Completeness is determined by any non-algebraic trajectory

Alvaro Bustinduy ${ }^{\mathrm{a}, *}$, Luis Giraldo ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Ingeniería Industrial, Escuela Politécnica Superior, Universidad Antonio de Nebrija, C/Pirineos 55 , 28040 Madrid, Spain
${ }^{\text {b }}$ Departamento de Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain
Received 22 July 2011; accepted 15 May 2012
Available online 29 June 2012
Communicated by Karen Smith
Dedicated to the memory of Marco Brunella

Abstract

It is proved that any polynomial vector field in two complex variables which is complete on a nonalgebraic trajectory is complete. (C) 2012 Elsevier Inc. All rights reserved.

MSC: primary 32M25; secondary 32L30; 32S65
Keywords: Complete vector field; Complex orbit; Holomorphic foliation

1. Introduction and statement of results

Let X be a holomorphic vector field on \mathbb{C}^{2}. For any $z \in \mathbb{C}^{2}$, the local solution $\varphi_{z}(T)$ of the associated ordinary differential equation $d z / d T=X(z(T))$ with the initial condition $z(0)=z \in \mathbb{C}^{2}$ can be extended by analytic continuation along paths in \mathbb{C}, to a maximal domain Ω_{z}, which may not be an open set of \mathbb{C}, but rather a Riemann domain over \mathbb{C}. The map

[^0]$\varphi_{z}: \Omega_{z} \rightarrow \mathbb{C}^{2}$ is the solution of X through z, and its image $\varphi_{z}\left(\Omega_{z}\right)$, that will be denoted by C_{z} (or L_{z}, R_{z}, S_{z}), is the trajectory of X through z.

The vector field X is complete on C_{z} if $\Omega_{z}=\mathbb{C}$, and X is complete if it is complete on C_{z}, for every $z \in \mathbb{C}^{2}$. Each trajectory C_{z} on which X is complete (complete trajectory) is defined by an abstract Riemann surface uniformized by \mathbb{C}, and by the maximum principle, analytically isomorphic to \mathbb{C} or \mathbb{C}^{*}.

Extrinsically, the topology of a trajectory can be very complicated. The simplest trajectories from this point of view are the analytic ones. One says that the trajectory C_{z} is analytic if it is contained in an analytic curve in \mathbb{C}^{2} (but not necessarily equal to it, due to the possible presence of singularities). Otherwise C_{z} is a non-analytic trajectory.

An interesting remark (due to R. Moussu) is that two vector fields with a common non-analytic trajectory have to be collinear in any point. In this sense a non-analytic trajectory determines the vector field up to multiplication by a non-vanishing holomorphic function.

In this work we will consider polynomial vector fields with at most isolated zeros. The above remark for two polynomial vector fields can be restated. For a trajectory, it is enough not to be contained in an algebraic curve (that is, to be a non-algebraic trajectory) to determine the vector field up to multiplication by a nonzero constant.

In [1], Brunella studied foliations in \mathbb{C}^{2} given by polynomial vector fields with a trajectory containing a planar isolated end (proper Riemann sub-surface isomorphic to $\{z: r<\|z\| \leq 1\}$, where $r \in[0,1)$), properly embedded in \mathbb{C}^{2} and whose closure in $\mathbb{C P}^{2}$ contains the line at infinity. He proved that these foliations can be determined in terms of a polynomial whose generic fiber is of type \mathbb{C} or \mathbb{C}^{*} and transversal to the foliation. As a remarkable corollary, he obtained that if the trajectory is a non-algebraic analytic plane, the foliation is given by the constant vector field after an analytic automorphism. Therefore, the trajectory in this case is determining the completeness of the vector field up to multiplication by a nowhere vanishing function.

Then if one attends to the completeness of a non-algebraic trajectory (not necessarily analytic) the following natural question arises [6, Question 5.1]:

Question 1. If X is a polynomial vector field in \mathbb{C}^{2} with the property of being complete on a single non-algebraic trajectory, is it complete?

The main result of this work says that Question 1 has an affirmative answer:
Theorem 1. Let us consider a polynomial vector field X on \mathbb{C}^{2} which is complete on a nonalgebraic trajectory. Then X is complete.

Note that our theorem implies that any entire solution of a polynomial vector field can be determined up to an algebraic automorphism of \mathbb{C}^{2}. As the vector field is complete, the solution must correspond to one of the vector fields of Brunella's classification in [4] after a polynomial automorphism.

It could be very interesting to study if a non-analytic trajectory of a (non-polynomial) holomorphic vector field determines the completeness of the vector field.

1.1. About the proof of Theorem 1

For the sake of completeness, throughout the paper we include some definitions and results taken from Brunella's papers [2-4]. Let us begin by recalling some definitions. Consider the foliation \mathcal{F} generated by X on \mathbb{C}^{2} extended to $\mathbb{C P}^{2}$. According to Seidenberg's theorem, the
minimal resolution of \mathcal{F} is a new foliation $\tilde{\mathcal{F}}$ defined on a rational surface M after pulling back \mathcal{F} by a birational morphism $\pi: M \rightarrow \mathbb{C P}^{2}$, that is a finite composition of blowing ups. Along with this resolution one has: (1) the Zariski open set $U=\pi^{-1}\left(\mathbb{C}^{2}\right)$ of M, over which X can be lifted to a holomorphic vector field \tilde{X}, (2) the exceptional divisor E of U, and (3) the divisor at infinity

$$
D=M \backslash U=\pi^{-1}\left(\mathbb{C P}^{2} \backslash \mathbb{C}^{2}\right)=\pi^{-1}\left(L_{\infty}\right)
$$

that is a tree of smooth rational curves. The vector field \tilde{X} can be extended to M, although it may have poles along one or more components of D. Let us still denote this extension by \tilde{X}. As only singularities of the foliation in \mathbb{C}^{2} are blown up, and they are in the zero set of X, the vector field \tilde{X} is holomorphic on the full U and it has the complete trajectory \tilde{C}_{z} defined by $\pi^{-1}\left(C_{z}\right)$.

Therefore the reduced foliation $\tilde{\mathcal{F}}$ has at least one tangent entire curve: the one defined by \tilde{C}_{z}, which is Zariski dense in M. It implies that the Kodaira dimension $\operatorname{kod}(\tilde{\mathcal{F}})$ of $\tilde{\mathcal{F}}$ is 1 or 0 [13, Section IV] (see also [2, p. 131]).

In the case $\operatorname{kod}(\tilde{\mathcal{F}})=1$, [4] allows one to conclude that $\tilde{\mathcal{F}}$ is a Riccati foliation adapted to a fibration $g: M \rightarrow \mathbb{P}^{1}$, whose projection to \mathbb{C}^{2} by π defines a rational function R of type \mathbb{C} or \mathbb{C}^{*}. We can apply the study of [6] although R is not a polynomial (see also [8]) and deduce the completeness of X. We will analyze this case in Section 2.

In the case $\operatorname{kod}(\tilde{\mathcal{F}})=0$, we know that $\tilde{\mathcal{F}}$ is generated by a vector field on a smooth compact projective surface S, up to contractions of $\tilde{\mathcal{F}}$-invariant curves and covering maps [4]. However, we need to go a bit further to know if these models restrict to our open U a complete vector field. This is accomplished via the description of the irreducible components of $D \cup E$ that are not $\tilde{\mathcal{F}}$-invariant. When S is rational, we show that in fact $D \cup E$ must be invariant if $\tilde{\mathcal{F}}$ is not Riccati with respect to a fibration $g: M \rightarrow \mathbb{P}^{1}$ that is projected to \mathbb{C}^{2} by π as a rational function R of type \mathbb{C} or \mathbb{C}^{*}. For the remaining cases, i.e. when S is a $\mathbb{C P}^{1}$-bundle over an elliptic curve or a complex 2-torus, we prove that $D \cup E$ is always invariant by $\tilde{\mathcal{F}}$. For the proof of this last fact we will consider S as a differential manifold with a certain Riemannian metric. It will enable us to compute the distance from the complete trajectory to a compact set containing the components of $D \cup E$ that are not $\tilde{\mathcal{F}}$-invariant. As a consequence of the discussion above one obtains that the lifting of \tilde{X} by a certain covering map can be decomposed in the product of a complete rational vector field by a second integral of it. It allows us to conclude that the projection $\pi_{*} \tilde{X}$ restricted to U i.e. X must be complete. We will analyze this case in Section 3.

Finally, we point out that $[6,7]$ imply that Question 1 has an affirmative answer for a nonalgebraic analytic trajectory. In those works, Brunella's results [1] are used as the main tool. The proof of our theorem is mainly based on Brunella's approach to the classification complete polynomial vector fields in the plane [4], since they can be applied to the foliation \mathcal{F} although X could be in principle not complete. Theorem 1 is not only the generalization of the previous results mentioned above $([6,7])$, but its proof also implies them.

2. $\operatorname{kod}(\mathcal{F})=1$

According to [13, Section IV] the absence of a first integral implies that $\tilde{\mathcal{F}}$ is a Ricatti or a Turbulent foliation, that is to say, the existence of a fibration

$$
g: M \rightarrow B
$$

whose generic fibre is a rational curve or an elliptic curve transverse to $\tilde{\mathcal{F}}$, respectively. Remark that B is $\mathbb{C P}^{1}$ since M is a rational surface.

