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Abstract

It is proved that any polynomial vector field in two complex variables which is complete on a non-
algebraic trajectory is complete.
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1. Introduction and statement of results

Let X be a holomorphic vector field on C2. For any z ∈ C2, the local solution ϕz(T )

of the associated ordinary differential equation dz/dT = X (z(T )) with the initial condition
z(0) = z ∈ C2 can be extended by analytic continuation along paths in C, to a maximal domain
Ωz , which may not be an open set of C, but rather a Riemann domain over C. The map
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ϕz : Ωz → C2 is the solution of X through z, and its image ϕz(Ωz), that will be denoted by
Cz (or L z , Rz , Sz), is the trajectory of X through z.

The vector field X is complete on Cz if Ωz = C, and X is complete if it is complete on Cz ,
for every z ∈ C2. Each trajectory Cz on which X is complete (complete trajectory) is defined
by an abstract Riemann surface uniformized by C, and by the maximum principle, analytically
isomorphic to C or C∗.

Extrinsically, the topology of a trajectory can be very complicated. The simplest trajectories
from this point of view are the analytic ones. One says that the trajectory Cz is analytic if it is
contained in an analytic curve in C2 (but not necessarily equal to it, due to the possible presence
of singularities). Otherwise Cz is a non-analytic trajectory.

An interesting remark (due to R. Moussu) is that two vector fields with a common non-analytic
trajectory have to be collinear in any point. In this sense a non-analytic trajectory determines the
vector field up to multiplication by a non-vanishing holomorphic function.

In this work we will consider polynomial vector fields with at most isolated zeros. The above
remark for two polynomial vector fields can be restated. For a trajectory, it is enough not to be
contained in an algebraic curve (that is, to be a non-algebraic trajectory) to determine the vector
field up to multiplication by a nonzero constant.

In [1], Brunella studied foliations in C2 given by polynomial vector fields with a trajectory
containing a planar isolated end (proper Riemann sub-surface isomorphic to {z : r < ∥z∥ ≤ 1},
where r ∈ [0, 1)), properly embedded in C2 and whose closure in CP2 contains the line at
infinity. He proved that these foliations can be determined in terms of a polynomial whose generic
fiber is of type C or C∗ and transversal to the foliation. As a remarkable corollary, he obtained
that if the trajectory is a non-algebraic analytic plane, the foliation is given by the constant vector
field after an analytic automorphism. Therefore, the trajectory in this case is determining the
completeness of the vector field up to multiplication by a nowhere vanishing function.

Then if one attends to the completeness of a non-algebraic trajectory (not necessarily analytic)
the following natural question arises [6, Question 5.1]:

Question 1. If X is a polynomial vector field in C2 with the property of being complete on a
single non-algebraic trajectory, is it complete?

The main result of this work says that Question 1 has an affirmative answer:

Theorem 1. Let us consider a polynomial vector field X on C2 which is complete on a non-
algebraic trajectory. Then X is complete.

Note that our theorem implies that any entire solution of a polynomial vector field can be
determined up to an algebraic automorphism of C2. As the vector field is complete, the solution
must correspond to one of the vector fields of Brunella’s classification in [4] after a polynomial
automorphism.

It could be very interesting to study if a non-analytic trajectory of a (non-polynomial)
holomorphic vector field determines the completeness of the vector field.

1.1. About the proof of Theorem 1

For the sake of completeness, throughout the paper we include some definitions and results
taken from Brunella’s papers [2–4]. Let us begin by recalling some definitions. Consider the
foliation F generated by X on C2 extended to CP2. According to Seidenberg’s theorem, the
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minimal resolution of F is a new foliation F̃ defined on a rational surface M after pulling back
F by a birational morphism π : M → CP2, that is a finite composition of blowing ups. Along
with this resolution one has: (1) the Zariski open set U = π−1(C2) of M , over which X can be
lifted to a holomorphic vector field X̃ , (2) the exceptional divisor E of U , and (3) the divisor at
infinity

D = M \ U = π−1(CP2
\ C2) = π−1(L∞),

that is a tree of smooth rational curves. The vector field X̃ can be extended to M , although it may
have poles along one or more components of D. Let us still denote this extension by X̃ . As only
singularities of the foliation in C2 are blown up, and they are in the zero set of X , the vector field
X̃ is holomorphic on the full U and it has the complete trajectory C̃z defined by π−1(Cz).

Therefore the reduced foliation F̃ has at least one tangent entire curve: the one defined by
C̃z , which is Zariski dense in M . It implies that the Kodaira dimension kod(F̃ ) of F̃ is 1 or 0
[13, Section IV] (see also [2, p. 131]).

In the case kod(F̃ ) = 1, [4] allows one to conclude that F̃ is a Riccati foliation adapted to a
fibration g : M → P1, whose projection to C2 by π defines a rational function R of type C or
C∗. We can apply the study of [6] although R is not a polynomial (see also [8]) and deduce the
completeness of X . We will analyze this case in Section 2.

In the case kod(F̃ ) = 0, we know that F̃ is generated by a vector field on a smooth compact
projective surface S, up to contractions of F̃ -invariant curves and covering maps [4]. However,
we need to go a bit further to know if these models restrict to our open U a complete vector field.
This is accomplished via the description of the irreducible components of D ∪ E that are not
F̃ -invariant. When S is rational, we show that in fact D ∪ E must be invariant if F̃ is not Riccati
with respect to a fibration g : M → P1 that is projected to C2 by π as a rational function R of
type C or C∗. For the remaining cases, i.e. when S is a CP1-bundle over an elliptic curve or a
complex 2-torus, we prove that D ∪ E is always invariant by F̃ . For the proof of this last fact we
will consider S as a differential manifold with a certain Riemannian metric. It will enable us to
compute the distance from the complete trajectory to a compact set containing the components
of D ∪ E that are not F̃ -invariant. As a consequence of the discussion above one obtains that the
lifting of X̃ by a certain covering map can be decomposed in the product of a complete rational
vector field by a second integral of it. It allows us to conclude that the projection π∗ X̃ restricted
to U i.e. X must be complete. We will analyze this case in Section 3.

