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Abstract

The classical Stoney formula relating local equibiaxial film stress to local equibiaxial substrate curvature is not well
equipped to handle realistic cases where the film misfit strain, the plate system curvature, and the film thickness and result-
ing film stress vary with in-plane position. In Part I of this work we have extended the Stoney formula to cover arbitrarily
non-uniform film thickness for a thin film/substrate system subject to non-uniform, isotropic misfit strains. The film stress-
es are found to depend non-locally on system curvatures. In Part II we have designed a demanding experiment whose pur-
pose is to validate the new analysis for the case of radially symmetric deformations. To achieve this, a circular film island
with sharp edges and a radially variable, but known, thickness is deposited on the wafer center. The plate system’s curva-
tures and the film stress distribution are independently measured by using white beam and monochromatic X-ray micro-
diffraction (lXRD) measurements, respectively. The measured stress field (from monochromatic lXRD) is compared to
the predictions of various stress/curvature analyses, all of which have the white beam lXRD measurements as input.
The results reveal the shortcomings of the ‘‘local’’ Stoney approach and validate the accuracy of the new ‘‘non-local’’ rela-
tion, most notably near the film island edges where stress concentrations dominate.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

As the semiconductor industry develops ever smaller dimensions of thin metal film interconnections and
more complex multilayered (film stack) structures, the mechanical properties and stresses of thin films used
0020-7683/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2006.10.015

* Corresponding author. Tel.: +1 2173335993.
E-mail address: xuefeng@uiuc.edu (X. Feng).

https://core.ac.uk/display/82117099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:xuefeng@uiuc.edu


1756 M.A. Brown et al. / International Journal of Solids and Structures 44 (2007) 1755–1767
for these structures become major factors in controlling the reliability of integrated circuits (ICs). Thin film
stress, as well as unintended stress non-uniformities, may cause cracking, buckling or even delamination, lim-
iting applications of thin film technology. On the other hand, intentionally induced film stress in certain layers
of a multilayered structure can be used to help control the properties of the entire stack. In such cases, ensur-
ing stress uniformity and a prescribed constant stress level across the entire wafer becomes a goal of para-
mount importance. In either case, it is very important to be able to quantify the stress levels and to ensure
stress uniformity in thin film structures deposited on large substrates.

Unfortunately, there is not a practical method to routinely measure film stress on large, 300 mm wafers
directly after each of the many processing steps for the purpose of quality control. Furthermore, most avail-
able optical methods do not provide full-field (entire wafer) information. Stress in small thin film features can
be measured using X-ray microdiffraction (lXRD). However, this highly accurate technique, which is very
time-consuming, can only be practiced at certain national lab facilities and is not available to industry for rou-
tine measurements. Instead, the typical method of determining stress is through various wafer curvature tech-
niques which calculate stress from measurements of the substrate wafer’s shape through various equations
relating film stress to substrate curvature changes.

The standard relation which infers film stress from substrate curvature changes is known as the Stoney for-
mula. This relation describes a plate system composed of a stress-bearing thin film of uniform thickness hf,
deposited on a relatively thick substrate of uniform thickness hs. The Stoney formula is a relation between
the curvature change, j = jf � ji, of the system and the stress, r(f), of the film following a process. Before
the process, the initial system curvature is ji, while after the process the final curvature is jf. This simple rela-
tion is given by:
rðfÞ ¼ Esh
2
s j

6hfð1� msÞ
: ð1:1Þ
The Stoney formula was derived based on standard plate theory subject to a large number of simplifying
assumptions (Freund and Suresh, 2004), namely:

(i) Both the film thickness hf and substrate thickness hs are uniform, and the film and substrate have the
same radius (Rf = Rs), and hf� hs� Rs;

(ii) The strains and rotations of the plate system are infinitesimal;
(iii) Both the film and substrate are homogeneous, isotropic, and the substrate is linearly elastic;
(iv) The film stress states are in-plane isotropic or equibiaxial (two equal stress components in any two,

mutually orthogonal in-plane directions), while the out-of-plane direct stress and all shear stresses (in-
plane and out-of-plane) vanish;

(v) The system’s curvature components are equibiaxial (two equal direct curvatures) while the twist curva-
ture vanishes in all directions; and

(vi) All surviving stress and curvature components are spatially constant over the plate system’s surface, a
situation which is often violated in practice.

