction has 
a negative sign, since Lm = −ρ .

Using the available experimental constraints, we find that, for 
10−22 eV < m < 1 meV (i.e. the range 10−4 m < λ < 1016 m), 
where |α| � 1, we must have ξ ∼ 1/12 or, equivalently, that both 
mass scales m and M of the non-trivial functions f 1(R) and f 2(R)

must be extremely close.
If this is the case, the latter relation is not interpreted as an un-

desirable fine-tuning, but instead is suggestive of a common origin 
for both non-trivial functions f 1(R) and f 2(R), in line with the 
argument stating that the model (1) should arise as a low energy 
phenomenological approximation to a yet unknown fundamental 
theory of gravity. This possibility remains speculative, as it would 
require a more precise knowledge of the quantum formalism of 
such a theory: a fine-tuning would be avoided if the bare val-
ues of m and M ≡ m/

√
12ξ , albeit different, are driven towards a 

higher common value proportional to some common renormaliza-
tion scale; prospective discussions of 1-loop corrections and their 
relation with higher order curvature terms and a NMC are found 
in Refs. [50,51].

Alternatively, at the classical level one notices that the result 
ξ = 1/12 is directly equivalent to the action

S =
∫ (

1 + R

6m2

)
(κ R +Lm)

√−gd4x, (58)

and the main result of this work can be recast in a more appealing 
way: if an analytical (around R = 0) NMC model leads to a massive 
degree of freedom with a short range which falls within the cur-
rently observable region 1 mm � λ � 1015 m, then it must corre-
spond to a global factorization of the Einstein–Hilbert Lagrangian, 
as shown above.

Conversely, for values of m (or λ) away from the range men-
tioned above, the Yukawa coupling strength α can be much larger 
than unity, so that ξ can assume any value and the mass scales m
and M can differ considerably.

In particular, the Starobinsky inflationary model, which requires 
the much heavier mass scale m ≈ 3 × 1013 GeV ∼ 10−6 M P , man-
ifests itself at a lengthscale λ ∼ 10−29 m. This implies that the 
generalized preheating scenario posited in Ref. [13], which requires 
1 < ξ < 104, is thus completely allowed by experiment and uncon-
strained by this work.

By computing the perturbation induced on geodetic precession, 
we have found that no significant new constraint arises, as this 
is already included in the existing Yukawa exclusion plot. Further-
more, even considering the much improved precision claimed in 
a recent study of LAGEOS II — or, for that matter, any further re-
finement of |α| � 1 — no qualitatively new results arise, since this 
only bridges the gap between the mass scales m and M ≡ 12ξm
(i.e. narrows the value of |ξ − 1/12|).

The method here developed assumes that the background cos-
mological curvature can be neglected, which requires that the mass 
of the curvature degree of freedom (as computed in Ref. [21], 
where said contribution is considered, and shown in Eq. (8)) must 
be heavy enough so that the force is short ranged, i.e. m0r � 1: as 
shown in Ref. [21], current proposals for dark energy [14], which 
rely upon a power-law NMC of the form f 2 ∼ R−n , only lead to a 
short-range force if 0 < n < 10−25, which is clearly insufficient to 
account for observations (in Ref. [14], n = 4 or n = 10 are consid-
ered). Furthermore, said proposals are not analytical around R = 0, 
and as such this method is not directly applicable, but complemen-
tary to Ref. [21].

Finally, a word is due for the so-called chameleon mechanism, 
first posited in Ref. [52–55], as discussed in Ref. [29] in relation to 
f (R) theories. This non-linear effect goes beyond the linear expan-
sion of the modified field equations, and relies on the equivalence 
between f (R) theories and a scalar–tensor theory with a scalar 
field φ proportional to f R , which appears nonminimally coupled 
to the matter Lagrangian density (in the Einstein frame) [30–32,5].

As it turns out, the effective potential of this scalar field can be 
written as V eff(φ) = V (φ) + eaφρ (with a an appropriate constant), 
so that the position of its minimum depends on the density ρ , and 
the mass for the scalar field grows with the density. This property 
allows for short-interactions at a high-density environment such 
as those found in laboratory experiments, while yielding a light, 
long-ranged field in the low-density of space.