Finally, we point out that [6,7] imply that Question 1 has an affirmative answer for a non-
algebraic analytic trajectory. In those works, Brunella’s results [1] are used as the main tool.
The proof of our theorem is mainly based on Brunella’s approach to the classification complete
polynomial vector fields in the plane [4], since they can be applied to the foliation F although
X could be in principle not complete. Theorem 1 is not only the generalization of the previous
results mentioned above ([6,7]), but its proof also implies them.

2. kod(F) = 1

According to [13, Section IV] the absence of a first integral implies that F̃ is a Ricatti or a
Turbulent foliation, that is to say, the existence of a fibration

g : M → B

whose generic fibre is a rational curve or an elliptic curve transverse to F̃ , respectively. Remark
that B is CP1 since M is a rational surface.
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2.1. Nef models and canonical models [13, Section III], [3, Section 4], [4, Section 3]

Existence of a nef model. As F̃ is not a rational fibration it has a model F̂ which is reduced
and nef. More concretely, after a contraction s : M → M̂ of the F̃ -invariant rational curves on
M over which the canonical bundle KF̃ has a negative degree one obtains (see [3, Section 4],
[4, Section 3]):
(1) a new surface M̂ , maybe with cyclic quotient singularities; and
(2) a reduced foliation F̂ = s∗F̃ on M̂ such that its canonical Q-bundle KF̂ is nef (i.e. KF̂ ·C ≥

0 for any curve C ⊂ M̂).

Recall that a cyclic quotient singularity p of M̂ is locally defined by B2/Γk,h where B2
⊂ C2

is the unit ball and Γk,h is the cyclic group generated by a map of the form (z, w) → (e
2π i

k z,

e
2π i

k hw) with k, h positive coprime integers such that 0 < h < k. These singularities of M̂ are
not singularities of F̂ . That is, the foliation can be lifted locally to B2

\ {(0, 0)} and extended to
a foliation on B2 with a non-vanishing associated vector field.

Remark 1. The possible cyclic singularities of M̂ are in the image of the exceptional divisor
of s. Any rational curve C0 of that divisor is F̃ -invariant, it has a unique singularity p of the
foliation of type d(xn ym) with n, m ∈ N+, where C0 = {y = 0}, and it may also contain one
cyclic quotient singularity q of order m (regular point if m = 1). After contracting C0 by s (since
C2

0 = −n/m) we obtain a new quotient singularity of order n (regular if n = 1) [4, pp. 443–444].

Existence of a minimal model. After possibly additional contractions on M̂ of rational curves,
q : M̂ → N , one obtains a reduced foliation H = q∗F̂ (birational to F̃ ) on a surface N regular
on the (cyclic quotient) singularities of N whose canonical bundle KH is nef and such that it
verifies this property: if KH · C = 0 ⇒ C2

≥ 0 for any curve C ⊂ N . It is important to
note that we can assume that q is given by contractions of curves which are invariant by the
foliation: if C is not F̂ -invariant it follows from the formula (KF̂ + C) · C ≥ 0 [3, Section 2]

that KF̂ · C = 0 ⇒ C2
≥ 0. This model is the minimal model of F̃ .

M

s
��

π // CP2

M̂ q
// N

Remark 2. In general the minimal model of F̃ is not unique. However if we have another
minimal model H′ of F̃ defined on N ′ and p : N → N ′ is an algebraic map defined everywhere
with p∗H = H′ then p is an isomorphism [13, Lemma III.3.1].

Remark 3. As s and q are given by contractions of rational curves which are invariant by the
foliation neither C̃z meets the exceptional divisor of s nor s(C̃z) meets the exceptional divisor of
q . It implies that there must be a parabolic leaf of H: the leaf that contains the Riemann surface
q(s(C̃z)) that supports the complete vector field q∗(s∗(X̃

|C̃z
)).

2.2. Turbulent case

When X is complete the case of a Turbulent F̃ can be excluded as it is proved in [4, Lemma1].
We now prove that it continues being valid in a more general situation.



668 A. Bustinduy, L. Giraldo / Advances in Mathematics 231 (2012) 664–679

Lemma 1. F̃ is not a Turbulent foliation.

Proof. Suppose that F̃ is Turbulent. The description of models around each fibre of g after a
birational morphism α : M → M∗ is known [3, Section 7]. The resulting foliation G = α∗F̃
on M∗ is regular on the (cyclic quotient) singularities of M∗, it is Turbulent with respect to
ḡ = g ◦ α−1, and each fiber of ḡ is of one of the following classes:

(a) (resp. (d)): the fibre is smooth elliptic, transversal (resp. tangent) to G and may be multiple.
(b) (resp. (e)): the fibre is rational with three quotient singularities of orders k1, k2 and k3

satisfying 1
k1

+
1
k2

+
1
k3

= 1, transversal (resp. tangent) to G and of multiplicity 3, 4 or 6.
(c) (resp. ( f )): the fibre is rational with four quotient singularities of order 2; transversal (resp.

tangent) to G and of multiplicity 2.

We will call classes (a), (b) and (c) (resp. (d), (e) and ( f )) transversal fibres (resp. tangent
fibres) of ḡ.

For any leaf L of G outside tangent fibres of ḡ, ḡ|L : L → B0, with B0 defined as B minus the
points over tangent fibres of ḡ, is a regular covering (in orbifold’s sense). The orbifold structure
in B0 is the natural structure inherited from the orbifold structure on B induced by (the local
models of) ḡ [3, Section 7].

Claim 1. There must be at least one tangent fibre G0 of ḡ.

We suppose that all the fibres are transversal and obtain a contradiction. Since B0 = B = CP1,
the orbifold universal covering of any leaf L , L̃ , is equal to the one of B, B̃.

Let us suppose that B̃ is C or CP1. By pulling back sections of K B under ḡ we obtain
sections of KG . We can in this way compute KG and obtain that deg(ḡ∗KG ) = −χorb(B) (see,
[3, Section 7]). On the other hand since kod(F̃ ) = kod(G) = 1 then deg(ḡ∗KG ) > 0. It follows
that χorb(B) < 0, which is impossible if B is parabolic (see Appendix E, Lemma E.4, in [14]).
Thus B̃ is a disk.

