
Topology Vol. 37, No. 6, pp. 1165—1168, 1998
( 1998 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0040-9383/98 $19.00#0.00

PII: S0040-9383(97)00082-7

A COUNTEREXAMPLE TO THE (UNSTABLE)
GROMOV—LAWSON—ROSENBERG CONJECTURE

THOMAS SCHICK

(Received 19 June 1997; in revised form 29 September 1997)

Doing surgery on the 5-torus, we construct a five-dimensional closed spin-manifold M with n1 (M):Z4]Z/3, so
that the index invariant in the KO-theory of the reduced C*-algebra of n1(M) is zero. Then we use the theory of
minimal surfaces of Schoen/Yau to show that this manifold cannot carry a metric of positive scalar curvature. The
existence of such a metric is predicted by the (unstable) Gromov—Lawson—Rosenberg conjecture. ( 1998 Elsevier
Science Ltd. All rights reserved.

1. OBSTRUCTIONS TO POSITIVE SCALAR CURVATURE

We start with a discussion of the index obstruction for spin manifolds to admit a metric with
scal '0, constructed by Lichnerowicz [7], Hitchin [4] and in the following refined version
due to Rosenberg [10].

THEOREM 1.1. ¸et Mm be a closed spin-manifold, n :"n
1
(M). One can construct

a homomorphism, called index, from the singular spin bordism )41*/
*

(Bn) to the (real) KO-
theory of the reduced real C*-algebra of n:

ind : )41*/
*

(Bn)PKO
*
(C*

3%$
n).

¸et u : MPBn be the classifying map for the universal covering of M. If M admits a metric
with positive scalar curvature, then

ind([u : MPBn])"03KO
m
(C*

3%$
n).

Gromov and Lawson [3] and Rosenberg [9] conjectured that the vanishing of the index
should also be sufficient for the existence of a metric with scal '0 on M if m*5. This was
proven by Stefan Stolz [16] for n"1, and subsequently by him and other authors also for
a few other groups [9, 6, 1, 12].

In dimension *5 there is only one known additional obstruction for positive scalar
curvature metrics, the minimal surface method of Schoen and Yau, which we will recall
now. (In dimension 4, the Seiberg—Witten theory yields additional obstructions.) The first
theorem is the differential geometrical backbone for the application of minimal surfaces to
the positive scalar curvature problem:

THEOREM 1.2. ¸et (Mm, g) be a manifold with scal '0, dim M"m*3. If » is a smooth
(m!1)-dimensional submanifold of M with trivial normal bundle, and if » is a local minimum
of the volume functional, then » admits a metric of positive scalar curvature, too.

Proof. Schoen and Yau: [13, 5.1] for m"3, [14, proof of Theorem 1] for m'3. K
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The next statement from geometric measure theory implies applicability of the previous
theorem if dim(M))7.

THEOREM 1.3. (Morgan [8, Ch. 8] and references therein, in particular Federer [2,
5.4.18]). Suppose Mm is a smooth orientable closed manifold, dimM"m)7. Choose
0Ox3H

m~1
(M, Z). ¹hen a smooth orientable closed (m!1)-dimensional submanifold » of

M exists which represents x and which has minimal volume under all currents representing x.
In particular, » is a local minimum of the volume functional with orientable (hence trivial)
normal bundle.

This implies the following statement about homology and cohomology which was
observed by Stephan Stolz. Let X be any space.

Definition 1.4. For m*2 we define

H`
m

(X, Z) :"M f
*
[M]3H

m
(X, Z); f :MmPX and M admits metric with scal '0N.

COROLLARY 1.5. ¸et X be any space, a3H1(X, Z). Cap-product with a induces a map

aW : H
m
(X, Z)PH

m~1
(X, Z).

If 3)m)7, then aW maps H`
m

(X, Z) to H`
m~1

(X, Z).

Proof. If f :MmPX represents x3H`
m

(X, Z) and M admits a metric with positive
scalar curvature, then by Theorems 1.2 and 1.3 the class f *aW[M] is represented by
Nm~1 j

ª"M where N admits a metric with positive scalar curvature. In particular,
aWx"f

*
( f *aW[M]) is represented by f ° j :NPX, i.e. aWx3H`

m~1
(X, Z). K

2. COUNTEREXAMPLE TO THE GROMOV–LAWSON–ROSENBERG CONJECTURE

The aim of this paper is to present an example which shows that the conjecture is not
true for arbitrary fundamental groups.

