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1. INTRODUCTION

Let 2 be a bounded domain in C”, n= 1. By an automorphism of 2, we
mean a one-to-one and onto holomorphic (or, biholomorphic) selfmap of £2.
Denote by Aut(£2) the set of all automorphisms of £, which is usually
called the automorphism group of 2. 1t is well known that Aut(£2) equipped
with the law of composition and the topology of uniform convergence on
compact subsets of Q is a finite dimensional Lie group [6].

It follows by a standard normal family argument that the automorphism
group of a bounded domain Q is noncompact if and only if the orbit of a
point q € 2 by the automorphism group Aut(82) is noncompact ({21, 26] for
instance). On the other hand, there are many bounded domains with non-
compact automorphism groups that are not homogeneous ({25, 26] e.g.).
Such domains in general have boundary points at which the automorphism
orbits do not accumulate. The theme of this paper is, therefore, to present
obstructions coming from the geometry of the boundary near such
boundary points that “repel” automorphism orbits. In fact, if one considers
the bounded domains with entirely smooth boundary, this program is well
summarized in the following conjecture of Greene and Krantz [12].
(Compare with [2, 3, 5, 9-11, 20].)

Conjecture (Greene—Krantz). Let p be a boundary point of infinite type
in the sense of D’Angelo ({7, 14]) of a bounded domain 2 in C" (n>2)
whose boundary is entirely C™ smooth. Then there does not exists an
automorphism orbit in £ which accumulates at p.

Green and Krantz [12] gave examples of domains that are complex two
dimensional, circular, and variety-free in its boundary at p for which the
conjecture above is true.

In this paper, we first show that the above conjecture is true if the
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domain € is bounded convex and if the boundary point p admits a
neighborhood in which the boundary is Levi flat. More precisely, let

Q={(z{, ., 2,)eC"Y(z(, ..., 2,) <0},
where ¥: C" - R is a C* smooth function with
Vi(zy, o 2,) #0, if iz, ., z,)=0.

Let p be a boundary point of Q. We say there exists a neighborhood U of

p in which the boundary 8Q is Levi flat, if, for every z=(zy,.., z,}€
o2 U,
n azlll ~
”Z:] 7= e, (z)w,w, =0,

for all {w, .., w,)e C" satisfying

n aw

Z —(z)w;=0.

el azl_ J

It is well-known that in such a case Q2 n U admits a C* smooth foliation
by analytic varieties.

Now we state the first two main results of this article. In what follows,
we denote by 4 the open unit disk in C, and by 4" the product of »n copies
of 4.

THEOREM 1. Let Q be a bounded convex domain in C". Suppose that the
boundary Q2 is C™ smooth in a neighborhood of p in C" and that there exists
a neighborhood of p in which the boundary is Levi flat. If there exist a paint
g€ and a sequence {@;},_, .  of automorphisms of Q such that
lim; , . ¢;(q)=p, then Q is biholomorphic to product domain A4 x " for
some convex domain Q' eC"™ ",

An immediate consequence is the following:

COROLLARY. Let Q be a bounded convex domain in C2. Suppose that the
boundary 89 is C™ smooth in a neighborhood of p in C* and that there
exists a neighborhood of p in which the boundary is Levi flat. If there exist
a point g€ Q and a sequence {¢;},_, 1 of automorphisms of £ such that
lim; ., . @;(q)= p, then Q is biholomorphic to the bidisk A x A.

Since the product domains cannot be biholomorphic to any bounded
domain with its boundary entirely smooth ([1, 22, 247, e.g.), it implies the
following result that supports in part the aforementioned Conjecture of
Greene—Krantz.
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THEOREM 2. Let 2 be a bounded convex domain in C", n=2, with
entirely C™ smooth a boundary. Let p be a boundary point that admits a
neighborhood U in which ¢ is Levi flar. Then, there does not exist any
automorphism orbit which accumulates at p.

In Sections 5 and 6, we also present further results treating the case of
variety-free boundary points of infinite type. It turns out that, from our
viewpoint, such case is much harder to analyze. Qur result in this direction
is therefore special and can be summarized as in the following:

DerFmniTION.  Call a boundary point p of a bounded domain Q = C” of
convex exponential type, if there exist an open neighborhood U of p in C”
and a C* smooth strictly convex positive real-valued function ¢: U —R
defining 2~ U, up to a linear change of complex coordinates of U,
satisfying

(1) p=1(0,0),

(2) QnU={(z),z;)eUlImz, > P(z,) + Oz, 23] + |2:]°) }, and
. D(iz) )

(3) Jlirlo ¢(z)—oo forany 2> 1.

The functions exp(— f(z) - |z| ~¥™), for any positive integer m and any
positive smooth function f in z with f(0)#0 are typical examples of such
&. Note that a boundary point p of convex exponential type cannot admit
a codimension one subvariety in the boundary of 2 through p, due to the
limit condition above and the fact that all the codimension one varieties
contained in a convex hypersurface is Euclidean flat.

THEOREM 3. Let Q be a bounded domain in C* whose boundary is C™
smooth near a boundary point pe 0Q is of convex exponential type. Then
there is no automorphism orbit accumulating at p nontangentially to 2.