When the formula is used, many of these constraints are routinely ignored. The formula has been expanded
to relax many of the above listed assumptions (e.g., Freund and Suresh, 2004; Wikstrom et al., 1999a; Shen
et al., 1996; Wikstrom et al., 1999b; Park and Suresh, 2000; Masters and Salamon, 1993; Salamon and Mas-
ters, 1995; Finot et al., 1997; Freund, 2000; Lee et al., 2001; Park et al., 2003). However, all of the above exten-
sions still include the most restrictive of the assumptions, that of spatial uniformity, which does not allow the
film stress, the film system or the system curvatures to vary across the plate surface. This crucial assumption is
often violated in practice since spatial non-uniformities arising from various processing steps (e.g. deposition,
annealing, etching, etc.) and from non-uniform film geometries across the wafer result in film stresses and the
associated system curvatures that are non-uniformly distributed over the plate area. In order to address some
of these important cases, Huang et al. (2005), Huang and Rosakis (2005), and Ngo et al. (2006) expanded the
original formulation to describe films subject to non-uniform misfit strain or temperature distributions. The
most important characteristic feature of these results is that the film stress components depend ‘‘non-locally’’



M.A. Brown et al. / International Journal of Solids and Structures 44 (2007) 1755–1767 1757
on the substrate curvature components, i.e., that they depend on the curvature fields of the entire substrate
and not only on the ‘‘local’’ value of the curvature components at the position where the stresses are to be
estimated.

For the most recent part of this series of papers, Feng et al. (2006) relaxed part of assumption (i) to study
thin film and substrate of different radii. Finally, Part I of this work further relaxed this assumption to study
arbitrarily non-uniform thickness of the thin film. They derived a relation between the film stresses and the
system curvatures which allows for the accurate experimental inference of film stress from full-field curvature
measurements once the film thickness distribution is known.

In Part II of this study, two independent types of X-ray microdiffraction were used to measure both sub-
strate slope and film stress across the diameter of an axisymmetric thin film – Si substrate specimen composed
of a Si substrate on which a smaller circular W film island was deposited. The substrate slopes, measured by
polychromatic (white beam) X-ray microdiffraction, were used to calculate curvature fields and to thus infer
the film stress distribution using both the ‘‘local’’ Stoney formula and the new, non-local relation. The variable
film thickness, which was independently measured, was also an input to the new relation. These were then
compared with the film stress measured independently through monochromatic X-ray diffraction in the sample
to both determine the validity of the new formula and to quantify the improvement over the established
equation.
2. Specialization of the non-local stress/curvature relations of Part I to the case of radially symmetric variations

Consider a thin film of non-uniform, axisymmetric thickness hf(r) which is deposited on a circular substrate
of constant thickness hs and radius Rs, where r and h are polar coordinates with an origin located at the geo-
metrical center of the circular film/substrate system. The film is very thin, hf� hs, and is subject to axisym-
metric misfit strain distribution em(r). The substrate is modeled as a plate since hs� Rs. Young’s modulus
and Poisson’s ratio of the film and substrate are denoted by Ef,mf,Es, and ms, respectively.

