
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Structure

Article
Structural Basis of a Rationally Rewired
Protein-Protein Interface Critical
to Bacterial Signaling
Anna I. Podgornaia,1,2,7 Patricia Casino,4,5,7 Alberto Marina,4,6,* and Michael T. Laub2,3,*
1Computational and Systems Biology Initiative
2Department of Biology
3Howard Hughes Medical Institute
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientı́ficas (CSIC), 46010 Valencia, Spain
5Instituto de Biologı́a Molecular de Barcelona, Consejo Superior de Investigaciones Cientı́ficas (CSIC), 08028 Barcelona, Spain
6CIBER de Enfermedades Raras (CIBERER), ISCIII, 46010 Valencia, Spain
7These authors contributed equally to this work and are co-first authors

*Correspondence: amarina@ibv.csic.es (A.M.), laub@mit.edu (M.T.L.)

http://dx.doi.org/10.1016/j.str.2013.07.005
SUMMARY

Two-component signal transduction systems typi-
cally involve a sensor histidine kinase that specif-
ically phosphorylates a single, cognate response
regulator. This protein-protein interaction relies on
molecular recognition via a small set of residues in
each protein. To better understand how these resi-
dues determine the specificity of kinase-substrate
interactions, we rationally rewired the interaction
interface of a Thermotoga maritima two-component
system, HK853-RR468, to match that found in a
different two-component system, Escherichia coli
PhoR-PhoB. The rewired proteins interacted
robustly with each other, but no longer interacted
with the parent proteins. Analysis of the crystal struc-
tures of the wild-type and mutant protein complexes
and a systematic mutagenesis study reveal how indi-
vidual mutations contribute to the rewiring of interac-
tion specificity. Our approach and conclusions have
implications for studies of other protein-protein inter-
actions and protein evolution and for the design of
novel protein interfaces.

INTRODUCTION

Interacting protein partners must recognize each other while

avoiding unproductive interactions within the crowded milieu of

the cell. The residues important for a given protein-protein inter-

face must therefore both promote interaction between cognate

proteins and prevent, or at least minimize, all possible noncog-

nate pairings. The challenge of maintaining specificity is particu-

larly acute for proteins that belong to large paralogous protein

families, which often share significant similarity to one another

at the sequence and structural levels (Gao and Stock, 2009;

Keskin et al., 2008).
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In bacteria, two-component signal transduction proteins are a

prevalent mechanism for sensing and responding to the environ-

ment. These signaling pathways rely on a sensor histidine kinase

that can autophosphorylate and transfer its phosphoryl group to

a cognate response regulator (Stock et al., 2000). Many histidine

kinases are bifunctional and can directly dephosphorylate their

cognate response regulators (Huynh and Stewart, 2011; Igo

et al., 1989). Histidine kinases and response regulators are two

of the largest protein families in bacteria, withmost organisms en-

coding tens to hundreds of each type of protein (Alm et al., 2006;

Galperin, 2005). However, most histidine kinases phosphorylate

only a single cognate response regulator and there is very little

crosstalk observed between noncognate partners (Capra et al.,

2012; Laub and Goulian, 2007). Systematic studies of phospho-

transfer have demonstrated that histidine kinases typically exhibit

a strong kinetic preference for their cognate response regulators

invitro, suggesting that the interactionspecificityof thesesignaling

pathways is driven largely bymolecular recognition rather than the

cellular context (Fisher et al., 1996; Skerker et al., 2005).

Previous studies have demonstrated that interaction speci-

ficity is dictated by a small subset of residues on each protein

(Capra et al., 2010; Skerker et al., 2008). These studies relied

on the identification of coevolving amino acids in large multiple

sequence alignments of cognate kinase-regulator pairs from a

diverse range of bacterial species (Codoñer and Fares, 2008).

The importance of these residues was validated through the

rational rewiring of phosphotransfer specificity. Substituting the

specificity residues in the Escherichia coli histidine kinase EnvZ

with those found in other kinaseswas sufficient to drive phospho-

transfer toward previously noncognate response regulators. A

similar rewiring of the response regulator OmpR allowed it to

receive phosphoryl groups from other histidine kinases. These

coevolving specificity residues were confirmed as critical to

molecular recognition when the first structure of a histidine

kinase in complexwith its cognate response regulatorwassolved

(Casino et al., 2009, 2010). The complex of Thermotoga maritima

kinaseHK853 bound to a phosphorylated formof RR468 demon-

strated that the primary basis of interaction involves the docking

of helix a1 (a1) in the response regulator with both helices of the
d All rights reserved
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Figure 1. Specificity Residues in Two-Component Signaling Proteins

(A) Multiple sequence alignment of histidine kinases (DHp domain only) and response regulator (receiver domain only), with specificity residues and highly

conserved residues highlighted. Species abbreviations: Ec, Escherichia coli; Sa, Staphylococcus aureus; Tm, Thermotoga maritima. Interacting partners are

arranged in the same order in both HK and RR alignments. Sequences are numbered according to the Tm proteins, with the last digit of each number positioned

above the relevant amino acid residue.

(B and C) HK853 and PhoR phosphotransfer specificity. Each histidine kinase construct was autophosphorylated with [32P-g]ATP and then incubated with the

response regulator indicated at room temperature. Samples were taken at the time points indicated and phosphotransfer assessed by SDS-PAGE and phos-

phorimaging. Arrowheads indicate the position of autophosphorylated kinase or phosphorylated response regulator.

See also Figure S1.

Structure

Structural Basis of a Rewired Signaling Complex
dimerization and histidine phosphotransfer (DHp) domain in the

kinase. Nearly all of the specificity residues identified via coevo-

lution studies are found within these helices (Figure 1A).

Although two-component proteins have been successfully re-

wired, it remains unclear how a newly introduced set of specificity

residues is accommodatedat themolecular interface formedbya

histidine kinase and a response regulator. How do individual res-

idues contribute to the rewired specificity of a complex? How do

the new residues pack together? Do changes at the interface

affect other, distal regions of the proteins? To tackle these ques-

tions, we rationally rewired the interaction interface of T. maritima

proteins HK853 and RR468 to harbor the specificity-determining

residues of an unrelated two-component pathway, E. coli PhoR

and PhoB. We solved crystal structures of complexes formed

by the rewired proteins, as well as the structures of the rewired

HK853 and RR468 alone. Comparison of these structures with

the nativeHK853-RR468 complex, alongwith a systematicmuta-

tional analysis of the interface, helps reveal the structural basis of

specificity in two-component signaling proteins. More generally,

they provide insight into the rules of molecular recognition and

coevolution in protein-protein interfaces.