If one considers noncompact automorphism orbits that approach the
boundary nontangentially, then the convex scaling method adopts a very
special form as in Proposition 5 of Section 5. In such a case, we also have

THEOREM 4. Let Q be a bounded convex domain in C* with a C * smooth
boundary. Let 092 admit a nontrivial analytic subset passing through p € éQ,
say. Then there is no automorphism orbit accumulating at p nontangentially
to 082.

Nonstandard terms used in this section without precise definitions are
defined in the later sections when the proofs are given.
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2. OUTLINE OF PROOFS

For the sake of clarity of the exposition, we describe very roughly how
the proofs are organized in this paper. First of all, we present the convex-
scaling technique initiated by Frankel [8] and further modified results
[14, 157, which says in various cases that for a bounded convex domain
any noncompact sequence automorphisms must yield a linear scaling that
“stretches™ the domain to an unbounded domain biholomorphic to the
original domain. (Propositions 1—4 in Section 3, Lemma 4 of Section 4,
Proposition 5 of Section 6).

For the proof of Theorem !, one observes that the convex-scaling
sequence stretches the domain to infinity in the complex direction normal
to the boundary of the domain, and that all the other directions scales to
finite speed keeping linear independence during the convex-scaling process.
After some elementary plane geometry arguments, the scaled domain can
be seen to be a product of a half plane and some other convex domain as
desired. Detailed arguments are given in Sections 3 and 4.

The domain described in Theorem 1 is biholomorphic to a product of
bounded domains, because any convex Kobayashi hyperbolic domain is
biholomorphic to a bounded domain. Since no bounded domain in C” with
entirely smooth boundary can be biholomorphic to any product domain,
the conclusion of Theorem 2 must follow in the light the convex scaling
theorems mentioned above.

Theorem 3 makes use of the full power of convex scaling method. In
Section 6, we show that no convex scaling by a nontangential auto-
morphism orbit can be possible at the boundary point of exponential type,
which is rather a broad subcollection of the boundary points of infinite
type. However, at the same time, the convex-scaling technique asserts that
some convex scaling must be possible due to convexity as long as there is
a noncompact automorphism orbit accumulting at a boundary point. This
contradiction enables us to conclude the nonexistence of the automorphism
orbit accumulating nontangentially to the boundary point of exponential
type. Theorem 4 uses the similar line reasoning, but the proof reduces to
the arguments to the proof of Theorems 1 and 2.

3. CoNVEX-SCALING TECHNIQUE
In this section, we introduce a modification of theorem of Frankel
(Theorem 5.6 of p. 123 in [8]), which provides a basic technique for our

proof of the main theorems of this paper. We begin with

PropPOSITION | (Frankel [81). Ler D be a bounded convex domain in C”,
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n>1. Let ge D and {9,},_ . < Aut(D). Then, every subsequence of the
sequence {w;: D—C"},_, , defined by

w,(z) = [80,(q)] ' (@,(z)— @;(¢))

has a subsequence that converges to a one-to-one holomorphic mapping from
D into C".

In practice, most interesting application of the above statement is when
¢;(q) tends to a boundary point of D. So we only consider throughout the
rest of the paper the case that

lim ¢,(q)=pecD, (1)
Jj—

unless specifically mentioned otherwise.

Now we consider the set-convergence. Let # denote the collection of
all nonempty closed subsets of C”. The Hausdorff distance function
p:F x# =R is defined by

p(S, T)=sup|sup inf |s— ¢|[, sup inf |ls — 1] }.

seSteT teT 58

For the concept of local Hausdorff set-convergence, we define as usual
pr:F xF - R for each R>0 by

Pr(S, T)= p(S N Bg(0), T Bg(0)),

where B,(0) is the closed ball of radius R centered at the origin. As usual,
we reserve the notation B,(x) for the open ball in C" for appropriate n
centered at x with radius r. We call a sequence {S,} of closed subsets of C”
converges to a set S€ F in the sense of local Hausdorff set-convergence if
pa(S;, S)—>0asj— w.

Since w;(D), for each j, is convex, the Blaschke selection and
Proposition 1 above imply.

PROPOSITION 2. With the same hypotheses and notations as Proposition |
above, every sequence {w;} admits a subsequence {w,} which converges
to a biholomorphic mapping w: D — w(D), and w(D) co-incides with the
interior of the limit set of the sequence of closure of w, (D) in the sense of
local Hausdorff set-convergence.

Since al the sets we are dealing with in our case are convex, from now
on, we will simply state that w(D) is the local Hausdorfl limit of the
sequence {w;(D)} for the sake of simplicity.

By changing indices, denote by {w,} the subsequence {w, } in Proposi-
tion 2 above, which converges to the biholomorphic mapping w. Consider
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now the domain w(D). It is a convex domain which is biholomorphic to
the bounded convex domain D. In particular, the boundary of w(D) has to
be non-empty. Hence, Proposition 2 implies that there exists a sequence of
points s5;€ d(w,; (D)) such that a subsequence of {[d¢,(q)] ' (s,— f,(g))};
is bounded. For, otherwise, the sequence of convex sets

w,(D)=[3¢,(q9)] '(@AD)— [,(q))
=[é¢,;(q)] "(D—f(q)

converges to the convex subset of C” with empty boundary in local
Hausdorff set-convergence, where the minus signs between sets and points
above represent the vector sum such as

T—x={y—x|yeT}.