2.1. Nef models and canonical models [13, Section III], [3, Section 4], [4, Section 3]

Existence of a nef model. As $\tilde{\mathcal{F}}$ is not a rational fibration it has a model $\hat{\mathcal{F}}$ which is reduced and nef. More concretely, after a contraction $s: M \rightarrow \hat{M}$ of the $\tilde{\mathcal{F}}$-invariant rational curves on M over which the canonical bundle $K_{\tilde{\mathcal{F}}}$ has a negative degree one obtains (see [3, Section 4], [4, Section 3]):
(1) a new surface \hat{M}, maybe with cyclic quotient singularities; and
(2) a reduced foliation $\hat{\mathcal{F}}=s_{*} \tilde{\mathcal{F}}$ on \hat{M} such that its canonical \mathbb{Q}-bundle $K_{\hat{\mathcal{F}}}$ is nef (i.e. $K_{\hat{\mathcal{F}}} \cdot C \geq$ 0 for any curve $C \subset \hat{M}$).
Recall that a cyclic quotient singularity p of \hat{M} is locally defined by $\mathbb{B}^{2} / \Gamma_{k, h}$ where $\mathbb{B}^{2} \subset \mathbb{C}^{2}$ is the unit ball and $\Gamma_{k, h}$ is the cyclic group generated by a map of the form $(z, w) \rightarrow\left(e^{\frac{2 \pi i}{k}} z\right.$, $e^{\frac{2 \pi i}{k} h} w$) with k, h positive coprime integers such that $0<h<k$. These singularities of \hat{M} are not singularities of $\hat{\mathcal{F}}$. That is, the foliation can be lifted locally to $\mathbb{B}^{2} \backslash\{(0,0)\}$ and extended to a foliation on \mathbb{B}^{2} with a non-vanishing associated vector field.

Remark 1. The possible cyclic singularities of \hat{M} are in the image of the exceptional divisor of s. Any rational curve C_{0} of that divisor is $\tilde{\mathcal{F}}$-invariant, it has a unique singularity p of the foliation of type $d\left(x^{n} y^{m}\right)$ with $n, m \in \mathbb{N}^{+}$, where $C_{0}=\{y=0\}$, and it may also contain one cyclic quotient singularity q of order m (regular point if $m=1$). After contracting C_{0} by s (since $C_{0}^{2}=-n / m$) we obtain a new quotient singularity of order n (regular if $n=1$) [4, pp. 443-444].
Existence of a minimal model. After possibly additional contractions on \hat{M} of rational curves, $q: \hat{M} \rightarrow N$, one obtains a reduced foliation $\mathcal{H}=q_{*} \hat{\mathcal{F}}$ (birational to $\tilde{\mathcal{F}}$) on a surface N regular on the (cyclic quotient) singularities of N whose canonical bundle $K_{\mathcal{H}}$ is nef and such that it verifies this property: if $K_{\mathcal{H}} \cdot C=0 \Rightarrow C^{2} \geq 0$ for any curve $C \subset N$. It is important to note that we can assume that q is given by contractions of curves which are invariant by the foliation: if C is not $\hat{\mathcal{F}}$-invariant it follows from the formula $\left(K_{\hat{\mathcal{F}}}+C\right) \cdot C \geq 0$ [3, Section 2] that $K_{\hat{\mathcal{F}}} \cdot C=0 \Rightarrow C^{2} \geq 0$. This model is the minimal model of $\tilde{\mathcal{F}}$.

Remark 2. In general the minimal model of $\tilde{\mathcal{F}}$ is not unique. However if we have another minimal model \mathcal{H}^{\prime} of $\tilde{\mathcal{F}}$ defined on N^{\prime} and $p: N \rightarrow N^{\prime}$ is an algebraic map defined everywhere with $p_{*} \mathcal{H}=\mathcal{H}^{\prime}$ then p is an isomorphism [13, Lemma III.3.1].

Remark 3. As s and q are given by contractions of rational curves which are invariant by the foliation neither \tilde{C}_{z} meets the exceptional divisor of s nor $s\left(\tilde{C}_{z}\right)$ meets the exceptional divisor of q. It implies that there must be a parabolic leaf of \mathcal{H} : the leaf that contains the Riemann surface $q\left(s\left(\tilde{C}_{z}\right)\right)$ that supports the complete vector field $q_{*}\left(s_{*}\left(\tilde{X}_{\mid \tilde{C}_{z}}\right)\right)$.

2.2. Turbulent case

When X is complete the case of a Turbulent $\tilde{\mathcal{F}}$ can be excluded as it is proved in [4, Lemma1]. We now prove that it continues being valid in a more general situation.

Lemma 1. $\tilde{\mathcal{F}}$ is not a Turbulent foliation.

Proof. Suppose that $\tilde{\mathcal{F}}$ is Turbulent. The description of models around each fibre of g after a birational morphism $\alpha: M \rightarrow M^{*}$ is known [3, Section 7]. The resulting foliation $\mathcal{G}=\alpha_{*} \tilde{\mathcal{F}}$ on M^{*} is regular on the (cyclic quotient) singularities of M^{*}, it is Turbulent with respect to $\bar{g}=g \circ \alpha^{-1}$, and each fiber of \bar{g} is of one of the following classes:
(a) (resp. (d)): the fibre is smooth elliptic, transversal (resp. tangent) to \mathcal{G} and may be multiple.
(b) (resp. (e)): the fibre is rational with three quotient singularities of orders k_{1}, k_{2} and k_{3} satisfying $\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}=1$, transversal (resp. tangent) to \mathcal{G} and of multiplicity 3,4 or 6 .
(c) (resp. (f)): the fibre is rational with four quotient singularities of order 2; transversal (resp. tangent) to \mathcal{G} and of multiplicity 2 .

We will call classes $(a),(b)$ and (c) (resp. $(d),(e)$ and $(f))$ transversal fibres (resp. tangent fibres) of \bar{g}.

For any leaf L of \mathcal{G} outside tangent fibres of $\bar{g}, \bar{g}_{\mid L}: L \rightarrow B_{0}$, with B_{0} defined as B minus the points over tangent fibres of \bar{g}, is a regular covering (in orbifold's sense). The orbifold structure in B_{0} is the natural structure inherited from the orbifold structure on B induced by (the local models of) \bar{g} [3, Section 7].

Claim 1. There must be at least one tangent fibre G_{0} of \bar{g}.
We suppose that all the fibres are transversal and obtain a contradiction. Since $B_{0}=B=\mathbb{C P}$, the orbifold universal covering of any leaf L, \tilde{L}, is equal to the one of B, \tilde{B}.

Let us suppose that \tilde{B} is \mathbb{C} or $\mathbb{C P}^{1}$. By pulling back sections of K_{B} under \bar{g} we obtain sections of $K_{\mathcal{G}}$. We can in this way compute $K_{\mathcal{G}}$ and obtain that $\operatorname{deg}\left(\bar{g}_{*} K_{\mathcal{G}}\right)=-\chi_{\text {orb }}(B)$ (see, [3, Section 7]). On the other hand since $\operatorname{kod}(\tilde{\mathcal{F}})=\operatorname{kod}(\mathcal{G})=1$ then $\operatorname{deg}\left(\bar{g}_{*} K_{\mathcal{G}}\right)>0$. It follows that $\chi_{\text {orb }}(B)<0$, which is impossible if B is parabolic (see Appendix E, Lemma E.4, in [14]). Thus \tilde{B} is a disk.

As all the leaves of \mathcal{G} are hyperbolic and the singularities are isolated (in fact \mathcal{G} is regular), $K_{\mathcal{G}}$ is nef [5, Remark 8.8]. Moreover, it is clear that $K_{\mathcal{G}} \cdot C=0 \Rightarrow C^{2} \geq 0$: if C is not \mathcal{G}-invariant it follows from the formula $\left(K_{\mathcal{G}}+C\right) \cdot C \geq 0$ [3, Section 2]. If C is \mathcal{G}-invariant the Camacho-Sad formula [3, Section 2] implies that $C^{2}=0$ because \mathcal{G} is regular on C. Therefore \mathcal{G} is a minimal model of $\tilde{\mathcal{F}}$. But then it has necessarily a parabolic leaf (Remarks 2 and 3), which is a contradiction.

Claim 2. If there is an irreducible component D_{1} of $D \cup E$ that is not $\tilde{\mathcal{F}}$-invariant and which is not contained in any fiber of g, then $D_{1} \subset\{\tilde{X}=0\}$.

It is important to note that the strict transform of D_{1} by α, that we also denote by D_{1}, is a rational curve. Otherwise it is a point with infinitely many punctured disks invariant by \mathcal{G} through it and then a singularity of \mathcal{G}, which is not possible. Hence $D_{1} \cap G_{0} \neq \emptyset$. Let us denote by J the leaf of \mathcal{G} that defines the non algebraic component of $\alpha\left(\tilde{C}_{z}\right)$. There is at least one accumulation point of J on G_{0} because $\bar{g}(J)=g\left(\tilde{C}_{z}\right)$ is \mathbb{C} or \mathbb{C}^{*}. It must be a regular point of the foliation by the absence of singularities of the foliation on tangent fibers. Thus J must accumulate on G_{0}. It implies that $\tilde{C}_{z} \cap D_{1} \neq \emptyset$ and then $D_{1} \subset\{\tilde{X}=0\}$ by the completeness of $\tilde{X}_{\mid \tilde{C}_{z}}$.