The relation between film stress and system curvature for arbitrarily non-uniform misfit strain and film
thickness has been given in Part I of this work (Ngo et al., 2006). In order to compare with the axisymmetric
experimental data described in Sections 4 and 5, in Part II of this study we only consider the special case of
axisymmetry (radial symmetry) and we provide relations between the film stress components (rðfÞrr and rðfÞhh ) and
system curvature components (jrr and jhh) for the case of axisymmetric misfit strain and axisymmetric film
thickness as follows:
rðfÞrr ðrÞ � rðfÞhh ðrÞ ¼ �
2Ef hs

3ð1þ mfÞ
jrrðrÞ � jhhðrÞ½ �; ð2:1Þ

rðfÞrr ðrÞ þ rðfÞhh ðrÞ ¼
Esh

2
s

6hfðrÞð1� msÞ
jrrðrÞ þ jhhðrÞ þ

1� ms

1þ ms

ðjrrðrÞ þ jhhðrÞ � jrr þ jhhÞ
� �

; ð2:2Þ
where jrr þ jhh ¼ 1
pR2

s

R R
A jrrðrÞ þ jhhðrÞ½ �dA is the average curvature over the entire area A of the substrate.

The above relations are special cases of Eqs. (4.4a) and (4.4c) of Part I for the case of radially varying stresses,
curvatures, and film thickness. It is important to note that stresses at a point in the thin film depend not only
on curvatures at that same point (local dependence), but also on the curvatures in the entire substrate (non-
local dependence) via the average curvature jrr þ jhh. It is worthwhile to point out that the difference in nor-
mal stresses rðfÞrr � rðfÞhh is independent of the thin film thickness hf, but the sum of normal stresses rðfÞrr þ rðfÞhh is
inversely proportional to the local film thickness hf at that point. Finally, when the curvatures are uniform and
isotropic (jrr = jhh) the equibiaxial, ‘‘local’’ form of the Stoney formula is recovered as a special case.

For non-uniform misfit strain distribution em = em(r), the shear stress at the film/substrate interface does
not vanish, and is denoted by sr. As shown in Eq. (4.4b) of Part I, for the case of arbitrary stress, curvature,
and thickness variation, shear stresses also exist at the film/substrate interface. For the case of radial symme-
try, the interface shear stress sr can also be directly related to substrate curvatures via
sr ¼
Esh

2
s

6ð1� m2
s Þ

d½jrrðrÞ þ jhhðrÞ�
dr

; ð2:3Þ
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which is also independent of the film thickness hf. Eq. (2.3) provides a way to determine the interfacial shear
stresses from the gradients of substrate curvatures. For the special case of uniform curvatures across the plate,
Eq. (2.3) predicts no interfacial shear stresses between the film and substrate, as assumed by the Stoney
formula.

To verify these equations, both the slope and film stress across the diameter of an axisymmetric specimen
were measured using X-ray microdiffraction. The substrate slope obtained by white beam lXRD was differ-
entiated to calculate the two curvature components jrr and jhh. These were then used to calculate film stress
through Eqs. (2.1), (2.2), (2.3), which was compared with both the stress determined from the Stoney formula
and the stress measured by monochromatic lXRD.

3. X-ray microdiffraction (lXRD)

X-ray microdiffraction is a local strain measurement technique which, in general, uses the change in lattice
spacing in a crystalline structure as a local micro-strain gage. The incoming beam diffracts from the crystalline
lattice to form Laue patterns, which can be analyzed to measure the sample strain. Stress is subsequently cal-
culated by assuming elasticity and specific values of the material’s elastic constants. Synchrotron radiation was
used in this experiment to utilize its very small beam size (�1 · 1 lm), high energy, and ability to use either a
monochromatic or a polychromatic (white) X-ray beam. If used in the white beam mode, lXRD can also
function as a micro-rotation gage to obtain information about lattice rotation.

3.1. White beam lXRD

Laue patterns from a white beam form Laue spots (Fig. 1a), where each spot is generated by a specific
X-ray energy selected by a given lattice plane. A sophisticated software program then deconvolutes these
patterns and indexes them; identifying individual patterns from each grain (Tamura et al., 2003). From this
analysis, one can determine the orientation matrix of each grain as well as its deviatoric strain. (The deviatoric
stress is then found using Hooke’s law (Noyan and Cohen, 1987).) When there are too many grains in an
image, the software is unable to determine which spots correspond to which grains, and cannot analyze the
image. Therefore, white X-rays are used when the grain size is comparable to or larger than the beam size.