Hence we arrive at the following modified version of Proposition 2,
imitating the arguments above.

PROPOSITION 3.  With the same hypotheses and notations as Proposition |
above, there exists a sequence {s,;}, of boundary points of D such that every
subsequence of the sequence {o,: D — C"} of holomorphic mappings defined
by

0,(2):=[3¢;(q)] ' (@,(z)—s))

admits a subsequence that converges to a one-to-one holomorphic mapping
o: D — C" with the sequence {o,(D)}, converging to a(D) in local Hausdorff
set-convergence.

If, in addition to the hypotheses of Proposition 1, [[é¢,(¢)| tends to O
as j— oo, then the sequences {s;} and {¢,(g)} must converge to the
same boundary point p, since the sequence {[3¢;(¢)] '(s,— f;(q))}, is
bounded, as pointed out in the above. Moreover, in this case, for any r >0
and R >0, there exists j, >0 such that

[Co;(9)] "(D—[(9)nBe(0)=[0,(q)] '(DnBAp)— fi(q)) " Bg(0)
and
[09,(q)] " (D—s5,)n Be(0)=[39,(9)] " (DN B.(p)—s,) " Be(0)

for all j= j,. Hence, we obtain the following localized result (sece [14])
which says roughly that the result of convex scaling by {¢,} is then
governed by the local shape of the boundary of D near p.
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PROPOSITION 4. Keeping the notations from Propositions 1-3, if the
sequence of norms ||Cp,(q))| tends to zero as j— o in addition to the
hypotheses of Proposition 1, then the set-limits w(D) and o(D) are
completely determined by the sequences {[3¢,(q)] ' (D B.(p)—fi(q))}
and {[2¢,(q)] '(DnB/(p)—s,)}, respectively.

4. PrROOF OF THEOREM | IN COMPLEX DIMENSION Two

Let 2<=C p,q and ¢, be as in the statement of Theorem 1. First, we
analyze how the eigenvalues of do,(q) behaves in the following Lemmas 0
to 3.

LemMa 0. [|do,(q)]l does not tend 1o O as j— «c.

Proof. Choose a nontrivial analytic set, say V, in dQ passing through
p, then it is Euclidean flat by the Maximum Principle. Replace V by the
analytic disk

{—=lv+p:A4(0)— ViR,

where 4(4) denotes the open disk in C centered at the origin with radius
0 >0, and where ve C” is a nonzero vector parallel to V. By convexity and
Levi flatness of ¢Q2 at p, we may assume without loss of generality that
V+o,(q)e L2 for all j. Then,

@, 'oh:A(8)->Q

satisfies ¢,;>h;(0) =g, where h;(&) :={v+ ¢,(q) for each j. By a standard
normal family argument, (¢, hA;)’ (0) must be a bounded sequence, which
implies the desired result (cf. [27]).

Before we proceed any further, we point out that we will taking sub-
sequence frequently, owing to the fact that if there exists a subsequence of
w,(82) [or, of ¢,(82), resp.] which converges to a domain that is
biholomorphic to the bidisk, we get the desired conclusion by Propositions
2 and 3. Thus, throughout the rest of the argument of this case, we simply
use the notation {¢,}, for each subsequence of {¢,}, we choose in the
following arguments. And each step of arguments in the following starts
with the newly chosen subsequence {¢,}, which is extracted from the
preceding subsequence {¢,};, to avoid complicated stacks of subscripts.

Denote by 4, A4, for each j, the eigenvalues of the complex 2 x 2 matrix
dp,{q) arranged so that |1, <|4].
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LEMMA 1. There exists a constant K>0 independent of j such that
K '<|16,(q)| <K for all j. Furthermore, ,—0 as j — .

Proof. The lower bound estimate is a consequence of Lemma Q. The
upper bound is obtained from the fact that ¢;, for each j, is an
automorphism of the bounded domain 2. Namely, {¢,} is a precompact
normal family of holomorphic mappings, and hence has a uniform bound
independent of j for |0g;(g)|.

For the remaining claim, choose any subsequence of {¢,}, that
converges to ¢:92 — C2% Then clearly ¢(2)c . On the other hand,
o{g)=lim,_ , ¢;(q)=pedQ. Hence, ¢(2)c0i2 due to the pseudo-
convexity of Q. So, det dp =0 which in turn implies that det d¢;(g) — 0 as
Jj— . Now, the second assertion of the lemma follows immediately.

Now we need refine the content of Lemma 0. Consider a convex function
¥:C?— R defining £ in the following sense:

Q={(z,w) e C?| ¥(z, w) <0}
0Q={(z,w)eC?| ¥(z,w)=0}
C\Q={(z,w)e C*| ¥(z, w)>0}.