Given the above, Ref. [29] speculates that further computations 
allowing for this non-linear effect could lead to different con-
straints on the mass scale m of the adopted quadratic form for 
f 1(R): quite naturally, the inclusion of a direct coupling between 
curvature (vis-à-vis the scalar field) and matter only heightens 
this possibility, as can be seen from the direct dependence of the 
mass parameter (8) on the density (which is highly non-trivial, and 
where one recalls that Lm = −ρ).

Clearly, this prompts for a future study of the relation between 
this chameleon mechanism and a NMC model, in the framework 
of its equivalence with a multi-scalar–tensor theory [8].

Acknowledgements

The authors thank O. Bertolami for fruitful discussions. The 
work of J.P. is partially supported by FCT (Fundação para a Ciência 
e a Tecnologia, Portugal) under the project PTDC/FIS/111362/2009. 



32 N. Castel-Branco et al. / Physics Letters B 735 (2014) 25–32
The work of R.M. is partially supported by INFN (Istituto Nazionale 
di Fisica Nucleare, Italy), as part of the MoonLIGHT-2 experiment 
in the framework of the research activities of the Commissione Sci-
entifica Nazionale n. 2 (CSN2). The authors thank the referee for 
his/her useful remarks and criticisms.

References

[1] S. Nojiri, S.D. Odintsov, Modified f (R) gravity consistent with realistic cosmol-
ogy: from matter dominated epoch to dark energy universe, Phys. Rev. D 74 
(2006) 086005.

[2] S. Capozziello, S. Nojiri, S. Odintsov, A. Troisi, Cosmological viability of 
f (R)-gravity as an ideal fluid and its compatibility with a matter dominated 
phase, Phys. Lett. B 639 (2006) 135–143.

[3] S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Is cosmic speed-up due to 
new gravitational physics?, Phys. Rev. D 70 (2004) 043528.

[4] O. Bertolami, R. Rosenfeld, The Higgs portal and an unified model for dark 
energy and dark matter, Int. J. Mod. Phys. A 23 (2008) 4817–4827.

[5] A. De Felice, S. Tsujikawa, f (R) theories, Living Rev. Relativ. 13 (2010) 3.
[6] O. Bertolami, J. Páramos, Do f (R) theories matter?, Phys. Rev. D 77 (2008) 

084018.
[7] O. Bertolami, M.C. Sequeira, Energy Conditions and Stability in f (R) theories of 

gravity with non-minimal coupling to matter, Phys. Rev. D 79 (2009) 104010.
[8] O. Bertolami, J. Páramos, On the non-trivial gravitational coupling to matter, 

Class. Quantum Gravity 25 (2008) 245017.
[9] O. Bertolami, J. Páramos, Mimicking dark matter through a non-minimal gravi-

tational coupling with matter, J. Cosmol. Astropart. Phys. 1003 (2010) 009.
[10] O. Bertolami, P. Frazão, J. Páramos, Mimicking dark matter in galaxy clusters 

through a non-minimal gravitational coupling with matter, Phys. Rev. D 86 
(2012) 044034.

[11] O. Bertolami, P. Frazão, J. Páramos, Cosmological perturbations in theories with 
non-minimal coupling between curvature and matter, J. Cosmol. Astropart. 
Phys. 1305 (2013) 029.

[12] O. Bertolami, J. Páramos, Mimicking the cosmological constant: constant cur-
vature spherical solutions in a non-minimally coupled model, Phys. Rev. D 84 
(2011) 064022.

[13] O. Bertolami, P. Frazão, J. Páramos, Reheating via a generalized non-minimal 
coupling of curvature to matter, Phys. Rev. D 83 (2011) 044010.

[14] O. Bertolami, P. Frazão, J. Páramos, Accelerated expansion from a non-minimal 
gravitational coupling to matter, Phys. Rev. D 81 (2010) 104046.

