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1. Introduction

Wavelet transforms provide a convenient technique to perform a multiresolution analysis of finite-energy signals.
The most popular instance of a wavelet transform is the critically sampled discrete wavelet transform (DWT), which is
an invertible transform that permits sparse signal decompositions at a low computational cost [12].

The DWT has been successfully employed in many applications, including image compression [20], noise reduction [8]
and speech recognition [9]. However, in the area of statistical signal processing, the DWT has proven to be less effec-
tive [7,14]. This is mainly due to the high translation sensitivity of the DWT: small shifts in the input signal may completely
change the wavelet coefficient pattern. As a consequence, algorithms based on the DWT need to recognize and understand
a wide variety of different wavelet patterns.

One way to address the shift-variance problem is to relax the critical sampling criterion of the DWT. In [15], an over-
complete version of the DWT is proposed, which is most easily implemented by the “à trous” algorithm. A generalization
of this algorithm is described in [3]. Note that this approach is computationally intensive and produces highly redundant
output information, which limits its applicability. Nevertheless, since the output of the “à trous” algorithm can be computed
directly from the critically sampled DWT, it is readily applied in DWT-based image and video coding systems [1,2].

In [18,19], Simoncelli et al. introduce the steerable pyramid, an alternative decomposition method based on Laplacian
pyramids and steerable filters that achieves approximate shift-invariance. Furthermore, the steerable pyramid also gives
a better directional selectivity when analyzing two-dimensional signals, which simplifies the extraction of geometric features
in images.

Another way to improve the shiftability of the DWT is by simultaneously employing two real DWT channels that form
an approximate Hilbert Transform pair. By combining the corresponding coefficients of the first and second DWT into
complex-valued coefficients, we obtain a new transform, which is called the dual-tree complex wavelet transform (DT-CWT).
Compared to the steerable pyramid, the DT-CWT provides a better directional selectivity while having a lower redundancy
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factor of 2d for d-dimensional signals. A more elaborate discussion on the design and use of the DT-CWT can be found
in [17].

The near shift-invariance property of the DT-CWT has been extensively studied over the last decade [5,10,11,13,
16,22]. Recently, Chaudhury and Unser [5] deduced an amplitude-phase representation for dual-tree complex wavelet
transforms that involve modulated wavelets, linking the multiresolution framework of the wavelet components to the fre-
quency decomposition through Fourier Analysis. This representation provided new insights into the improved shiftability of
the DT-CWT.

In this contribution, we build on their findings by introducing a more formal description of the DWT translation sensi-
tivity, which will allow us to better explain the superiority of the DT-CWT. We finish with a study on the decaying rate of
the DT-CWT shift error when the translation parameter tends to zero in case of orthonormal wavelet systems.

2. Preliminaries

We now introduce some definitions and notation needed to state our results in the following sections. Given two signals
f and g in L2(R), we define their inner product by

〈 f , g〉 =
∫
R

f (x)g(x)dx,

where the bar indicates complex conjugation. The Fourier transform of f is given by

f̂ (ξ) =
∫
R

f (x)e−iξx dx

whereas the Hilbert transform H (HT) is characterized by the relation

Ĥ f (ξ) = −i sign(ξ) f̂ (ξ).

The Hilbert transform is orthogonal to the signal, commutes with translations and positive dilatations, and H−1 = −H.
The translation–dilatation operator Ξ j,k on ψ ∈ L2(R) is defined by

Ξ j,k[ψ] = 2 j/2ψ
(
2 j · − k

) = ψ j,k.

Let {ψ j,k} j,k∈Z and {ψ ′
j,k} j,k∈Z be two real-valued bi-orthogonal wavelet systems that form a Hilbert transform pair, i.e.