Without loss of generality, we further assume that
Y(p)=¥(0,0)=0, and Qc{(z,w)eC*Imz>0}. (1)
Recall that dQ is C ™ smooth near p = (0, 0). So, in particular, Im z axis is

parallel to the normal line to 4Q at (0, 0).
By Lemma 1 above, choose a unit vector v;& C? for each j such that

0<K '<ldg(q)v <K (2)

By choosing a subsequence of {¢,} if necessary, we assume without loss of
generality that

lim v;=¢ and v,i=00,(q)v,—V as j— oo. (3)

j—
Then we claim

LEMMA 2. v =(0, b) for some nonzero complex number b.

Proof. For each j, there exists a constant 4> 0 such that the linear
analytic disk h: 4 —  defined by

hi(l)=q+{dv,
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where 4 denotes the open unit disk in C. Then, for every j,

;o k) (0) =6 |09;(q) vl =K' >0.

Since ¢, h;(0) > pedf2, every subsequential limit of ¢,-h; defines a
nontrivial analytic variety contained in 0@ passing through p= (0, 0).
By convexity of €2 and the Maximum Principle, the limit variety is
Euclidean flat. The assumption (1) then implies that this analytic variety is
a subdomian of the w-plane. Therefore, the result follows.

Another consequence of Lemma 1 is that there exist, for each j, a unit
vector u;€ C? such that

09;(q) u; = 4;u;. (4)
Let us again choose a subsequence of {¢,} if necessary, so that we may
assume that u, — i as j— co. Then, with i defined in (3) above, we obtain
LEMMA 3. © and u above are lineary independent over C.
Proof. Suppose that at — i =0. Then
0= lim (a[d¢,(9)1" " v,~ 4,[00,(q)]1 " u))

Jx

=,l_i.nl [80,(q)] ' (av;— 4;u)).

Since )|0¢,(g)ll < K for all j, it follows that

0= lim (av;,— 4,u;)=av

i
Therefore, a =0, and the assertion follows.

The lemma above in particular implies that # is not tangential to the
boundary of Q.
Now consider the effect of the convex-scaling of the slices

S, =02n{lu;+0,(q)eC*|{eC}
by [@¢,(q)] " The set

H:=llirrl [C0;(9)] " (S;,—,(q))

1
= lim — (S, - ¢,(g)) (5)

Jo o Ay
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is either the whole complex line Cu or a closed half plane in Ci. Also
notice that the point (0, 0)e H and that (0, 0) = w(q) e w(2). Since w(£2)
cannot contain a complex line in it, the set H above is a half plane
contained in Ci. Moreover, the boundary of H, which is a straight line
extending indefinitely, is contained in the boundary of w(£).

Now, consider ¢;e C for each j which is the complex number with the
smallest modulus such that ¢, u; + ¢,(g) € 6S,. Let us denote by

s;=c;u;+@,(q) (6)

The preceeding discussion in particular implies that

[Co ()] '(s,—,(q)

is a bounded (in fact convergent) sequence. Therefore, we obtain

LEMMA 4. With s, defined in (11) above, the holomorphic mappings

o,(z):=[Cop,(q)] "(@,(z)—35))

Jorm a normal family, whose every subsequential limit is a one-to-one
holomorphic mapping. Moreover, every subsequence of {o,(Q)}, has a sub-
sequence converging to a domain biholomorphic to Q in the sense of local
Hausdorff set-convergence.

Throughout the rest of the section, we work with o, defined in the lemma
above. Without loss of generality, by choosing subsequences, we may
assume that lim ¢,=0¢ and lim 0,(22) = ¢(Q), where the latter limit is in
terms of local Hausdorff set-convergence. Then we will show that () is
biholomorphic to the bidisk.

We claim

LEMMA 5. Let H, be the half plane

Hy=H~— lim [d¢,(4)] ' (s,~¢,(9)),

J—= T

where H and s, are as in (5) and (6) above. Then, for each boundary point
x of a(82), the closure of the domain o(§2) contains the parallel 1ranslation
Hy+x of Hy in such a way that the boundary é(Hy+ x) of Hy+ x is
contained in boundary of a(Q).

Proof. Let x be a boundary point of a(£2). Since H, is contained in the
closure of 6(£2), so is the convex hull C, of {x} u H,. It is easy to see that
C, contains H,+ x. Moreover, the boundary of the half plane H,+ x is a
straight line passing through x. Since x is a boundary point of ¢(£2), and
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since the domain 4() is convex, the boundary of H,+ x is contained in
the boundary of a(Q).

The lemma above also implies that the domain o($2) is, up to an
appropriate complex linear change of complex coordinates of C?, a product
of a straight line and a convex domain in R® And hence, the
automorphism group of Q contains a noncompact |-parameter subgroup.
However, it is not yet enough to conclude that ¢(€2) is a product domain
in complex sense.

To reach at the desired conclusion, we observe.

LEMMA 6. s, defined in (6) above approaches p = (0, 0), as j— .