RESULTS

HK853-RR468 and PhoR-PhoB Have Different
Phosphotransfer Specificities
To investigate the structural consequences of rewiring a kinase-

substrate interface, we rationally mutated the specificity resi-
Structure 21, 1636–16
dues of the T. maritima two-component pathway HK853-

RR468 to match those of another two-component system.

Previous work has shown that unlike the model kinase EnvZ,

the HK853 homodimer autophosphorylates in cis, such that the

histidine on a given chain is autophosphorylated by the ATP-

binding domain of the same chain (Casino et al., 2009).We there-

fore aimed to reprogram the specificity of the HK853-RR468

system to match that of another system in which the kinase

autophosphorylates in cis, the E. coli system PhoR-PhoB

(Ashenberg et al., 2013; Casino et al., 2009). HK853 and E. coli

PhoR are �32% identical at the amino acid level across their

DHp and catalytic and ATP binding (CA) domains and share

four identities at the nine specificity positions. RR468 and

E. coli PhoB are �38% identical across their receiver domains

and share two identities at the seven specificity positions (Fig-

ure 1A; Figure S1A available online).

To confirm that the different specificity residues in HK853-

RR468 and PhoR-PhoB yield different phosphotransfer specific-

ities, we purified His6-tagged versions of each protein. For

HK853 and PhoR, we truncated the transmembrane domains,

purifying only the soluble, cytoplasmic portions of each kinase

(see Experimental Procedures). RR468 has only a receiver

domain, whereas PhoB has a receiver domain and a DNA-bind-

ing domain; we purified the receiver domain portion of each

regulator. We first autophosphorylated each kinase in the pres-

ence of [g-32P]ATP and then added cognate substrates to

examine phosphotransfer. At room temperature, HK853 rapidly

phosphorylated RR468 (Figure 1B). Because HK853 is
47, September 3, 2013 ª2013 Elsevier Ltd All rights reserved 1637
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Figure 2. Rational Rewiring of Phosphotransfer Specificity

Phosphotransfer assays for wild-type and mutant two-component proteins. In

each panel, the histidine kinase indicatedwas autophosphorylatedwith [32P-g]

ATP and then incubated with the response regulator indicated at 4�C. Samples

were taken at the time points indicated and phosphotransfer assessed by

SDS-PAGE and phosphorimaging.

(A and B) Wild-type HK853 (A) and HK853* (B), which harbors the substitutions

A268V, A271G, T275M, V294T, D297E, were tested for phosphotransfer to

RR468, RR468*, PhoB, and PhoB*. RR468* contains the substitutions V13P,

L14I, I17M, and N21V. PhoB* contains the substitutions P13V, I14L, M17I, and

V21N.

(C) HK853**, which harbors the substitutions A268V, A271G, and T275M was

tested for phosphotransfer to RR468 and RR468*.

See also Figures S2 and S3.
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bifunctional with strong phosphatase activity for RR468�P

(Casino et al., 2009), the combination of phosphotransfer and

subsequent dephosphorylation of RR468 led to a loss of radiola-

beled HK853 and RR468within 15 s (Figure 1B). The rapid disap-

pearance of phosphorylated HK853 resulted from phospho-

transfer to the regulator, not simply dephosphorylation of

HK853 through hydrolysis. When HK853 was incubated with

RR468(D53A), which cannot be phosphorylated, the kinase re-
1638 Structure 21, 1636–1647, September 3, 2013 ª2013 Elsevier Lt
mained phosphorylated for extended periods of time (Casino

et al., 2009) (Figure S2A). Like HK853, the histidine kinase

PhoR rapidly phosphorylated its cognate partner, PhoB (Fig-

ure 1B). As the PhoR construct harbors only modest phospha-

tase activity for PhoB�P, continuous phosphotransfer resulted

in the accumulation of phosphorylated PhoB over a 1 min time

course. Finally, we examined phosphotransfer from HK853 and

PhoR to the noncognate regulators PhoB and RR468, respec-

tively. Neither HK853 nor PhoR phosphorylated the noncognate

substrate (Figure 1C). The modest decrease in intensity of the

HK853 band likely results fromdephosphorylation, not phospho-

transfer (Figure S1B). These experiments demonstrate that

HK853-RR468 and PhoR-PhoB have different phosphotransfer

specificities, consistent with their different specificity residues.

Rewiring the Specificity of HK853-RR468 to Match that
of PhoR-PhoB
To rewire HK853-RR468, we substituted the specificity residues

of HK853 and RR468 with those found in PhoR and PhoB,

respectively, producing HK853* (A268V, A271G, T275M,

V294T, D297E) and RR468* (V13P, L14I, I17M, N21V; Figure 1A).

We also substituted the specificity residues of PhoB with those

found in RR468, producing PhoB* (P13V, I14L, M17I, V21N).

The substitutions introduced into HK853 did not significantly

affect kinase autophosphorylation (Figure S2B). We then exam-

ined phosphotransfer from HK853 and HK853* to the response

regulators RR468, RR468*, PhoB, and PhoB* (Figure 2; Fig-

ure S3A). Because phosphotransfer from HK853 to RR468 is

so rapid at room temperature (Figure 1B), we performed these

assays at 4�C to facilitate the comparison of relative phospho-

transfer rates.

As before, HK853 rapidly phosphorylated and dephosphory-

lated RR468, with a complete loss of radiolabel within 30 s (Fig-

ure 2A). HK853 phosphorylated RR468* at an extremely slow

rate, indicating that the substitutions introduced into RR468* dis-

rupted the cognate interaction. As expected, wild-type HK853

did not transfer to the noncognate regulator PhoB under these

reaction conditions, even after 10 min. However, HK853 was

capable of phosphorylating PhoB*, indicating that the introduc-

tion of RR468-like specificity residues into PhoB was sufficient

to promote phosphorylation by HK853 (Figure 2A).

For HK853*, we observed significantly reduced rates of phos-

photransfer to RR468, indicating that changes to the specificity

residues of HK853 had diminished the cognate pairing of

HK853 and RR468 (Figure 2B). Strikingly, however, HK853*

rapidly phosphorylated and dephosphorylated RR468*, indi-

cating that the substitutions in RR468* restored a robust interac-

tionwith HK853*. Consistent with its new specificity residues, we

found that HK853* could phosphorylate PhoB, but not PhoB*

(Figure 2B).