Let us take the generic fiber G of g, which is transverse to $\tilde{\mathcal{F}}$. Obviously, $D \cap G \neq \emptyset$. In the contrary case we have an elliptic curve contained in \mathbb{C}^{2}, which is impossible (maximum principle). Among the irreducible components of D cutting G at least one, say D_{2}, is $\tilde{\mathcal{F}}$-invariant. Otherwise \tilde{X} would be holomorphic in a neighborhood of G and it vanishes on at least one
component of D transversal to G, which implies that \tilde{X} is identically zero by Claim 2. The existence of D_{2} is enough to construct a rational integral for a Turbulent $\tilde{\mathcal{F}}$ as can be seen in [4, p. 438].

2.3. Ricatti case

Lemma 2. $g_{\mid U}$ is projected by π as a rational function R of type \mathbb{C} or \mathbb{C}^{*}. Moreover, $\tilde{\mathcal{F}}$ is R-complete.

Proof. Up to contraction of rational curves inside fibers of g, which can produce cyclic quotient singularities of the surface but on which the foliation is always regular, one has that there are five possible models for the fibers of g [3, Section 7], [4, p. 439]. Let L_{0} be the leaf of the foliation defined by \tilde{C}_{z}. One can conclude that the orbifold universal covering \tilde{L}_{0} of L_{0} is equal to the one of B_{0}, \tilde{B}_{0}, where B_{0} is defined as $\mathbb{C P}{ }^{1}$ minus the points over tangent fibres of g with the natural orbifold structure inherited from the orbifold structure on $\mathbb{C P}^{1}$ induced by (the local models of) g. Since X is complete on C_{z}, \tilde{L}_{0} is biholomorphic to \mathbb{C} and then L_{0} is parabolic. This fact along with $\operatorname{kod}(\tilde{\mathcal{F}})=1$ implies by Brunella [4, Lemma 2] that there must be at least one fibre G_{0} tangent to the foliation of class:
(d): the fibre is rational with two saddle-nodes of the same multiplicity m, with strong separatrices inside the fibre, or of class
(e): the fibre is rational with two quotient singularities of order 2, and a saddle-node of multiplicity l, with a strong separatrix inside the fibre.

Firstly one observes that there are irreducible components of $D \cup E$ that are not contained in any fiber of g. Let us take the generic fiber G of g, which is transverse to $\tilde{\mathcal{F}}$. Obviously, $D \cap G \neq \emptyset$. In the contrary case we have a rational curve contained in \mathbb{C}^{2}, which is impossible (maximum principle).

Let D_{1} be one of these components. Then $D_{1} \cap G_{0} \neq \emptyset$ and there is at least one accumulation point of \tilde{C}_{z} on G_{0}, say p, because $g\left(\tilde{C}_{z}\right)$ is \mathbb{C} or \mathbb{C}^{*}. If p is a regular point of the foliation, \tilde{C}_{z} must accumulate on G_{0}. If p is singular, it is a saddle-node with a strong separatrix defined by G_{0}, and therefore \tilde{C}_{z} must also accumulate on all G_{0} [12], in particular in the other saddle-node if it exists. There are two possibilities:
(i) If D_{1} is $\tilde{\mathcal{F}}$-invariant, D_{1} is not in the divisor of poles of \tilde{X}. Otherwise, $D_{1} \cap G_{0} \neq \emptyset$ is a saddle-node q. Let us take the rational section ω of $K_{\tilde{\mathcal{F}}}$ dual to \tilde{X} that restricts to \tilde{C}_{z} as the differential of times given by the flow of \tilde{X} on \tilde{C}_{z}. One can construct a path $\gamma:(0, \epsilon] \rightarrow \tilde{C}_{z}$, with $\epsilon \in \mathbb{R}^{+}$and $\gamma(t) \rightarrow q$ as $t \rightarrow 0$, such that $\int_{\gamma} \omega$ is finite (see [4, proof of Lemma 3]), which contradicts the completeness of \tilde{X} on \tilde{C}_{z}.
(ii) If D_{1} is not $\tilde{\mathcal{F}}$-invariant, necessarily $\tilde{C}_{z} \cap D_{1} \neq \emptyset$ and $D_{1} \subset\{\tilde{X}=0\}$. Otherwise, as $\tilde{C}_{z} \cap D_{1}=\emptyset$ one has that $D_{1} \cap G_{0} \neq \emptyset$ is a saddle-node with D_{1} defining its weak separatrix, which is $\tilde{\mathcal{F}}$-invariant [1, Lemma 11].

It follows from (i) and (ii) that \tilde{X} is holomorphic in a neighborhood of G, which implies as in the above lemma that (ii) does not really occur. Thus D_{1} is $\tilde{\mathcal{F}}$-invariant.

Therefore D must cut G at one or two points, and the projection R of $g_{\mid U}$ via π is of type \mathbb{C} or \mathbb{C}^{*}. Moreover, the invariancy of the components of $D \cup E$ which are not contained in fibers of g implies that generically R is a fibration trivialized by the leaves of $\tilde{\mathcal{F}}$, and then $\tilde{\mathcal{F}}$ is R-complete.

We will study the two possibilities after the previous lemma.

2.4. R of type \mathbb{C}

By Suzuki (see [17]) we may assume that $R=x$, up to a polynomial automorphism. Hence \mathcal{F} is a Riccati foliation adapted to x and X is a complete vector field of the form

$$
\begin{equation*}
C x^{N} \frac{\partial}{\partial x}+[A(x) y+B(x)] \frac{\partial}{\partial y}, \tag{1}
\end{equation*}
$$

with $C \in \mathbb{C}, N=0,1$ and $A, B \in \mathbb{C}[x]$ (see [6, Proposition 4.2]).

2.5. R of type \mathbb{C}^{*}

By Suzuki (see [18]) we may assume that

$$
R=x^{m}\left(x^{\ell} y+p(x)\right)^{n}
$$

where $m \in \mathbb{N}^{*}, n \in \mathbb{Z}^{*}$, with $(m, n)=1, \ell \in \mathbb{N}, p \in \mathbb{C}[x]$ of degree $<\ell$ with $p(0) \neq 0$ if $\ell>0$ or $p(x) \equiv 0$ if $\ell=0$, up to a polynomial automorphism.
New coordinates. According to relations $x=u^{n}$ and $x^{\ell} y+p(x)=v u^{-m}$ it is enough to take the rational map H from $u \neq 0$ to $x \neq 0$ defined by

$$
\begin{equation*}
(u, v) \mapsto(x, y)=\left(u^{n}, u^{-(m+n \ell)}\left[v-u^{m} p\left(u^{n}\right)\right]\right) \tag{2}
\end{equation*}
$$

in order to get $R \circ H(u, v)=v^{n}$.
Although R is not necessarily a polynomial ($n \in \mathbb{Z}$), it is a consequence of the proof of [6, Proposition 3.2] that $H^{*} \mathcal{F}$ is a Riccati foliation adapted to v^{n} having $u=0$ as an invariant line. Thus

$$
\begin{align*}
H^{*} X & =u^{k} \cdot Z \\
& =u^{k} \cdot\left\{a(v) u \frac{\partial}{\partial u}+c(v) \frac{\partial}{\partial v}\right\}, \tag{3}
\end{align*}
$$

where $k \in \mathbb{Z}$, and $a, c \in \mathbb{C}[v]$.
At this point one could apply the techniques of [7] to analyze the possible global 1-forms of times associated to X in order to prove the existence of an invariant line. However, applying directly the local models of [4], it follows from [8, Lemma 2] that at least one of the irreducible components of R over 0 must be a \mathcal{F}-invariant line. Hence the polynomial $c(v)$ of (3) is in fact a monomial, and thus of the form $c v^{N}$ with $c \in \mathbb{C}$ and $N \in \mathbb{N}$.

Finally, according to [6, pp. 661-662] we know that $X_{\mid C_{z}}$ complete implies $k=0$ and $N=0,1$. Hence X is complete.

3. $\operatorname{kod}(\mathcal{F})=\mathbf{0}$

According to [13, Section IV] we can contract $\tilde{\mathcal{F}}$-invariant rational curves on M via a contraction s to obtain a new surface \hat{M} (maybe singular with cyclic quotient singularities), a reduced foliation $\hat{\mathcal{F}}$ on this surface, and a finite covering map r from a smooth compact projective surface S to \hat{M} such that: (1) r ramifies only over cyclic (quotient) singularities of \hat{M} and (2)
the foliation $r^{*}(\hat{\mathcal{F}})$ is generated by a complete holomorphic vector field Z_{0} on S with isolated zeros [4, p. 443].