Proof. By choice of s;, the sequence
{[a(l’j(q)] ! (Sj— (Pj(q))}j
is bounded. Namely, the sequence

{[5(Pj(4)]ﬁl (sj—‘P(‘I))}j= {[a(Pj(q)] ! (Cjuj)

J
U

2,

i)

has to be bounded, where c; and 4; are as in (6) and Lemma 1, respectively.
Since 4;— 0 and u; is bounded, ¢; must tend to 0 as j — cc. This means that

lim s;= lim c;u;+ ¢;(q)

J - oo Jj—= x>
=jlij‘n‘ ®;(q)
=p=(0,0).

Now, we use the hypothesis of Theorem 1 that the boundary point
p=1(0,0) admits a neighborhood U, say, in which the boundary of Q is
Levi flat. It is known that 8Q is then foliated by analytic varieties, and the
foliation is C* smooth. Notice that, since Q is convex, by the Maximum
Principle every analytic subvariety of the boundary of @ is Euclidean flat.
By choosing a subsequence, let us assume that s,€ Un 042 for all j. Denote
by V; the maximal analytic subvariety of dQ passing through s;. By the
preceding discussion, each V; is a convex subdomain of a complex hyper-
plane in C2 In this sense, due to smoothness of the foliation, there exists
6 >0 such that

dis(s;, 0V} >4 (7

409:179:2-11
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for all j. Define

2= lim [d9;(q)] ' (V,—s,));

J

then it has to be a bounded subdomain of a complex hyperplane of C2
For, otherwise, (7) will imply that 2 is a whole complex hyperplane,
which is not allowed since a(£2) cannot contain a complex line, being
biholomorphic to Q. Now we prove the following claim which finally
completes the proof of Theorem 1 in complex dimension two:

LemMa 7. o(Q)=X+ H,.

Proof. X+ H,c a(Q) follows immediately from Lemma 5, convexity of
Z, and the fact that both £ and H, are contained in o(Q).

To show the reverse inclusion, let w,-eC2 be a unit vector tangent to V,
for each j, where V), is the aforementioned maximal analytic subvariety of
0Q passing through s,. Then the discussion in the paragraph containing (7)

above implies that there exists K> 0 such that

IE0ei(a)]1 ' wili<K Vi (8)

Therefore, choosing a subsequence again if necessary, we may assume that
{t;:=[0¢,(¢)] ' w,}, converges. In particular, there exists j, >0 such that
u; and w, are linearly independent over C for every j> j,, where u, is as
in (4).

Now let yea(2). Then, recall that ¢(Q) is the local Hausdorff set-limit
of the sequence of the closure of the convex domains

[do;(q)] " (Q—s5)

Hence, there exists a sequence {x;}, in © such that

y=lim (x,—s,).

J—

Since u; and w, span C? for each j, there exist a;, b;e C such that
X;—s;=a,u;+b,w, (9)

for each j> j,. Thus,

= Iim (%
y= lim (7 u+ b,

j—x /.,
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Note that the {#;}, converges to the vector which is complex tangent to the
boundary, whereas {u;} to the vector which is not complex tangent to the
boundary as observed above. Hence, both limits

.a;
lim Zu,
J— ~f
and
lim b, 1,
S
must exist and be finite separately. In particular, a,— 0 as j— o since
4,— oc. This implies that
lim x;= lim b;w;
js J—x
from (9), and that dis(b; w,, ;) > 0 as j — co. Then by the estimate (8), it
follows that lim, , , b,¢,€ 2. Hence, ¢(£2) is contained in the set

CHy+2X2c{lu+s|{eC,ieH, seX}.
Since X < d(o(2)), Lemma 5 now implies that
o(Q)=H,+ %,

as desired.

5. HIGHER DIMENSIONS

Following the arguments of the two dimensional case in the preceding
section, we now give the proof of Theorem | in all dimensions.

For nz= 3, let 2 = C” be a bounded convex domain, and let p a boundary
point of Q such that lim; , . ¢,(q) = p for some ge 2 and some sequence
{@,}, < Aut(R2). Transforming © by a complex affine rigid motion of C”,
we may assume without loss of generality that p=(0, ..., 0)e C" and that
7% is tangent to the hyperplane {(z,, .., z,)eC"|Imz, =0}. Assume also
that ¢Q is Levi flat in a neighborhood of p.

Since 862 admits a C™ foliation by (n — 1) dimensional complex analytic
subvarieties in the neigborhood of p where ¢Q is Levi flat, the arguments
of Case 1 of the preceding section generalizes naturally to every complex
dimension n > 2. Consequently, it follows that for any subsequence {¢, },,
we must have

lim 12, (q)l 0.
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As before, a standard normal family argument shows that the sequence
{lép;(q)li }, is bounded. Moreover, if ¢ is any subsequential limit of {¢,},,
then ¢(2)c Q and ¢(g)e Q. This implies p(Q2)e 2 by the Maximum
Principle. In particular,

klim det(de,(q)) =0,

where d;(q) is understood as a n x n complex nonsingular matrix for each
J. This shows that as in the case of two dimensions, we have at least one
eigendirection of dg;(g) that scales to infinity.