We confirmed that HK853* has phosphatase activity toward

RR468*, but not RR468, by using [32P] acetyl-phosphate to

radiolabel RR468*; subsequent addition of HK853* led to a rapid

loss in radiolabel compared to buffer alone (Figure S2C). This

result indicates that HK853* stimulates the dephosphorylation

of RR468*.

A mutant of HK853, designated HK853**, harboring only three

of the five specificitymutations (A268V, A271G, T275M) behaved

similar to HK853*, suggesting that these three residues in the
d All rights reserved



Table 1. Crystallographic Data and Refinement Statistics

Processed Data HKf* RRf* HK*-RR* HK-RR*

Wavelength (Å) 0.92 0.87 0.98 0.87

Resolution (Å) 72.98–2.70 (2.85–2.70) 35.74–1.80 (1.88–1.79) 48.34–3.00 (3.16–3.00) 46.32–3.10 (3.27–3.10)

Rmerge (%) 0.057 (0.337) 0.078 (0.279) 0.060 (0.389) 0.071 (0.401)

Rpim (%) 0.023 (0.13) 0.030 (0.107) 0.036 (0.226) 0.035 (0.198)

Mean I/d (I) 21.0 (5.6) 19.7 (7.6) 15.0 (3.7) 17.9 (4.1)

No. of reflections

(observed/unique)

60,367/8277

(8,550/1,162)

84,433/10,950

(11,971/1,566)

43,627/12,140

(6,406/1,750)

108,863/ 22,038

(15,794/3,160)

Completeness (%) 99.5 (99.2) 100.0 (100.0) 98.3 (98.9) 99.9 (100.0)

Redundancy 7.3 (7.4) 7.7 (7.6) 3.6 (3.7) 4.9 (5.0)

Space group C2221 I222 I222 C2221

Cell dimensions (Å) a = 81.96 b = 160.38

c = 43.89

a = 53.98 b = 58.06

c = 71.47

a = 75.71 b = 85.31

c = 185.59

a = 119.32 b = 143.93

c = 138.97

Refined Data

Rfactor (%) 0.236 0.186 0.209 0.202

Rfree (%) 0.279 0.223 0.252 0.253

Asymmetric unit composition 1HK 1RR 1HK:1RR 2HK:2RR

No. of protein atoms 1890 976 2856 5842

No. of water molecules 44 91 13 13

No. of ligand/ion 1 5 4 14

Rmsd

Bond deviation (Å) 0.009 0.008 0.005 0.004

Angle deviation (�) 1.3 1.3 1.0 0.9

Media B-Factor (Å2)

Main chain 70.3 11.4 72.7 71.3

Side chain 71.2 13.5 75.2 73.2

All atoms 70.7 12.4 73.9 72.2

Ramachandran Map (%)

Favored 96.88 99.15 94.89 96.81

Allowed 3.12 0.85 4.83 3.06

Disallowed region 0 0 0.28 0.14

PDB accession code 4JAU 4JA2 4JAS 4JAV

Values in parentheses correspond to data for the highest resolution shell.

Rmerge = ShklSi j I(hkl)i � < I(hkl) > j / ShklSi < I(hkl)i >

Rpim = ShklO(1/(n�1)) Si j I(hkl)i � < I(hkl) > j /ShklSi I(hkl)i
Rfactor = SkFoj�jFck/SjFoj
Rfree is the Rfactor calculated with 5%–7% of the total unique reflections chosen randomly and omitted from refinement.
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middle of a1 were sufficient to rewire interaction specificity (Fig-

ure 2C). Collectively, these findings demonstrate that introduc-

tion of PhoR-like and PhoB-like substitutions into HK853 and

RR468 was sufficient to reprogram their phosphotransfer spec-

ificity while maintaining phosphotransfer and dephosphorylation

rates comparable to those seen in the wild-type proteins.

Structural Characterization of the Rewired Complex
Reveals Changes in Relative Orientation between
Interacting Proteins
To investigate the effects of the new specificity residues on part-

ner recognition, we solved an X-ray crystal structure of the

rewired complex formed by HK853* and RR468* (HK*-RR*;

Table 1), which can engage in both phosphotransfer and phos-

phatase reactions (Figure 2B; Figure S2C). The rewired complex
Structure 21, 1636–16
preserves the stoichiometry of the original complex (HK-RR;

Protein Data Bank [PDB] 3DGE; Casino et al., 2009): HK853*

forms a homodimer that interacts with two molecules of

RR468* (HK2-2RR; Figure 3). In the rewired complex, the HK2-

2RR is generated by crystallographic 2-fold symmetry while in

the HK-RR complex the asymmetric unit contained HK2-2RR

(Table 1). Further, the structures of the individual components

are highly similar. The kinases superimpose with a root-mean-

square deviation (rmsd) value of 1.82 Å (Table 2; Figure S4A).

The superposition of individual domains shows even more simi-

larity, with rmsd values of 1.0 Å and 0.87 Å for the DHp (residues

245–317) and CA (residues 320–480) domains, respectively. The

slightly greater rmsd value for the kinases relative to individual

domains results from a 19.7� rigid body rotation of the HK853*

CA domain toward a1 of the DHp domain, which agrees with
47, September 3, 2013 ª2013 Elsevier Ltd All rights reserved 1639
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Figure 3. Crystal Structures of the Wild-

Type Complex HK-RR, the Rewired and

Functional HK*-RR* Complex, and the

Impaired HK-RR* Complex

(A–C) Cartoon representations of HK-RR complex

with HK853 bound to ADP and RR468 D53 bound

to SO4 (A), HK*-RR* complex with HK853* bound

to ADP and RR468* D53 bound to BeF3
� (B), and

HK-RR* complex with HK853 bound to ADP and

RR468* D53 bound to BeF3
� (C). Left: cartoon

representations of the overall structure of the three

complexes formed by a homodimeric HK (blue

with one subunit transparent) bound to two mole-

cules of RR (yellow-green with one molecule

transparent). In each complex, the ATP-lid in the

HK and the b3-a3 linker in the RR are colored in

black; the phosphorylatable residues H260 and

D53 as well as bound ligands ADP, sulfate (SO4),

and beryllium trifluoride (BeF3) are shown as

sticks. Middle: the angle formed between the in-

teracting helices HK a1 (246–279) and RR a1 (12–

26) for each complex is shown. Right: HK-RR

interface shown by the DHp domain (with one

subunit transparent) bound to one RR with the

critical specificity residues (13, 14, 17, and 21 in

red for RR468; and 268, 271, 275, 294, and 297 in

orange for HK853) highlighted in space-filling

spheres. See also Figures S4–S6 and Table S1.
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the structural plasticity and dynamic nature reported for the CA

domain (Albanesi et al., 2009). RR468* has an almost identical

structure to RR468 in the two functional complexes, HK-RR

and HK*-RR*, with an rmsd of 0.6 Å (Table 3).