As all the leaves of G are hyperbolic and the singularities are isolated (in fact G is regular),
KG is nef [5, Remark 8.8]. Moreover, it is clear that KG · C = 0 ⇒ C2

≥ 0: if C is not
G-invariant it follows from the formula (KG + C) · C ≥ 0 [3, Section 2]. If C is G-invariant the
Camacho–Sad formula [3, Section 2] implies that C2

= 0 because G is regular on C . Therefore
G is a minimal model of F̃ . But then it has necessarily a parabolic leaf (Remarks 2 and 3), which
is a contradiction.

Claim 2. If there is an irreducible component D1 of D ∪ E that is not F̃ -invariant and which is
not contained in any fiber of g, then D1 ⊂ {X̃ = 0}.

It is important to note that the strict transform of D1 by α, that we also denote by D1, is a
rational curve. Otherwise it is a point with infinitely many punctured disks invariant by G through
it and then a singularity of G, which is not possible. Hence D1 ∩ G0 ≠ ∅. Let us denote by J the
leaf of G that defines the non algebraic component of α(C̃z). There is at least one accumulation
point of J on G0 because ḡ(J ) = g(C̃z) is C or C∗. It must be a regular point of the foliation by
the absence of singularities of the foliation on tangent fibers. Thus J must accumulate on G0. It
implies that C̃z ∩ D1 ≠ ∅ and then D1 ⊂ {X̃ = 0} by the completeness of X̃

|C̃z
.

Let us take the generic fiber G of g, which is transverse to F̃ . Obviously, D ∩ G ≠ ∅.
In the contrary case we have an elliptic curve contained in C2, which is impossible (maximum
principle). Among the irreducible components of D cutting G at least one, say D2, is F̃ -invariant.
Otherwise X̃ would be holomorphic in a neighborhood of G and it vanishes on at least one
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component of D transversal to G, which implies that X̃ is identically zero by Claim 2. The
existence of D2 is enough to construct a rational integral for a Turbulent F̃ as can be seen in
[4, p. 438]. �

2.3. Ricatti case

Lemma 2. g|U is projected by π as a rational function R of type C or C∗. Moreover, F̃ is
R-complete.

Proof. Up to contraction of rational curves inside fibers of g, which can produce cyclic quotient
singularities of the surface but on which the foliation is always regular, one has that there are five
possible models for the fibers of g [3, Section 7], [4, p. 439]. Let L0 be the leaf of the foliation
defined by C̃z . One can conclude that the orbifold universal covering L̃0 of L0 is equal to the one
of B0, B̃0, where B0 is defined as CP1 minus the points over tangent fibres of g with the natural
orbifold structure inherited from the orbifold structure on CP1 induced by (the local models of)
g. Since X is complete on Cz , L̃0 is biholomorphic to C and then L0 is parabolic. This fact along
with kod(F̃ ) = 1 implies by Brunella [4, Lemma 2] that there must be at least one fibre G0
tangent to the foliation of class:

(d): the fibre is rational with two saddle-nodes of the same multiplicity m, with strong
separatrices inside the fibre, or of class

(e): the fibre is rational with two quotient singularities of order 2, and a saddle-node of
multiplicity l, with a strong separatrix inside the fibre.

Firstly one observes that there are irreducible components of D ∪ E that are not contained
in any fiber of g. Let us take the generic fiber G of g, which is transverse to F̃ . Obviously,
D ∩ G ≠ ∅. In the contrary case we have a rational curve contained in C2, which is impossible
(maximum principle).

Let D1 be one of these components. Then D1 ∩ G0 ≠ ∅ and there is at least one accumulation
point of C̃z on G0, say p, because g(C̃z) is C or C∗. If p is a regular point of the foliation, C̃z
must accumulate on G0. If p is singular, it is a saddle-node with a strong separatrix defined by
G0, and therefore C̃z must also accumulate on all G0 [12], in particular in the other saddle-node
if it exists. There are two possibilities:

(i) If D1 is F̃ -invariant, D1 is not in the divisor of poles of X̃ . Otherwise, D1 ∩ G0 ≠ ∅ is
a saddle-node q . Let us take the rational section ω of KF̃ dual to X̃ that restricts to C̃z as the
differential of times given by the flow of X̃ on C̃z . One can construct a path γ : (0, ϵ] → C̃z ,
with ϵ ∈ R+ and γ (t) → q as t → 0, such that


γ

ω is finite (see [4, proof of Lemma 3]), which

contradicts the completeness of X̃ on C̃z .
(ii) If D1 is not F̃ -invariant, necessarily C̃z ∩ D1 ≠ ∅ and D1 ⊂ {X̃ = 0}. Otherwise, as

C̃z ∩ D1 = ∅ one has that D1 ∩ G0 ≠ ∅ is a saddle-node with D1 defining its weak separatrix,
which is F̃ -invariant [1, Lemma 11].

It follows from (i) and (ii) that X̃ is holomorphic in a neighborhood of G, which implies as in
the above lemma that (ii) does not really occur. Thus D1 is F̃ -invariant.

Therefore D must cut G at one or two points, and the projection R of g|U via π is of type
C or C∗. Moreover, the invariancy of the components of D ∪ E which are not contained in
fibers of g implies that generically R is a fibration trivialized by the leaves of F̃ , and then F̃ is
R-complete. �
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We will study the two possibilities after the previous lemma.

2.4. R of type C

By Suzuki (see [17]) we may assume that R = x , up to a polynomial automorphism. Hence
F is a Riccati foliation adapted to x and X is a complete vector field of the form

Cx N ∂

∂x
+ [A(x)y + B(x)]

∂

∂y
, (1)

with C ∈ C, N = 0, 1 and A, B ∈ C[x] (see [6, Proposition 4.2]).

2.5. R of type C∗

By Suzuki (see [18]) we may assume that

R = xm(xℓy + p(x))n,

where m ∈ N∗, n ∈ Z∗, with (m, n) = 1, ℓ ∈ N, p ∈ C[x] of degree < ℓ with p(0) ≠ 0 if ℓ > 0
or p(x) ≡ 0 if ℓ = 0, up to a polynomial automorphism.