Remark 4. Note that \tilde{C}_{Z} does not meet the exceptional divisor of the contraction s. Let us set $\hat{C}_{z}{\underset{\tilde{C}}{z}}^{\text {as }}\left(\tilde{C}_{z}\right)$. Since $\dot{\hat{C}}_{z}$ does not contain singularities of \hat{M} then \hat{C}_{z} is a Riemann surface, $s_{\mid \tilde{C}_{z}}: \tilde{C}_{z} \rightarrow \hat{C}_{z}$ is a biholomorphism and $r_{\mid r^{-1}\left(\hat{C}_{z}\right)}: r^{-1}\left(\hat{C}_{z}\right) \rightarrow \hat{C}_{z}$ is a non-ramified finite covering map. Thus $s_{*}\left(\tilde{X}_{\mid \tilde{C}_{z}}\right)$ is complete on \hat{C}_{z} and $r^{*}\left(s_{*}\left(\tilde{X}_{\mid \tilde{C}_{z}}\right)\right)$ is complete on the connected components \mathscr{M}_{i} of $r^{-1}\left(\hat{C}_{z}\right)=\cup_{i=0}^{l} \mathscr{M}_{i}$. Hence each \mathscr{M}_{i} is a Riemann surface contained in a complete trajectory T_{z} of Z_{0} that supports the complete vector field $r^{*}\left(s_{*}\left(\tilde{X}_{\mid \tilde{C}_{z}}\right)\right)_{\mid M_{i}}$, which does not necessarily coincide with $Z_{0 \mid \mathscr{M}_{i}}$. It is convenient to observe that if T_{z} is isomorphic to \mathbb{C}^{*} then, necessarily $\mathscr{M}_{i}=T_{z}$, and the vector field $r^{*}\left(s_{*}\left(\tilde{X}_{\mid \tilde{C}_{z}}\right)\right)_{\mid M_{i}}$ coincides with Z_{0} on T_{z}, up to a multiplicative constant. The discrepancy between the two complete vector fields can occur only if T_{z} is isomorphic to \mathbb{C}, in which case $r^{*}\left(s_{*}\left(\tilde{X}_{\mid \tilde{C}_{z}}\right)\right)_{\mid M_{i}}$ could have one (and only one) zero at some point $p=T_{z} \backslash \mathscr{M}_{i}$.

It follows from [4, p. 443] that the covering r can be lifted to M via a birational morphism $g: W \rightarrow S$ and a ramified covering $h: W \rightarrow M$ such that $s \circ h=r \circ g$.

Let Y be the lift of Z_{0} on W via g. Then Y must be a rational vector field on W generating the foliation $\overline{\mathcal{F}}$ given by $g^{*}\left(r^{*}(\hat{\mathcal{F}})\right)=h^{*} \tilde{\mathcal{F}}$. On the other hand, $\overline{\mathcal{F}}$ is also generated by the rational vector field \bar{X} on W given by $h^{*} \tilde{X}$. Hence there is a rational function F on W such that

$$
\begin{equation*}
\bar{X}=F \cdot Y \tag{4}
\end{equation*}
$$

Remark 5. We remark from the above construction:
(1) The map g is a composition of blowing-ups over a finite set $\Theta=\left\{\theta_{i}\right\}_{i=1}^{S} \subset S$ of regular points of Z_{0}. The poles of Y are in $g^{-1}(\Theta)$ and they define a divisor $P \subset W$ invariant by $\overline{\mathcal{F}}$. Hence Y is holomorphic on $W \backslash P$. Note that in $W \backslash P, Y$ has only isolated zeros.
(2) Since P is the exceptional divisor of $g, h(P)$ is the exceptional divisor of s and is $\tilde{\mathcal{F}}$-invariant. Then

$$
h_{\mid W \backslash P}: W \backslash P \rightarrow M \backslash h(P)
$$

is a regular covering map.
(3) Let $C_{\theta_{i}}$ be the trajectory of Z_{0} through $\theta_{i} . Y$ is a complete holomorphic vector field on $W \backslash\left\{g^{-1}\left(C_{\theta_{i}}\right)\right\}_{i=1}^{s}$. Each $g^{-1}\left(C_{\theta_{i}}\right) \backslash P$ is contained in a trajectory $R_{z_{i}}$ of Y. Let us fix one of them, say $C_{\theta_{j}}$. Let us set $\Theta \cap C_{\theta_{j}}=\left\{\theta_{j_{l}}\right\}_{l=0}^{h}$ taking $j_{0}=j$. Note that $R_{z_{j l}}=R_{z_{j}}$ for
any l. For every $\theta_{j_{l}}$ there is a point $\bar{\theta}_{j_{l}} \in P$ such that $R_{z_{j}} \cup\left\{\bar{\theta}_{j_{l}}\right\}$ defines a separatrix of $\overline{\mathcal{F}}$ through $\bar{\theta}_{j_{l}}$. Note that $\bar{\theta}_{j_{l}}$ is the unique singular point of $\overline{\mathcal{F}}$ in P such that $g\left(\bar{\theta}_{j_{l}}\right)=\theta_{j_{l}}$. We can take around $\bar{\theta}_{j_{l}}$ a neighbourhood U and coordinates (z, w) such that $\overline{\mathcal{F}}$ is generated by $z \partial / \partial z-w \partial / \partial w$ where $\left(R_{z_{j}} \cup\left\{\bar{\theta}_{j_{l}}\right\}\right) \cap U=\{w=0\}$ and $g^{-1}\left(\theta_{j_{l}}\right) \cap U=\{z=0\}$. As Y has a pole of order one along $\{z=0\}$, it follows that

$$
Y_{\mid R_{z_{j}}}=\frac{\partial}{\partial z}-\frac{w}{z} \frac{\partial}{\partial w}
$$

is not complete. However, it extends on $R_{z_{j}} \cup\left\{\bar{\theta}_{j l}\right\}_{l=0}^{h}$ as a complete vector field because g restricted to $R_{z_{j}}$ extends to $R_{z_{j}} \cup\left\{\bar{\theta}_{j l}\right\}_{l=0}^{h}$ as a biholomorphism onto $C_{\theta_{j}}$ and

$$
\begin{equation*}
\left(g_{\mid R_{z_{j}} \cup\left\{\bar{\theta}_{j l}\right\}_{l=0}^{h}}\right)^{*} Z_{0 \mid C_{\theta_{j}}}=Y_{\mid R_{z_{j}} \cup\left\{\bar{\theta}_{j l} l_{l=0}^{h} .\right.} . \tag{5}
\end{equation*}
$$

Global holomorphic vector fields [2]. The list of holomorphic vector fields with isolated singularities on compact complex surfaces is well known. In [2, Chapter 6] we can find the details when the surface is projective. In particular, for Z_{0} on S we have one of the following possibilities:
(I) S has an elliptic fibration $f: S \rightarrow B$, and Z_{0} is a nontrivial holomorphic vector field on S tangent to the fibres of f. Each fibre of f is a smooth elliptic curve which can be multiple, and outside multiple fibers f is a locally trivial fibration. Moreover Z_{0} has an empty zero set.
(II) $S=\mathbb{C}^{2} / \Lambda$ is a 2-torus and Z_{0} is a linear vector field on it, that is, the quotient of a constant vector field on \mathbb{C}^{2}.
(III) S is a $\mathbb{C P}^{1}$-bundle over an elliptic curve \mathcal{E}, and Z_{0} is transverse to the fibers and projects on \mathcal{E} to a constant vector field. In this case Z_{0} is the suspension of \mathcal{E} via the representation $\rho: \pi_{1}(\mathcal{E}) \rightarrow \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ associated to the bundle structure, and it generates a Riccati foliation without invariant fibres and whose monodromy map is ρ.
(IV) S is a rational surface, and up to a birational map we have $Y=\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ and $Z_{0}=v_{1} \oplus v_{2}$, where v_{1} and v_{2} are holomorphic vector fields on $\mathbb{C P}^{1}$.
In the course of the proof we will consider S in some cases as a differentiable manifold with a given Riemannian metric g. If (N, g) is a Riemannian manifold, we denote by d the distance given by the metric, and by $B_{r}^{d}(p)$ the open ball centered at p. For the basic notions of Riemannian geometry that will be used in the rest of the paper, see [16].

We will analyze the possible cases for Z_{0} and S. First note that Case (I) does not really occur since \mathcal{F} does not have a rational first integral.

3.1. Cases (II) and (III)

Proposition 1. If Z_{0} and S are as in (II) or (III) any irreducible component of $D \cup E$ is invariant by $\tilde{\mathcal{F}}$.

Proof. Let D_{0} be an irreducible component of $D \cup E$ that is not invariant by $\tilde{\mathcal{F}}$. There is a compact curve Q_{0} (possibly singular) in S generically transversal to Z_{0}. It is enough to define Q_{0} as one of the connected components of $r^{-1}\left(s\left(D_{0}\right)\right)$. Note that $s\left(D_{0}\right)$ is not a point.

Case (II). Let us take S as the quotient manifold \mathbb{C}^{2} / Λ. We identify \mathbb{C}^{2} with \mathbb{R}^{4}, and Λ is an integral lattice of rank four.

Remark 6. Let $\mu: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} / \Lambda$ denote the canonical submersion map. If we consider \mathbb{R}^{4} with the usual euclidean g, taking $g^{\prime}=\mu_{*} g$ as the metric on \mathbb{C}^{2} / Λ, the map μ becomes a Riemannian covering map. We will denote by d and d^{\prime} the distances in $\left(\mathbb{R}^{4}, g\right)$ and $\left(\mathbb{R}^{4} / \Lambda, g^{\prime}\right)$, respectively.