Despite high similarity at the domain level, the arrangement

and relative orientation of the kinase with respect to the regulator

differs in the rewired complex. In particular, RR468* is rotated

17.5� and translated 0.5 Å along the DHp domain, such that

the angle between a1 of HK853* (residues 246–279) and a1 of

RR468* (residues 12–26), the two key structural elements for

complex formation, is 21.6� (Figure 3B). In the HK-RR complex,

this same angle is 31.7� (Figure 3B). Because of this rotation, the

HK853*-RR468* complex has a more parallel orientation be-

tween a1 in the regulator and the kinase helical bundle. In this

orientation, RR468* loses some interactions with the DHp a-helix

2 and increases interactions with the CA domain. In particular,
1640 Structure 21, 1636–1647, September 3, 2013 ª2013 Elsevier Ltd All rights reserved
the b2-a2 and b3-a3 loops of RR468*

now interact directly with the a3-b1 loop

and the ATP-lid of the HK853* CA

domain. These new contacts lead to a

larger interaction surface area in the

HK*-RR* complex relative to HK-RR

(2,690 Å2 versus 1,866 Å2; Figure S5;

Table S1). However, the new contacts

specific to the HK*-RR* complex appear

largely dispensable for phosphotransfer

and dephosphorylation (see Supple-

mental Experimental Procedures). The

differences in orientation are likely due

to the mutations introduced and not to

differences in crystal packing because
RR468* in the HK*-RR* complex could acquire the disposition

of RR468 in HK-RR without steric crystallographic clashes.

Although HK853 phosphorylates and dephosphorylates the

mutant RR468* very slowly (Figure 2A; Figure S2C), we were

able to solve a structure of these proteins in complex (HK-

RR*). The asymmetric unit showed HK2-2RR stoichiometry

with almost 2-fold symmetry (Table 1), broken due to a slightly

different relative disposition of the CA domain with respect to

the DHp domain (�18.8�), confirming the previously mentioned

plasticity of the CA domain (Figure S4C). Both HK subunits in

the HK-RR* complex adopt a conformation that is more similar

to the free form of HK853 (HKf; PDB: 2C2A; rmsd = 2.2 Å) than

to the kinase in the HK-RR complex (rmsd = 5.6 Å; Table 2; Fig-

ure S4). The structure of RR468* in theHK-RR* complex is similar

to RR468* in the HK*-RR* complex (rmsd = 0.6 Å, Table 3), but

the RR468* molecule in HK-RR* adopts a totally different



Table 2. Rmsd Differences in the HK Component

Rmsd (Å) HK-RR (3DGE)a HK*-RR* HK-RR* HKf (2C2A)a HKf*

HK-RR – 1.82 5.6 5.2 4.95

HK*-RR* – – 4.8 4.35 4.1

HK-RR* – – – 2.16 1.92

HKf – – – – 0.89

Residues 245–480.
aPDB codes for the previously published structures.

Table 3. Rmsd Differences in the RR Component

Rmsd (Å) HK-RR HK*-RR* HK-RR* RRf*

HK-RR – 0.61 0.69 0.67

HK*-RR* – – 0.6 0.54

HK-RR* – – – 0.47

Residues 2–121.
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position relative to the kinase. In the HK-RR* complex, RR468*

a1 is rotated �55� and slightly displaced (�1.0 Å) relative to

RR468* and RR468 in the rewired HK*-RR* and native HK-RR

complexes, respectively (Figure 3C). Many of the intermolecular

contacts seen in the productive HK-RR and HK*-RR* complexes

are lost in the HK-RR* complex, consistent with its greatly dimin-

ished phosphotransfer rate (Table S1). Finally, the phosphorylat-

able residues in RR468* (Asp53) and HK853 (His260) are

extremely far apart (19.0 Å) and improperly oriented for any cat-

alytic reaction (Figure 3C).

Given the structural data for the functional complexes, HK-RR

and HK*-RR*, we conclude that there is a permissible range of

rotational motion of the kinase relative to the regulator that allows

proper positioning of the active site while accommodating new

interfacial residues.

TheActive Center of the Rewired Complex Is a Snapshot
of a New Intermediate State in Phosphotransfer
A closer view of the active sites in the HK*-RR* andHK-RR* com-

plexes shows the phosphomimetic beryllium trifluoride (BeF3
�)

bound to the catalytic Asp53 of RR* in both cases. In HK*-RR*,

the BeF3
� is placed similarly to the sulfate found in the active

site of the HK-RR complex, but the Be atom is slightly closer

to the phosphorylatable His260 (Be-His260 Ca = 7.85 Å) than

the sulfur atom of the sulfate in the HK-RR complex (S-His260

Ca = 8.30 Å; Figure 4). However, Met55 of RR468* is interposed

between the His and the BeF3
� in the HK*-RR* structure, forcing

an alternative rotamer for His260 that points away from the active

site. Thus, the structure of the HK*-RR* mutant complex may

represent an earlier phase of the phosphatase reaction, when

the phosphoryl group is still bound to the response regulator.

Alternatively, if His260 acquired the rotamer conformation

observed in the HK-RR complex, the distance between the

phosphoacceptor nitrogen of this residue and the Be atom in

the HK*-RR* complex would be 3.6 Å, a distance compatible

with phosphotransfer (Figure 4). This observation suggests that

the conformation captured in the crystal could, instead, corre-

spond to the end of the phosphotransfer reaction just prior to

complex dissociation. Because the phosphatase reaction is

not the reverse of a phosphotransfer reaction (Hsing and Silhavy,

1997), the active center observed in the crystal could correspond

to either of these reactions.