Denote by X(p) the maximal (in the sense of inclusion) complex variety
of 02 passing through pe Q. By convexity and the Maximum Principle,
the (n— 1) dimensional variety X(p) is in fact a convex subdomain
containing the origin p of the complex hyperplane {(z, .., z,)e C"|z =0}.
In fact, all the analytic leaves that foliates 062 near p are, by the same
reason, Euclidean flat. By convexity and by the smoothness of the foliation,
there exists r >0 such that, for any j, the analytic disk h,: 4 — C" defined
by

hi(z)=zv+ @,(q)
satisfies #;(4) = 2, whenever ve X(p) and ||vj <r. Then the vectors
=g, 'wh) (0)
satisfy
C'<ElsC

for some constant C >0 independent of ;. By taking a subsequence if
necessary, define

w(r) := lim —é'—-

i 11

Choose an orthonormal basis v,, ..., v, of the hyperplane {Im z, =0} that
contains X(p), then we have the following
LEMMAa 8 (Lemmad4 of [16]). The vectors w, = w(vsy), .., w, = w(v,)

are linearly independent over C.

Proof. For clarity, we repeat the proof of [16] here. Let a5, ..., a,eC
be such that

aw,+ - +a,w,=0.
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Then
d n (@ k) (0)
0: a wW,= a hm _.J_....__l_,_“
,§2 Y ,gz L= e, Po k) (0)]

- . 1 -————-———————-w-l - 71 1
=2 alim o hy @ 2@ o

n

7 a
=3 d0.(q)"" L —
L %0/a) [2 1@e,(q) " v ”]

1=2

Since {(d¢,(q)l} is bounded, since {||d@,(q) '|l} is also bounded when
restricted to the span of X(p) by above, and since v,, .., v, are linearly
independent over C, we can conclude that a,=0 for all /=2, .., n. This
completes the proof of the lemma.

A consequence of this lemma is that there exists one and only one eigen-
direction, which is transversal to X(p), of the scaling by {¢;} which scales
to infinity. Moreover, X(p,)’s will be scaled by a bounded sequence to a
convex domain in a certain codimension 1 hypersurface in C". Hence, a line
by line imitation of the arguments of Case 2 of the preceding section yields
the proof of Theorem 1 in every dimension.

6. PROOF OF THEOREMS 3 AND 4

Let 2 be a bounded domain in C”, and assume that the boundary 022
is C™ smooth near p. Suppose that there exist a point gedf2 and a
sequence {¢,},c Aut(R) such that ¢,(g)—p as j—oo. We say the
automorphism orbit {¢,(¢)}, accumulates at p nontangentially to 0%, if
there exists a constant C > 0 independent of ;j such that

dis(p,(q), p) < C-dis(g,(q), 02),  Vj.

If such an orbit exists, if 8Q is variety-free at p and if Q is convex near p,
then a very special convex scaling is valid as follows:
We start with

LEMMA 9. Let the bounded domain Q be pseudoconvex near p € 02 and
assume that 08 is variety-free at p. If there exist g€ 2 and {¢,},c Aut(2)
such that ¢;(g) — p as j — o, then ||0¢,(¢q)| =0 as j— .

Proof. Suppose there exists a sequence of unit vectors v, such that
0p;(g) vl 2r>0 for all j, where r is independent of j. By a standard
normal family argument, it follows that the sequence {|d¢,(q)v,ll}, is
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bounded. And hence there exists a subsequence {[d¢;(¢) v, };, in which we
use the same indices that converges to a certain nozero vector w. Since
g€ $2, we can choose >0 independent of j such that {rv;+ g€ Q for all
{ e C with |{] < 1. Define by

hiid—->Q:{—{tw+q

for each j. Then, a subsequence of {¢;~h,}, converges to a complex analytic
mapping g:4 — 2. By pseudoconvexity of £ near p, g(4)céd by
choosing a smaller ¢ if necessary, since g(0)= pe dQ. Since g'(0) =w #0,
this contradicts the fact that 0Q2 is variety-free at p.

Note that this lemma enables us to apply the convex scaling of
Proposition 4 of Section 2. However, we can refine the scaling method even
further as follows:

PROPOSITION 5. Let Q<= C” be a bounded domain with a variety-free
boundary point p admitting an open ball U centered at p such that 2 U is
convex. Suppose that there exists an automorphism orbit {@,(q)}, for some
{@;},c Au(2) and some qe 2, accumulating at p nontangentially to 0Q.
Then, the sequence

1,(z) :=080,(q) "' (9,(z) — p)

is a normal family, whose every subsequential limit is a one-to-one
holomorphic mapping into C". Moreover, every subsequence of {t,}, has a
convergent subsequence whose subsequential limit of the sequence of domains
1,{2 N U) converges to a convex domain that is biholomorphic to Q, where
the set-limits are taken in the sense of local Hausdorff set-convergence.

Proof. We will simply show that the sequence

d0,(q) ' (p—o;(g))

is bounded, since all the other assertions then follow from the arguments
of Section 2.

Note that, by definition of nontangential orbits, there exist a constant
C >0 and the truncated round cone

C, = {xeC’|dis(x, p) < C-dis(x, d2)} " U

is contained in £ and such that ¢,(q) tends to p in such a way that
{o(g)} = C,, for all j.