The vector field Z_{0} is the projection by μ of a constant vector field on \mathbb{C}^{2}, and thus its trajectories must be of the form $\mu\left(L_{t}\right)$ where $\left\{L_{t}\right\}_{t \in \mathbb{C}}$ is the family of lines parallel to a given direction. Note that Z_{0} does not have singularities.

Lemma 3. There is a compact $K \subsetneq S$ such that $Q_{0} \subset K$.
Proof. Since Z_{0} is complete and without singularities we can define

$$
\begin{equation*}
K=\left\{\varphi(T, z)| | T \mid \leq 1, z \in Q_{0}\right\} \tag{6}
\end{equation*}
$$

where $\varphi: \mathbb{C} \times S \rightarrow S$ is the complex flow of Z_{0}. If we apply the Flow Box Theorem to the points of Q_{0} we easily deduce that $Q_{0} \subset \stackrel{\circ}{K}$.

We define the following function

$$
\begin{align*}
& \alpha: \mathbb{C} \rightarrow[0,+\infty) \\
& t \mapsto d\left(L_{t}, \mu^{-1}\left(Q_{0}\right)\right) . \tag{7}
\end{align*}
$$

Remark 7. α is continuous. For any sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{C}$ converging to t_{*} as $n \rightarrow \infty$, one sees that $\alpha\left(t_{n}\right) \leq d\left(L_{t_{n}}, L_{t_{*}}\right)+\alpha\left(t_{*}\right)$ and $\alpha\left(t_{*}\right) \leq d\left(L_{t_{*}}, L_{t_{n}}\right)+\alpha\left(t_{n}\right)$. Then, $\lim _{n \rightarrow \infty} \alpha\left(t_{n}\right)=\alpha\left(t_{*}\right)$.

We will use that α has the following property with respect to K.
Lemma 4. $\alpha(t) \neq 0$ if and only if $\mu\left(L_{t}\right) \cap \stackrel{\circ}{K}=\emptyset$.
Proof. If $\alpha(t) \neq 0$, it is clear from (6) that $\mu\left(L_{t}\right) \cap \stackrel{\circ}{K}=\emptyset$. Otherwise $\mu\left(L_{t}\right) \cap Q_{0} \neq \emptyset$, which is not possible with our assumptions.

If $\alpha(t)=0$, we suppose $\mu\left(L_{t}\right) \cap \stackrel{\circ}{K}=\emptyset$ and obtain a contradiction.
Fact 1 . There is $\delta \in \mathbb{R}^{+}$such that $d^{\prime}\left(\mu\left(L_{t}\right), Q_{0}\right) \geq \delta$.
Otherwise we can determine a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset Q_{0}$ converging to $x_{*} \in Q_{0}$ and such that $d^{\prime}\left(\mu\left(L_{t}\right), x_{n}\right)<1 / n$ because Q_{0} is compact and $\left(\mathbb{R}^{4} / \Lambda, g^{\prime}\right)$ is complete. But it implies that for any ball $\mathbb{B}_{r}^{d^{\prime}}\left(x_{*}\right)$ there exists $n(r) \in \mathbb{N}^{+}$such that $\mathbb{B}_{1 / n(r)}^{d^{\prime}}\left(x_{n(r)}\right) \subset \mathbb{B}_{r}^{d^{\prime}}\left(x_{*}\right)$, and hence $\mathbb{B}_{r}^{d^{\prime}}\left(x_{*}\right) \cap \mu\left(L_{t}\right) \neq \emptyset$, which contradicts our assumption $\mu\left(L_{t}\right) \cap Q_{0}=\emptyset$.
Fact 2. $d\left(L_{t}, \mu^{-1}\left(Q_{0}\right)\right) \geq \delta$.
By contradiction, suppose that $d\left(L_{t}, \mu^{-1}\left(Q_{0}\right)\right)<\delta$. Then there are $z \in L_{t}$ and $\bar{z} \in \mu^{-1}\left(Q_{0}\right)$ with $d(z, \bar{z})<\delta$. Note that $\mu^{-1}\left(Q_{0}\right)$ is an analytic variety (non necessarily compact) of \mathbb{C}^{2} and that $\mu(z) \neq \mu(\bar{z})$ by Fact 1 . Let c be a segment from z to \bar{z}. As μ defines a local isometry from $\left(\mathbb{R}^{4}, g\right)$ to $\left(\mathbb{R}^{4} / \Lambda, g^{\prime}\right)$, we can take $\mathbb{B}_{r_{i}}^{d}\left(z_{i}\right) \subset \mathbb{R}^{4}, 0 \leq i \leq s$, centered at $z_{i} \in c$, where $z_{0}=z$ and $z_{s}=\bar{z}$, and in such a way that μ restricted to each $\mathbb{B}_{r_{i}}^{d}\left(z_{i}\right)$ defines an isometry over its image. Moreover, we can assume that $\mathbb{B}_{r_{i}}^{d}\left(z_{i}\right) \cap \mathbb{B}_{r_{j}}^{d}\left(z_{j}\right) \neq \emptyset$ if and only if $j=i+1$, and thus fix $s-1$ points $z_{i, i+1}$ in these intersections. As the isometries preserve intrinsic distance, Fact 1 and the triangle inequality imply the following contradiction

$$
\delta>d(z, \bar{z})=\sum_{i=1}^{s-1} d\left(z_{i}, z_{i, i+1}\right)+d\left(z_{i, i+1}, z_{i+1}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{s-1} d^{\prime}\left(\mu\left(z_{i}\right), \mu\left(z_{i, i+1}\right)\right)+d^{\prime}\left(\mu\left(z_{i, i+1}\right), \mu\left(z_{i+1}\right)\right) \\
& \geq d^{\prime}(\mu(z), \mu(\bar{z})) \geq \delta . \quad \square
\end{aligned}
$$

Lemma 5. $\mu\left(L_{t}\right) \cap Q_{0} \neq \emptyset$ for any $t \in \mathbb{C}$, and then $\alpha \equiv 0$.
Proof. Suppose, by contradiction, that $\mu\left(L_{t}\right) \cap Q_{0}=\emptyset$. It implies that $\mu\left(L_{t}\right) \cap \stackrel{\circ}{K}=\emptyset$. On the other hand, by Lemma $4, \alpha(t) \neq 0$. Then $\alpha^{-1}(0)$ is a closed set strictly contained in \mathbb{C}, and if we take \tilde{t} on its boundary we can fix a sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha\left(t_{n}\right) \neq 0$ converging to $\tilde{t} \in \mathbb{C}$ with $\alpha(\tilde{t})=0$. Note that $\mu\left(L_{\tilde{t}}\right) \cap Q_{0} \neq \emptyset$ due to $\mu\left(L_{\tilde{t}}\right) \cap \stackrel{\circ}{K} \neq \emptyset$ since $\alpha(\tilde{t})=0$ (Lemma 4).

Let us take $\tilde{x} \in \mu\left(L_{\tilde{t}}\right) \cap Q_{0}$ with $\mu(\tilde{z})=\tilde{x}$, and set $\left\{z_{n}\right\}_{n \in \mathbb{N}}$ converging to \tilde{z} with $z_{n} \in L_{t_{n}}$. By continuity, $\left\{\mu\left(z_{n}\right)\right\}_{n \in \mathbb{N}}$ must converge to \tilde{x}. However, as $z_{n} \in L_{t_{n}}$ for any n, it holds $\mu\left(z_{n}\right) \notin \mu\left(L_{t_{n}}\right) \cap \stackrel{\circ}{K}$ since $\alpha\left(t_{n}\right) \neq 0$ (Lemma 4), what is a contradiction. Then $\mu\left(L_{t}\right) \cap Q_{0} \neq \emptyset$.

It follows from Remark 4 that \mathscr{M}_{i} is contained in a trajectory of Z_{0}. Hence there is $L_{s_{i}}$ such that $\mu\left(L_{s_{i}}\right) \supset \mathscr{M}_{i}$.

Lemma 6. $\mu\left(L_{s_{i}}\right) \cap Q_{0}=\left\{p_{i}\right\}$, where p_{i} is the unique point in $\mu\left(L_{s_{i}}\right) \backslash \mathscr{M}_{i}$. In particular, $\mu\left(L_{s_{i}}\right)$ and \mathscr{M}_{i} are respectively biholomorphic to \mathbb{C} and \mathbb{C}^{*}.

Proof. Lemma 5 implies that $\mu\left(L_{s_{i}}\right) \cap Q_{0} \neq \emptyset$. Moreover it is clear that $\mu\left(L_{s_{i}}\right) \cap Q_{0} \subset$ $\mu\left(L_{s_{i}}\right) \backslash \mathscr{M}_{i}$. It follows from Remark 4 that $r^{*}\left(s_{*}\left(\tilde{X}_{\mid \tilde{C}_{z}}\right)\right)_{\mid \mathscr{M}_{i}}$ is complete and then it extends holomorphically by zeros on $\mu\left(L_{s_{i}}\right) \backslash \mathscr{M}_{i}$. Since C_{z} is not algebraic, \mathscr{M}_{i} is biholomorphic to \mathbb{C}^{*} and $\mu\left(L_{s_{i}}\right) \cap Q_{0}=\mu\left(L_{s_{i}}\right) \backslash \mathscr{M}_{i}$ is a unique point p_{i}. Thus $\mu\left(L_{s_{i}}\right)$ must be biholomorphic to \mathbb{C}.