Introduction of New Specificity Residues Does Not
Affect Global Structural Integrity
Structural differences between the different HK-RR complexes

could be imposed by specific requirements for partner recogni-

tion or could reflect intrinsic changes in the individual proteins re-
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sulting from the point mutations. To address this issue, we

solved the structures of the free forms of HK853* (HKf*) bound

to ADP and RR468* (RRf*) bound to BeF3
� (Table 1). The confor-

mations of HKf* andHKf are almost identical (rmsd = 0.9 Å for the

superposition of the structures; Table 2; Figure S4B). However,

there are local changes around the mutated residues that can

be attributed to interactions between DHp a helices 1 and 2

mediated by the new side chains. In HKf* V268 and M275,

together with T294 and F291 from a2 and Y272 from a1,

generate a hydrophobic network (Figure 5A). These interactions

induce changes in the exposed recognition surface and could

impair interaction with the regulator. The flexibility of the new

Met side chain seems to play a key role in this network because

it is sandwiched between the Y272 and F291 aromatic rings (Fig-

ure 5A). The interaction of V268 and M275 with the complemen-

tary surface provided by the mutated residues of RR468* pro-

motes the disappearance of this hydrophobic network in the

productive complex (Figure 5B).

As with HK853*, comparison of RR468* in isolation and in the

HK*-RR* complex shows minimal structural differences (Table 3)

that are localized around the mutated residues. The I17M muta-

tion seems to have the biggest structural impact on RR468*

because the new Met side chain now mediates a hydrophobic

interaction with F107 that was not present in RR468 (Figure 5C).

This interaction involves a 2.4 Å displacement of F107 toward

M17, a movement that brings the b5-a5 linker (Lba5) closer to

a1. In the HK-RR complex, these two structural elements of

RR468 clamp a1 of the kinase’s DHp domain. Although the

M17-F107 interaction occurs in both RRf* and HK-RR*, F107 is

positioned perpendicular to the M17 side chain in the HK*-RR*

complex, suggesting that mutations in HK* may compensate

for the presence of M17 (Figure 5C). The positioning of F107 in

HK*-RR* is similar to that seen in HK-RR, suggesting this confor-

mation may be important for the formation of a productive

complex.

Systematic Mutational Characterization of the Rewired
Interface
To further analyze the effects of individual substitutions at the

HK853-RR468 interface (Figure 6A), we constructed all possible

mutational intermediates separating the HK-RR and HK*-RR*

pairings. Consistent with our previous finding that only three of

the five mutations (A268V, A271G, and T275M) in HK853 are

necessary to rewire the interface, residues V294 and D297 do

not make interprotein contacts in the HK*-RR* structure

(Table S1). We therefore constructed three single and three dou-

ble mutants in HK853; along with the wild-type and triple mutant,

therewere eight different residue combinations for the kinase. For

RR468, we made four single, six double, and four triple mutants;

alongwith thewild-type and quadruplemutant (V13P, L14I, I17M,
47, September 3, 2013 ª2013 Elsevier Ltd All rights reserved 1641
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Figure 4. Comparison of the Active Center in the HK-RR and HK*-

RR* Complexes

Close-up view of the active center with a superposition of HK-RR (in cyan) and

HK*-RR* (in orange) in cartoon representation. The phosphorylatable residues

H260 andD53, residueM55, and the bound ligands (sulfate [SO4] in the HK-RR

complex and beryllium trifluoride (BeF3) in the HK*-RR* complex) are shown as

sticks. Distances are shown by dashed lines; in black for Ca of H260 in HK-RR

with the sulfur atom of SO4 (8.3 Å) and for Ca of H260 in HK*-RR* with the Be

atom of BeF3 (7.9 Å); in red for εN of H260 in HK-RRwith the sulfur atom of SO4

(4.8 Å) and with the Be atom of BeF3
� (3.6 Å). See also Figures S4–S6 and

Table S1.
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and N21V), there was a total of 16 specificity residue combina-

tions for the regulator. For simplicity, we refer to each of the mu-

tants according to the identities of their specificity residues.

We systematically tested all 128 pairwise combinations of the

eight kinases and 16 regulators for activity by incubating each

autophosphorylated kinase with each regulator for 15 s (Fig-

ure 6B). Residue combinations that supported both phospho-

transfer and dephosphorylation, such as the wild-type residues,

led to a depletion of radiolabeled kinase with minimal accumula-

tion of radiolabeled regulator. Combinations that supported only

phosphotransfer led to an accumulation of phosphorylated regu-

lator, and unproductive combinations retained phosphorylated

kinase. Although the in vivo role of HK853/RR468 is unknown,

studies with other two-component systems have demonstrated

that both phosphotransfer and phosphatase activity are impor-

tant for proper signal transduction (Huynh and Stewart, 2011).

Therefore we identified functional kinase-regulator pairs for

which (1) the intensity of the phosphorylated kinase band in the

presence of regulator was less than 20% the intensity of the

kinase band in the presence of buffer alone; and (2) the intensity

of the phosphorylated regulator band was less than 10% the in-

tensity of the autophosphorylated kinase band in the presence of

buffer. Of the 128 combinations, 43 pairs satisfied these criteria

(Figures 6B and 6C).

Our systematic mutagenesis shed light on the amino acid

combinations permissible at this protein interface. For example,

the profile of HK853 against the 16 regulator mutants demon-

strates that robust phosphotransfer and dephosphorylation are
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retained for all regulators except those harboring the I17Mmuta-

tion (Figure 6B). For half of these pairings, the defect resulting

from an I17M substitution can be rescued by the substitution

A271G in the kinase. Given the similarity in size and nature be-

tween isoleucine and methionine, it is difficult to rationalize the

strong impact of this mutation. However, our structural data indi-

cated that the interaction of M17 with F107 could compromise

proper packing of RR468* with HK853 DHp a1, thereby preclud-

ing a productive interaction (Figure 5C). Similarly, substituting a

methionine residue into the kinase disrupted phosphatase activ-

ity, as evidenced by the inability of HK853(AAM), HK853(VAM),

and HK853(AGM) to dephosphorylate the majority of regulator

mutants (Figure 6B). In the HK*-RR* structure, the side chain of

M275 lies within the hydrophobic pocket generated by RR468*

residues M17, F20, and V21 (Figure 6A). A comparison with

HK-RR shows that the residues M275 and M17 would have

clashed if the displacement of RR468* a1 had not generated

the hydrophobic pocket in HK*-RR*. In the new interface, the po-

lar bond between T275 and N21 is replaced by a hydrophobic

interaction between M275 and M17. This arrangement is further

facilitated by the A271G mutation in HK* because the original

alanine side chain would have clashed with M17 in RR*.