In the case of a single crystal specimen, the measured orientation matrix is always from the same grain.
Once the crystal orientation is obtained at each location across the specimen, the relative slope and curvature
are determined by tracking the changes in the vector defining the grain normal with respect to an arbitrarily set
lab coordinate system. For a scan along the x axis (sample diameter), we are only concerned with the slope
changes in the xz plane. This slope is equal to tan(a), where a is defined as the angle between the projection
of the grain normal in the xz plane and the z axis in the lab reference frame (Fig. 1b).
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Fig. 1. (a) Laue pattern from the single crystal Si wafer. (b) Definition of coordinate system and the projection angle a; slope in xz

plane = tan(a).
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For a radially symmetric sample on which the scan is performed along the diameter, where y = 0, cylindri-
cal coordinates can be used. The radial slope is given by of/or = tan(a), and the circumferential curvatures jrr

and jhh are then determined from
jrr ¼
o2f
or2
¼ oðtan aÞ

or
; ð3:1Þ

jhh ¼
1

r
of
or
¼ 1

r
ðtan aÞ: ð3:2Þ
3.2. Monochromatic lXRD

When dealing with a film whose grains are much smaller than the beam spot size, a white beam cannot be
used. In this case, the average equibiaxial stress (rxx = ryy = r, rxy = 0) can be measured with monochromatic
X-rays. Laue patterns from a monochromatic beam form Debye rings in w-2h spatial coordinates (Fig. 2).

The average equibiaxial film stress is found using what is known as the ‘‘d vs sin2w’’ method (Noyan and
Cohen, 1987). With this method, 2h vs w is first graphed to find the intercept, i.e., h at w = 0, or h0. Next the
well-known Bragg’s law (k = 2d sinh, where k is the monochromatic beam wavelength) is used to find the lat-
tice spacing, d, from the 2h peaks, and then d vs sin2w is plotted to find its slope, s. This slope, s; d0 (d at h0);
and the material constants are input into the equation for the equibiaxial stress (Noyan and Cohen, 1987)
d � d0

d0

¼ 1þ m
E

r sin2 w� 2m
E

r ð3:3Þ
to find the stress, r, as
r ¼ E � slope

ð1þ mÞd0

: ð3:4Þ
If the stress is not actually equibiaxial, then Eq. 3.4 refers to the mean stress, r = (rxx + ryy)/2.
The experiments described in the following sections were performed at beamline 7.3.3 at the Advanced

Light Source (ALS) at Lawrence Berkeley National Laboratory in Berkeley, CA. This beamline is able to
quickly switch between white and monochromatic X-rays, in order to measure substrate curvature and film
stress, respectively, at the same location on the sample. The reflection X-ray setup is shown in Fig. 3.

4. Experimental procedure and specimen specifications

The specimen consisted of a circular, 24.8 mm diameter circular W film island deposited on the center of a
100 mm diameter, 525 lm thick Si 001 wafer (Fig. 4). The film thickness is variable across the island; the thick-
est portion, in the center of the island, is approximately 1.85 lm. Young’s modulus for Si and W are 130 and
410 GPa, respectively, while Poisson’s ratio is 0.28 for both materials (Gouldstone et al., 1998).
Fig. 2. Monochromatic beam (8 keV) diffraction patterns from a W thin film on Si substrate.



Fig. 3. The microdiffraction setup at the Advanced Light Source. The incoming X-ray beam is reflected from the sample surface and
captured by the detector.

Fig. 4. Sample schematic.
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Coherent gradient sensing (CGS), an optical curvature measurement technique (Rosakis et al., 1998), was
used to find the topography of the specimen (Fig. 5). As expected from the geometry, the shape is axisymmet-
ric, resembling a straw hat. It has a fairly constant, negative curvature under the film island, a non-zero, posi-
tive curvature in the area of bare Si, and features a radial curvature jump between the two regions. Preliminary
optical data for this configuration have been reported by Brown et al. (2006).