New coordinates. According to relations x = un and xℓy + p(x) = v u−m it is enough to take
the rational map H from u ≠ 0 to x ≠ 0 defined by

(u, v) → (x, y) = (un, u−(m+nℓ)
[v − um p(un)]) (2)

in order to get R ◦ H(u, v) = vn .
Although R is not necessarily a polynomial (n ∈ Z), it is a consequence of the proof of

[6, Proposition 3.2] that H∗F is a Riccati foliation adapted to vn having u = 0 as an invariant
line. Thus

H∗ X = uk
· Z

= uk
·


a(v)u

∂

∂u
+ c(v)

∂

∂v


, (3)

where k ∈ Z, and a, c ∈ C[v].
At this point one could apply the techniques of [7] to analyze the possible global 1-forms

of times associated to X in order to prove the existence of an invariant line. However, applying
directly the local models of [4], it follows from [8, Lemma 2] that at least one of the irreducible
components of R over 0 must be a F -invariant line. Hence the polynomial c(v) of (3) is in fact a
monomial, and thus of the form cvN with c ∈ C and N ∈ N.

Finally, according to [6, pp. 661–662] we know that X |Cz complete implies k = 0 and
N = 0, 1. Hence X is complete.

3. kod(F) = 0

According to [13, Section IV] we can contract F̃ -invariant rational curves on M via a
contraction s to obtain a new surface M̂ (maybe singular with cyclic quotient singularities), a
reduced foliation F̂ on this surface, and a finite covering map r from a smooth compact projective
surface S to M̂ such that: (1) r ramifies only over cyclic (quotient) singularities of M̂ and (2)
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the foliation r∗(F̂ ) is generated by a complete holomorphic vector field Z0 on S with isolated
zeros [4, p. 443].

CP2 M
πoo

s
��

M̂ S
roo

Remark 4. Note that C̃z does not meet the exceptional divisor of the contraction s. Let us
set Ĉz as s(C̃z). Since Ĉz does not contain singularities of M̂ then Ĉz is a Riemann surface,
s
|C̃z

: C̃z → Ĉz is a biholomorphism and r
|r−1(Ĉz)

: r−1(Ĉz) → Ĉz is a non-ramified finite

covering map. Thus s∗(X̃
|Cz

) is complete on Ĉz and r∗(s∗(X̃
|C̃z

)) is complete on the connected

components Mi of r−1(Ĉz) = ∪
l
i=0 Mi . Hence each Mi is a Riemann surface contained in a

complete trajectory Tz of Z0 that supports the complete vector field r∗(s∗(X̃
|C̃z

))|Mi , which does
not necessarily coincide with Z0|Mi . It is convenient to observe that if Tz is isomorphic to C∗

then, necessarily Mi = Tz , and the vector field r∗(s∗(X̃
|C̃z

))|Mi coincides with Z0 on Tz , up to a
multiplicative constant. The discrepancy between the two complete vector fields can occur only
if Tz is isomorphic to C, in which case r∗(s∗(X̃

|C̃z
))|Mi could have one (and only one) zero at

some point p = Tz \ Mi .

It follows from [4, p. 443] that the covering r can be lifted to M via a birational morphism
g : W → S and a ramified covering h : W → M such that s ◦ h = r ◦ g.

M

s
��

W
hoo

s◦h
r◦g~~~~

~~
~~

~~
g

��
M̂ Sr

oo

Let Y be the lift of Z0 on W via g. Then Y must be a rational vector field on W generating the
foliation F̄ given by g∗(r∗(F̂ )) = h∗F̃ . On the other hand, F̄ is also generated by the rational
vector field X̄ on W given by h∗ X̃ . Hence there is a rational function F on W such that

X̄ = F · Y. (4)

Remark 5. We remark from the above construction:

(1) The map g is a composition of blowing-ups over a finite set Θ = {θi }
s
i=1 ⊂ S of regular

points of Z0. The poles of Y are in g−1(Θ) and they define a divisor P ⊂ W invariant by F̄ .
Hence Y is holomorphic on W \ P . Note that in W \ P , Y has only isolated zeros.

(2) Since P is the exceptional divisor of g, h(P) is the exceptional divisor of s and is F̃ -invariant.
Then

h|W\P : W \ P → M \ h(P)

is a regular covering map.
(3) Let Cθi be the trajectory of Z0 through θi . Y is a complete holomorphic vector field on

W \ {g−1(Cθi )}
s
i=1. Each g−1(Cθi ) \ P is contained in a trajectory Rzi of Y . Let us fix one

of them, say Cθ j . Let us set Θ ∩ Cθ j = {θ jl }
h
l=0 taking j0 = j . Note that Rz jl

= Rz j for
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any l. For every θ jl there is a point θ̄ jl ∈ P such that Rz j ∪ {θ̄ jl } defines a separatrix of F̄
through θ̄ jl . Note that θ̄ jl is the unique singular point of F̄ in P such that g(θ̄ jl ) = θ jl . We
can take around θ̄ jl a neighbourhood U and coordinates (z, w) such that F̄ is generated by
z∂/∂z − w∂/∂w where (Rz j ∪ {θ̄ jl }) ∩ U = {w = 0} and g−1(θ jl ) ∩ U = {z = 0}. As Y has
a pole of order one along {z = 0}, it follows that

Y|Rz j
=

∂

∂z
−

w

z

∂

∂w

is not complete. However, it extends on Rz j ∪ {θ̄ jl }
h
l=0 as a complete vector field because g

restricted to Rz j extends to Rz j ∪ {θ̄ jl }
h
l=0 as a biholomorphism onto Cθ j and

g
|Rz j ∪{θ̄ jl }

h
l=0

∗

Z0|Cθ j
= Y

|Rz j ∪{θ̄ jl }
h
l=0

. (5)

Global holomorphic vector fields [2]. The list of holomorphic vector fields with isolated
singularities on compact complex surfaces is well known. In [2, Chapter 6] we can find the
details when the surface is projective. In particular, for Z0 on S we have one of the following
possibilities:

(I) S has an elliptic fibration f : S → B, and Z0 is a nontrivial holomorphic vector field on S
tangent to the fibres of f . Each fibre of f is a smooth elliptic curve which can be multiple,
and outside multiple fibers f is a locally trivial fibration. Moreover Z0 has an empty zero
set.