ψ ′ = Hψ . We define the wavelet coefficients of f with respect to these wavelet systems by

a j[k] = 〈 f ,ψ j,k〉 and b j[k] = 〈
f ,ψ ′

j,k

〉
for every j,k ∈ Z. These equations yield the following two different wavelet identities:

f =
∑
j,k∈Z

a j[k]ψ̃ j,k and f =
∑
j,k∈Z

b j[k]ψ̃ ′
j,k,

where ψ̃ j,k and ψ̃ ′
j,k represent the dual wavelets of ψ j,k and ψ ′

j,k respectively.
We now introduce the complex wavelets

Ψ j,k = ψ j,k + iψ ′
j,k

2
and Ψ̃ j,k = ψ̃ j,k + iψ̃ ′

j,k

2
.

The DT-CWT coefficients are then given by

c j[k] = 〈 f ,Ψ j,k〉
= 1

2

(
a j[k] − ib j[k])

for every j,k ∈ Z.
Recall that for dyadic wavelet transforms, the level j coefficients of a shifted signal f (· + s) with s = 2− jm, m ∈ Z, can

be easily predicted from the coefficients of the reference signal. In fact,

cs
j[k] = 〈

f
(· + 2− jm

)
,Ψ j,k

〉
= 〈

f ,Ψ j,k
(· − 2− jm

)〉
= 〈 f ,Ψ j,k+m〉
= c j[k + m].
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Fig. 1. Graphical representation of the test signal and the selected fractional B-spline wavelet pair.

This well-known property can be adapted for arbitrary shifts s by decomposing s into a dyadic number 2− jm and some
remainder h with |h| < 2− j :

s = 2− jm + h.

Then

cs
j[k] = 〈

f (· + s),Ψ j,k
〉

= 〈
f (· + h),Ψ j,k+m

〉
= ch

j [k + m].
The adjusted shift error∣∣c j[k + m] − cs

j[k]∣∣ = ∣∣c j[k + m] − ch
j [k + m]∣∣

is in general much smaller than the original shift error |c j[k] − cs
j[k]|. In order to further reduce the shift error |c j[k + m] −

ch
j [k + m]|, we will perform a phase change of c j[k + m] over an angle φh that partially compensates for the small shift h

(|h| < 2− j ), so that

cs
j[k] = ch

j [k + m] ≈ eiφh c j[k + m].
As suggested in [5], we make the assumption that the involved wavelet ψ is modulated. That is,

ψ(x) = w(x) cos(ω0x + ξ0)

for ω0, ξ0 > 0 where the localization window w is bandlimited to [−Ω,Ω] for some Ω < ω0. Examples of modulated
wavelets are the Shannon and Gabor wavelets. As the orthonormal spline, resp. B-spline, wavelets resemble the Shannon,
resp. Gabor, wavelet, they can be seen as a kind of modulated wavelets. Using the Bedrosian identity (see [5]), one can show
that

ψ ′(x) = w(x) sin(ω0x + ξ0).

In this way, we obtain the identity

Ψ (x) = eiξ0

2
w(x)eiω0x.

In order to examine the near shift-invariance of the DT-CWT based on these modulated wavelets, we thus need to
minimize the error∣∣eiφh c j[k] − ch[k]∣∣
j
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Fig. 2. Graphs showing the shift-errors of the DT-CWT and the real and imaginary wavelet components. The plots on the left compare the phase-
compensated error with the optimal shift-error. The plots on the right are zoomed out so that they can show the shift errors of the real and imaginary
wavelet components.

for some well-chosen angle φh ∈ [−π,π [. This phase-compensated shift error will be compared to the “real” shift errors
|a j[k]−ah

j [k]| and |b j[k]−bh
j [k]| in Section 3. The attained results (summarized in Theorem 3.1) suggest to take φh = 2 jω0h,

which accords with the conclusions drawn by Chaudhury in [6, pp. 127–128].
We have empirically verified that ch

j [k] ≈ ei2 jω0hc j[k] for small shifts h using the DT-CWT software provided by the

authors of [4]. In our experiments, we put ψ = ψ8
4.5 and ψ ′ = ψ8

5 , the fractional B-spline wavelets of degree α = 8 and with
shift parameters τ = 4.5, τ = 5 respectively [21]. These wavelets are known to be approximately modulated. In fact, one
can observe that