Together, these findings illuminate the conformational restric-

tions imposed by individual residues that underlie amino acid

coevolution, which in turn enabled the identification of specificity

residues by statistical covariation analyses (Skerker et al., 2008).

Some combinations of residues yielded more promiscuous

proteins. For instance, HK853(VGT) phosphorylated and de-

phosphorylated ten of the 16 regulators, including both the

wild-type regulator and the quadruple mutant (Figure 6B). By

comparison, wild-type HK853 phosphorylates and dephosphor-

ylates eight of the regulators, including its partner RR468 but not

the quadruple mutant. The flexibility introduced by glycine

(A271G) may lead to productive interactions with many regula-

tors. Conversely, some residue combinations interact with a

very limited number of regulators. For instance, RR468(PLMV)

interacted poorly with almost all kinase partners, and

HK853(VAM) could phosphorylate and dephosphorylate only a

single regulator.

Analysis of these mutational intermediates also demonstrated

the interdependence of interface residues. The double mutant

HK853(VAM) weakly phosphorylates each of the regulators,

although its phosphatase activity is limited to RR468(PIIV; Fig-

ure 6B). However, either the A268V or the T275M mutation in

HK853 by itself allows the kinase to strongly phosphorylate eight

or six of the regulators, respectively. As another example, the

mutation A268V has little effect on the wild-type kinase and its

phosphotransfer profile looks essentially identical to the starting

protein (Figure 6B). However, when introduced in the context of

HK853(AGT), this mutation affects interactions with several of

the mutant regulators. Thus, the effect of individual substitutions

on specificity is highly context-dependent and difficult to predict

from the behavior of the individual mutations.

Mutational Trajectories between the Wild-Type and
Mutant Interfaces
Having a complete characterized set of mutational intermediates

also sheds light on the evolution of two-component signaling

protein specificity following duplication and divergence. There
d All rights reserved
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(A) DHp domains with a superposition of HKf (in

green) and HKf* (in blue) to show new interactions

resulting from the mutations introduced into HKf*:

A268V, A271G, T275M, V294T, and D297E.

(B) DHp domains with a superposition of HKf* and

HK853* from the HK*-RR* complex (in orange) to
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(C) Superposition of RR468 in RRf* (green), HK-
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(magenta) structures shows the interaction M17-

F107 and the different conformations of F107 and the b5-a5 linker in the RR alone or in complex. All the structures are shown in cartoon representation

with the selected residues labeled in black and drawn as sticks.

See also Figures S4–S6 and Table S1.
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are 5,040 possible mutational paths between two sequences

that are seven letters long, assuming that only one amino acid

is mutated at each step. Given our criteria for productive phos-

photransfer and dephosphorylation (Figure 6C), we calculated

that only 200 of these 5,040 possible paths, or 4%, retain func-

tional kinase-regulator pairs along the entire path. Interestingly,

two of the 43 kinase-substrate combinations that we deemed

functional do not appear in any of the 200 mutational paths.

For example, the pair HK853(AAM) and RR468(VILV) can be

reached from a wild-type starting point, but all possible subse-

quent mutations produce a nonfunctional pair.

As noted above, the mutations T275M in the kinase and I17M

in the regulator are often deleterious (Figure 6B). Consequently,

these substitutions are often found along dead-end mutational

paths. Of the 200 paths that maintain a productive interaction,

97 introduce T275M into the kinase as the final mutation, 64

paths introduce I17M into the regulator as the last mutation,

and 29 paths end with the regulator mutation V13P. These pat-

terns suggest that other mutations must be introduced first to

effectively prime the interface for introduction of residues that

restrict conformational freedom, such as methionine or proline.

More generally, we infer that these residues contribute to spec-

ificity by eliminating interactions with noncognate regulators,

rather than promoting interaction with the cognate regulator.

For instance, HK853(VGT) phosphorylates and dephosphory-

lates ten of the 16 regulators; subsequent introduction of the

T275M mutation eliminates interaction with seven of these ten

regulators, but does not substantially improve interaction with

the fully rewired, quadruple RR468 mutant (Figure 6B).

Although the majority of paths connecting the HK-RR and

HK*-RR* pairs that maintain a functional interaction involve alter-

nating mutations in the two proteins (Figure 6D), there are paths

in which either the kinase or the regulator is completely changed

through successive mutations while the other protein remains

fixed. For instance, if the first three mutations produce

RR468(PIIV) in any order, HK853 can then tolerate three succes-

sive mutations A268V followed by A271G/T275M in either order

(Figure 6E). There are 12mutational paths in which the kinase ac-

cumulates all of its mutations in succession. Similarly, if the first

two mutations in a path yield the double mutant HK853(VGT),

then the regulator, can accumulate four successive mutations,

in seven different orders; there are 14 such paths in which the

regulator accumulates all mutations in succession. In both of

these examples, the protein that remains fixed while the other
Structure 21, 1636–16
protein accumulates substitutions is highly tolerant of mutations

in its partner. RR468(PIIV) fully interacts with five of eight mutant

kinases, and HK853(VGT) fully interacts with 10 out of the 16

mutant regulators (Figure 6B). Such tolerant intermediates may

play important roles in the rewiring of two-component signaling

interfaces that occurs during evolutionary processes such as

duplication and divergence.

DISCUSSION

Despite the importance of protein-protein interaction specificity

to the operation of cells, it remains relatively unclear how pro-

teins use a finite set of amino acids to specifically recognize

cognate partners. We addressed this question using two-

component signaling proteins, which utilize a limited and known

set of amino acids for partner recognition. The identification of

these residues has guided the rational rewiring of two-compo-

nent signaling pathways (Bell et al., 2010; Capra et al., 2010;

Skerker et al., 2008), but a structural understanding of how re-

wiring is achieved was lacking. Here, we reprogrammed the

structurally characterized complex T. maritima HK853-RR468

by introducing nine specificity residues from E. coli PhoR-

PhoB. Although highly specific, phosphotransfer and dephosh-

orylation rates of PhoB-PhoR are slower than those of HK853-

RR468. Strikingly, the introduction of PhoR-PhoB specificity

residues did not impair the rapid reaction rates of HK853-

RR468, despite the change in interaction specificity. This finding

supports the notion that the specificity residues are required for

recognition and proper positioning of the two partners, but other

residues set the rates of the reactions (Pazy et al., 2009; Zapf

et al., 1998).