Since the foliation defined by Z_{0} on S has codimension 1 and it does not have singularities, the closure of $\mu\left(L_{S_{i}}\right)$ in the open set $U^{\prime} \subset S$ of non-compact leaves, that we will denote by L^{\prime}, is a subvariety of real codimension 0,1 or 2 [9, Théorème 1.4]. It holds $U^{\prime}=S$ and then L^{\prime} is the closure of $\mu\left(L_{S_{i}}\right)$ in S. If there were one compact leaf J, [9, Théorème 1.4] also assures that any non-compact leaf must accumulate J. In particular $\mu\left(L_{s_{i}}\right)$ accumulates J. On the other side, as Q_{0} cuts any leaf (Lemma 5), it must cut J, and $\mu\left(L_{s_{i}}\right)$ accumulates the points of $J \cap Q_{0}$, which is not possible since p_{i} is the unique point in $\mu\left(L_{s_{i}}\right) \backslash \mathscr{M}_{i}$ (Lemma 6). Note that L^{\prime} is S or a real compact subvariety of dimension three. If L^{\prime} had real codimension 2, it would define a real compact subvariety of dimension two of S (L^{\prime} is closed in S) containing $\mu\left(L_{S_{i}}\right)$, which is a non-algebraic leaf. One concludes that $\mu\left(L_{s_{i}}\right)$ must intersect infinitely many times Q_{0}, and then one obtains again a contradiction with Lemma 6.
Case (III). Let us consider S as a $\mathbb{C P}^{1}$-bundle over an elliptic curve \mathcal{E} with bundle projection $p: S \rightarrow \mathcal{E}$. The structure of S can be lifted as $\mathbb{C P}^{1}$-bundle \tilde{S} over \mathbb{C} via the universal covering map $\Gamma: \mathbb{C} \rightarrow \mathcal{E}$: we can determine a complex surface \tilde{S}, a holomorphic covering $F: \tilde{S} \rightarrow S$ and a bundle projection $\tilde{p}: \tilde{S} \rightarrow \mathbb{C}$ such that $p \circ F=\Gamma \circ \tilde{p}$.

Moreover as \mathbb{C} is contractible this $\mathbb{C P}^{1}$-bundle is trivial. Thus $\tilde{S}=\mathbb{C} \times \mathbb{C P}^{1}$ and $\tilde{p}(x, y)=x$ is the projection over the first factor.

Lemma 7. There is a holomorphic automorphism σ of $\mathbb{C} \times \mathbb{C P}^{1}$ such that $\sigma^{*}\left(F^{*} Z_{0}\right)$ is the horizontal vector field.

Proof. It is clear that $F^{*} Z_{0}$ generates a Riccati foliation adapted to \tilde{p} and without invariant fibres. If $\sigma(t, y)=\tilde{\varphi}(t, 0, y)$, with $\tilde{\varphi}$ the complex flow of $F^{*} Z_{0}, \sigma$ is bijective, since each trajectory of $F^{*} Z_{0}$ intersects each fibre of p in only one point, and $\sigma(\mathbb{C} \times\{y\})$ are the trajectories of $F^{*} Z_{0}$.

After Lemma 7, the trajectories of Z_{0} are of the form $(F \circ \sigma)\left(L_{t}\right)$ where $\left\{L_{t}\right\}_{t \in \mathbb{P}^{1}}$ is now the family of lines $L_{t}=\mathbb{C} \times\{t\}$.

Remark 8. As S is compact, S (as real manifold) admits a Riemannian metric g^{\prime}. Let us set $\bar{\mu}=F \circ \sigma$. The map $\bar{\mu}$ from $\left(\mathbb{R}^{2} \times \mathbb{S}^{2}, \bar{\mu}^{*} g^{\prime}\right)$ to $\left(S, g^{\prime}\right)$ is a local Riemannian isometry. But still more, F is a covering map and σ is a biholomorphism; hence $F \circ \sigma$ is also a covering map and $\bar{\mu}$ is a Riemannian covering map. As $\left(S, g^{\prime}\right)$ is compact, it is complete, and $\left(\mathbb{R}^{2} \times \mathbb{S}^{2}, \bar{\mu}^{*} g^{\prime}\right)$ is complete. We will denote by d and d^{\prime} the distances in $\left(\mathbb{R}^{2} \times \mathbb{S}^{2}, \bar{\mu}^{*} g^{\prime}\right)$ and $\left(S, g^{\prime}\right)$, respectively.

The vector field Z_{0} is complete and without zeros. We will consider as in case (II) an irreducible component D_{0} of $D \cup E$ that is not invariant by $\tilde{\mathcal{F}}$, and the compact curve Q_{0} (possibly singular) in S generically transversal to Z_{0}, defined by one of the connected components of $r^{-1}\left(s\left(D_{0}\right)\right)$. As in Lemma 3 we can determine a compact set $K \subsetneq S$ such that $Q_{0} \subset \AA$.

We will consider the continuous map (it follows as in Remark 7)

$$
\begin{align*}
& \bar{\alpha}: \mathbb{C P}^{1} \rightarrow[0,+\infty) \\
& t \mapsto d\left(L_{t}, \bar{\mu}^{-1}\left(Q_{0}\right)\right) . \tag{8}
\end{align*}
$$

Once we have fixed $\bar{\mu}=F \circ \sigma$, the complete metrics in Remark 8, the compact set K and the map $\bar{\alpha}$ as (8), we can prove similar Lemmas to Lemmas 3-6 of Case (II), where μ and α must be substituted by $\bar{\mu}$ and $\bar{\alpha}$ in their statements.

Let $L_{s_{i}}$ be such that $\bar{\mu}\left(L_{s_{i}}\right) \supset \mathscr{M}_{i}$. Since $p_{\mid} \bar{\mu}\left(L_{s_{i}}\right): \bar{\mu}\left(L_{s_{i}}\right) \rightarrow \mathcal{E}$ is a covering map, and $\bar{\mu}\left(L_{s_{i}}\right)$ is biholomorphic to \mathbb{C} (Lemma 6), $\bar{\mu}\left(L_{s_{i}}\right)$ must cut almost all the fibres of p infinitely many times. Let $\kappa \in \mathcal{E}$ such that $p^{-1}(\kappa)$ contains an infinite sequence of different points in $p^{-1}(\kappa) \cap \bar{\mu}\left(L_{s_{i}}\right)$. By compactness of $p^{-1}(\kappa)$, the above sequence converges to $q_{1} \in p^{-1}(\kappa)$. Note that q_{1} is a regular point of Z_{0}. If $\bar{\mu}\left(L_{\tilde{s}}\right)$ is the trajectory of Z_{0} through $q_{1}, \bar{\mu}\left(L_{s_{i}}\right)$ must accumulate $\bar{\mu}\left(L_{\tilde{s}}\right)$ (flow-box theorem). On the other hand, $\bar{\mu}\left(L_{\tilde{s}}\right) \cap Q_{0} \neq \emptyset$ (Lemma 5) implies a contradiction with the fact that p_{i} is the unique point in $\bar{\mu}\left(L_{s_{i}}\right) \backslash \mathscr{M}_{i}$ (Lemma 6).

Remark 9. One can also obtain a contradiction by distinguishing several cases, according to the (abelian) monodromy $\Gamma \subset A u t\left(\mathbb{C P}^{1}\right)$. If Γ has rank 1 , then the non-algebraic leaves of Z_{0} are isomorphic to \mathbb{C}^{*}, and one gets a contradiction by using Remark 5, and the fact that the intersection with algebraic curves is nonempty. If Γ has rank 2 then $\Gamma=\langle f, g\rangle$ with $f(z)=\alpha z$, $g(z)=\beta z$ or $f(z)=z+1, g(z)=z+w$. In the first case (where, moreover, $\alpha^{n} \beta^{m} \neq 1$ for every $(m, n) \neq(0,0))$ the non-algebraic leaves are sufficiently dense to apply the same argument as in case (II). In the second case one can prove that every algebraic curve $C \subset S$ different from the elliptic curve $E=\{z=\infty\}$ must intersect E, and from this fact it follows again that every non-algebraic trajectory of Z_{0} intersects C infinitely many times.