ψ(x) ≈ w(x) cos(5.3x + 5.2),

where w = √
ψ2 + ψ ′ 2. It is proven in [4] that ψ and ψ ′ form a Hilbert Transform pair; therefore, they determine a DT-

CWT.
Our test signal consists of 512 uniform samples from a block function f : [0,1] → R (see Fig. 1), which is shifted one

place to the left. The resulting signal corresponds to the function f h = f (· + 1/512).
Fig. 2 compares the phase-compensated shift error |ei2 jω0hc j[k] − ch

j [k]| with the optimal shift error∣∣∣∣c j[k]∣∣ − ∣∣ch
j [k]∣∣∣∣ = min

∣∣eiφh c j[k] − ch
j [k]∣∣.
φh∈]−π,π ]
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The graphs on the right are zoomed out so that the shift errors of the real and imaginary wavelet components can be
included. The following naming conventions are used for the considered shift-errors:

complex-optimal= ∣∣∣∣c j[k]∣∣ − ∣∣ch
j [k]∣∣∣∣,

complex-phasecomp= ∣∣exp
(
i ∗ 2 j ∗ 5.3/512

)
c j[k] − ch

j [k]∣∣,
real= 2

∣∣Re
(
c j[k]) − Re

(
ch

j [k])∣∣,
imag= 2

∣∣Im(
c j[k]) − Im

(
ch

j [k])∣∣.
The test results show that the phase-compensated shift error is significantly smaller than the shift error of the real and

imaginary wavelet components. Moreover, there is a very good fit between the phase-compensated and the optimal shift
error. Therefore, we can conclude that the derived phase-compensation for the DT-CWT coefficients is near-optimal under
small translations.

3. On the phase-compensated shift error of the Dual-Tree Complex Wavelet Transform

Let f be a real-valued function in L2(R) with DT-CWT coefficients c j[k], j,k ∈ Z, based on two modulated wavelets ψ

and ψ ′ = Hψ . Denote the translates of f over some real number h by f h = f (· + h). The DT-CWT coefficients of f h are
given by

ch
j [k] = 1

2

(
ah

j [k] − ibh
j [k]), j,k ∈ Z.

As deduced in Section 2, to study the shift error for the level j coefficients, it is enough to look at |h| < 2− j .
In this section, we work towards a proof of the following theorem.

Theorem 3.1 (Phase compensation for the DT-CWT shift error). Let c j[k], j,k ∈ Z, be the coefficients of a real-valued function f
in L2(R) with respect to a DT-CWT decomposition for which the involved wavelet ψ is modulated. When h is small, we have the
approximate identities

|ei2 jω0hc j[k] − ch
j [k]|

|a j[k] − ah
j [k]| ≈ 0 and

|ei2 jω0hc j[k] − ch
j [k]|

|b j[k] − bh
j [k]| ≈ 0,

proving that the phase-compensated error is negligible in relation to the shift errors of the real and imaginary wavelet compo-
nents.

We express the translation sensitivity of the DWT coefficients a j[k] and b j[k] by postulating that

inf
|h|<2− j

|a j[k] − ah
j [k]|

|ha j[k]| = Ba and inf
|h|<2− j

|b j[k] − bh
j [k]|

|hb j[k]| = Bb (1)

for some values Ba and Bb significantly larger than zero.
In the next proposition, we introduce the ratio Rh , which relates the phase-compensated shift error |eiφh c j[k] − ch

j [k]| to

the shift errors of the real and imaginary wavelet components |a j[k] − ah
j [k]| and |b j[k] − bh

j [k]|.