[15] O. Bertolami, J. Páramos, Modified Friedmann equation from nonminimally 
coupled theories of gravity, Phys. Rev. D 89 (2014) 044012.

[16] O. Bertolami, F.S. Lobo, J. Páramos, Non-minimum coupling of perfect fluids to 
curvature, Phys. Rev. D 78 (2008) 064036.

[17] O. Bertolami, J. Páramos, Homogeneous spherically symmetric bodies with a 
nonminimal coupling between curvature and matter: the choice of the La-
grangian density for matter, arXiv:1306.1177.

[18] J. Páramos, C. Bastos, Gravitational collapse in non-minimally coupled gravity: 
finite density singularities and the breaking of the no-hair theorem, Phys. Rev. 
D 86 (2012) 103007.

[19] O. Bertolami, A. Martins, On the dynamics of perfect fluids in non-minimally 
coupled gravity, Phys. Rev. D 85 (2012) 024012.

[20] O. Bertolami, R.Z. Ferreira, Traversable Wormholes and Time Machines in non-
minimally coupled curvature-matter f (R) theories, Phys. Rev. D 85 (2012) 
104050.

[21] O. Bertolami, R. March, J. Páramos, Solar System constraints to nonminimally 
coupled gravity, Phys. Rev. D 88 (2013) 064019.

[22] D. Puetzfeld, Y.N. Obukhov, Covariant equations of motion for test bodies 
in gravitational theories with general nonminimal coupling, Phys. Rev. D 87 
(2013) 044045.

[23] D. Puetzfeld, Y.N. Obukhov, Unraveling gravity beyond Einstein with extended 
test bodies, Phys. Lett. A 377 (2013) 2447–2449.

[24] D. Puetzfeld, Y.N. Obukhov, Equations of motion in gravity theories with non-
minimal coupling: a loophole to detect torsion macroscopically?, Phys. Rev. D 
88 (2013) 064025.

[25] Y.N. Obukhov, D. Puetzfeld, Conservation laws in gravitational theories with 
general nonminimal coupling, Phys. Rev. D 87 (8) (2013) 081502.
[26] L. Iorio, Modified theories of gravity with nonminimal coupling and orbital par-
ticle dynamics, Class. Quantum Gravity 31 (2014) 085003, arXiv:1306.3886.

[27] A.A. Starobinsky, A new type of isotropic cosmological models without singu-
larity, Phys. Lett. B 91 (1980) 99–102.

[28] E. Komatsu, et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) 
observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 
330–376.

[29] J. Naf, P. Jetzer, On the 1/c expansion of f (R) gravity, Phys. Rev. D 81 (2010) 
104003.

[30] P. Teyssandier, P. Tourrenc, The Cauchy problem for the R + R2 theories of grav-
ity without torsion, J. Math. Phys. 24 (1983) 2793.

[31] H. Schmidt, Variational derivatives of arbitrarily high order and multiinflation 
cosmological models, Class. Quantum Gravity 7 (1990) 1023–1031.

[32] D. Wands, Extended gravity theories and the Einstein–Hilbert action, Class. 
Quantum Gravity 11 (1994) 269–280.

[33] O. Bertolami, C.G. Boehmer, T. Harko, F.S. Lobo, Extra force in f (R) modified 
theories of gravity, Phys. Rev. D 75 (2007) 104016.

[34] E.F. und, C.L. Talmadge, The Search for Non-Newtonian Gravity, Springer-Verlag, 
2000.

[35] http://spacemath.gsfc.nasa.gov.
[36] C.M. Will, The confrontation between general relativity and experiment, Living 

Rev. Relativ. 9 (2006) 3.
[37] O. Bertolami, J. Páramos, The experimental status of Special and General Rela-

tivity, in: Handbook of Spacetime, Springer-Verlag, 2014, arXiv:1212.2177.
[38] S. Capozziello, A. Stabile, A. Troisi, Newtonian limit of f (R) gravity, Phys. Rev. 