(II) S = C2/Λ is a 2-torus and Z0 is a linear vector field on it, that is, the quotient of a constant
vector field on C2.

(III) S is a CP1-bundle over an elliptic curve E , and Z0 is transverse to the fibers and projects
on E to a constant vector field. In this case Z0 is the suspension of E via the representation
ρ : π1(E ) → Aut (CP1) associated to the bundle structure, and it generates a Riccati
foliation without invariant fibres and whose monodromy map is ρ.

(IV) S is a rational surface, and up to a birational map we have Y = CP1
×CP1 and Z0 = v1⊕v2,

where v1 and v2 are holomorphic vector fields on CP1.

In the course of the proof we will consider S in some cases as a differentiable manifold
with a given Riemannian metric g. If (N , g) is a Riemannian manifold, we denote by d the
distance given by the metric, and by Bd

r (p) the open ball centered at p. For the basic notions of
Riemannian geometry that will be used in the rest of the paper, see [16].

We will analyze the possible cases for Z0 and S. First note that Case (I) does not really occur
since F does not have a rational first integral.

3.1. Cases (II) and (III)

Proposition 1. If Z0 and S are as in (II) or (III) any irreducible component of D∪E is invariant
by F̃ .

Proof. Let D0 be an irreducible component of D ∪ E that is not invariant by F̃ . There is a
compact curve Q0 (possibly singular) in S generically transversal to Z0. It is enough to define
Q0 as one of the connected components of r−1(s(D0)). Note that s(D0) is not a point.

Case (II). Let us take S as the quotient manifold C2/Λ. We identify C2 with R4, and Λ is an
integral lattice of rank four.
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Remark 6. Let µ : C2
→ C2/Λ denote the canonical submersion map. If we consider R4 with

the usual euclidean g, taking g′
= µ∗g as the metric on C2/Λ, the map µ becomes a Riemannian

covering map. We will denote by d and d ′ the distances in (R4, g) and (R4/Λ, g′), respectively.

The vector field Z0 is the projection by µ of a constant vector field on C2, and thus its
trajectories must be of the form µ(L t ) where {L t }t∈C is the family of lines parallel to a given
direction. Note that Z0 does not have singularities.

Lemma 3. There is a compact K ( S such that Q0 ⊂ K̊ .

Proof. Since Z0 is complete and without singularities we can define

K = {ϕ(T, z) | |T | ≤ 1, z ∈ Q0} (6)

where ϕ : C × S → S is the complex flow of Z0. If we apply the Flow Box Theorem to the
points of Q0 we easily deduce that Q0 ⊂ K̊ . �

We define the following function

α : C → [0, +∞)

t → d(L t , µ
−1(Q0)).

(7)

Remark 7. α is continuous. For any sequence {tn}n∈N ⊂ C converging to t∗ as n → ∞, one sees
that α(tn) ≤ d(L tn , L t∗) + α(t∗) and α(t∗) ≤ d(L t∗ , L tn ) + α(tn). Then, lim n→∞ α(tn) = α(t∗).

We will use that α has the following property with respect to K .

Lemma 4. α(t) ≠ 0 if and only if µ(L t ) ∩ K̊ = ∅.

Proof. If α(t) ≠ 0, it is clear from (6) that µ(L t ) ∩ K̊ = ∅. Otherwise µ(L t ) ∩ Q0 ≠ ∅, which
is not possible with our assumptions.

If α(t) = 0, we suppose µ(L t ) ∩ K̊ = ∅ and obtain a contradiction.

Fact 1. There is δ ∈ R+ such that d ′(µ(L t ), Q0) ≥ δ.
Otherwise we can determine a sequence {xn}n∈N ⊂ Q0 converging to x∗ ∈ Q0 and such

that d ′(µ(L t ), xn) < 1/n because Q0 is compact and (R4/Λ, g′) is complete. But it implies
that for any ball Bd ′

r (x∗) there exists n(r) ∈ N+ such that Bd ′

1/n(r)(xn(r)) ⊂ Bd ′

r (x∗), and hence

Bd ′

r (x∗) ∩ µ(L t ) ≠ ∅, which contradicts our assumption µ(L t ) ∩ Q0 = ∅.

Fact 2. d(L t , µ
−1(Q0)) ≥ δ.

By contradiction, suppose that d(L t , µ
−1(Q0)) < δ. Then there are z ∈ L t and z̄ ∈ µ−1(Q0)

with d(z, z̄) < δ. Note that µ−1(Q0) is an analytic variety (non necessarily compact) of C2 and
that µ(z) ≠ µ(z̄) by Fact 1. Let c be a segment from z to z̄. As µ defines a local isometry from
(R4, g) to (R4/Λ, g′), we can take Bd

ri
(zi ) ⊂ R4, 0 ≤ i ≤ s, centered at zi ∈ c, where z0 = z

and zs = z̄, and in such a way that µ restricted to each Bd
ri
(zi ) defines an isometry over its image.

Moreover, we can assume that Bd
ri
(zi ) ∩ Bd

r j
(z j ) ≠ ∅ if and only if j = i + 1, and thus fix s − 1

points zi,i+1 in these intersections. As the isometries preserve intrinsic distance, Fact 1 and the
triangle inequality imply the following contradiction

δ > d(z, z̄) =

s−1
i=1

d(zi , zi,i+1) + d(zi,i+1, zi+1)
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=

s−1
i=1

d ′(µ(zi ), µ(zi,i+1)) + d ′(µ(zi,i+1), µ(zi+1))

≥ d ′(µ(z), µ(z̄)) ≥ δ. �

Lemma 5. µ(L t ) ∩ Q0 ≠ ∅ for any t ∈ C, and then α ≡ 0.

Proof. Suppose, by contradiction, that µ(L t ) ∩ Q0 = ∅. It implies that µ(L t ) ∩ K̊ = ∅. On the
other hand, by Lemma 4, α(t) ≠ 0. Then α−1(0) is a closed set strictly contained in C, and if we
take t̃ on its boundary we can fix a sequence {tn}n∈N with α(tn) ≠ 0 converging to t̃ ∈ C with
α(t̃) = 0. Note that µ(L t̃ ) ∩ Q0 ≠ ∅ due to µ(L t̃ ) ∩ K̊ ≠ ∅ since α(t̃) = 0 (Lemma 4).