As evident from Fig. 5b, the full-field wafer shape measurement clearly reveals the non-local nature of the
stress/curvature dependence in this system. Indeed, the figure shows that even at points on the wafer which are
not covered by any film (points outside the island), the curvature is still non-zero. This is contrary to the pre-
dictions of the Stoney formula, which uniquely relates ‘‘local’’ curvature to ‘‘local’’ membrane stress (zero for
these areas), and demonstrates that the Stoney stress/curvature relation is, in concept, inadequate for analyz-
ing the stress on the film-covered part of the wafer. Indeed, this observation provides a simple physical way to
visualize the need of relaxing the uniformity (thickness, misfit strain, curvature, stress) assumptions that have
resulted in the simple, but highly inadequate, Stoney relation. In the following sections we will use the ideal-
 

  

Fig. 5. Wafer topography, (a) full-field and (b) across the sample diameter.
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ized substrate/film island system to quantify these issues. The geometry involving an island of finite diameter
which is smaller than the substrate diameter provides a simple configuration through which the effect of film
thickness variation and edge discontinuity can test the limits of the newly developed stress/curvature formu-
lation of Part I.

A series of polychromatic (white beam) X-ray measurements were taken along the sample diameter, with a
spacing of 0.1 mm, to find the sample slope (of/ox). Due to the axisymmetric nature of the specimen (of/
ox = of/or), this single linear set of slope measurements across the sample diameter (y = 0) can be extrapolated
to form full-field maps of both jrr(r) and jhh(r). These are subsequently used in conjunction with Eqs. (2.1)–
(2.3) to infer the film stress across the island diameter. Full-field maps of both curvature components are nec-
essary because of the non-local nature of Eqs. (2.2) and (2.3).

Monochromatic X-ray microdiffraction measurements were also taken along the island diameter, with a
data point spacing of 0.25 mm, to separately measure the equibiaxial film stress along the same line
(y = 0). This was compared with the stress determined from the equations. It is important to note that the
lXRD slope and stress measurements use two different types of diffraction, and are therefore completely inde-
pendent measurements of the sample state. Therefore, using slope measurements to infer the stress state
through various stress/curvature relations and then to compare the results with the directly measured stress
state, provides a legitimate way of evaluating and ultimately validating the newly proposed non-local
stress/curvature equations.

Since variable thickness is a necessary input to these equations, the film thickness was also measured using a
scanning electron microscope (SEM). Images of the film cross-section were taken in many locations along the
film radius. Since the specimen topography is axisymmetric, the thickness across the island diameter was
extrapolated from these measurements. In each image, the film thickness was determined by comparing the
length of a line drawn through the thickness to the length of the scale bar (Fig. 6a and b). Each image covers
approximately 8 lm, and five measurements within each image are averaged to obtain the film thickness at
that particular measurement point. The film thickness variation with radial position is shown in Fig. 6c. Near
the island edge, the thickness drops off precipitously from an approximate level of 1.85 lm in the center to
approximately 0.8 lm at the edge of the island. From Eq. (2.2), this is expected to correspond with a rapid
increase in film stress in that location.
Fig. 6. SEM images of film cross-section (a) within the central approximately constant thickness region and (b) near the film edge; (c)
radial film thickness measured from the SEM images.
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5. X-ray microdiffraction (lXRD) results

5.1. White beam lXRD measurement

The radial slope, of/or, is shown in Fig. 7a. In the central part of the film-covered region of the wafer the
slope appears to be approximately linear, but it substantially deviates from linearity as the film edges are
approached from within. At the film edges, the radial gradient of the slope (radial curvature jrr) suffers a large
but finite jump and changes sign (from negative to positive), consistent with the topography map of Fig. 6c. As
the wafer edges are approached, the radial curvature decreases gradually to a small but finite value. The over-
all shape of the radial slope is anti-symmetric about the wafer origin, as would be expected from the shape
axisymmetry. To conclusively demonstrate this, the data from one side was reflected about the origin and
overlayed on the data of the other side. This exercise, shown here in Fig. 7b, demonstrates that the reflected
slopes from either side agree to within 5%.