D 76 (2007) 104019.
[39] S. Capozziello, M. De Laurentis, S. Nojiri, S. Odintsov, f (R) gravity constrained 

by PPN parameters and stochastic background of gravitational waves, Gen. Rel-
ativ. Gravit. 41 (2009) 2313–2344.

[40] T. Chiba, T.L. Smith, A.L. Erickcek, Solar System constraints to general f (R)

gravity, Phys. Rev. D 75 (2007) 124014.
[41] E. Adelberger, B.R. Heckel, A. Nelson, Tests of the gravitational inverse square 

law, Annu. Rev. Nucl. Part. Sci. 53 (2003) 77–121.
[42] O. Bertolami, J. Páramos, S.G. Turyshev, General theory of relativity: will it 

survive the next decade?, in: S. Verlag (Ed.), Lasers, Clocks, and Drag-Free: 
Technologies for Future Exploration in Space and Tests of Gravity, Springer-
Verlag, 2006, arXiv:gr-qc/0602016.

[43] T. Clifton, P. Dunsby, R. Goswami, A.M. Nzioki, On the absence of the usual 
weak-field limit, and the impossibility of embedding some known solutions 
for isolated masses in cosmologies with f (R) dark energy, Phys. Rev. D 87 (6) 
(2013) 063517.

[44] M. Sereno, P. Jetzer, Dark matter versus modifications of the gravitational 
inverse-square law: results from planetary motion in the solar system, Mon. 
Not. R. Astron. Soc. 371 (2) (2006) 626–632.

[45] T. Clifton, Parametrized post-Newtonian limit of fourth-order theories of grav-
ity, Phys. Rev. D 77 (2008) 024041.

[46] E. Salumbides, W. Ubachs, V. Korobov, Bounds on fifth forces at the sub-
Angstrom length scale, J. Mol. Spectrosc. 300 (2014) 65–69.

[47] C.W.F. Everitt, D.B. DeBra, B.W. Parkinson, J.P. Turneaure, J.W. Conklin, M.I. 
Heifetz, G.M. Keiser, A.S. Silbergleit, T. Holmes, J. Kolodziejczak, M. Al-Meshari, 
J.C. Mester, B. Muhlfelder, V.G. Solomonik, K. Stahl, P.W. Worden, W. Bencze, 
S. Buchman, B. Clarke, A. Al-Jadaan, H. Al-Jibreen, J. Li, J.A. Lipa, J.M. Lockhart, 
B. Al-Suwaidan, M. Taber, S. Wang, Gravity Probe B: final results of a space 
experiment to test general relativity, Phys. Rev. Lett. 106 (2011) 221101.

[48] D.M. Lucchesi, R. Peron, Accurate measurement in the field of the Earth of the 
general-relativistic precession of the LAGEOS II pericenter and new constraints 
on non-Newtonian gravity, Phys. Rev. Lett. 105 (2010) 231103.

[49] J. Muller, J.G. Williams, S.G. Turyshev, Lunar laser ranging contributions to rel-
ativity and geodesy, arXiv:gr-qc/0509114.

[50] G.A. Vilkovisky, Effective action in quantum gravity, Class. Quantum Gravity 
9 (4) (1992) 895.

[51] I. Drummond, S. Hathrell, QED vacuum polarization in a background gravita-
tional field and its effect on the velocity of photons, Phys. Rev. D 22 (1980) 
343.

[52] J. Khoury, A. Weltman, Chameleon fields: awaiting surprises for tests of gravity 
in space, Phys. Rev. Lett. 93 (2004) 171104.