By smoothness of dQ2 near p, shrinking the neighborhood U of p if
necessary, we may assume that C, is contained in a cone contained in £
with the same vertex at p but with a slightly larger aperture. Let
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d,=|lp—¢,(g)l, for each j Therefore, there exists a constant k>0
independent of j such that for each p; the open ball B, , (¢,(q)) centered at
©;(q) with radius k d; is contained in Q. Let B be the open unit ball
centered at the origin in C". Then define f;: B— Q by

fi(D) =9, "(kdz+9,(q)).

Note that f;(0) =g for all j. Therefore, by a normal family argument, there
exists a constant K> 0 such that

1af; (0 < K, V.
which in turn implies that

K

.Y
kd, 7

e (q) Ml <
Consequently, we get
K K
o) (p— o, —-d == 1
Icp{q) " (p (p,(q))li\kdl_ di=7. Vi

Then the remaining assertions follow by the triangle inequality, Lemma 9,
Propositions 1 and 4, and the arguments of Section 2.

Now, we are ready for

Proof of Theorem3. Let 2cC? and peéf2 be as in the hypotheses
of Theorem 3. Assume the contrary that there exists a nontangential
automorphism orbit {¢,(g)},, for some {¢,}, < Aut(R2) and g€ 2, which
approaches p nontangentially to 062. To reach at a contradiction, it is
enough to show, due to Proposition 3, that convex scaling by 7,, induced
from a certain subsequence of {¢,};, in Proposition 5 does not yield a limit
domain that is biholomorphic to £2. The proof will then be complete.

Since p is a boundary point of convex exponential type (see Definition
preceding the statement of Theorem 3 in Section 1), we have, by an
complex affine change of coordinates, and open neighborhood U of p in C”
and C* smooth strictly convex positive real-valued function @: U — R
defining €2 ~ U, up to a linear change of complex coordinates of U, in such
a way that

(1) p=1(0,0),

(2) 2nU={(z),z,)eU|Imz,>B(z;)+ O(|z,2,{ +|z,/*},  and
D(iz

(3) lim (42) 0 forany Aix>1.

im0 B(2)
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Denote by
(?w,-(q)=(a“" o ’)

ay,; Gy

for each j. Then for every R >0, there exists j, >0 such that for all j> j,
the domain

TQ2) N Br(0)=1(2n U)n Bg(0)
is defined by, inside B,(0), the inequality

Im(a,, ;z,+ap ;2,)>Play 2, +axn ;) +0(ay, ;2 +4a,; ,23)
X(ay 2+ a2 ;) a2 +a|2,132‘2) (10)

Now we extract subsequences from {¢,}, several times, which we denote by
the same notation, as follows:

First, we choose a subsequence so that the induced convex-scaling
sequence {7,}; converges locally uniformly and so that the sequence of sets
17,{§2) converges in local Hausdorfl sense. Then we further extract sub-
sequences from {¢,}, so that we have a sequence of positive numbers ¢; and
complex numbers a,;, (/=1, 2) such that

(i) lim, , (ay /e)=0,, (I=1,2)
(ii) At least one of the two numbers «,,, 2,, in (1) has modules 1.

Then we consider the normalized limit of the expression (10) above as
follows:

Im(o,, 2,4+ 2,525) >jlim ;1— D(ay ;z,+axy ;) (11)
- &

Note that the O term vanishes when we take the limit of (z,, z,) € Bg(0).
Observe that, if the right-hand side of (11) is identically zero, then since
R >0 is arbitrary, the expression converges to the expression defining 7(£2).
But, then we arrive at the conclusion that 7{Q) contains a complex line in
its closure. Since 1(§2) is convex, it also contains a complex line. Then ©(£2)
cannot be biholomorphic to any bounded domain in C?, which obviously
contradicts the conclusion of Proposition 5 that t(£2) is biholomorphic to
Q. Therefore, the right hand side of (11) cannot be identically zero. Neither
can it be identical infinity, since 7(£2) cannot be empty. If 0 and oo are the
only values the right hand side of (11) takes, then it is easy to see from the
arguments of the preceding section that 1(£2) is biholomorphic to a product
of two bounded convex domains in C, and hence its interior and the
boundary are completely foliated by analytic varieties. However, a theorem
of Remmert and Stein [247 (also [1, 13, 15, 17]) implies that such a
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domain cannot be biholomorphic to a domain with a strongly pseudo-
convex boundary point. On the other hand, since pe 02 is variety-free, Q
necessarily admits a strongly pseudoconvex boundary point near p. This
yields again that 7(£2) cannot be biholomorphic to £2, another contradiction.

Therefore, due to convexity of 1(£2), we have a point py = (z{, z9) e ©(Q)
and a relatively compact neighborhood V of p, in 7(£2) such that

1 .1
zs_hm —®(ay ;z;+ a2, <K, V(z,,z,)eV
o x Cj

for some constant K> 0 independent of (z,,z,)e V. Since V is an open
neighborhood of p,, we can choose 2>1 such that (Az{, Az9) is still

contained in V. But then
.1 \
K> lim - Dla,, ;Azy+ay ;Azy)
Jox &
P[May 2, +ax )]

D(ay ;zy+axn ;2,)

. D[ia,y ;z,+a5 ;=
>1r<,71 llm [ ( 21,/ ~1 22,5 2)]
o ¢(a21,j:l+a22.jzz)

.1
= llm - ¢(02|'j:’| +022v_,22) .

e Bj

=CD’

which is absurd.