Proposition 3.2. Let φh ∈ [−π,π [ for every h ∈ R with |h| < 2− j . Define

Rh = eiφh a j[k] − ah
j [k]

eiφh b j[k] − bh
j [k] . (2)

Suppose that the constraint in (1) holds for Ba and Bb significantly larger than zero. Then

|eiφh c j[k] − ch
j [k]|

|a j[k] − ah
j [k]| � (1 + Φ/Ba)

|1 − i/Rh|
2

(3)

and

|eiφh c j[k] − ch
j [k]|

|b j[k] − bh
j [k]| � (1 + Φ/Bb)

|Rh − i|
2

, (4)

where Φ = sup|h|<2− j |(eiφh − 1)/h|.
Note that Φ is finite if and only if lim suph→0 |φh/h| < ∞.
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Proof. We prove (3); the proof of (4) is similar. Observe that∣∣eiφh c j[k] − ch
j [k]∣∣ = 1

2

∣∣(eiφh a j[k] − ah
j [k]) − i

(
eiφh b j[k] − bh

j [k])∣∣
= 1

2

∣∣(1 − i/Rh)
(
eiφh a j[k] − ah

j [k])∣∣
= 1

2
|1 − i/Rh|

∣∣eiφh a j[k] − ah
j [k]∣∣.

Dividing |eiφh c j[k] − ch
j [k]| by |eiφh a j[k] − ah

j [k]| results in∣∣∣∣ eiφh c j[k] − ch
j [k]

eiφh a j[k] − ah
j [k]

∣∣∣∣ = |1 − i/Rh|
2

.

On the other hand, we have

|eiφh − 1||a j[k]|
|a j[k] − ah

j [k]| � Φ/Ba,

which implies that

|eiφh a j[k] − ah
j [k]|

|a j[k] − ah
j [k]| �

|a j[k] − ah
j [k]| + |eiφh − 1||a j[k]|
|a j[k] − ah

j [k]|
� 1 + Φ/Ba.

Hence,

|eiφh c j[k] − ch
j [k]|

|a j[k] − ah
j [k]| = |eiφh a j[k] − ah

j [k]|
|a j[k] − ah

j [k]| × |1 − i/Rh|
2

� (1 + Φ/Ba)
|1 − i/Rh|

2
. �

This shows that the phase-compensated shift error |eiφh c j[k] − ch
j [k]| becomes smaller as the ratio Rh approaches

to i.
The perturbed coefficients ch

j [k] can be expressed more explicitly as

ch
j [k] = 〈

f (· + h),Ψ j,k
〉

= 〈
f ,Ψ j,k(· − h)

〉
= e−iξ0

2

∫
R

f (x)Ξ j,k
[

w
(
x − 2 jh

)
e−iω0(x−2 jh)

]
dx.

Observe that both the sinusoid and the localization window of the modulated wavelet contribute to the perturbation
of ch

j [k]. Their individual roles on the DT-CWT shiftability can be described using the variables

Eh =
∫
R

f (x)Ξ j,k
[

w(x)
(
e−iω0x − e−iω0(x−2 jh)

)]
dx

and

Wh =
∫
R

f (x)Ξ j,k
[(

w(x) − w
(
x − 2 jh

))
e−iω0x]dx.

Proposition 3.3. If the localization window w is differentiable, then |Wh/Eh| converges as h → 0. More precisely, we have the identity

lim
h→0

|Wh/Eh| = 1

2ω0|c j[k]|
∣∣∣∣∫
R

f (x)Ξ j,k

[
dw

dx
(x)e−iω0x

]
dx

∣∣∣∣.
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By the Cauchy–Schwarz inequality, we get that

lim
h→0

|Wh/Eh| � 1

2ω0|c j[k]| ‖ f ‖2

∥∥∥∥dw

dx

∥∥∥∥
2
.