To produce the counterexample, we use the only other known obstruction for positive
scalar curvature, namely the minimal surface method explained above.

The fundamental group will be n :"Z4]Z/3. We start with the computation of the
KO-theory of C*

3%$
n. Note that the reduced C*-algebra of the product of two groups is the

(minimal) tensor product of the individual C*-algebras [15, pp. 14, 15]. By [15, pp. 14
and 1.5.4]

KO
n
(C*

3%$
(Z4]Z/3)):

16=
i/1

KO
n~ni

(C*
3%$

(Z/3)) for suitable n
i
3N.

For a finite group G, it is well known that KO
*
(C*

3%$
(G)) is a direct sum of copies of the

KO-theories of R, C and H. In particular, it is a direct sum of copies of Z and Z/2. Therefore,
the same is true for n:

PROPOSITION 2.1. KO
*
(C*

3%$
n) is a direct sum of copies of Z and Z/2. In particular, its

torsion is only 2-torsion.

We will now construct a spin manifold M5 with n
1
(M)"n, so that the class

[u :MPBn]3)41*/
5

is 3-torsion. Then, automatically

ind(u :MPBn)"03KO
5
(C*

3%$
n).
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Example 2.2. Let p :S1PBZ/3 be a map so that n
1
(p) is surjective and equip S1 with the

spin structure induced from D2. This is 3-torsion since )3 41*/
1

(BZ/3):H
1
(BZ/3, Z):Z/3

(use the Atiyah—Hirzebruch spectral sequence). Consider the singular manifold

f"id]p :S1

4def
]·]S1]S1PS1

4def
]·]S1]BZ/3"Bn

This is then 3-torsion in )41*/
5

(Bn). Doing surgery we can construct a bordism F :¼PBn in
)41*/

5
(Bn) from f to some u :MPBn where u is an isomorphism on n

1
.

Now, M is a manifold with trivial index, and we have to show that it does not admit
a metric with positive scalar curvature. Assume that the converse is true.

We study the homology and cohomology of n first. By the Künneth theorem

H
1
(Bn, Z)"x

1
Z=2=x

4
Z ? yZ/3

H1(Bn, Z)"a
1
Z=2= a

4
Z

0Ow"x
1
]2]x

4
]y3H

5
(Bn, Z)

0Oz"x
4
]y"a

1
W(a

2
W(a

3
Ww))3H

2
(Bn, Z).

We use the map

B
*
:)41*/

*
(X)PH

*
(X, Z) : [ f :MPX]>f

*
[M]

which is an edge homomorphism in the Atiyah—Hirzebruch spectral sequence. Of course,
w"f

*
([¹5])"u

*
[M] is the image of the considered singular manifold under this trans-

formation.
If M would admit a metric with scal '0, then

w3H`
5

(Bn).

Iterated application of Theorem 1.5 implies that

0Oz3H`
2

(Bn).

But there is only one two-dimensional oriented manifold with positive curvature, namely
S2. Since n

2
(Bn)"0 any map g : S2PBn is null homotopic. In particular, g

*
[S2]"

03H
2
(Bn, Z), and therefore H`

2
(Bn, Z)"0.

This is the desired contradiction and M does not admit a metric with positive scalar
curvature.

Remark 2.3. There is also a twisted version of Rosenbergs obstruction [9, 11, 5,
unpublished notes of Stolz] which can be applied if the universal covering of a closed
manifold M is spin, even if M is not orientable. Our method can be developed to give
examples where the twisted index of a non-orientable manifold is zero, but it does not admit
a metric with scal '0.

The index map ind factorizes through topological periodic KO-homology of Bn. Our
method yields examples where even the image in this group is zero, although M has no
metric with positive scalar curvature.

Acknowledgements—Towork on the counterexample was inspired by talks of Stephan Stolz where he expressed his
opinion that the original GLR-conjecture is false. The author wants to thank Stephan Stolz for useful and

enlightening conversations on the subject. Stolz conjectures that a weaker form, the so-called stable GLR-
conjecture, is true (cf. [17]) and shows [18] that this conjecture follows from the Baum—Connes conjecture. It is
well known that our group n fulfills the Baum—Connes conjecture, although the proof for the real version, which is
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required here, is not published anywhere (private communication of J. Rosenberg). Therefore, M is a counter-
example to the unstable Gromov—Lawson—Rosenberg conjecture but if B is a Bott manifold and n is sufficiently

large M]Bn admits a metric with scal '0.
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