This argument shows that there exists a subsequence of {¢;}, which does
not admit the convex scaling sequence {t,}, as specified in Proposition 5,
contradicting the conclusion of Proposition 5, if one assumes the existence
of an automorphism orbit approaching p = (0, 0) nontangentially to 0£2.
Hence, our final conclusion is that there cannot be an automorphism orbit
approaching p nontangentially to the boundary of €2, which completes the
proof of Theorem 3.

Proof of Theoremd4. With the hypotheses of Theorem 4 stated in
Section 1, the convex-scaling of Proposition 5 with 1,(z)=[d¢,(¢)] '
(¢,(z) — p) for fixed p € 622 in the preceding section applies. Then, with this
special type of scaling, a line-by-line imitation of the proof of Theorem 1 in
complex dimension two (Section 4) provides the proof of Theorem 4.

REFERENCES

1. H. ALExanDER, Holomorphic mappings from the ball and polydisc, Math. Ann. 209
(1974), 249--256.

2. E. BeprorD aND S. PINCUK, Domains in C" with noncompact automorphism groups,
Math. USSR-Sb. 135 (1988), 147-157.



482 KANG-TAE KIM

3. E. BEDFORD AND S. PINCUK, Domains in C"*! with noncompact automorphism groups,

20.

21
22,

24,

25.

26.

27

Preprint.

. T. BLooM AND I. GRAHAM, A geomelric characterization of points of type m real sub-

mantfolds of C”, J. Differential Geom. 12 (1977), 171-182.

. D. Burns, S. SHNIDER, AND R. O. WELLs, On deformations of strictly pseudoconvex

domains, Invent. Math. 46 (1978), 237-253.

. H. CarTaN, Sur les fonctions des plusieurs variables complexes, Math. Z. 3§ (1932),
760-773.

. J. D'ANGELO, Real hypersurfaces, orders of contact, and applications, Ann. Marh. 115
{1982), 615-637.

. S. FRANKEL, Complex geometry with convex domains that cover varieties, Acza Math. 163
(1989), 109-149.

. R. E. GREENE aND S. G. KraNTZ, Deformation of complex structures, estimates for the
d equation, and stability of Bergman kernel, 4dv. Math. 43 (1982), 1-86.

. R. E. GReene AND S. G. KRranTz, Characterizations of certain weakly pseudo-convex

domains with noncompact automorphism groups, in "Complex Analysis”™ (S. Krantz,
Ed.), Lecture Notes in Math., Vol. 1268, pp. 121-157, Springer, New York—Berlin, 1987.

. R. E. GReeNnE aND S. G. KRaNTZ. Invariants of Bergman geometry and the
automorphism groups of domains in C”, preprint.

. R. E. GREENE AND S. G. KraNTZ, Techniques for studying automorphisms of weakly

pseudoconvex domains, Ann. Math., to appear.

. A. HuckLeBERRY, Holomorphic fibrations of bounded domains, Math. Ann. 277 (1977),
61-66.

. K. T. KiM, Complete localization of domains with noncompact automorphism groups,
Trans. Amer. Math. Soc. 319 (1990), 139-153,

. K. T. Kim, Asymptotic behavior of the curvature of the Bergman metric of a thin domain,
Pacific J. Math., to appear.

. K. T. KiM, Domains in C” with a piecewise Levi flat boundary which possess a non-
compact automorphism group, Math. Ann. 292 (1992), 575-586.

. S. KoBayasHl, “Hyperbolic Manifolds and Holomorphic Mappings,” Dekker, New York,
1970.

. A. KopaMa, On structure of a bounded domain with a special boundary point, Osaka J.

23 (1986), 271-298.
. S. G. KranTtz, “Function Theory of Several Complex Variables,” Wiley-Interscience,
New York, 1982.
S. G. Krantz, Convexity in complex analysis, Proc. Symp. Pure. Math. 52 (1991),
119-137.
R. NARASIMHAN, “Several Complex Variables,” Univ. of Chicago Press, Chicago, 1971.
S. PiNn¢uk, Holomorphic inequivalence of some classes of domains in C”, Math. USSR-Sb.
39 (1981), 61-85.
. S. Pin¢uk, Homogeneous domains with piecewise smooth boundaries, Math. Zametki
{Engl. Transl. in Math. Notes) 32 (1982), 849-852.
R. ReMMERT AnND K. STEIN, Eigentliche holomorphe Abbildungen, Math. Z. 73 (1960),
159-189.
J. P. RosAY, Sur une caractérisation de la boule parmi les domaines de C” par son groupe
d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), 91-97.
B. WoNG, Characterization of the unit ball in C” by its automorphism group, Invent.
Maih, 41 (1977), 253-257.
. H. Wu, Normal families of holomorphic mappings, 4cta Math. 119 (1967), 193-233.