The structure of the rewired complex HK*-RR* demonstrates

that these functionally rewired two-component proteins pre-

serve the overall structure of the wild-type complex along with

catalytic activity. The kinase domains can reposition themselves

slightly relative to each other and relative to the regulator to

accommodate the foreign interfacial residues, but the overall

complex retains wild-type character. Thus, rewiring leads pri-

marily to local spatially restricted changes in the regions of

each protein directly engaged in molecular docking.

Although the HK-RR and HK*-RR* complexes are similar, the

HK-RR* complex harbors a completely different intermolecular

orientation such that the phosphorylatable residues are no longer

in proximity. We do not yet have a structure of the HK*-RR
47, September 3, 2013 ª2013 Elsevier Ltd All rights reserved 1643
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Figure 6. Phosphotransfer between All Possible Mutational Intermediates Separating HK-RR and HK*-RR*
(A) Superposition of HK-RR (in cyan) and HK*-RR* (in orange) complexes highlighting how mutations in DHp a1 (A268V, A271G, and T275M) affect

interactions with mutations in RR a1 (V13P, L14I, I17M, and N21V) and F20. A dashed line represents a polar interaction between N21 and T275 in the HK-RR

complex.

(B) Phosphotransfer assays for wild-type HK853 and HK853 harboring all possible combinations of one, two, or three PhoR-like specificity substitutions present

in HK853** (A268V, A271G, and T275M). Each lane represents the incubation of the indicated autophosphorylated kinase with the indicated response regulator

for 15 s at room temperature. Reactions 1–11 and 12–16 were run on separate SDS-PAGE gels; the resulting phosphorimages were contrasted identically and

stitched together.

(C) The HK and RR bands from the phosphotransfer experiments in (B) were quantified and plotted. For each mutational pairing, the x-axis value indicates the

intensity of the autophosphorylated HK band (HK�P) and the y-axis value indicates the intensity of the phosphorylated response regulator band (RR�P). In each

case, band intensities were normalized to the intensity of the autophosphorylated kinase incubated without RR (lane 1 of each gel in B). Green points indicate the

pairs HK853-RR468 and HK853*-RR468*. The box in the lower left indicates pairings deemed functional; a low level of both the kinase and regulator bands

reflects efficient phosphotransfer and dephosphorylation. The 43 functional pairings are indicated in green in (B).

(D) One example of a mutational path from the wild-type to the rewired complex in which each intermediate state is functional.

(E) An example of a mutational path in which all mutations to the kinase occur in three successive steps.

See also Figures S4–S6 and Table S1.
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complex, which can participate in slow phosphotransfer but not

dephosphorylation.BecauseHK853* is competent asaphospha-

tase for other partners, the lack of activity with respect to RR is

probably due to a mismatch at the interaction interface, which

could force the regulator to dock in thewrongorientation. Alterna-

tively, the regulator may bind at the correct position but too

weakly to support rapid phosphotransfer anddephosphorylation.

How do individual residues contribute to specificity? In some

cases, disruptive mutations that change the size or nature of a

residue can be restored by balancing mutations at neighboring

inter- or intramolecular positions. This sort of intermolecular
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compensation is consistent with the extensive amino acid

coevolution previously documented for two-component

signaling proteins (Skerker et al., 2008). However, it is difficult

to ascribe a role to individual specificity residues, as the effect

of a given substitution can be highly context-dependent. In gen-

eral, our systematic mutagenesis study indicated that individual

residues do not typically contribute equally or additively to spec-

ificity. This interdependence of specificity residues resonates

with other recent studies suggesting that amino acid epistasis

in proteins is extensive and common (Breen et al., 2012; Levin

et al., 2009; Ortlund et al., 2007).
d All rights reserved
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Our work also has implications for understanding the evolu-

tionary processes of duplication and divergence, which underlie

themassive expansion of two-component signaling protein fam-

ilies in bacteria (Capra and Laub, 2012; Capra et al., 2012). After

duplication, paralogous signaling proteins must become insu-

lated with respect to phosphotransfer while retaining an interac-

tion with their cognate partners. Examples of the mutational tra-

jectories that proteins follow, and any constraints they face, are

largely unknown. Although T. maritimaHK853-RR468 and E. coli

PhoR-PhoB are not closely related, our systematic analysis of

mutational trajectories between them provides insights into

how specificity evolves. Our finding that only 4% of the theoret-

ically possible evolutionary paths retain a functional interaction

suggests that trajectories through sequence space may be

severely constrained. Previous work on mutational trajectories

that convert b-lactamase from a drug-sensitive to drug-resistant

state also found strong constraints with only eight of 120, or 6%,

of paths permissible (Weinreich et al., 2006).

None of the mutational combinations we tested were fully

insulated from both the starting HK-RR and the final HK*-RR*

complex, i.e., none forms an orthogonal interacting pair. This

finding highlights the potential evolutionary importance of pro-

miscuous states of the binding interface (Aharoni et al., 2005;

Matsumura and Ellington, 2001). We speculate that ancestral

two-component proteins may have harbored such promiscuity;

following duplication and divergence, the paralogs could have

gained specificity simply through the accumulation of mutations

that disrupt a subset of interactions seen in the ancestral state.

This process of subfunctionalization represents a rapid route to

specificity and could help explain the apparent ease with which

paralogous protein families have expanded.

Our results also have implications for protein design efforts. As

noted, there are dependencies between neighboring residues on

one molecule, and between residues on two different protein

partners. Thus, the HK853-RR468 interface can tolerate certain

substitutions only in combination—an effect not easily predicted

based on a consideration of how the individual substitutions

behave. Consequently, efforts to design or engineer novel pro-

tein-protein interfaceswill have to tackle this combinatorial prob-

lem. Our findings also underline the importance of subtle back-

bone flexibility in protein design (Humphris and Kortemme,

2008; Smith and Kortemme, 2008) because a static complex

would not properly accommodate the introduction of a new set

of specificity residues. In sum, our studies have provided impor-

tant insights into the molecular and structural basis of two-

component signaling specificity and also highlight the significant

challenges that remain in computationally predicting (Chen and

Keating, 2012) the effects of mutations and in designing inter-

faces de novo.
EXPERIMENTAL PROCEDURES

Cloning, Mutagenesis, and Protein Purification

All site-directed mutagenesis (see Table S2 for primers) was done with

Gateway (Invitrogen) cloning vectors as described previously (Skerker et al.,

2008). Mutagenized and sequence-verified protein sequences were moved

from pENTR vectors into pDEST vectors using the Gateway LR reaction

(pDEST-His6-MBP for HK853 and PhoR; pDEST-His6-TRX for PhoB; pDEST-

His6 for RR468). For crystallization assays, the complete cytoplasmic portion

of HK853* (232–489) was recloned from pDEST-His6-MBP into pET24b and
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full-length RR468* (1–122) was recloned from pDEST-His6 into pET22b, using

in both cases, the In-Fusion HD cloning technology (Clontech; Table S3).