This expression reveals three important parameters that influence the asymptotic behavior of |Wh/Eh| as h → 0: firstly,
the frequency ω0 of the modulated wavelet; secondly, the L2-norm of dw

dx ; and thirdly, the significance of the DT-CWT

coefficient
|c j [k]|
‖ f ‖2

.
The first two parameters are close to zero for most modulated wavelets, because the overall frequency ω0 is very high

compared to the slowly varying localization window w , which is for example illustrated in Fig. 1. We can thus conclude
that |Wh/Eh| ≈ 0 for all significant coefficients c j[k] when h is small.

Clearly,

|Eh| = 2
∣∣ei2 jω0h − 1

∣∣∣∣c j[k]∣∣. (5)

By defining αh as the unique angle in [0,π [ that satisfies

|Wh| = 2
∣∣eiαh − 1

∣∣∣∣c j[k]∣∣, (6)

we arrive at

|Wh/Eh| = |eiαh − 1|
|ei2 jω0h − 1| . (7)

In the next proposition, we show that the ratio Rh corresponding to the phase-compensation φh = 2 jω0h + sign(h)αh is
approximately equal to i when h is small and |Wh/Eh| ≈ 0.

Proposition 3.4. Let βh ∈ ]−π,π ], such that βh = 2 j+1ω0h modulo 2π . Define

φh = 2 jω0h + sign(βh)αh. (8)

If αh < π − |βh| and |Wh/Eh| < 1, then

Rh = eiφh a j[k] − ah
j [k]

eiφh b j[k] − bh
j [k] = i

1 + Kh

1 − Kh
, (9)

where Kh is a complex number that satisfies

|Kh| � 2|Wh/Eh|
|ei2 jω0h + 1| − |Wh/Eh|

.

Proof. We prove the proposition for βh > 0. Define � = eiφh f − f h . Since ψ = Ψ + Ψ and ψ ′ = −i(Ψ − Ψ ) by construction,
we obtain that

eiφh a j[k] − ah
j [k] = 〈�,Ψ j,k〉 + 〈�,Ψ j,k〉

and

eiφh b j[k] − bh
j [k] = i〈�,Ψ j,k〉 − i〈�,Ψ j,k〉.

This shows that Rh = i(1 + Kh)/(1 − Kh), with

Kh = 〈�,Ψ j,k〉
〈�,Ψ j,k〉

.

A simple calculation gives

〈�,Ψ j,k〉 = eiφh 〈 f ,Ψ j,k〉 − 〈
f ,Ψ j,k(· − h)

〉
=

∫
R

f (x)Ξ j,k
[
eiφh Ψ (x) − Ψ

(
x − 2 jh

)]
dx

= e−iξ0

2

∫
R

f (x)Ξ j,k
[
e−iω0x[eiφh w(x) − ei2 jω0h w

(
x − 2 jh

)]]

= ei(2 jω0h−ξ0)

Wh + (
eiφh − ei2 jω0h)c j[k].
2
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Similarly,

〈�,Ψ j,k〉 = ei(ξ0−2 jω0h)

2
Wh + (

eiφh − e−i2 jω0h)c j[k].
Hence,

|Kh| � |Wh| + 2|ei(φh−2 jω0h) − 1||c j[k]|
||Wh| − 2|ei(φh+2 jω0h) − 1||c j[k]|| .

The substitution φh = 2 jω0h + αh gives

|Kh| � |Wh| + 2|eiαh − 1||c j[k]|
||Wh| − 2|ei(2 j+1ω0h+αh) − 1||c j[k]|| .

Since ∣∣ei(2 j+1ω0h+αh) − 1
∣∣2 = 2 − 2 cos(βh + αh)

� 2 − 2 cos(βh)

= ∣∣ei2 j+1ω0h − 1
∣∣2

we have

1

|ei(2 j+1ω0h+αh) − 1| � 1

|ei2 j+1ω0h − 1|
= 1

|ei2 jω0h − 1||ei2 jω0h + 1| .
This gives us, in combination with Eq. (6),

|Wh|
|ei(2 j+1ω0h+αh) − 1| � 2

|Wh/Eh|
|ei2 jω0h + 1|

∣∣c j[k]∣∣.
On the other hand,

|Wh|
|eiαh − 1| � 2

∣∣c j[k]∣∣.
We arrive at the bound

|Kh| � 4|c j[k]||Wh/Eh|
2|c j[k]||ei2 jω0h + 1| − 2|c j[k]||Wh/Eh|

= 2|Wh/Eh|
|ei2 jω0h + 1| − |Wh/Eh|

.

