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Abstract

This paper gives a brief historical survey of the development of the theory of the calculus of variations and optimal
control, and goes on to review the di�erent approaches to the numerical solution of optimal control problems. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Optimal control theory is an outcome of the calculus of variations, with a history stretching back
over 360 years, but interest in it really mushroomed only with the advent of the computer, launched
by the spectacular successes of optimal trajectory prediction in aerospace applications in the early
1960s.
Fortunately, Goldstine [27] has written an excellent treatise on the early history, and there have

been three later publications [10,59,64] carrying the story up to the present day. We therefore give
only an outline of the main steps in the historical development of the theory, then focus on the
development of numerical techniques for solution.

2. A brief history of the theory

Some geometrical optimization problems were known and solved in classical times, such as the
line representing the shortest distance between two points, or the “isoperimetric problem”: the shape
of the plane curve of given length enclosing the largest area. However our story really begins with
Galileo, who in 1638 posed two shape problems: the shape of a heavy chain suspended between
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two points (the catenary), and the shape of a wire such that a bead sliding along it under gravity
traverses the distance between its end-points in minimum time (the brachistochrone). Later, in 1662,
Fermat postulated the principle that light always chooses the path through a sequence of optical
media such that it traverses them in minimum time.
Galileo’s conjectures on the solutions of his two problems were incorrect, and Newton in 1685

was the �rst to solve a shape problem — the nose shape of a projectile providing minimum
drag — though he did not publish the result until 1694.
In 1696 Johann Bernoulli challenged his contemporaries to solve the brachistochrone problem by

the end of the year. Five mathematicians responded to the challenge: Johann’s elder brother Jakob,
Leibnitz, l’Hopital, Tschirnhaus and Newton. Bernoulli published all their solutions, together with
his own, in April 1697.
The competition aroused interest in this type of problem and there followed a period of activity

by a number of mathematicians. The resulting ideas were collected in a book [25] published in 1744
by Euler, a student of Bernoulli working in Basel, who remarked “nothing at all takes place in the
universe in which some rule of maximum or minimum does not appear”.
In essence, Euler formulated the problem in general terms as one of �nding the curve x(t) over

the interval a6t6b, with given values x(a); x(b), which minimizes

J =
∫ b

a
L(t; x(t); ẋ(t)) dt (1)

for some given function L(t; x; ẋ), where ẋ ≡ dx=dt, and he gave a necessary condition of optimality
for the curve x(·)

d
dx
Lẋ(t; x(t); ẋ(t)) = Lx(t; x(t); ẋ(t)); (2)

where the su�x x or ẋ implies the partial derivative with respect to x or ẋ.
Up to this point the solution techniques had been essentially geometric, but in a letter to Euler

in 1755, Lagrange described an analytical approach, based on perturbations or “variations” of the
optimal curve and using his “undetermined multipliers”, which led directly to Euler’s necessary
condition, now known as the “Euler–Lagrange equation”. Euler enthusiastically adopted this approach,
and renamed the subject “the calculus of variations”.
The Euler–Lagrange equation, based on �rst-order variations, yields only a stationarity condi-

tion, and it was Legendre in 1786 (see [33]), who studied the second variation and produced a
second-order necessary condition of optimality. Legendre derived it for the scalar case, but it was
later extended to the vector case by Clebsch and is now known as the Legendre–Clebsch condition

Lẋẋ(t; x(t); ẋ(t))¿0; t ∈ [a; b]; (3)

interpreted as requiring the matrix to be nonnegative de�nite along the optimal trajectory.
Meanwhile Hamilton [28], through his “principle of least action”, had been reformulating the

equations of mechanics as a variational principle. He introduced the function, now known as the
“Hamiltonian function”

H (t; y; x) = 〈y; ẋ〉 − L(t; x; ẋ); (4)

where

y(t; x; ẋ) = Lẋ(t; x; ẋ) (5)
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and in (4) ẋ is obtained as a function of (t; y; x) by solving Eq. (5). It follows immediately that