3.2. Case (IV)

There is a birational transformation $G: S \rightarrow \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ sending Z_{0} to $G_{*} Z_{0}=v_{1} \oplus v_{2}$, where v_{1} and v_{2} are holomorphic vector fields on $\mathbb{C P}^{1}$. The description of G can be found in [2, p. 87]. In particular, G is a finite sequence of birational transformations which are contractions of curves invariant by Z_{0} or blowing-ups at zeros of Z_{0}. Hence the exceptional divisor of G does not meet \mathscr{M}_{i}, and as a consequence $G\left(\mathscr{M}_{i}\right)$ is biholomorphic to \mathscr{M}_{i}. But still more, as \mathscr{M}_{i} supports a complete vector field according to Remark 4, we can define an entire curve $f: \mathbb{C} \rightarrow G\left(\mathscr{M}_{i}\right)$. In the absence of rational first integrals, we may assume that $G_{*} Z_{0}$ is not constant. Note that $G\left(\mathscr{M}_{i}\right)$ is contained in a trajectory L_{z} of $G_{*} Z_{0}$ and that $L_{z} \backslash G\left(\mathscr{M}_{i}\right)$ is empty or one point. There are two cases for $G_{*} Z_{0}$:
(a) v_{1} and v_{2} with zeros of order one at $0(\lambda z \partial / \partial z+\mu w \partial / \partial w)$.
(b) v_{1} with a zero of order one at 0 and v_{2} constant $(\lambda z \partial / \partial z+\mu \partial / \partial w)$.

Proposition 2. There exists at most an irreducible component D_{0} of $D \cup E$ that is not invariant by \mathcal{F}. If D_{0} exists:
(1) $G_{*} Z_{0}$ is as in (b);
(2) $r^{-1}\left(s\left(D_{0}\right)\right)=Q_{0}$;
(3) The strict transform A_{0} of Q_{0} by G is $\overline{\{w=0\}}$; and
(4) $\tilde{\mathcal{F}}$ is a Riccati foliation adapted to a rational map that projects by π as a rational function R of type \mathbb{C} or \mathbb{C}^{*}.

Proof. Let D_{0} be a component of $D \cup E$ not invariant by $\tilde{\mathcal{F}}$, and Q_{0} be the curve in S defined as in Proposition 1. If $G_{*} Z_{0}$ is as (b) let us suppose that either there is one component D_{j} of $D \cup E$ not invariant by $\tilde{\mathcal{F}}$ and different from D_{0} or there is another component of $r^{-1}\left(s\left(D_{0}\right)\right)$ different from Q_{0}.

Lemma 8. There exist an open set $B \subset \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ biholomorphic to \mathbb{C}^{2} and an entire curve $\bar{f}: \mathbb{C} \rightarrow G\left(\mathscr{M}_{i}\right) \cap B$ tangent to $G_{*} Z_{0 \mid B}$ whose image avoids at least three algebraic curves contained in B.

Proof. We analyze the two cases:
$G_{*} Z_{0}$ as in (a): Let B be $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ minus $\{z=\infty\} \cup\{w=\infty\}$. As $\{z=\infty\}$ and $\{w=\infty\}$ are invariant by $G_{*} Z_{0}, G\left(\mathscr{M}_{i}\right) \subset B$. Note that $G_{*} Z_{0}$ on B is complete. If $\bar{f}=f, \bar{f}: \mathbb{C} \rightarrow$ $G\left(\mathscr{M}_{i}\right) \subset B$ is an entire map whose image avoids at least $\{z=0\},\{w=0\}$ and $A_{0} \cap B$.
$G_{*} Z_{0}$ is as in (b): Let B be $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ minus $\{z=0\} \cup\{w=0\}$. In this case $\{z=0\}$ is invariant by $G_{*} Z_{0}$ but $\{w=0\}$ is not. Remark that any non-algebraic trajectory of $G_{*} Z_{0}$ is of type \mathbb{C} and intersects $\{w=c\}$, with $c \neq \infty$, in a unique point. More still, one can suppose that $A_{0} \neq \overline{\{w=0\}}$. Otherwise one defines Q_{0} as any other component of $r^{-1}\left(s\left(D_{0}\right)\right)$ or $r^{-1}\left(s\left(D_{j}\right)\right)$, where D_{j} is a component of $D \cup E$ not invariant by $\tilde{\mathcal{F}}$ and $D_{j} \neq D_{0}$.
(b.1) If $L_{z} \backslash G\left(\mathscr{M}_{i}\right)=\emptyset$, we take $G\left(\mathscr{M}_{i}\right) \cap\{w=0\}=p$ and the trajectory $G\left(\mathscr{M}_{i}\right) \cap B=$ $L_{z} \backslash\{p\} \simeq \mathbb{C}^{*}$ of $G_{*} Z_{0}$ on B. As the universal covering of $G\left(\mathscr{M}_{i}\right) \cap B$ is \mathbb{C}, there exists $\bar{f}: \mathbb{C} \rightarrow G\left(\mathscr{M}_{i}\right) \cap B$ whose image avoids at least the algebraic curves: $\{z=\infty\},\{w=\infty\}$ and $A_{0} \cap B$.
(b.2) If $L_{z} \backslash G\left(\mathscr{M}_{i}\right)=q \in\{w=0\}$, the argumentation is similar to (b.1) since $G\left(\mathscr{M}_{i}\right) \cap B=$ $G\left(\mathscr{M}_{i}\right)=L_{z} \backslash\{q\} \simeq \mathbb{C}^{*}$ is a trajectory of $G_{*} Z_{0}$ on B.
(b.3) If $L_{z} \backslash G\left(\mathscr{M}_{i}\right)=q \notin\{w=0\}$, we take the automorphism of $\mathbb{C P}^{1} \times \mathbb{C P}^{1},(z, w) \mapsto$ $\delta(z, w)=\left(z, w-q_{2}\right)$, where $q=\left(q_{1}, q_{2}\right)$. As δ leaves invariant $G_{*} Z_{0}$ since $\delta_{*} G_{*} Z_{0}=$ $G_{*} Z_{0}$ and $\delta(q) \in\{w=0\}$, it is enough to apply (b.2) to $L_{z} \backslash \delta\left(G\left(\mathscr{M}_{i}\right)\right)=\{\delta(q)\}$.
Let $\mathbb{C P}^{2}$ be the compactification of B. The image of $\bar{f}: \mathbb{C} \rightarrow G\left(\mathscr{M}_{i}\right) \cap B$ is contained in $\mathbb{C P}^{2}$ minus at least four hypersurface sections, that is, three sections defined by the algebraic curves of Lemma 8 along with the line at infinity $\mathbb{C P}^{2} \backslash B$. According to Green's Theorem [11, p. 199], $\bar{f}(\mathbb{C})$ must be contained in some algebraic curve, which contradicts our assumptions. Hence (1), (2) and (3) of the statement of Proposition follows.

Note that $C_{z}, \tilde{C}_{z}, \hat{C}_{z}, G\left(\mathscr{M}_{i}\right)$ and \mathscr{M}_{i} are biholomorphic to \mathbb{C}^{*}, and that $L_{z} \simeq \mathbb{C}$ and $G\left(\mathscr{M}_{i}\right)=L_{z} \backslash\{q\} \simeq \mathbb{C}^{*}$ with $q \in\{w=0\} \backslash\{(0,0),(\infty, 0)\} . G\left(\mathscr{M}_{i}\right)$ has two parabolic ends, which are properly embedded in the complementary set of $\{z=\infty\} \cup\{w=\infty\}$ in $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$: one Σ_{1} defined by a punctured disk centered at q, that is algebraic; and the other Σ_{2} defined by $G\left(\mathscr{M}_{i}\right) \backslash \Sigma_{1}$, that is transcendental and accumulates $\{w=\infty\}$. Note that $G_{*} Z_{0}$ has two saddle-nodes as singularities: one at $(0, \infty)$, with a strong separatrix inside $\{w=\infty\}$ and a weak separatrix inside $\{z=0\}$; and the other one at (∞, ∞), with a strong separatrix inside $\{w=\infty\}$ and a weak separatrix inside $\{z=\infty\}$. On the other hand $G_{*} Z_{0}$ defines a Riccati foliation adapted to $\beta(z, w)=w$. One may assume (maybe after blowing-up reduced singularities) that $\overline{\mathcal{F}}$ is Riccati with respect to $\beta_{W}=\beta \circ G \circ g$ and that $G \circ g$ is the contraction of curves inside fibers of β_{W} that produces the local models of [4, p. 439]. In this case all the fibers $\{w=c\}$, with $c \neq \infty$, are transversal minus one that is tangent, $\{w=\infty\}$, and of class (d).

Since h is an algebraic covering map from W to M, the proper mapping theorem allows one to define the trace of β_{W} as a rational function β_{M} on M [10]. Moreover, one can assume that β_{M} is a fibration after eliminating its base points. Recall that the property of being reduced is stable by blowing ups. Moreover, the possible dicritical components of the resolution of the pencil given by β_{M} must be transversal to the corresponding foliation.

By construction, the generic fiber F of β_{M} is a curve transverse to $\tilde{\mathcal{F}}$. Note that D_{0} must be contained in a fiber F_{0} of β_{M} as a consequence of (3) in the statement of this Proposition. Let us consider the following cases according to the genus of F.

