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We prove the following relation between regressive and classical Ramsey

numbers Rn
regðnþ 2Þ ¼ Rn�1ðnÞ þ 2: This is used to compute R3

regð5Þ ¼ 8; R4
reg

ð6Þ ¼ 15; and R5
regð7Þ536: We prove that R2

xþkð4Þ42kþ1ð3 þ kÞ � ðkþ 1Þ; and use

this to compute R2
regð5Þ ¼ 15: Finally, we provide the bounds 1954R2

regð6Þ4
5 � 242 þ 239 � 2: # 2002 Elsevier Science (USA)
0. INTRODUCTION

This paper is concerned with the topic of regressive functions and sets
which are min-homogeneous for those functions. Let ½n� denote the first
n positive integers: ½n� ¼ f1; 2; . . . ; ng: If X is a set of positive integers, let
½X �k denote the collection of subsets of X having cardinality k: We write ½n�k
for the collection of cardinality k subsets of ½n�: In what follows, elements of
a set are always listed in order.

Let X be a set of positive integers. A function f : ½X �k ! N to the natural
numbers is said to be regressive if f ðsÞ5minðsÞ for all s 2 ½X �k: We write
f ðs1; s2Þ for f ðfs1; s2gÞ with the assumption that s15s2; and we extend
this convention in a natural way for k > 2: If f : ½n�k ! N is regressive,
a subset H 
 ½n�k is said to be min-homogeneous for f if for all s; t 2 ½H�k;
minðsÞ ¼ minðtÞ implies f ðsÞ ¼ f ðtÞ:

For fixed positive integers k and n; let Rn
regðkÞ denote the least positive

integer m such that for any regressive function f : ½m�n ! N; there exists a set
H 
 ½m�; such that jHj5k and H is min-homogeneous for f : Kanamori and
McAloon [3] prove that for positive integers k and n; there is a such a
number, and hence there is a least such number. It is not hard to see that
R2

regð3Þ ¼ 3 and R2
regð4Þ ¼ 5:
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0097-3165/02 $35.00

# 2002 Elsevier Science (USA)

All rights reserved.

https://core.ac.uk/display/82117327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NOTE190
In [4], Kojman and Shelah give an elementary proof of a fact proved
by Kanamori and McAloon [3], that regressive Ramsey numbers are
Ackermannian. Kojman and Shelah prove that the function nðkÞ ¼
R2

regðkÞ eventually dominates every primitive recursive function. They
also state as an open problem the computation of small regressive
Ramsey numbers.

In this paper, we prove a relation between regressive Ramsey numbers
and classical two-color Ramsey numbers and use this relation to compute
several regressive Ramsey numbers. We also compute some bounds on more
general g-regressive Ramsey numbers and use these bounds in the
computation R2

regð5Þ ¼ 15:

1. RN
REGðN þ 2Þ

Let RkðlÞ denote the classical 2-color Ramsey number. That is, RkðlÞ is the
least positive integer n such that for any 2-coloring f : ½n�k ! f0; 1g there
exists a set T 
 ½n� with jT j ¼ l and f constant on ½T �k: Such a set T is called
monochromatic or homogeneous for f.

In the following theorem, we relate classical Ramsey numbers to
regressive Ramsey numbers.

Theorem 1.1. Rn
regðnþ 2Þ ¼ Rn�1ðnÞ þ 2:

Proof. Let r ¼ Rn�1ðnÞ þ 2 and suppose f : ½r�n ! N is regressive. Let
A ¼ f3; . . . ; rg and define a two-coloring g on ½A�n�1 by gðxÞ ¼ f ð2; xÞ: Here
we are writing f ða; xÞ for f ða; x1; x2; . . . ; xn�1Þ: Since jAj ¼ Rn�1ðnÞ; there
exists a set T 
 A with jT j ¼ n and ½T �n�1 monochromatic for g: Defining
H ¼ f1; 2g [ T ; we see that f ð1; xÞ ¼ 0 for all x 2 fH � f1ggn�1; and
f ð2; xÞ ¼ gðxÞ is constant for x 2 fH � f1; 2ggn�1: It follows that H is
min-homogeneous for f and has cardinality nþ 2:

On the other hand, since jf3; 4; . . . ; r� 1gj ¼ Rn�1ðnÞ � 1; there exists a
Ramsey two-coloring g : f3; 4; . . . ; r� 1gn�1 ! f0; 1g; i.e. f3; 4; . . . ; r� 1g
has no cardinality n subset which is monochromatic for g: If x ¼ fx1;
x2; . . . ; xng 2 ½1; r� 1�n; write x0 ¼ fx2; x3; . . . ; xng 2 ½2; r� 1�n�1: Now
define

f ðxÞ ¼
0 if minðxÞ ¼ 1;

gðx0Þ if minðxÞ52:

8<
: ð1Þ

We show that f has no min-homogeneous set of cardinality nþ 2; hence
Rn

regðnþ 2Þ > Rn�1ðnÞ þ 1: Suppose H ¼ fh1; h2; h3; . . . ; hnþ2g 
 ½1; r� 1�
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with jHj ¼ nþ 2: Let H 0 ¼ fh3; h4; . . . ; hnþ2g 
 ½3; r� 1�; so jH 0j ¼ n: If H
were min-homogeneous for f ; then f ðh2; *Þ ¼ gð*Þ would be constant on
½H 0�n�1; i.e. H 0 would be monochromatic for g: This contradicts the choice
of g as a Ramsey coloring of ½3; r� 1�n�1; so H cannot be min-homogeneous
for f : ]

It is worth remarking that coloring f defined above is a regressive two-
coloring.

It is known that R2ð3Þ ¼ 6; R3ð4Þ ¼ 13 (see [2, 5]), and R4ð5Þ534
(unpublished, see [7]), so we have the following:

Corollary 1.1. R3
regð5Þ ¼ 8; R4

regð6Þ ¼ 15; and R5
regð7Þ536:

2. R2
REGð5Þ

In this section we build up to the computation of R2
regð5Þ: If g : N ! N

and f : ½m�n ! N; f is said to be g-regressive (as defined in [3]) if f ðxÞ5g
ðminðxÞÞ for all x 2 ½m�n: Here we encounter only the situation in which
gðxÞ ¼ xþ k for some fixed k: It is not hard to see that the regressive
Ramsey numbers Rn

xþkðlÞ always exist.

Lemma 2.1. For all l53 and n52; Rn
regðlÞ ¼ Rn

xþ1ðl � 1Þ þ 1:

Proof. Fix a positive integer r: For any function f : ½r�n ! N; define
f ð1Þ : ½r� 1�n ! N as f ð1Þðx1; x2 . . . ; xnÞ ¼ f ðx1 þ 1; x2 þ 1; . . . ; xn þ 1Þ:

Clearly, f ðxÞ5minðxÞ for all x 2 ½2; r�n if and only if f ð1ÞðxÞ5minðxÞ þ 1
for all x 2 ½1; r� 1�n: Thus f regressive implies f ð1Þ is ðxþ 1Þ-regressive, and
f ð1Þ ðxþ 1Þ-regressive implies f is regressive provided also that f ðxÞ ¼ 0
when minðxÞ ¼ 1:

For any set H � ½r�; define Hð1Þ ¼ fx� 1jx 2 H; x=1g: Note that Hð1Þ

� ½r� 1� and jHð1Þj5jHj � 1:
Assuming f is regressive, if x; y 2 ½H�n with minðxÞ ¼ minðyÞ=1; f ðxÞ ¼

f ðyÞ if and only if f ð1ÞðxÞ ¼ f ð1ÞðyÞ: It follows immediately that H is
min-homogeneous for f if and only if Hð1Þ is ðxþ 1Þ min-homogeneous
for f ð1Þ: ]

Next, we provide an exponential upper bound for the numbers R2
xþkð4Þ;

k 2 N:

Lemma 2.2. For k 2 N; R2
xþkð4Þ42kþ1ð3 þ kÞ � ðkþ 1Þ:
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Proof. Given k 2 N; let n ¼ 2kþ1ð3 þ kÞ � ðkþ 1Þ: For i 2 ½0; k�; define
Ai ¼ fx 2 ½2; n�jf ð1; xÞ ¼ ig; and ai ¼ minðAiÞ: Note that ½2; n� is a disjoint
union of the Ai’s. By re-ordering, we may assume ai5aj whenever i5j;
i.e. the ai’s appear in order. We claim that for some i 2 ½0; k�; jAij >
2ið3 þ kÞ: If not, then jAij42ið3 þ kÞ for each i; so j

S
i Aij4ð3 þ kÞ�Pk

i¼0 2i ¼ ð2kþ1 � 1Þð3 þ kÞ: But j½2; n�j ¼ n� 1 ¼ ð2kþ1 � 1Þð3 þ kÞ þ 1;
contradicting the fact that ½2; n� ¼

S
i Ai:

Now let l be the least value such that jAlj > 2lð3 þ kÞ: Since jAij42ið3 þ
kÞ for each i 2 ½0; l � 1�; we have al4jf1g [ ð