This finishes the proof. �
The phase-compensation φh proposed in (8) may be hard to determine in practice. Instead, when h is small and

|Wh/Eh| ≈ 0, we can put φh = 2 jω0h. Indeed, formula (7) implies that

lim
h→0

|Wh/Eh| = 1

2 jω0
lim
h→0

αh

|h| .
As a consequence,

φh/2 jω0h = 1 + sign(h)αh/2 jω0h ≈ 1 + |Wh/Eh| ≈ 1. (10)

Fig. 3 plots the ratio Rh for a number of DT-CWT coefficients, using the same test configuration as described in Section 2.
We see that the values of Rh are indeed close to i. Also note that the accuracy of the approximation depends on the
magnitude of the DT-CWT coefficients. This phenomenon is to be expected, as the size of |Wh/Eh| increases when the
significance of the coefficient c j[k] decreases (see Proposition 3.3).

Proof of Theorem 3.1. Let φh = 2 jω0h. As noted after Proposition 3.3, we may assume that |Wh/Eh| ≈ 0. Then (10) shows
that this instance of φh is equivalent to the one specified in (8). Hence, Proposition 3.4 is applicable, resulting in Rh ≈ i.

Substitution into (3) and (4) of Proposition 3.2 reveals that the ratios
|ei2 jω0hc j [k]−ch

j [k]|
|a j [k]−ah

j [k]| and
|ei2 jω0hc j [k]−ch

j [k]|
|b j [k]−bh

j [k]| are both approx-

imately zero. This is exactly what we needed to prove. �
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Fig. 3. Plot of the ratio Rh for h = 1/512 and j = 3. Observe that Rh differs more from i for k = 4,5.

4. On the decaying rate of the phase-compensated shift error

In this section, we focus on the dual-tree complex wavelet transform for which the wavelet systems {ψ j,k} j,k∈Z and

{ψ ′
j,k} j,k∈Z are both orthonormal and modulated. In order to estimate the prediction error ch

j [k] ≈ ei2 jω0hc j[k], we will intro-

duce a new quantitative bound for the phase-compensated shift error |ei2 jω0hc j[k] − ch
j [k]|. Moreover, this bound allows us

to describe the decaying rate of the phase-compensated shift error as h → 0.
In [5], the fractional Hilbert Transform (fHT) operator is introduced in order to deduce an amplitude-phase representation

of the DT-CWT. The fHT corresponding to the real-valued shift τ is defined as

Hτ = cos(πτ )I − sin(πτ )H,

where I is the identity operator. Note that for τ = −1/2, we retrieve the original Hilbert transform operator. Moreover,
Hτ [cos(ω0x)] = cos(ω0x + πτ). It is easy to show that the fHT is a unitary operator that commutes with translations and
positive dilatations. In particular, if {ψ j,k} j,k∈Z is a wavelet system, then {Hτ [ψ j,k]} j,k∈Z is also a wavelet system.

Theorem 4.1 (Amplitude-phase representation of the DT-CWT). (See [5].) Let f be a function in L2(R) with DT-CWT coefficients
c j[k] = |c j[k]|eiω j[k] . Then

f =
∑
j,k∈Z

∣∣c j[k]∣∣Ξ j,k
[

wC
(
ω j[k])], (11)

where, for ω ∈ [0,2π [, C(ω) is given by

C(ω)(x) = cos(ω0x + ξ0 + ω).