Since the specimen geometry, shape measured by CGS, and slope measured by XRD all suggest radial sym-
metry, the linear slope measurement from lXRD is used to construct full-field slope data. Indeed, the slope
can now be replaced by two piecewise fits of two polynomials, one taken within the film portion and another
outside it. Fig. 8 shows the high quality of the polynomial fits of the raw lXRD slope data. It should be noted
that the two polynomial fits are required to pass through the same point corresponding to the estimated loca-
tion of the film edge.

Fig. 9 shows the curvature distribution obtained when the polynomial fit of the slope, shown in Fig. 8, was
used to determine the two independent wafer curvature components through Eqs. (3.1) and (3.2). The curva-
ture jhh is continuous across the film boundary, but the curvature jrr suffers a finite jump at the island edges.
This is consistent with the observation of Brown et al. (2006). What is perhaps more interesting is that even
within the area of coverage, both curvature components vary with radial position.

By further invoking axisymmetry, we may also use the film thickness measurement conducted along the
island radius (Section 3) to construct the island thickness profile in place of full-field thickness data. The film
thickness is then denoted by hf = hf(r), and can be fit by the following radial distribution:
a

hf ¼ 1:85þ 0:00713 1þ 1:49

r � 12:6

� �
ðr � 5:82Þ2Hðr � 5:82Þ; r 6 Rf ¼ 12:4 mm; ð5:1Þ
where the radius r is in millimeters, the film thickness hf is in micrometers, and H is the Heaviside step func-
tion. Fig. 10 compares Eq. (5.1) with the actual SEM thickness data and demonstrates their good agreement.
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Fig. 7. (a) Slope along the sample diameter. (b) Slope from the center, overlapped, to show antisymmetry.
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5.2. Monochromatic lXRD measurement

The absolute magnitude of the mean stress, �(rrr + rhh)/2, obtained through the monochromatic lXRD
measurement is shown in Fig. 11. [Although the mean stress itself is compressive, we have decided to display
its absolute magnitude for reasons of clarity of discussion.] The stress is approximately constant throughout
most of the island diameter. However, near the island edge the stress increases very steeply to over five times its
central value within a small (�2 mm) boundary layer from the film edge. This is clearly due to the existence of
a strong thickness gradient near this edge (Fig. 6c). It is also due to the eventual existence of a traction-free
boundary at the end of the film. These two geometrical effects, which result in a substantial stress concentra-
tion gradient (huge stresses developing from 1 to 5 GPa over a few millimeters of length1), provide a substan-
tial prediction challenge to any theoretical model used for the inference of stress through substrate curvature
measurements. In the following sections, we will concentrate on the ability of various techniques to indepen-
dently predict this stress concentration.

6. Validation of the non-local stress/curvature model and conclusions

In this section we compare the results of the mean film stress distribution obtained through the monochro-
matic lXRD measurement with the stress distributions predicted via the use of three different theoretical
stress/curvature models, one local (Stoney) and two non-local. The common input to these relations is the sub-
strate curvatures (see Fig. 9) obtained through the independent white beam lXRD substrate slope
measurement.

Fig. 12 illustrates this comparison. The discrete points are the stress distribution results of the direct mono-
chromatic beam lXRD measurement. The dotted line shows the prediction of the Stoney equation (Eq. 1.1)
with j(r) = [jrr(r) + jhh (r)]/2 and r(r) = [rrr(r) + rhh (r)]/2 being the mean stress and curvature, respectively.
The Stoney relation assumes that the radius of the film, Rf, and that of the substrate, Rs, are equal and that the
film thickness is uniform. Although the Stoney equation was derived strictly for constant j and r, it is used
here in a local sense in which j(r) as measured (Fig. 9) is input into Eq. (1.1) to obtain the dotted stress dis-
tribution shown. The Stoney prediction underestimates the discrete stress data by as much as 50% in the cen-
tral portion of the film and completely misses the dramatic 500% stress increase at the edges.