ẋ(t) = Hy(t; y(t); x(t)); ẏ(t) =−Hx(t; y(t); x(t)) (6)

if and only if the Euler–Lagrange Eq. (2) is satis�ed.
Much later Caratheodory [16] showed that (5) is indeed always solvable for ẋ in a neighbourhood

de�ned by weak variations (those for which perturbations �x and �ẋ are both small) of a regular
optimal trajectory (one for which the strict Legendre–Clebsch condition holds). Under these condi-
tions H is well de�ned and twice continuously di�erentiable, and Hyy(t; y; x) is positive de�nite if
and only if Lẋẋ(t; x; ẋ) is positive de�nite.
Hamilton expressed his principle in terms of a pair of partial di�erential equations, but in 1838

Jacobi showed that it could be more compactly written in terms of what is now known as the
Hamilton–Jacobi equation:

�t(t; x) + H (t; �x(t; x); x(t)) = 0: (7)

If �(t; x) is a twice continuously di�erentiable solution of this equation, then Eq. (6) de�nes a
regular optimal trajectory, provided that

(a) The strict Legendre–Clebsch condition (i.e. Hyy(t; y(t); x(t))¿ 0) is satis�ed.
(b) There are no points conjugate 1 to a along the trajectory (the Jacobi condition).

The next step was taken by Weierstrass [66], who considered strong variations (with �x small but
no restriction on �ẋ). He considered the special case where L(t; x; ẋ) is a positively homogeneous
function not depending explicitly on t, but with no loss of generality, since any L(t; x; ẋ) can be
transformed to this form. He introduced the “excess function”:

E(t; x; ẋ; u) = L(t; x; u)− L(t; x; ẋ)− (u− ẋ)Lẋ(t; x; ẋ) (8)

with x(t); ẋ(t) evaluated along the optimal trajectory.
Again Caratheodory [16] showed that E¿ 0 if and only if Hyy ¿ 0, thus con�rming the su�ciency

of the Hamilton–Jacobi solution even under strong variations.
Given the basic problem (1), it was natural to require x(·) to be di�erentiable on (a; b), and

to consider minimization over all such curves, but the development of measure theory allowed
the interpretation of (1) as a Lebesgue integral and the relaxation of x(·) to be absolutely con-
tinuous on (a; b), incidently providing a closure property for the family of functions J de�ned for
di�erent ẋ(·).
Caratheodory was well aware of the need to establish existence of optimal trajectories, and estab-

lished this through the rather strong su�cient conditions for the existence of the requisite solutions of
the Hamilton–Jacobi equation. However, the new viewpoint allowed Tonelli [61] to address directly
the problem of existence of optimal trajectories for problem (1). His proof required the convexity
of the function L(t; x; ·) for all t; x, and a growth condition of the type

|L(t; x; ẋ)|¿�:‖ẋ‖2 − � (9)

for some positive constants � and �.

1 Conjugacy is de�ned with respect to solutions of an associated partial di�erential equation.
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The next step was to consider the restriction of the class of admissible functions ẋ(·) to a subset
of Rn, speci�cally so that they also satisfy the set of equations

g(t; x(t); ẋ(t)) = 0; t ∈ [a; b]; (10)

which we would today recognize as a general set of di�erential–algebraic equations. However,
su�cient conditions were imposed to ensure that there exist functions ẋ(t) = f(t; x(t)) satisfying
(10) with su�cient degrees of freedom to ensure the existence of neighbouring functions also satis-
fying (10).
The resulting problem is known as the problem of Lagrange, since it was solved by the use of

Lagrange multipliers, and the complete solution can be found in [6,42].
This set the scene for parameterizing the degrees of freedom implicit in the Lagrange problem by

considering constraints of the form

ẋ(t) = f(t; x(t); u(t)); (11)

where the parameters u(t) or “controls” can be chosen at each t ∈ (a; b), possibly restricted to some
�xed subset 
⊂Rm, yielding the “optimal control problem”:
Find u(·) on (a; b) to minimize

J =
∫ b

a
L(t; x(t); ẋ(t)) dt

subject to

ẋ(t) = f(t; x(t); u(t)); t ∈ (a; b); u(t) ∈ 
⊂Rm; t ∈ (a; b); x(a) and x(b) given: (12)

The necessary conditions of optimality for this problem were established by Pontryagin [54] in
his famous “maximum principle”, which can be expressed in the form