[53] J. Khoury, A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (2004) 044026.
[54] T.P. Waterhouse, An introduction to chameleon gravity, arXiv:astro-ph/0611816.
[55] P. Brax, C. Vandebruck, A. Davis, A chameleon primer, arXiv:0706.1024.

http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7175696E74657373656E636531s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7175696E74657373656E636531s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7175696E74657373656E636531s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7175696E74657373656E636532s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7175696E74657373656E636532s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7175696E74657373656E636532s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7175696E74657373656E636533s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7175696E74657373656E636533s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7363616C61726669656C64s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7363616C61726669656C64s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib66656C696365s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7374656C6F6273657276s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib7374656C6F6273657276s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib656E657267636F6E646974s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib656E657267636F6E646974s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D756C74697363616C6172s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D756C74697363616C6172s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64726B6D61747467616Cs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64726B6D61747467616Cs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64726B6D617474636C7573s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64726B6D617474636C7573s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64726B6D617474636C7573s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib636F736D706572747572s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib636F736D706572747572s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib636F736D706572747572s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D696D6C616D626461s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D696D6C616D626461s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D696D6C616D626461s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib726568656174696E67s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib726568656174696E67s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib63757272616363656Cs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib63757272616363656Cs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib46726965646D616E6Es1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib46726965646D616E6Es1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64796E696D70616331s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64796E696D70616331s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64796E696D70616332s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64796E696D70616332s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib64796E696D70616332s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib67726176636F6C6C61707365s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib67726176636F6C6C61707365s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib67726176636F6C6C61707365s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6E6577746C696D6974s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6E6577746C696D6974s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib636C6F73656474696D656375727665s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib636C6F73656474696D656375727665s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib636C6F73656474696D656375727665s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib736F6C6172s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib736F6C6172s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib707565747A31s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib707565747A31s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib707565747A31s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib707565747A32s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib707565747A32s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib707565747A33s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib707565747A33s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib707565747A33s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6F62756Bs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6F62756Bs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib696F72696Fs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib696F72696Fs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib737461726F62696E736B79s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib737461726F62696E736B79s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib706C616E636B6D617373s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib706C616E636B6D617373s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib706C616E636B6D617373s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6E6166s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6E6166s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib616E616C6F677931s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib616E616C6F677931s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib616E616C6F677932s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib616E616C6F677932s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib616E616C6F677933s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib616E616C6F677933s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib4242484Cs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib4242484Cs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib666973636862616368s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib666973636862616368s1
http://spacemath.gsfc.nasa.gov
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib57696C6Cs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib57696C6Cs1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib737461747573s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib737461747573s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib50504E665231s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib50504E665231s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib50504E665232s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib50504E665232s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib50504E665232s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib435345s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib435345s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6164656C6265726731s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6164656C6265726731s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib73757276697665s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib73757276697665s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib73757276697665s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib73757276697665s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D61746368696E67s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D61746368696E67s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D61746368696E67s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6D61746368696E67s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6461726B6D6174746572s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6461726B6D6174746572s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6461726B6D6174746572s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib436C6966746F6Es1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib436C6966746F6Es1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib73616C756D6269646573s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib73616C756D6269646573s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib475042s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib475042s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib475042s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib475042s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib475042s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib475042s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib4C4147454F534949s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib4C4147454F534949s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib4C4147454F534949s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib4C4C52s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib4C4C52s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib56696C6B6F7669736B79s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib56696C6B6F7669736B79s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib514544s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib514544s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib514544s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6368616D656C656F6E31s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6368616D656C656F6E31s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6368616D656C656F6E32s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6368616D656C656F6E33s1
http://refhub.elsevier.com/S0370-2693(14)00395-5/bib6368616D656C656F6E34s1

	Perturbation of the metric around a spherical body from a nonminimal coupling between matter and curvature
	1 Introduction
	2 The model
	3 Solution of linearized modiﬁed ﬁeld equations
	3.1 Solution for the curvature R
	3.2 Solution for Ψ
	3.3 Solution for Φ

	4 Discussion of Yukawa potential
	4.1 The form factor A(m,RS)
	4.2 PPN parameters

	5 Experimental constraints to NMC gravity parameters
	5.1 Geodetic precession
	5.1.1 Gravity Probe B results
	5.1.2 Measurement of the LAGEOS II perigee precession


	6 Discussion and outlook
	Acknowledgements
	References