Using this theorem, the authors of [5] provided new insights on the shiftability of the DT-CWT. Indeed, formula (11)
gives an explicit interpretation of the phase parameter ω j[k] as the phase-shift applied to the modulated sinusoid of the
wavelet. More precisely, when f is shifted over h, we get an amplitude-phase representation of the form

f h =
∑
j,k∈Z

∣∣ch
j [k]∣∣Ξ j,k

[
wC

(
ωh

j [k])].
Hence, the localization window w is kept fixed at scale j while the oscillation is now shifted over ωh

j [k] to better fit the
underlying signal singularities/transitions.

We now extend upon their findings by employing the phase-compensated shift error to characterize the shift errors
|ei2 jω0hc j[k] − ch

j [k]|, as stated in the next proposition. This result will be applied in Theorem 4.3 to estimate the prediction

error ch[k] ≈ ei2 jω0hc j[k].
j
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Proposition 4.2. Let f be a real-valued function in L2(R) with DT-CWT coefficients c j[k] = |c j[k]|eiω j[k] . Consider a translate f h =
f (· + h) with DT-CWT coefficients ch

j [k] = |ch
j [k]|eiωh

j [k] . Then

∑
j∈ J ,k∈K

∣∣ei2 jω0hc j[k] − ch
j [k]∣∣2 =

√
ε2

1 + ε2
2

2

where J , K ⊆ Z,

ε1 =
∥∥∥∥ ∑

j∈ J ,k∈K

∣∣c j[k]∣∣Ξ j,k
[(

w − w
(· + 2 jh

))
C
(
ω j[k] + 2 jω0h

)]∥∥∥∥
2

and

ε2 =
∥∥∥∥ ∑

j∈ J ,k∈K

∣∣c j[k]∣∣Ξ j,k
[(

w − w
(· + 2 jh

))
C
(−ω j[k] − 2 jω0h

)]∥∥∥∥
2
.

Proof. Let us first prove the theorem for J = K = Z. Recall that c j[k] = 1
2 (a j[k] − ib j[k]), where a j[k] and b j[k] are the

coefficients of f corresponding to the real and imaginary wavelet components respectively. The same formula for c̃ j[k] =
ei2 jω0hc j[k] can be obtained by defining

ã j[k] = 2
∣∣c j[k]∣∣ cos

(
ω j[k] + 2 jω0h

)
and

b̃ j[k] = −2
∣∣c j[k]∣∣ sin

(
ω j[k] + 2 jω0h

)
.

Now consider the functions f̃1 and f̃2, given by

f̃1 =
∑
j,k∈Z

ã j[k]ψ j,k and f̃2 =
∑
j,k∈Z

b̃ j[k]ψ ′
j,k.

Observe that∑
j,k∈Z

∣∣ei2 jω0hc j[k] − ch
j [k]∣∣2 = 1

4

∥∥ f̃1 − f h
∥∥2

2 + 1

4

∥∥ f̃2 − f h
∥∥2

2

= 1

2

∥∥∥∥ f̃1 + f̃2

2
− f h

∥∥∥∥2

2
+ 1

2

∥∥∥∥ f̃1 − f̃2

2

∥∥∥∥2

2

where the last equality is a consequence of the parallelogram-law. Since

1

2
( f̃1 + f̃2) =

∑
j,k∈Z

∣∣c j[k]∣∣ cos
(
ω j[k] + 2 jω0h

)
ψ j,k −

∑
j,k∈Z

∣∣c j[k]∣∣ sin
(
ω j[k] + 2 jω0h

)
ψ ′

j,k

=
∑
j,k∈Z

∣∣c j[k]∣∣Ξ j,k
[

wC
(
ω j[k] + 2 jω0h

)]
and

f h =
∑
j,k∈Z

∣∣c j[k]∣∣Ξ j,k
[

w
(· + 2 jh

)
C
(
ω j[k] + 2 jω0h

)]
we obtain that∥∥∥∥ f̃1 + f̃2

2
− f h

∥∥∥∥
2
= ε1.