Let us take x̃ ∈ µ(L t̃ ) ∩ Q0 with µ(z̃) = x̃ , and set {zn}n∈N converging to z̃ with
zn ∈ L tn . By continuity, {µ(zn)}n∈N must converge to x̃ . However, as zn ∈ L tn for any
n, it holds µ(zn) ∉ µ(L tn ) ∩ K̊ since α(tn) ≠ 0 (Lemma 4), what is a contradiction.
Then µ(L t ) ∩ Q0 ≠ ∅. �

It follows from Remark 4 that Mi is contained in a trajectory of Z0. Hence there is Lsi such
that µ(Lsi ) ⊃ Mi .

Lemma 6. µ(Lsi ) ∩ Q0 = {pi }, where pi is the unique point in µ(Lsi ) \ Mi . In particular,
µ(Lsi ) and Mi are respectively biholomorphic to C and C∗.

Proof. Lemma 5 implies that µ(Lsi ) ∩ Q0 ≠ ∅. Moreover it is clear that µ(Lsi ) ∩ Q0 ⊂

µ(Lsi ) \ Mi . It follows from Remark 4 that r∗(s∗(X̃
|C̃z

))|Mi is complete and then it extends
holomorphically by zeros on µ(Lsi ) \ Mi . Since Cz is not algebraic, Mi is biholomorphic to
C∗ and µ(Lsi ) ∩ Q0 = µ(Lsi ) \ Mi is a unique point pi . Thus µ(Lsi ) must be biholomorphic
to C. �

Since the foliation defined by Z0 on S has codimension 1 and it does not have singularities,
the closure of µ(Lsi ) in the open set U ′

⊂ S of non-compact leaves, that we will denote by L ′,
is a subvariety of real codimension 0, 1 or 2 [9, Théorème 1.4]. It holds U ′

= S and then L ′ is
the closure of µ(Lsi ) in S. If there were one compact leaf J , [9, Théorème 1.4] also assures that
any non-compact leaf must accumulate J . In particular µ(Lsi ) accumulates J . On the other side,
as Q0 cuts any leaf (Lemma 5), it must cut J , and µ(Lsi ) accumulates the points of J ∩ Q0,
which is not possible since pi is the unique point in µ(Lsi ) \ Mi (Lemma 6). Note that L ′ is S
or a real compact subvariety of dimension three. If L ′ had real codimension 2, it would define a
real compact subvariety of dimension two of S (L ′ is closed in S) containing µ(Lsi ), which is a
non-algebraic leaf. One concludes that µ(Lsi ) must intersect infinitely many times Q0, and then
one obtains again a contradiction with Lemma 6.

Case (III). Let us consider S as a CP1-bundle over an elliptic curve E with bundle projection
p : S → E . The structure of S can be lifted as CP1-bundle S̃ over C via the universal covering
map Γ : C → E : we can determine a complex surface S̃, a holomorphic covering F : S̃ → S
and a bundle projection p̃ : S̃ → C such that p ◦ F = Γ ◦ p̃.

S̃

p̃

��

F // S

p

��
C

Γ
// E
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Moreover as C is contractible this CP1-bundle is trivial. Thus S̃ = C × CP1 and p̃(x, y) = x is
the projection over the first factor.

Lemma 7. There is a holomorphic automorphism σ of C × CP1 such that σ ∗(F∗Z0) is the
horizontal vector field.

Proof. It is clear that F∗Z0 generates a Riccati foliation adapted to p̃ and without invariant fibres.
If σ(t, y) = ϕ̃(t, 0, y), with ϕ̃ the complex flow of F∗Z0, σ is bijective, since each trajectory
of F∗Z0 intersects each fibre of p in only one point, and σ(C × {y}) are the trajectories of
F∗Z0. �

After Lemma 7, the trajectories of Z0 are of the form (F ◦σ)(L t ) where {L t }t∈CP1 is now the
family of lines L t = C × {t}.

Remark 8. As S is compact, S (as real manifold) admits a Riemannian metric g′. Let us set
µ̄ = F ◦ σ . The map µ̄ from (R2

× S2, µ̄∗g′) to (S, g′) is a local Riemannian isometry. But still
more, F is a covering map and σ is a biholomorphism; hence F ◦ σ is also a covering map and
µ̄ is a Riemannian covering map. As (S, g′) is compact, it is complete, and (R2

× S2, µ̄∗g′) is
complete. We will denote by d and d ′ the distances in (R2

× S2, µ̄∗g′) and (S, g′), respectively.

The vector field Z0 is complete and without zeros. We will consider as in case (II) an irreducible
component D0 of D ∪ E that is not invariant by F̃ , and the compact curve Q0 (possibly singular)
in S generically transversal to Z0, defined by one of the connected components of r−1(s(D0)).
As in Lemma 3 we can determine a compact set K ( S such that Q0 ⊂ K̊ .

We will consider the continuous map (it follows as in Remark 7)

ᾱ : CP1
→ [0, +∞)

t → d(L t , µ̄
−1(Q0)).

(8)

Once we have fixed µ̄ = F ◦ σ , the complete metrics in Remark 8, the compact set K and the
map ᾱ as (8), we can prove similar Lemmas to Lemmas 3–6 of Case (II), where µ and α must be
substituted by µ̄ and ᾱ in their statements.

Let Lsi be such that µ̄(Lsi ) ⊃ Mi . Since p| µ̄(Lsi )
: µ̄(Lsi ) → E is a covering map, and

µ̄(Lsi ) is biholomorphic to C (Lemma 6), µ̄(Lsi ) must cut almost all the fibres of p infinitely
many times. Let κ ∈ E such that p−1(κ) contains an infinite sequence of different points in
p−1(κ) ∩ µ̄(Lsi ). By compactness of p−1(κ), the above sequence converges to q1 ∈ p−1(κ).
Note that q1 is a regular point of Z0. If µ̄(L s̃) is the trajectory of Z0 through q1, µ̄(Lsi ) must
accumulate µ̄(L s̃) (flow-box theorem). On the other hand, µ̄(L s̃) ∩ Q0 ≠ ∅ (Lemma 5) implies
a contradiction with the fact that pi is the unique point in µ̄(Lsi ) \ Mi (Lemma 6).

