
Theoretical
Computer Science

Theoretical Computer Science 146 (1995) 341-349

Note

Late and early semantics coincide for testing

Anna Ingi>lfsdottir*

Institute for Electronic Systems, Department of Mathematics and Computer Science, Aalborg University,
Aalborg, Denmark

Received February 1994
Communicated by A.R. Meyer

Abstract

Late and early operational semantics are given for CCS. Late and early testing are defined
and it is shown that the derived preorders coincide, contrary to what happens for bisimulation-

like equivalences.

1. Introduction

In the pioneering work of Milner [S] on CCS and Hoare [3] on CSP, processes are
allowed to exchange data in communications. In these original calculi the value-
passing calculus is interpreted in terms of the pure calculus in which communication is
pure synchronization. In CCS a prefixing with an input action, G(x) .p, is interpreted as
a nondeterministic choice between pure terms of the form &.p[v/x], where u ranges
over the set of possible values, which in many cases is infinite. In the structural
operational semantics given in [S] this is modelled by the infinite set of axioms

VVE Val.C(x).p% P Cvlxl .

Correspondingly, the semantics for output prefixing is given by

c(u).q s q

and the semantic rule for communication is

p -% p’, 4% 4’

PI4 h P’l4’ .

Intuitively, these rules may be interpreted as follows.

* E-mail: annai@iesd.auc.dk.

0304-3975/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)00304-l

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82117167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

342 A. Ingdlfdbttir / Theoretical Computer Science 146 (1995) 341-349

Input: The process E(x).p tells that it is ready to input any value, UE Val, on channel,
c. At the same time it tells that by inputting the value u it evolves to the process p[u/x].

Output: The process c(u).q proposes to output a value u on channel c and thereby
evolve to the process q.

Communication: The two processes agree on communicating, i.e. sending and
receiving the value u on the channel c. In doing so they change state by an internal move.

In this approach, two processes that synchronize are both supposed to know each
other’s channel and value, i.e. the data variable is instantiated by the potential input
values already when the process reports the willingness or ability to communicate on
the channel c. In more recent work on the n-calculus [7], this semantic approach is
referred to as early semantics due to the early instantiation of the data variables as
described above. Its counterpart, the late semantics, is also introduced in the same
reference. Here the idea is that the processes only synchronize on the channel name
and that the inputting process has to accept whatever value the outputting process has
to offer. The result of the reception of the value is delayed until the process has
received the value. The inputting process reports the willingness to communicate on
a channel c by performing an action of the form C, and thereby evolves to a function
which waits for the value the output counterpart in the communication provides. In
order to model this semantic approach the syntax is extended with lambda abstrac-
tions on data variables of process expressions to model the inputting processes.
Symmetrically, the result of reporting the willingness to output an uninterpreted value
on the channel c is modelled by the action c. By performing this action the process
evolves to a pair consisting of a data expression and a process expression. In [6] these
new syntactic constructions have been termed abstractions and concretions. The rules
for input and output actions and that for communication now have the form

input: E(x).p 5 2x.p

output: cwq s hq)

communication:
p f, Ix.p’, 4 s bq’)

PI4 s P’CUlXlld

This definition naturally leads to an extension of the standard preorders and
equivalences defined on labeled transition systems such as those based on the notion
of simulation, bisimulation [9], testing [l], etc.

In this note I will try to draw some comparison between the late and early
semantics. This comparison will be based on the original value-passing version of
Milner’s CCS but the syntax has to be extended to cater for the abstractions and
concretions of the late approach. The main contribution of the note is to define a late
and early testing and show that the derived preorders coincide. The motivation for
carrying out this proof comes from results by M. Hennessy and myself in 1989 and
reported in [2]. In this reference an early semantics and a corresponding testing

A. Ingdlfsdbttir 1 Theoretical Computer Science 146 (199s) 341-349 343

equivalence are presented for a CCS-like language with values. Also a denotational
model is defined and proved to be fully abstract with respect to the testing semantics.
Surprisingly, this model turns out to have some typical late approach characteristics;
input actions are modelled by actions of the form C and the result of performing the
input action by a function which takes a value as an input and delivers an element in
the model, i.e. a process. This, combined with the full abstractness result, suggests that
the late and early approaches coincide for the testing based semantics. In this note
I will give a formal operationally based proof of the conclusion derived from this
informal observation.

The structure of the note is as follows: In Section 2, we give the syntax for our
example language. The definitions of the operational semantics, both the early and the
late one, is the content of Section 3. In Section 4, I give a definition of the late and early
testing and show that the derived preorders and equivalences coincide. Finally, in
Section 5, I give some concluding remarks.