On the other hand, we have the relations

1

2
( f̃1 − f̃2) =

∑
j,k∈Z

∣∣c j[k]∣∣Ξ j,k
[

wC
(−ω j[k] − 2 jω0h

)]
and
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1

2

(
f h

1 − f h
2

) =
∑
j,k∈Z

∣∣c j[k]∣∣Ξ j,k
[

w
(· + 2 jh

)
C
(−ω j[k] − 2 jω0h

)]
for

f h
1 =

∑
j,k∈Z

ah
j [k]ψ j,k and f h

2 =
∑
j,k∈Z

bh
j [k]ψ ′

j,k.

Note that f h
1 = f h

2 = f h by definition. Hence, we can conclude that∥∥∥∥ f̃1 − f̃2

2

∥∥∥∥
2
=

∥∥∥∥ f̃1 − f̃2

2
− f̃ h

1 − f̃ h
2

2

∥∥∥∥
2
= ε2.

This proves the theorem for J = K = Z.
For the general case, we replace the previous definitions of f̃1, f̃2, f h

1 and f h
2 by

f̃1 =
∑

j∈ J ,k∈K

ã j[k]ψ j,k; f̃2 =
∑

j∈ J ,k∈K

b̃ j[k]ψ ′
j,k;

f h
1 =

∑
j∈ J ,k∈K

ah
j [k]ψ j,k; f h

2 =
∑

j∈ J ,k∈K

bh
j [k]ψ ′

j,k.

A similar calculation as before shows that∑
j∈ J ,k∈K

∣∣ei2 jω0hc j[k] − ch
j [k]∣∣2 = 1

4

∥∥ f̃1 − f h
1

∥∥2
2 + 1

4

∥∥ f̃2 − f h
2

∥∥2
2

= 1

2

∥∥∥∥ f̃1 + f̃2

2
− f h

1 + f h
2

2

∥∥∥∥2

2
+ 1

2

∥∥∥∥ f̃1 − f̃2

2
− f h

1 − f h
2

2

∥∥∥∥2

2

= ε2
1 + ε2

2

2
. �

Proposition 4.2 confirms the importance of a smooth localization window w in order to minimize the DT-CWT shift
error as previously indicated by Proposition 3.3.

One way to measure the oscillatory behavior of w is by using the concept of Lipschitz continuity. By definition, w is
called an �-Lipschitz function if and only if |w(y) − w(x)| � �|y − x| for every x, y ∈ R. This leads us to the main theorem
of this section, which is an immediate consequence of Proposition 4.2.

Theorem 4.3 (Decaying rate of the DT-CWT shift error). Let f be a real-valued function in L2(R) with DT-CWT coefficients c j[k].
Consider a translate f h = f (· + h) with DT-CWT coefficients ch

j [k]. If the localization window w is a compactly supported �-Lipschitz

function, so that w − w(· + 2 jh) is zero outside [p,q], then

|ei2 jω0hc j[k] − ch
j [k]|

|hc j[k]| � 2 j�(q − p) (12)

for every j,k ∈ Z.

Notice the formal analogy between the DT-CWT bound in (12) and the DWT translation sensitivity constraint in (1).

5. Conclusion

In this paper, we quantitatively investigated the shift error of the modulated dual-tree complex wavelet transform, which
can be significantly reduced by performing a phase-compensation on the coefficients.

By introducing a formal description for the DWT translation sensitivity in Section 3, we were able to relate the phase-
compensated shift error to the shift errors of the real and imaginary wavelet components. This study revealed that the
superiority of the DT-CWT is attributed to the high overall frequency and the slowly varying localization window of the
DT-CWT. The improved shiftability is particularly noticeable for significant coefficients.

In Section 4, we estimated the decaying rate of the phase-compensated shift error in case of orthonormal and modulated
wavelet systems. This allows us to describe the prediction error in a similar way as the formal description of the DWT
translation sensitivity.
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