Remark 9. One can also obtain a contradiction by distinguishing several cases, according to
the (abelian) monodromy Γ ⊂ Aut (CP1). If Γ has rank 1, then the non-algebraic leaves of
Z0 are isomorphic to C∗, and one gets a contradiction by using Remark 5, and the fact that the
intersection with algebraic curves is nonempty. If Γ has rank 2 then Γ = ⟨ f, g⟩ with f (z) = αz,
g(z) = βz or f (z) = z + 1, g(z) = z + w. In the first case (where, moreover, αnβm

≠ 1 for
every (m, n) ≠ (0, 0)) the non-algebraic leaves are sufficiently dense to apply the same argument
as in case (II). In the second case one can prove that every algebraic curve C ⊂ S different from
the elliptic curve E = {z = ∞} must intersect E , and from this fact it follows again that every
non-algebraic trajectory of Z0 intersects C infinitely many times. �
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3.2. Case (IV)

There is a birational transformation G : S → CP1
× CP1 sending Z0 to G∗Z0 = v1 ⊕ v2,

where v1 and v2 are holomorphic vector fields on CP1. The description of G can be found in [2,
p. 87]. In particular, G is a finite sequence of birational transformations which are contractions of
curves invariant by Z0 or blowing-ups at zeros of Z0. Hence the exceptional divisor of G does not
meet Mi , and as a consequence G(Mi ) is biholomorphic to Mi . But still more, as Mi supports
a complete vector field according to Remark 4, we can define an entire curve f : C → G(Mi ).
In the absence of rational first integrals, we may assume that G∗Z0 is not constant. Note that
G(Mi ) is contained in a trajectory L z of G∗Z0 and that L z \ G(Mi ) is empty or one point.
There are two cases for G∗Z0:

(a) v1 and v2 with zeros of order one at 0 (λz∂/∂z + µw∂/∂w).
(b) v1 with a zero of order one at 0 and v2 constant (λz∂/∂z + µ∂/∂w).

Proposition 2. There exists at most an irreducible component D0 of D ∪ E that is not invariant
by F̃ . If D0 exists:

(1) G∗Z0 is as in (b);
(2) r−1(s(D0)) = Q0;
(3) The strict transform A0 of Q0 by G is {w = 0}; and
(4) F̃ is a Riccati foliation adapted to a rational map that projects by π as a rational function R

of type C or C∗.

Proof. Let D0 be a component of D ∪ E not invariant by F̃ , and Q0 be the curve in S defined as
in Proposition 1. If G∗Z0 is as (b) let us suppose that either there is one component D j of D ∪ E
not invariant by F̃ and different from D0 or there is another component of r−1(s(D0)) different
from Q0.

Lemma 8. There exist an open set B ⊂ CP1
× CP1 biholomorphic to C2 and an entire curve

f̄ : C → G(Mi ) ∩ B tangent to G∗Z0|B whose image avoids at least three algebraic curves
contained in B.

Proof. We analyze the two cases:
G∗Z0 as in (a): Let B be CP1

× CP1 minus {z = ∞} ∪ {w = ∞}. As {z = ∞} and {w = ∞}

are invariant by G∗Z0, G(Mi ) ⊂ B. Note that G∗Z0 on B is complete. If f̄ = f , f̄ : C →

G(Mi ) ⊂ B is an entire map whose image avoids at least {z = 0}, {w = 0} and A0 ∩ B.
G∗Z0 is as in (b): Let B be CP1

× CP1 minus {z = 0} ∪ {w = 0}. In this case {z = 0} is
invariant by G∗Z0 but {w = 0} is not. Remark that any non-algebraic trajectory of G∗Z0 is of
type C and intersects {w = c}, with c ≠ ∞, in a unique point. More still, one can suppose that
A0 ≠ {w = 0}. Otherwise one defines Q0 as any other component of r−1(s(D0)) or r−1(s(D j )),
where D j is a component of D ∪ E not invariant by F̃ and D j ≠ D0.

(b.1) If L z \ G(Mi ) = ∅, we take G(Mi ) ∩ {w = 0} = p and the trajectory G(Mi ) ∩ B =

L z \ {p} ≃ C∗ of G∗Z0 on B. As the universal covering of G(Mi ) ∩ B is C, there exists
f̄ : C → G(Mi )∩ B whose image avoids at least the algebraic curves: {z = ∞}, {w = ∞}

and A0 ∩ B.
(b.2) If L z \ G(Mi ) = q ∈ {w = 0}, the argumentation is similar to (b.1) since G(Mi ) ∩ B =

G(Mi ) = L z \ {q} ≃ C∗ is a trajectory of G∗Z0 on B.
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(b.3) If L z \ G(Mi ) = q ∉ {w = 0}, we take the automorphism of CP1
× CP1, (z, w) →

δ(z, w) = (z, w − q2), where q = (q1, q2). As δ leaves invariant G∗Z0 since δ∗G∗Z0 =

G∗Z0 and δ(q) ∈ {w = 0}, it is enough to apply (b.2) to L z \ δ(G(Mi )) = {δ(q)}. �

Let CP2 be the compactification of B. The image of f̄ : C → G(Mi )∩ B is contained in CP2

minus at least four hypersurface sections, that is, three sections defined by the algebraic curves
of Lemma 8 along with the line at infinity CP2

\ B. According to Green’s Theorem [11, p. 199],
f̄ (C) must be contained in some algebraic curve, which contradicts our assumptions. Hence (1),
(2) and (3) of the statement of Proposition follows.