ẋ(t) = H ′
y(t; y(t); x(t); ẋ(t)); ẏ(t) =−H ′

x(t; y(t); x(t); ẋ(t));

H ′(t; y(t); x(t); ẋ(t)) = max
u∈


H ′(t; y(t); x(t); u):
(13)

The function H ′ in (13) is not the classical Hamiltonian, but what Clarke [18] later termed the
“pseudo-Hamiltonian”, still de�ned by (4) but with ẋ as an independent argument instead of being
de�ned as a solution of (5). However, it is easy to see that the Hamilton equations (6) still hold
for the pseudo-Hamiltonian if and only if the Euler–Lagrange equation (2) holds, though it is now
more natural to express the Legendre–Clebsch condition in the form

H ′
ẋẋ(t; y(t); x(t); ẋ(t))60; t ∈ (a; b): (14)

In fact, Pontryagin et al. [54] considered several variants and extensions of the basic problem
(12), and from this point there was an increasing avalanche of publications.
Many workers tackled the problem of pure state inequalities along the trajectory of the form

g(t; x(t))¿0; t ∈ (a; b) (15)

and this work is well summarized in the recent review in [29], which also describes some open
questions remaining in this area. More recently, Sargent [56] has presented necessary conditions
of optimality for systems described by a mixed set of general di�erential–algebraic equations and
inequalities.
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Roxin [55] extended the classical Tonelli existence theorem to more general problems like (12),
and at about the same time Warga [65] showed that convexity of the “extended velocity set” could
be dropped by extending the class of admissible controls to include “relaxed” or chattering controls,
which allow rapid oscillation between two points of this set, thus e�ectively replacing the set by its
convex hull.
Recently, Bell et al. [4] extended Roxin’s result to in�nite horizon problems, using the “strong

optimality criterion”, in the ordinary sense that the integral in (12) remains �nite as b → ∞, and
is minimized by the optimal control. However, in many cases the integral can become in�nite, and
successive weakenings of the optimality criteria have been proposed.
Overtaking optimality:

lim sup
b→∞

[Jb(x̂; û)− Jb(x; u)]60:

Weakly overtaking optimality:

lim inf
b→∞

[Jb(x̂; û)− Jb(x; u)]60:
Finite optimality:

Jb(x̂; û)− Jb(x; u)60
for all (x; u) de�ned on (a; b) such that x(b) = x̂(b), for all b¿a.
All these optimality criteria are treated in some detail in the book in [17].
Two more general formulations of the problem have been much studied, mainly by Rockafellar,

Clarke, Loewen, Mordukhovich and Vinter:
(a) The di�erential inclusion problem:

Minimize J = l(x(a); x(b)) +
∫ b

a
L(t; x(t); ẋ(t)) dt

over absolutely continuous functions x(·) on (a; b) subject to:
ẋ(t) ∈ F(t; x(t)); t ∈ (a; b) a:e:; (x(a); x(b)) ∈ C ⊂R2n:

Here F is a multifunction, mapping [a; b]× Rn into subsets of Rn.
(b) The generalized Bolza problem:

Minimize J = l(x(a); x(b)) +
∫ b

a
L(t; x(t); ẋ(t)) dt

over all absolutely continuous functions x(·) on [a; b].
This deceptively simple form can subsume a wide variety of problems by allowing l and L to take

in�nite values and de�ning them appropriately, for example by setting l or L to in�nity whenever
their arguments fail to satisfy the constraints.
Study of these problems is accompanied by a relaxation of the di�erentiability conditions necessary

in the classical results, requiring the techniques of nonsmooth analysis. To state speci�c results would
take us too far into technicalities, and reference should be made to the textbooks in [18,19,64], and
to the survey paper in [20] for further details.
However, in two recent papers [36,37] Loewen and Rockafellar give the latest results on necessary

conditions for the generalized Bolza problem, �rst for �xed values of a and b, and in the later paper
for variable values.
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Another important issue has been the quest for conditions under which the su�cient conditions
obtained via the Hamilton–Jacobi equation are also necessary. Here Clarke and Vinter [21] have
shown in the context of the di�erential inclusion problem that the weakest condition is “local calm-
ness”, which is implied by “strong normality”, so that the existence of a generalized solution of
the Hamilton–Jacobi equation is both necessary and su�cient for optimality for all “reasonable”
problems.
Finally, Zeidan [67] has given a complete treatment of second-order necessary and su�cient

conditions for problem (12) with additional mixed state-control inequalities along the trajectory.
The paper includes some interesting insights on the concept of strong normality, and a connection
between the Jacobi condition and solutions of a Riccati equation.