2. Syntax for CCS with values

The example language we use in this note is a suitable sublanguage of the original
version of CCS with values introduced in [5]. (As we are mainly interested in
communication between processes we omit the renaming and restriction operators.)
We refer to this language as Value CCS (VCCS). We assume some predefined syntactic
category of expressions Exp ranged over by e, including a set of variable symbols Var
ranged over by x, and a nonempty set of value symbols Vu/ ranged over by v. We will
assume the standard notion of closed expression and substitution. We will also
assume a separate syntactic category of boolean expressions B&p, ranged over by be.

Here the set of boolean variables will be denoted by B Var and ranged over by bx and
the only values are the constants true (T) andfalse (F). Of course, we would expect the
language for boolean expressions to use that for expressions in some suitable way.

The set of allowed operators in the language is NIL of arity 0 and + and 1 of arity
two. We also need a predefined set of process names PN ranged over by upper-case
letters such as P, Q, etc. Instead of the notation C from [S] for input on a channel we
use c? and to indicate that the channel is used for output we write c!. As usual
z denotes an internal or silent move. We use be -+ t,, t2 for the conditional choice
between tl and tZ. The set of (process) terms, Term, is then defined by the following
BNF-definition:

t ::= NIL I tl + t2 I tl I t2 1 P I Pre.tl I recP.t, I be -+ tl,tz

p-e ::= c!e I c?x) z

Closed and open process terms and substitution by a process term have the usual
meaning. Value-variables may also be bound in process expressions by means of the
construct c?x. _, giving rise to free and bound value variables. Substitution of
value-expression for value variables is also extended to process expressions in the

344 A. IngbSfsddttir / Theoretical Compurer Science 146 (1995) 341-349

obvious way. Proc is the set of closed process terms, i.e. process terms without
occurrence of free data or process variables.

3. Early and late operational semantics for VCCS

The language VCCS is given an early operational semantics in the standard way
using a labeled transition system, (Proc, Act, +E). (The subscript E on the transition
relation refers to the early semantic approach.) The set Act consists of all input events
of the form c?v and all output events of the form c! v where CE Ghan and VE Vul. We let
a range over Act whereas p ranges over Act, = Act u {z}. The relations %,, for
p~Act,, are defined to be the least relations which satisfy the rules given in Fig. 1.
These rules presuppose an evaluation mechanism for closed expressions: [ej gives the
value in Vul of the expression e and [be] returns either T or F. The complementation

-
function- : Act + Act is defined by c! v = c?v and c?o = c!v.

In order to define the late semantics we extend the syntax with the auxiliary
syntactic categories Abs to denote A-abstractions of processes over values and Con to
denote the output concretions, i.e. pairs consisting of a value and a process. Thus, we

add to the syntax the constructions

ubs ::= 2x.t

con ::= (e, t)

1. c?x.p zE p[v/x] for any VE val
c!e.p-Ep

r.P >E P

2. p GE p’ implies p + q SE p’

4+P%P’

3. p SE p’ implies p 1 q 4, p’ I q

4lP %dP’

4. [beI = T, p ItsE p’ implies (be --f p, q) sE p’

[be] = F, q SE q’ implies (be + p, q) SE q’

5 t[recP.t/P] SEq

r&?cP.t If+E q

6. p & p’, q 4, q’ implies p I q I*E p’ I q’

Fig. 1. Early operational semantics for VCCS.

A. Ingdlfsddttir / Theoretical Computer Science 146 (1995) 341-349 345

We call the extended language Late Value CCS (VCCEQ. We let t, u, etc., range over
Term, absl, abs2, etc., over Abs, con,, con2, etc., over Con and I$, $, etc., over

Abs v Con v Term.
As before we give the operational semantics by means of a transition relation. In

this new approach the visible actions are of the form c? indicating that the process is
waiting for an unspecified input on the channel c and c! indicating that the process is
offering a value on the channel c. By performing these actions in the first case the
process moves to an abstraction which is ready to receive a value and return a process
and in the second case to a concretion, a pair consisting of the value offered and the
resulting process. If we call this new transition relation +L, this may be described
formally by defining

c?x.t SL i,x.t

c!e.p sL(u,p) where o = [ej

The communication rule now takes the form

p s L abs, 4 s L (44)

PI4 4 L abs(u) 1 q’

where the function application is defined in the standard way by (Ax. t)(u) = t[o/x].
All the other transition rules remain unchanged. Here it should be pointed out that
the transition relation is no more between processes but involves other types. There-
fore, we are not able to model the operational semantics by means of the usual LTS
but use instead applicative LTS (ALTS), which is defined in [4].