The dashed line shows a prediction of a non-local model in which the island film radius is different from the
substrate radius (Rs > Rf) but the film thickness inside the island is assumed to be constant. The stresses are
1 The yield stress of tungsten is around 1.5 GPa (Dummer et al., 1998; Maloy et al., 2005) such that the deformation of tungsten thin film
is elastic except near the edge. The stress around the edge is very high to trigger film/substrate interface delamination, as to be discussed in
the next section.
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obtained by using Eq. (2.2), specialized to the case of constant film thickness hf = 1.85 lm (approximate film
thickness measured at the island center). This is still a non-local calculation since it also involves averaging the
curvature field over the entire wafer to obtain jrr þ jhh. Howerver, it does not take into account the drastic
reduction of the film thickness over a distance of a few millimeters from the edge (see Fig. 6). As is obvious
from Fig. 12, this prediction approaches the discrete monochromatic lXRD measurement much better than
the result based on Stoney, but still completely misses the severe stress concentration near the film edges.

Finally, the solid line represents the result of utilizing Eq. (2.2) in its most general form, in which thickness
and curvatures are both allowed to vary with radial position r. The radial profile of the island film thickness
hf(r) of Eq. (5.1) was used as input in this calculation. It is evident from Fig. 12 that this last calculation, uti-
lizing the most general non-local relation, agrees very well with the monochromatic lXRD stress measurement
over the entire film diameter, including the region close to the film edge. In particular, the success of the gen-
eralized non-local stress/curvature relation in capturing the dramatic stress increase that has been indepen-
dently measured provides validation to the generalized analysis presented in Part I of this study.

An important byproduct of this analysis is its ability to also estimate interfacial shear stresses acting
between the film and the substrate. These shear stresses are a direct consequence of in-plane non-uniformities.
For our radially symmetric experiment, the only surviving shear stress, sr, is given by Eq. (2.3) and can readily
be evaluated by differentiating jrr(r) + jhh(r) of Fig. 9. This interfacial shear stress, shown here in Fig. 13, is
not nearly as large as the direct film stress, but it climbs to approximately 400 MPa near the film edges. The
combined presence of huge direct film stresses (r � 5 GPa)2 at the film edge and substantial interfacial shears
may be enough to trigger interfacial delamination (Freund and Suresh, 2003). In fact, careful scrutiny of the
film/substrate adhesion through SEM has revealed a well-defined and perfectly circular delamination front
surrounding the island at Rf � 12.4 mm, very close to its edge. A local, SEM, view of this delamination is
shown in Fig. 14.

The maximum in-plane shear stress ðrf
rr � rf

hhÞ=2 can also be calculated from Eq. (2.1) and from the curva-
ture distributions (Fig. 9) obtained through the white beam lXRD measurement. The in-plane shear stress
distribution across the island is shown in Fig. 15. We note that the maximum absolute value of this stress
is less than 7 MPa or 0.2% of the in-plane mean stress. This suggests that for the present experiment the film
stress state is, to all practical purposes, equibiaxial. This fact justifies the assumptions of equibiaxiality used in
the analysis of the monochromatic lXRD measurement.

The analysis presented in Part I of this work provides a new formulation to infer film stresses in the pres-
ence of arbitrary non-uniformities in both thickness and misfit strain. In Part II, we demonstrate the necessity
2 The direct stress of 5 GPa is clearly larger than the yield stress (around 1.5 GPa) of tungsten. But the domain of this large stress near
the edge is very small. The inelastic behavior is not accounted for in the present study.
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of a non-local full-field curvature measurement approach, and we conclusively validate the theoretical model
through comparison with an experiment featuring very high film stress gradients.
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