3. Numerical solution techniques

Compared with the intricacies and subtleties of the theoretical development, the history of numer-
ical solution techniques is relatively straightforward. There are essentially three approaches to solve
these problems:

1. Solution of the two-point boundary value problem given by the necessary conditions, with solution
of the local Hamiltonian optimization problem at each time-step.

2. Complete discretization of the problem, converting it into a �nite-dimensional nonlinear program.
3. Finite parameterization of the control trajectory, again converting the problem into a nonlinear
program, but with the objective and constraint functions evaluated by integration of the system
equations, and their gradients with respect to the control parameters by integration of the adjoint
equations or sensitivity equations.

The early numerical methods tackled problems without control or end-point constraints, which of
course still yielded a two-point boundary value problem, with given initial values for the system
equations and given terminal values for the adjoint system. Bryson [12] and Breakwell [8] used
the “shooting method” for solving this problem, guessing the unknown initial values of the adjoint
variables, integrating both system and adjoint equations forward, and re-estimating the initial guesses
from residuals at the end-point.
Di�culties arose from the extreme sensitivity, even instability, of the solutions to the initial

guesses, which led to the “multiple-shooting” technique of Bulirsch and his co-workers [14,58],
who subdivided the time interval and re-estimated starting values for each subinterval from the
mismatches. An alternative approach, due to Miele and co-workers [43,44] was quasilinearization,
in which the system equations were linearized about the current trajectory and integrated forward
in time (along with the adjoint equations) for sets of initial conditions spanning the space of
the unknown initial values. A linear combination of these solutions was then computed to sat-
isfy the conditions at both initial and �nal times, and the system re-linearized about the new
trajectory.
At almost the same time as these early attempts, Kelley [31] proposed a gradient method, es-

sentially the simplest member the class of control parameterization techniques. He estimated control
values on a closely spaced �xed grid, and used this grid to integrate the system equations. He then
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integrated the adjoint system backwards from the known values at the �nal time and used the results
to obtain the gradients with respect to the control values and hence a correction to the estimated
control values.
Of course steepest descent methods have slow �nal convergence rate, and to speed this up several

workers used techniques based on second variations [9,30,32]. At the same time others used numerical
acceleration techniques from the parallel developments in nonlinear programming: Lasdon et al. [34]
incorporated conjugate gradients while Pollard and Sargent [53] used quasi-Newton approximations.
The latter authors also pointed out that the parameterization of the controls need not be tied to the
integration step and used piecewise-constant or piecewise-linear controls on a coarser grid, yielding
a much smaller optimization problem.
In all these methods, control and terminal constraints were at �rst dealt with using penalty func-

tions, but control constraints (usually simple bounds) were later treated by projection. A special
di�culty arises with end-point equality constraints, because there is then a corresponding number
of undetermined terminal values for the adjoint variables and of course the terminal x(b) values
from the integration do not necessarily satisfy the terminal equality constraints. Again, the prob-
lem was dealt with by penalty functions, but not very e�ectively. Obviously, the quasilinearization
approach provides a general technique for dealing with an arbitrary mix of initial and �nal equa-
tions and inequalities, and Bryson and Ho [11] describe a similar technique for generating a set
of adjoint systems, subsequently linearly combined to reduce the residuals of the end-point equality
constraints. They also describe “min-H” algorithms which determine the correction to the controls
by performing a local constrained optimization of the Hamiltonian at each time-step of the shooting
methods. In fact, this textbook [11] provides an excellent summary of the state of the art at the
end of the 1960s, except that it completely ignores the development of the complete discretization
approach.
Of course, nonlinear programming techniques were also in their infancy over this period, so