Note that Cz , C̃z , Ĉz , G(Mi ) and Mi are biholomorphic to C∗, and that L z ≃ C and
G(Mi ) = L z \ {q} ≃ C∗ with q ∈ {w = 0} \ {(0, 0), (∞, 0)}. G(Mi ) has two parabolic
ends, which are properly embedded in the complementary set of {z = ∞} ∪ {w = ∞} in
CP1

× CP1: one Σ1 defined by a punctured disk centered at q , that is algebraic; and the other
Σ2 defined by G(Mi ) \ Σ1, that is transcendental and accumulates {w = ∞}. Note that G∗Z0
has two saddle-nodes as singularities: one at (0, ∞), with a strong separatrix inside {w = ∞}

and a weak separatrix inside {z = 0}; and the other one at (∞, ∞), with a strong separatrix
inside {w = ∞} and a weak separatrix inside {z = ∞}. On the other hand G∗Z0 defines a
Riccati foliation adapted to β(z, w) = w. One may assume (maybe after blowing-up reduced
singularities) that F̄ is Riccati with respect to βW = β ◦ G ◦ g and that G ◦ g is the contraction of
curves inside fibers of βW that produces the local models of [4, p. 439]. In this case all the fibers
{w = c}, with c ≠ ∞, are transversal minus one that is tangent, {w = ∞}, and of class (d).

Since h is an algebraic covering map from W to M , the proper mapping theorem allows one to
define the trace of βW as a rational function βM on M [10]. Moreover, one can assume that βM is
a fibration after eliminating its base points. Recall that the property of being reduced is stable by
blowing ups. Moreover, the possible dicritical components of the resolution of the pencil given
by βM must be transversal to the corresponding foliation.

By construction, the generic fiber F of βM is a curve transverse to F̃ . Note that D0 must be
contained in a fiber F0 of βM as a consequence of (3) in the statement of this Proposition. Let us
consider the following cases according to the genus of F .

• If F is of genus ≥ 2, it follows from [15, Theorem III.6.1] that F̃ has a rational first integral,
which is not possible.

• If F is of genus 1, F̃ is a Turbulent foliation. Let us see that this case neither occurs because
it would imply the existence of a rational first integral as before. Indeed, note that F does not
cut F0 since βM is a fibration. On the other hand, D ∩ F ≠ ∅ by the maximum principle. As
D0 is the unique irreducible component of D ∪ E that is not invariant by F̃ , there must be one

F̃ -invariant component D2 of D such that D2 ∩ F ≠ ∅. The existence of D2 implies that F̃
has a first integral (Lemma 1).

• If F is of genus 0, F̃ is a Riccati foliation. Let us see that F̃ satisfies (4) of the statement
of Proposition 2. After contraction of rational curves each fiber of βM admits one of the five
possible models in [3, Section 7], [4, p. 439]. If there is one fiber F1 tangent to F̃ , as D0 is the
unique irreducible component of D ∪ E which is not invariant by F̃ and it is contained in F0,
then F must cut D in only one or two points near F0. Then we can conclude as in Lemma 2
that βM projects by π as a rational function R of type C or C∗. Finally, one shows that all the
fibers of βM are not transverse to F̃ . In the contrary case, if L0 is the leaf defined by C̃z , as
the covering map βM |L : L → CP1 is not finite (otherwise L is compact and Cz is algebraic),
L must cut infinitely many times F0 and Cz is not isomorphic to C∗, which is not possible.

�
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After Proposition 2 we can assume that any irreducible component of D ∪ E is invariant by
F̃ . Otherwise Theorem 1 follows by the results of Section 2.

3.3. Existence of a second integral

Let us come back to the beginning of Section 3, and consider (4).

Lemma 9. It holds Y 2 F = 0. In particular X̄ is complete on the Zariski open set W ′ of W
defined by W \ ({F = 0} ∪ {F = ∞} ∪ P).

Proof. Let R0 be a connected component of h−1(C̃z). As R0 does not meet the exceptional
divisor of s : M → M̂ then h|R0 : R0 → C̃z is a non-ramified finite covering map. Hence
h∗

|R0
(X̃

|C̃z
) = X̄ |R0 is complete. On the other hand X̄ and Y are tangent on R0 according to

(4). Thus R0 is a Riemann surface contained in a trajectory Rz of Y . Let ϕz : Ωz → Rz be the
corresponding solution. We have two possibilities from 3.- of Remark 5:

(i) Rz ∉ {Rzi }
s
i=1. Since Y|Rz is complete Ωz = C.

(ii) Rz ∈ {Rzi }
s
i=1. Let us suppose that Rz = Rz j . We take the solution fz j : C → Rz j ∪{θ̄ jl }

h
l=0

of (5) and the discrete subset ∆ = { fz j
−1(θ̄ jl )}

h
l=0 of C. Since fz j |C\∆

= ϕz then
Ωz = C \ ∆.

It follows from (i) and (ii) that ϕz is a univaluated holomorphic map. Let us note that X̄ |Rz

must be also complete because X̄ |R0 is complete. Using these two facts and that T ∈ Ωz →

ϕz(T ) ∈ Rz is a covering map then

ϕ∗
z (X̄ |Rz ) = ϕ∗

z (X̄)(T ) = (F ◦ ϕz(T )) · ϕ∗
z (Y ) = (F ◦ ϕz(T ))

∂

∂T
(9)

is a complete vector field on Ωz . This is only possible if Ωz = C or C∗ and (F ◦ϕz)(T ) = aT +b,
for a, b ∈ C. We conclude that Y (F)(ϕz(T )) = (F ◦ϕz)

′(T ) is constant and hence Y 2 F vanishes
along Rz , which can be assumed to be non-algebraic since Cz is by hypothesis. Hence Y 2 F = 0.

Let us take a point z ∈ W ′
= W \ ({F = 0} ∪ {F = ∞} ∪ P). If Sz is the trajectory of

X̄ through z, as Y is holomorphic on W ′ (1.- of Remark 5) and tangent to X̄ on Sz by (4) then
Sz defines a trajectory Rz of Y . Since it holds (9), the fact that Y 2 F = 0 implies that X̄ |Sz is
complete. �

After Lemma 9, X̄ is complete on W ′
= W \ ({F = 0} ∪ {F = ∞} ∪ P). According to 1.-

and 2.- of Remark 5, X̃ is complete on M \ h(W \ W ′). By Propositions 1 and 2, X̃ is complete
on M \ (h(W \ W ′) ∪ E ∪ D). If we project by π we see that X is complete on a Zariski open
set of C2 and it can be extended to C2 as a complete vector field. Therefore X is complete.
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de l’espace C2, J. Math. Soc. Japan 26 (1974) 241–257.
[18] M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l’espace de deux variables complexes,
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