4. Early and late testing

In this subsection we apply the general theory of testing from [l] to VCCS. A test

e is any process from VCCS which may use in addition to the channels in Chan
a special channel w for reporting success. A computation is a maximal sequence of the
form

This computation is said to be successful if there exists some n > 0 such that
e, J% for some value u. We say that pmay e if there is a successful computation
which starts in p) e and that pm e if every computation starting in p 1 e is successful.

Then P C, may q if for every test e,

and

pmaye implies qmaye

p &mUSt q if for every test e,

pmuste implies qme.

346 A. Ingblfdbttir / Theoretical Computer Science 146 (1995) 341-349

The derived equivalences are defined in the usual way: - A/M =
,c,+, n =M1, M~{may, must}. The reader is referred to [l] for the motivation of these

definitio&
This definition of testing also applies for the late semantics. Now the computations

are with respect to the late operational semantics and have the form

The tests report success by e 1 . The derived preorders, zmay and C,ntust, are defined
in the same way as for the early case. Remarkably, unlike f& bisimulation, it turns out
that the late testing preorders coincide with the early ones as stated in the following
theorem.

Theorem 4.1. Late and early testing semantics coincide, i.e. For all p, qE VCCS,

P c,~ q ifand only if P sM q

for M = may, must.

Theorem 4.1 follows directly from the following lemma which is proved for a richer
language, the rr-calculus, in [S].

Lemma 4.2.
(i) For all p, q and c

1. p s:L abs implies p ?v,E abs(u)for all UE Vul,

2. p %E pv implies pv = abs(u) where p % abs.
(ii) For all p, q, c and v, p AL (u, q) if and only if p !v*E q.

(iii) For all p and q,p LE q if and only if p & q.

Proof. May be proved by a simple induction on the length of the derivation tree for
the transitions. 0

Proof of Theorem 4.1. By Lemma 4.2 (iii), we have that

elp % er Ipi &I_ ..*

if and only if

elp &e, Ip1 SE e.-.

Further, by Lemma 4.2(ii), e, *E for some v if and only if e, 1,. The theorem
follows easily from this observation. 0

We will end this section by giving an example to compare the testing equivalence to
those based on bisimulation.

Example 4.3. In this example we use the convention p for p. NIL. Let c, cl and c2 be
channel names where cl # cz. Furthermore, let the processes p, p1,p2 and q, ql, q2 be

A. Ingdlfsdbttir / Theoretical Computer Science 146 (1995) 341-349 341

defined by

pi = c?x.x < 5 --) c,!x,c,!x,

p2 = c?x.x < 5 --) cz!x,c,!x,

41 = c?x.c,!x, q2 = c?x.c,!x,

P = Pl + P2, 4 = 41 + q2.

Obviously, p -r q as they have isomorphic transition graphs with respect to the early
approach. It is also easy to see that p +,_ q.

Now assume that e is a test and consider the computations starting in e Ip on one
hand and e 1 q on the other. As the late and the early computations are completely
identical, we may assume that we are dealing with the early computations. As p and
q have isomorphic transition graphs then e(p and el q must have isomorphic z-
transition graphs too. Further, the testing parts, e, and e; of two isomorphic states,
e, 1 pn and e; I q., are syntactically identical. This proves that p zM q for both M = may

and M = must.

Example 4.3 suggests that the testing semantics reflects the early approach rather
than the late one. On the other hand, as pointed out in the Introduction, the result in
[2] suggests the opposite; the input prefixing is interpreted as a function from values
to processes, prefixed with elements of the form c?. In fact, this is not a contradiction
at all as I will explain in the Conclusion.

5. Conclusion

The main contribution of this note is to define late and early testing and show that
the derived equivalences coincide. I will finish this note by giving a few comments on
this result.

The comparison of the late and the early bisimulation in [7] is based on a concrete
example language. This result can easily be extended to a more general class of
languages. Obviously, the late bisimulation equivalence is stronger than the early one
for any language. Furthermore, the distinguishing power of Example 4.3 does not
depend on the exact syntax of the language but is only due to the interplay between
the nondeterministic choice between inputting processes and the ability to test and
branch on inputted values. Therefore, we may conclude that for any language which
has the two mentioned facilities, i.e. is able to mix nondeterminism between inputting
processes and testing and branching on inputted values, the late bisimulation equival-
nece will be strictly finer than the early one. On the other hand, if the language does
not have this property, the late and early bisimulation coincide. An example of
a language which does not have nondeterministic choice between outputting pro-
cesses is the broadcasting calculus CBS [lo]; for this language the late and early
bisimulation semantics coincide.