- If F is of genus ≥ 2, it follows from [15, Theorem III.6.1] that $\tilde{\mathcal{F}}$ has a rational first integral, which is not possible.
- If F is of genus $1, \tilde{\mathcal{F}}$ is a Turbulent foliation. Let us see that this case neither occurs because it would imply the existence of a rational first integral as before. Indeed, note that F does not cut F_{0} since β_{M} is a fibration. On the other hand, $D \cap F \neq \emptyset$ by the maximum principle. As D_{0} is the unique irreducible component of $D \cup E$ that is not invariant by $\tilde{\mathcal{F}}$, there must be one $\tilde{\mathcal{F}}$-invariant component D_{2} of D such that $D_{2} \cap F \neq \emptyset$. The existence of D_{2} implies that $\tilde{\mathcal{F}}$ has a first integral (Lemma 1).
- If F is of genus $0, \tilde{\mathcal{F}}$ is a Riccati foliation. Let us see that $\tilde{\mathcal{F}}$ satisfies (4) of the statement of Proposition 2. After contraction of rational curves each fiber of β_{M} admits one of the five possible models in [3, Section 7], [4, p. 439]. If there is one fiber F_{1} tangent to $\tilde{\mathcal{F}}$, as D_{0} is the unique irreducible component of $D \cup E$ which is not invariant by $\tilde{\mathcal{F}}$ and it is contained in F_{0}, then F must cut D in only one or two points near F_{0}. Then we can conclude as in Lemma 2 that β_{M} projects by π as a rational function R of type \mathbb{C} or \mathbb{C}^{*}. Finally, one shows that all the fibers of β_{M} are not transverse to $\tilde{\mathcal{F}}$. In the contrary case, if L_{0} is the leaf defined by \tilde{C}_{z}, as the covering map $\beta_{M \mid L}: L \rightarrow \mathbb{C P}^{1}$ is not finite (otherwise L is compact and C_{z} is algebraic), L must cut infinitely many times F_{0} and C_{z} is not isomorphic to \mathbb{C}^{*}, which is not possible.

After Proposition 2 we can assume that any irreducible component of $D \cup E$ is invariant by $\tilde{\mathcal{F}}$. Otherwise Theorem 1 follows by the results of Section 2.

3.3. Existence of a second integral

Let us come back to the beginning of Section 3, and consider (4).
Lemma 9. It holds $Y^{2} F=0$. In particular \bar{X} is complete on the Zariski open set W^{\prime} of W defined by $W \backslash(\{F=0\} \cup\{F=\infty\} \cup P)$.

Proof. Let \mathscr{R}_{0} be a connected component of $h^{-1}\left(\tilde{C}_{z}\right)$. As \mathscr{R}_{0} does not meet the exceptional divisor of $s: M \rightarrow \hat{M}$ then $h_{\mid \mathscr{R}_{0}}: \mathscr{R}_{0} \rightarrow \tilde{C}_{z}$ is a non-ramified finite covering map. Hence $h_{\mid \mathscr{R}_{0}}^{*}\left(\tilde{X}_{\mid \tilde{C}_{z}}\right)=\bar{X}_{\mid \mathscr{R}_{0}}$ is complete. On the other hand \bar{X} and Y are tangent on \mathscr{R}_{0} according to (4). Thus \mathscr{R}_{0} is a Riemann surface contained in a trajectory R_{z} of Y. Let $\varphi_{z}: \Omega_{z} \rightarrow R_{z}$ be the corresponding solution. We have two possibilities from 3.- of Remark 5:
(i) $R_{z} \notin\left\{R_{z_{i}}\right\}_{i=1}^{s}$. Since $Y_{\mid R_{z}}$ is complete $\Omega_{z}=\mathbb{C}$.
(ii) $R_{z} \in\left\{R_{z_{i}}\right\}_{i=1}^{s}$. Let us suppose that $R_{z}=R_{z_{j}}$. We take the solution $f_{z_{j}}: \mathbb{C} \rightarrow R_{z_{j}} \cup\left\{\bar{\theta}_{j_{l}}\right\}_{l=0}^{h}$ of (5) and the discrete subset $\Delta=\left\{f_{z_{j}}{ }^{-1}\left(\bar{\theta}_{j_{l}}\right)\right\}_{l=0}^{h}$ of \mathbb{C}. Since $f_{z_{j \mid} \backslash \Delta}=\varphi_{z}$ then $\Omega_{z}=\mathbb{C} \backslash \Delta$.
It follows from (i) and (ii) that φ_{z} is a univaluated holomorphic map. Let us note that $\bar{X}_{\mid R_{z}}$ must be also complete because $\bar{X}_{\mid \mathscr{R}_{0}}$ is complete. Using these two facts and that $T \in \Omega_{z} \mapsto$ $\varphi_{z}(T) \in R_{z}$ is a covering map then

$$
\begin{equation*}
\varphi_{z}^{*}\left(\bar{X}_{\mid R_{z}}\right)=\varphi_{z}^{*}(\bar{X})(T)=\left(F \circ \varphi_{z}(T)\right) \cdot \varphi_{z}^{*}(Y)=\left(F \circ \varphi_{z}(T)\right) \frac{\partial}{\partial T} \tag{9}
\end{equation*}
$$

is a complete vector field on Ω_{z}. This is only possible if $\Omega_{z}=\mathbb{C}$ or \mathbb{C}^{*} and $\left(F \circ \varphi_{z}\right)(T)=a T+b$, for $a, b \in \mathbb{C}$. We conclude that $Y(F)\left(\varphi_{z}(T)\right)=\left(F \circ \varphi_{z}\right)^{\prime}(T)$ is constant and hence $Y^{2} F$ vanishes along R_{z}, which can be assumed to be non-algebraic since C_{z} is by hypothesis. Hence $Y^{2} F=0$.

Let us take a point $z \in W^{\prime}=W \backslash(\{F=0\} \cup\{F=\infty\} \cup P)$. If S_{z} is the trajectory of \bar{X} through z, as Y is holomorphic on W^{\prime} (1.- of Remark 5) and tangent to \bar{X} on S_{z} by (4) then S_{z} defines a trajectory R_{z} of Y. Since it holds (9), the fact that $Y^{2} F=0$ implies that $\bar{X}_{\mid S_{z}}$ is complete.

After Lemma 9, \bar{X} is complete on $W^{\prime}=W \backslash(\{F=0\} \cup\{F=\infty\} \cup P)$. According to 1.and 2.- of Remark 5, \tilde{X} is complete on $M \backslash h\left(W \backslash W^{\prime}\right)$. By Propositions 1 and 2, \tilde{X} is complete on $M \backslash\left(h\left(W \backslash W^{\prime}\right) \cup E \cup D\right)$. If we project by π we see that X is complete on a Zariski open set of \mathbb{C}^{2} and it can be extended to \mathbb{C}^{2} as a complete vector field. Therefore X is complete.

Acknowledgments

This article is dedicated to the memory of Marco Brunella, whose deep mathematical work about complete vector fields has been crucial to obtain our results. We also appreciate a lot his generosity in several mathematical conversations during these last years. We received the sad notice of his death when we were preparing the revised version of this article.

Finally, we also want to thank the referee for his suggestions that have improved this paper a lot.

The work was supported by Spanish MICINN projects MTM2010-15481, MTM2011-26674-C02-02.

References

[1] M. Brunella, Sur les courbes intégrales propres des champs de vecteurs polynomiaux, Topology 37 (6) (1998) 1229-1246.
[2] M. Brunella, Birational geometry of foliations, in: First Latin American Congress of Mathematicians, IMPA, 2000.
[3] M. Brunella, Foliations on complex projective surfaces, in: Pubblicazioni del Centro di Ricerca Matematica Ennio de Giorgi. Proceedings, 2003, pp. 49-77.
[4] M. Brunella, Complete vector fields on the complex plane, Topology 43 (2) (2004) 433-445.
[5] M. Brunella, Uniformisation of foliations by curves, in: Lecture Notes in Math., 1998, 2010, pp. 105-163.
[6] A. Bustinduy, On the entire solutions of a polynomial vector field on \mathbb{C}^{2}, Indiana Univ. Math. J. 53 (2004) 647-666.
[7] A. Bustinduy, The completeness of a polynomial vector field is determined by a transcendental trajectory, J. Differential Equations 227 (2006) 282-300.
[8] A. Bustinduy, Complete holomorphic vector fields on \mathbb{C}^{2} whose underlying foliation is polynomial, Int. J. Math. 21 (3) (2010) 333-347.
[9] E. Ghys, Feuilletages holomorphes de codimension un sur les espaces homogénes complexes, Ann. Fac. Sci. Toulouse, VI. Sér., Math 5 (3) (1996) 493-519.
[10] P. Griffiths, Variations on a theorem of Abel, Invent. Math 35 (1976) 321-390.
[11] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, 1987.
[12] J. Martinet, J.-P. Ramis, Problemes de modules pour des équations diffeérentielles non linéaires du premier ordre, Publications IHES 55 (1982) 63-164.
[13] M. McQuillan, Non-commutative Mori Theory, 2001. Preprint IHES, M/01/42.
[14] J. Milnor, Dynamics in One Complex Variable, third ed., in: Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton and Oxford, 2006.
[15] I. Pan, M. Sebastiani, Les équations différentielles algébriques et les singularités mobiles, in: Ensaios Matemáticos, vol. 8, Sociedade Brasileira de Matemática, 2004.
[16] P. Petersen, Riemannian geometry, in: Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006.
[17] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbb{C}^{2}, J. Math. Soc. Japan 26 (1974) 241-257.
[18] M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes, Ann. Sci. École Norm. Sup. 10 (4) (1977) 517-546.

[^0]: * Corresponding author.

 E-mail addresses: abustind@nebrija.es (A. Bustinduy), luis.giraldo@mat.ucm.es (L. Giraldo).