Sl�1
i¼0 AiÞj þ 142 þ ð3 þ kÞ

ð2l � 1Þ ¼ 2lð3 þ kÞ � k� 1: Write A0
l ¼ Al � falg: Since f is ðxþ kÞ-

regressive, f ðal; *Þ maps A0
l to ½0; al � 1 þ k�: But j½0; al � 1 þ k�j ¼

al þ k42lð3 þ kÞ � 1 and jA0
lj52lð3 þ kÞ implies f ðal ; *Þ cannot be injective

on A0
l: There must exist b; c 2 A0

l with f ðal; bÞ ¼ f ðal; cÞ; so f1; al; b; cg is
min-homogeneous for f : ]

We use what was proved above to compute R2
regð5Þ:

Theorem 2.1. R2
regð5Þ ¼ 15:

Proof. By Lemmas 2.2 and 2.1, R2
regð5Þ ¼ R2

xþ1ð4Þ þ 1414 þ 1 ¼ 15: To
complete the proof we show that R2

regð5Þ > 14 by constructing a regressive
map f : ½14�2 ! N having no min-homogeneous set of cardinality 5. Define
the regressive function f : ½14�2 ! N by

f ði; jÞ ¼

f ð1; jÞ ¼ 0 for j 2 ½2; 14�;

f ð2; jÞ ¼ 0 for j 2 ½3; 6�;

f ð2; jÞ ¼ 1 for j 2 ½7; 14�;

f ði; jÞ ¼ j � i ðmod iÞ otherwise:

8>>>>><
>>>>>:

ð2Þ

First note that if H is min-homogeneous for f ; then so is f1g [H; so
we may assume 1 2 H: Write H ¼ f1; a; x; y; zg � ½1; 14�: f is defined so that
for i57 the values f ði; xÞ; x 2 ½i þ 1; 14� are all distinct. That is,
f ðx; yÞ ¼ f ðx; zÞ implies x46: Moreover, because of the periodicity of
the functions f ði; *Þ for i53; there are no triples x; y; z with f ða; xÞ ¼
f ða; yÞ ¼ f ða; zÞ except for a44: We may now assume 24a44 and
34x46: Consider a set of the form H ¼ f1; 2; x; y; zg: Min-homo-
geneity would require f ð2; xÞ ¼ f ð2; yÞ ¼ f ð2; zÞ so either x; y; z57;
in which case f ðx; yÞ=f ðx; zÞ; or fx; y; zg � ½3; 6�: In the latter case
x ¼ 3 or x ¼ 4; but the definition of f admits no pairs fy; zg � ½4; 6� with
f ð3; yÞ ¼ f ð3; zÞ or f ð4; yÞ ¼ f ð4; zÞ:

Now consider a set of the form H ¼ f1; 3; x; y; zg: If H is min-
homogeneous then we have a monochromatic triple f ð3; xÞ ¼ f ð3; yÞ ¼
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f ð3; zÞ: Because the function f ð3; *Þ cycles with period 3; this occurs only if
x � y � z ðmod 3Þ: Moreover, f ðx; yÞ ¼ f ðx; zÞ would require that y � z
ðmod xÞ: Since 4 and 5 are prime to 3; x ¼ 4 or x ¼ 5 would require y �
z ðmod 12Þ or y � z ðmod 15Þ; but this cannot happen for y; z 2 ½5; 14�: In
case x ¼ 6 the ðmod 3Þ requirement forces y ¼ 9 and z ¼ 12; but f ð6; 9Þ=
f ð6; 12Þ: We have eliminated all possibility of a min-homogeneous set of the
form f1; 3; x; y; zg:

The case H ¼ f1; 4; x; y; zg is dismissed in the same way, but more
quickly. Here x ¼ 5 or x ¼ 6; and the periodicity of the functions f ð5; *Þ
and f ð6; *Þ would require that y and z are equivalent modulo 20 or 12;
which cannot happen for y; z 2 ½6; 14�: ]

3. A BOUND FOR R2
REGð6Þ

In this section, we extend the ideas from Lemma 2.1 to establish a bound
for R2

regð6Þ: We have

Lemma 3.1. R2
regð6Þ45 � 242 þ 239 � 1:

Proof. By Lemma 2.1, this follows immediately after we have
proved that R2

xþ1ð5Þ45 � 242 þ 239 � 2: For any ðxþ 1Þ-regressive function
f : ½1; n�2 ! N; define Ai ¼ fx 2 ½2; n�j f ð1; xÞ ¼ ig and ai ¼ minðAiÞ for
i ¼ 0; 1: By re-ordering if necessary, we may assume a05a1; and so
a0 ¼ 2:

Suppose that a1 > 38; so that f ð1; xÞ ¼ 0 for x 2 ½2; 38�: For j 2 ½0; 2�;
define A0j ¼ fx 2 ½3; 38�j f ð2; xÞ ¼ jg: Let s be the least value such that
jA0sj > 5 � 2s: Such an s must exist, for if not, 36 ¼ j½3; 38�j ¼ jA00 [ A01 [
A02j45 þ 10 þ 20 ¼ 35:

We have a0s ¼ minðA0sÞ42þð
Ps�1

j¼0 jA0j jÞþ143þ5
Ps�1

j¼0 2s ¼ 5 � 2s � 2:
Write A0

0s ¼ A0s � fa0sg: Since f is ðxþ 1Þ-regressive, f ða0s; *Þ maps A0
0s

to ½0; a0s�: But now j½0; a0s�j45 � 2s � 1 and jA0
0sj55 � 2s; so f ða0s; *Þ cannot

be injective on A0
0s: That is, there exist b; c 2 A0

0s with f ða0s; bÞ ¼ f ða0s; cÞ:
The set f1; 2; a0s; b; cg is then min-homogeneous for f :

Now suppose a1438 and consider the collection of sets of the form
Aij ¼ fx 2 ½3; n�jf ð1; xÞ ¼ i; f ðai; xÞ ¼ jg; where for each i 2 ½0; 1�; j 2 ½0; ai�:
Let q be the number of such sets which are non-empty. Given the
assumptions on a0 and a1; we have q4ða0 þ 1Þ þ ða1 þ 1Þ442: Rename the
Aij’s as Cs’s indexed by increasing minimum value, i.e. so that cl ¼ minðClÞ
for l 2 ½0; q� 1�; and for s; t 2 ½0; q� 1�; s5t implies cs5ct: Note that a1 =2
Cl for any l: Since a15a1j for all j; and since A0j is defined only for
j ¼ 0; 1; 2; there is a least 04k43 with a15ck: Ultimately, our bound will
be 5 � 2q þ 2q�k � 2: Using reasoning similar to the a1 > 38 case above, it is
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not hard to see that k ¼ 0; 1; 2; 3 (resp.) limits a1 to 3; 8; 18 or 38 (resp.), or
yields a min-homogeneous set of cardinality 5: All cases follow from the
worst case: k ¼ 3 and q ¼ 38:

Now suppose f : ½1; n� ! N is regressive and with n ¼ 5 � 242 þ 239 � 2: We
claim there is some s5k with jCsj > 5 � 2s or some s5k with jCsj >
5 � 2s þ 2s�k: If not, n ¼ j½1; n�j ¼ jf1; a0; a1gj þ

Pk�1
i¼0 jCsj þ

Pq
i¼k jCsj4

3 þ
Pk�1

i¼0 5 � 2i þ
Pq

i¼k ð5 � 2i þ 2i�kÞ ¼ 3 þ 5ð2k � 1Þ þ 5 � 2kð2q�kþ1 � 1Þ þ
ð2q�kþ1 � 1Þ ¼ 5 � 2qþ1 þ 2q�kþ1 � 35n: Assume s is the least value satisfy-
ing this claim.

If s5k; cs5a1; so Cs is of the form A0i for some i: In the worst case, the
value cs ¼ minðCsÞ may be preceded by 1; a0; and all the elements of earlier
Ci’s: That is cs4jf1; a0gj þ

Ps�1
i¼0 jCij þ 143 þ

Ps�1
i¼0 5 � 2i ¼ 5 � 2s � 2:

Write C0
s ¼ Cs � fcsg: We have j½0; cs�j45 � 22 � 1 and since jC0

sj55 � 2s;
the map f ðcs; *Þ : C0

s ! ½0; cs� cannot be injective. There exist d; e 2 C0
s with

f ðcs; dÞ ¼ f ðcs; eÞ and it follows that f1; a0; cs; d; eg ¼ f1; 2; cs; d; eg is min-
homogeneous.

Similarly, if s5k; then a15cs and cs ¼ 43 þ
Pk�1

i¼0 5 � 2i þ
Ps�1

i¼k ð5 � 2i þ
2i�kÞ þ 1 ¼ 5 � 2s þ 2s�k � 2: As above, j½0; cs�j45 � 2s þ 2s�k � 1 and jC0

sj5
5 � 2s � 2s�k; so the map f ðcs; *Þ : C0

s ! ½0; cs� cannot be injective. There
must exist d; e 2 C0

s with f ðcs; dÞ ¼ f ðcs; eÞ and f1; ai; cs; d; eg is min-
homogeneous, where i ¼ f ð1; csÞ: ]

Using techniques similar to those described in [1, 6], the author was able
to construct a regressive function f : ½1; 195�2 ! N which has no min-
homogeneous 6-set. We state without further proof:

Proposition 3.1. 1954R2
regð6Þ45 � 242 þ 239 � 1:
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