348 A. Ingdlfsdbttir / Theoretical Computer Science 146 (1995) 341-349

Also for the testing semantics some general conclusions can be drawn. Theorem 4.1
shows that the late and early semantics coincide for testing. The proof of the theorem
does not depend on the concrete language but on the fact that the r-moves coincide
for both approaches and the fact that p !D*n for some value u if and only if p sL.

Here branching by conditional choice and nondeterminism do not seem to have the
same influence as for bisimulation.

As already pointed out, then Example 4.3 suggests that the testing semantics reflects
the early approach rather than the late one. On the other hand, the result in [2]
supports an opposite conclusion; the process c?x.p is interpreted as
C?_,&.A~p[u/X]~, where A refers to the model, i.e. as a prefixing by c?~ of the
function k.A[p[v/x]J At first glance this looks like a contradiction but turns out to
have a natural explanation; testing eliminates the nondeterministic choice between
processes which output on the same channel or more precisely pushes the choice
under the prefixing so it becomes a nondeterministic choice between the results of the
inputting actions. In [2] this is reflected by the sound equation

c?x.p + c?x.q = c?x.(p @ q),

where 0 denotes an internal choice between p and q. As already argued for, then
without this kind of nondeterminism there is no difference between the late and early
approach and furthermore both approaches may be modelled by using functions.

Now one may ask for an intuitive explanation of the different results of comparing
late and early semantics for bisimulation and testing as described above. Both
bisimulation and testing semantics are observational semantics based on the idea of
testing the processes by interacting with them and observe their reactions; two
processes are identified if they show exactly the same behavioural pattern seen from
an external observer. The main difference is the type of observer chosen. In the case of
testing the observer is another process. This implies that if the process which is to be
tested has two identical “buttons” like, for instance, for c?x.p + c?x.q then the
observer has no way of distinguishing between these buttons. Another characteristic
of testing by another process is that when the two processes communicate, the
observing process has never access to the intermediate states due to the late semantics,
in particular the abstractions. Thus, the observer does not have any chance of
comparing pointwise two different abstractions due to two identical input actions.

In the case of bisimulation this is different. Here the observer can choose between
the identical buttons in a deterministic way and compare the resulting abstractions
after having pressed first the “first” one then going back to the original state and then
pressing the “second” one.

By using the same kind of reasoning one may conclude that for all “bisimulation-
like” equivalences, i.e. equivalences which are based on a direct comparison of the
abstractions, and languages with conditional branching on input values and non-
determinism between inputting processes, the late version is strictly stronger than the
early one. As examples of bisimulation-like equivalences we can mention equivalences
based on simulation, 2/3-bisimulation [l l] branching bisimulation [12], etc.

A. Ingblfsdbttir 1 Theoretical Computer Science 146 (1995) 341-349 349

References

[l] M. Hennessy, Algebraic Theory of Processes (MIT Press, Cambridge, MA, 1988).

[Z] M. Hennessy, and A. Ingolfsdottir, A theory of communicating processes with value passing, Inform.

and Comput. 107 (1993) 202-236.

[3] C.A.R. Hoare, Communicating Sequential Processes, Comm. ACM 21 (1978) 666-677.

[4] A. Ingolfsdottir, Semantic models for communicating process with value-passing, Ph.D. Thesis, Tech.

Report 8/94, Sussex University, 1994.

[S] R. Mimer, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92

(Springer, Berlin, 1980).

[6] R. Milner, Polyadic n-calculus. A tutorial, Tech. Report, CS-LFCS-91-180, LFCS, Department of

Computer Science, University of Edinburgh, 1991; Proc. Internat. Summer School on Logic and

Algebra of Specijcation, Marktoberdorf, August 1991, to appear.

[7] R. Mimer, J. Parrow and D. Walker, Modal Logicsfor Mobile Processes, Proc. Concur ‘91, Lecture

Notes in Computer Science, Vol. 327 (Springer, Berlin, 1991) 45-60.

[S] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, Part I + 2, Inform. and Comput.
100 (1992) l-77.

[9] D. Park, Concurrency and Automata on Infinite Sequences, Theoretical Computer Science VII, Lecture

Notes in Computer Science, Vol. 104 (Springer, Berlin, 1981).

[lo] K.V.S. Prasad, Programming with broadcasts, Proc. Concur ‘93, Lecture Notes in Computer Science,

(Springer, Berlin, 1993).

[tl] A. Skou, Validation of concurrent processes with emphasis on testing, Ph.D. Thesis,. Aalborg

University, 1989.

[12] R.J. van Glabbeek and W.P. Weijland, Branching time and abstraction in bisimulation semantics

(extenced abstract), in: G.X. Ritter, ed., Information Processing 89 (North-Holland, Amsterdam, 1989)

613-618.