Expression and purification was carried out as described previously (Casino

et al., 2009; Skerker et al., 2005).

Phosphotransfer Assays

Autophosphorylation and phosphotransfer assays were performed as

described previously (Capra et al., 2010). Histidine kinases diluted to 5 mM in

HKEDG buffer (10 mM HEPES-KOH pH 8.0, 50 mM KCl, 10% glycerol,

0.1 mM EDTA, 2 mM dithiothreitol) supplemented with 5 mM MgCl2 were

autophosphorylated with 500 mM ATP and 0.5 mCi [g32P]-ATP (from a stock

at �6,000 Ci/mmol, Perkin Elmer). PhoR was autophosphorylated for 1 hr at

30�C; HK853 and all HK853 mutants were autophosphorylated for 20 min at

room temperature (see Figure S2B for autophosphorylation time course).

The autophosphorylated kinase mixture was added directly to response regu-

lator (at 5 mM in HKEDG buffer supplemented with 5 mM MgCl2). Reactions

were quenched with 43 loading buffer (500 mM Tris-HCl pH 6.8, 8% SDS,

40% glycerol, 400 mM b-mercaptoethanol) and analyzed by SDS-PAGE and

phosphorimaging. For reactions carried out at 4�C, the autophosphorylated

histidine kinase was incubated at 4�C for 5 min prior to addition of chilled

response regulator. Radiolabeled bands were quantified with ImageJ

software.

Phosphatase Assays

To perform the phosphatase assays in Figure S2C, [32P]acetyl-phosphate was

freshly synthesized as described previously (Jagadeesan et al., 2009). RR468

(at 10 mM in HKEDG buffer supplemented with 5 mM MgCl2) was mixed 1:1

with [32P]acetyl-phosphate and incubated for 1 hr at room temperature. The

mixture was washed three times with cold HKEDG buffer and the concentra-

tion of MgCl2 subsequently adjusted to 5 mM. The phosphorylated regulator

was chilled at 4�C for 5min and then incubated with buffer or with an equimolar

amount of kinase (both prechilled) for the times indicated. Because RR468*

autophosphorylates more poorly than RR468 using this method, both regu-

lator and kinase concentrations were doubled to 20 mM starting concentration

to measure RR468*�P dephosphorylation.

Crystallization, Data Collection, and Model Building

Crystallization of HKf* and RRf* proteins, HK*-RR* and HK-RR* complexes

was achieved by the vapor diffusion method, using the sitting drop technique,

mixing 0.6 ml of protein and 0.6 ml of reservoir solution. Crystals of HKf* were

obtained in 8% PEG4000, 0.8 M LiCl, and Tris pH 8.5 by mixing 10 mg/ml of

protein, 4 mM ADP, and 4 mM MgCl2. Crystals of RRf* in complex with

BeF3
�were obtained in 50% PEG400, NaAc pH 4.6, and 0.2 M Li2(SO4) mixing

15 mg/ml of protein, 30 mM NaF, 5 mM BeSO4, and 7 mM MgCl2. Crystals of

the complexes HK*-RR* and HK-RR* were obtained in 2.2 M (NH4)2SO4 and

Bis-Tris pH 5.5 by cocrystallization mixing 10 mg/ml of HK853* or HK853,

7.5 mg/ml of RR468*, 4 mM ADP, 30 mM NaF, 5 mM BeSO4, and 7 mM

MgCl2. Crystals of HKf* were cryoprotected by increasing PEG4000 to 16%

and by the addition of 20% sucrose while crystals of the complexes were cry-

oprotected by addition of 35% sucrose. X-ray diffraction data were collected

at Diamond Light Source I04-1 (Oxfordshire, UK) for HKf*, at European Syn-

chrotron Facility ID23-2 (ESRF, Grenoble, France) for RRf*, and at ESRF

ID23-1 and ID23-2 for the complexes HK*-RR* and HK-RR*, respectively.

Data reduction was performed using XDS, Pointless, and Scala to a Bragg

space of 2.7 Å for HKf*, 1.8 Å for RR*, 3.0 Å for HK*-RR* complex, and 3.1 Å

for HK-RR* complex. Phases were obtained by molecular replacement using

Phaser and the final models were obtained by subsequent cycles of refinement

with Refmac5 andmodel building with the program Coot (Emsley and Cowtan,

2004). Despite the limited resolution for the complexes, the quality of the maps

(Figure S6) allowed model building and unambiguous side chain assignments

except for the first and last residues in HK* (232–243; 481–490) andHK (chain A

232–233; 480–490 and chain B 232–235; 480–490) where electronic density

was absent, which reflects the elevated flexibility of these regions. Crystallo-

graphic data and refinement statistics are presented in Table 1. The programs

Pointless, Scala, Phaser, and Refmac are contained in CCP4 Suite. Figures 3,

4, 5, and S4–S6 were produced using PyMOL (http://www.pymol.org). Super-

impositions were carried out with Superpose from CCP4 Suite. Movement

analysis was performed using the program Dyndom (Lee et al., 2003). In the
47, September 3, 2013 ª2013 Elsevier Ltd All rights reserved 1645
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HK-RR and HK-RR* complexes, where the asymmetric unit is formed by HK2-

2RR, HK chain A and RR chain C were chosen for the structural comparisons.

PDB accession codes for additional structures analyzed in the manuscript are

2C2A for HKf and 3DGE for HK-RR.

ACCESSION NUMBERS

The Protein Data Bank accession numbers for the 3D structures reported in

this paper are 4JAU for HKf*, 4JA2 for RRf*, 4JAS for HK*-RR*, and 4JAV for

HK-RR*.
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