complete discretization was late on the scene. Early proposals were made in [41,52], and the state
of the art was probably summed up by the textbook of Canon et al. [15].
From this point, all three approaches had their followers and were improved using advances in

the enabling technologies of nonlinear programming and integration of ordinary di�erential equations
and di�erential–algebraic equations.
Early methods of complete discretization used �nite di�erences, but Tsang et al. [62] introduced

collocation methods, while Biegler and co-workers [22,38,60] developed this approach, showing how
to incorporate error measures as constraints to decide on the number and placing of additional nodes
in the “collocation on �nite elements” method. A parallel development was carried out in [2,5] in
the aerospace arena, and recently, Dennis et al. [23] described an interior-point SQP method using
a trust-region algorithm.
Sargent and co-workers [57,49,63,51] developed the control parameterization approach, extending

it to deal with multistage systems, high-index DAEs and state inequalities, while Bock and his school
[7,35] have similarly developed a hybrid approach, with some elements of all three approaches. He
starts with a control parameterization, then generates a �nite-dimensional nonlinear programme by
integrating the system independently over each control subinterval, as in multiple shooting.
Bulirsch and his school [14,58,50,13] and Maurer [39,40,1] have continued to develop the mul-

tiple shooting approach to solving the two-point boundary value problem, particularly in rela-
tion to dealing with inequality state constraints along the trajectory, while Miele and co-workers
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have pursued the quasilinearization approach [43–47] linking it with multiple shooting (which they
call the “multipoint” approach). Dixon and Bartholomew-Biggs [24] proposed an adjoint-control
transformation to help with the sensitivity of the shooting technique, and recently, Fraser-Andrews
[26] has combined this with multiple shooting.
E�orts to deal with state inequalities along the trajectory were hampered in the early days by

inadequate understanding of the theory, but it is still a formidable problem because of the possibility
of discontinuities in the adjoint variables at the “junction-points”, where the inequalities become
active or cease to be active. The complete discretization approach appears to deal with the problem,
since these constraints become ordinary nonlinear constraints of the nonlinear programme, but the
discretization destroys the hidden additional constraints arising from di�erentiations of the original
constraints for high-index problems, so a �ne discretization is necessary to be sure of satisfying them.
Pantelides et al. [51] achieved some success in the control parameterization approach by converting
these constraints into end-point constraints by integrating the violations, coupled with a �nite set
of interior-point constraints, but strictly the problem is still nonsmooth, and the two-point boundary
value approach remains the only safe method.
Maurer [39,40,1] has pioneered the judicious use of some pre-analysis of the problem to determine

the structure of junction-points, coupled with multiple shooting, and the power of this approach is
well demonstrated by the successful solution of the di�cult “wind-shear” problem by Bulirsch et al.
[50]. However, such solutions require real expertise.
Very recently, Bell and Sargent [3] have sought to avoid the di�culties by conversion of the

inequalities to equalities using slack variables and elimination of the resulting bounds by an interior-
point approach, converting the optimal control problem into a smooth two-point boundary problem
for a DAE system. Preliminary results indicate surprising success in obtaining close approximation
of this smooth problem to the original nonsmooth one.
Finally, although the emphasis in this survey has been on optimal control for general nonlin-

ear systems, it would not be complete without a mention of the spectacular successes of the
use of discrete-time linear models with quadratic objective function in on-line control applica-
tions. This formulation particularly suits the process industries, and requires the solution of a small
�nite-dimensional quadratic programme on-line, which can easily be solved within the requisite time.
Fortunately, a comprehensive review of the relevant issues has recently been published [48], to which
the reader is referred for further details.

4. Concluding comments

As already noted, this survey has been limited to optimal control of general nonlinear systems,
essentially described by ordinary di�erential equations or di�erential–algebraic equations. Although
there has been a recent upsurge of interest in control of distributed-parameter systems, it would widen
the scope too far to attempt to include this area. Similarly, little has been said of the extensive work
on linear systems, and nothing at all on the e�ects of uncertainty. Each of these would require a
separate review of at least the same length. Even so the scope is still enormous and many facets
have been left unexplored. It is virtually impossible to keep abreast of all developments, and the
selection of topics must inevitably reect a personal viewpoint.
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