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Abstract

Three results concerning the colon-capturing property for extended plus closures in excellent
mixed characteristic rings are demonstrated. It is shown that the extended plus closure has the
colon-capturing property for arbitrary sets of three parameters. It is also seen that establishing the
colon-capturing property for the extended plus closure is sufficient to guarantee the existence of
balanced big Cohen—Macaulay algebras. Also, for three-dimensional complete domains, the second
local cohomology oRt is annihilated by arbitrarily small powers of every non-unit.

00 2005 Elsevier Inc. All rights reserved.

In several recent articles, [3-5], there has been progress made toward developing a
mixed characteristic analog of tight closure. Here we shall present three loosely related
results that advance that cause.

In [5], the following theorem was proved.

Theorem 0.1. Let p, x, y be parametersin R, an excellent local domain. Suppose pVz €
(x, y)R. Then for any rational ¢ > 0, there is a module-finite extension S of R with p¢z €
(x,y)S. Thus z € (x, y) R®P, the (full) extended plus closure of (x, y)R.
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In dimension three, this result asserts that the extended plus closure has the colon-
capturing property. In dimension four (or higher), it yields a limited colon-capturing
property—colon-capturing for sets of three parameters when one of the parametdrs is
Section 1, we show that this can be extended to arbitrary sets of three parameters.

In Section 2, we prove another variant of the original result in dimension three. The
conclusionp®z € (x, y)S and sop®z € (x, y)R* raises an obvious question. Is there some-
thing special aboup, is p a natural test element, or can a similar result be proved for other
ring elements? We shall show the following.

Theorem 0.2. Let p, x, y beparametersin R, an excellent local domain of dimension three.
Suppose pz € (x, y)R. Then for any element ¢ in the maximal ideal and any rational
e>0,c°ze(x,y)RT.

This result suggests that if there is to be a theory of test elements for the extended
plus closure, it may resemble the theory for tight closure. Small powers of all elements
which kill the colon ideal sufficep is not special. It also gives another interesting fact.

If (R, P) is a three-dimensional complete local domain of mixed characteristic, then the
local cohomology modulé]f,(R*) is actually a vector space over the residue fiel®of

Unfortunately the proof of Theorem 0.2 is quite intricate. It is patterned after the proof
of Theorem 0.1. However, unlike the proof of the earlier result, which relied solely on the
conducting power op, this proof must necessarily utilize the conducting powep of
some steps and the conducting powet af others. It seems unavoidable that any direct
proof of this result which relies on constructing a polynomial will necessarily be messy.

Section 3 is devoted to generalizing the following theorem.

Theorem 0.3 [6]. Let R — S be a local homomorphism of complete local domains of
mixed characteristic and dimension at most 3. Then there is a commutative diagram:

]

where B is a balanced big Cohen—-Macaulay algebra over R and C is a balanced big
Cohen—Macaulay algebra over S.

R

—_—

A key ingredient in Hochster's proof was the fact that the extended plus closure has the
colon-capturing property in dimension three. Since the existence of balanced big Cohen—
Macaulay algebras implies the direct summand conjecture while the converse is not known,
this result provides a more powerful use of colon-capturing. We want to show that if
the extended plus closure has the colon-capturing property more generally, balanced big
Cohen—Macaulay algebras exist more generally. Actually, we want even more than this.
As it is not clear what the optimal notion for a tight closure analog in mixed characteristic
is, we want to prove the result for the closure which is eventually chosen. Hence we intro-
duce a new closure operation which contains all of the closures considered in my previous
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articles and demonstrate that colon-capturing for this potentially larger closure yields bal-
anced big Cohen—Macaulay algebras. Moreover, with some additional hypothesis on the
rings involved, we can even get weakly functorial algebras.

Notation and conventions

Throughout,R will be an excellent integral domain of mixed characteristic, that is, the
Jacobson radical aR will contain a prime integep which is nonzero as an element of
the ring. WhenR is local, we will sometimes writé¢R, P) to indicate that the unique
maximal ideal ofR is P. R™ will denote the integral closure at in an algebraic clo-
sure of its quotient field. We will refer to, ..., x, as a set of parameters i provided
ht(x1,...x,)R =n. By H;(x1, x2, x3, R) andH! (x1, x2, x3, R), we mean the usual Koszul
homology and cohomology, respectively. BM;(R), we indicate local cohomology. We
will make use of the usual description of local cohomology as a direct limit of Koszul
cohomology. In particular, wheR is integrally closed of dimension three, we know that
R, is Cohen—Macaulay for every non-umitand so every element of the maximal ideal
has a power which Kills the second local cohomology module and so all of the first Koszul
homology modules.

Next we recall some definitions from [4]. The last two were introduced in that article;
the first has a longer history. We are shortening the closure name to extended plus closure
(respectively rank one closure), dropping the word full. Also, since we are only concerned
with integral domains which do not contain the rational numbers, we may state the defini-
tions more simply.

Definition. If x € R, thenx is in the plus closure of if x e IRT N R. We writex € I,

Definition. If x € R, thenx is in the extended plus closure b6fif there existsc 20 € R
such that for every positive integer c'/"x € (1, p")R™. We writex € 16",

Definition. If x € R, thenx is in the rank one closure dfif for every rank one valuation
on RT, every positive integet, and every > 0, there existgl € R with v(d) < ¢ such
thatdx € (I, p")Rt. We writex € ',

The three sections of this article can be read independently.

1. Arbitrary parameters

We begin with a formal proof of a standard fact that we will need.
Proposition 1.1. Let R be an excellent normal domain and suppose x, y, z are parame-
ters. Then for somed € Z*, Hy(x™, y™, 2", R) isisomorphic to Hy (x4, y¢, z¢, R) for all

m > d. In particular, x4, y¢, z¢ annihilate Hy(x™, y™, z", R).

Proof. The first conclusion follows from the second. To prove the second/ let
(x, vy, z) R and consider the local cohomology modlﬂlé(R). RecallHy(x™, y™, 7", R) =
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H2(x™, y™, 2", R) and HZ(R) = limy,— 00 H2(x™, y™, 2™, R) [1, p. 130]. We note that
the limit is an ascending union and so the proposition will follow if we shdwy?, z¢
annihilateH2(R).

The associated primes H,Z(R) are those depth two primes &f containing/, a sub-
set of AsgR/(x, y)) and hence a finite set. Thus it suffices to show some powaer, of
v, z kill HZ(R) locally. So we may assumg is local. Next we completR. As R is
excellent, R is again a normal domain; in particular it is (82) Thus by [H]I,A(R)

is annihilated by a power of. It follows that for somed e zZ+, x4, yd, 74 annihilate
Hy(x™, y™, z ,R) for all m. But t Hy(x™, y™ ,z ,R) = (™ Y™ R Z’”)/(x ,ym)R
((xm,y’") R 2/, YR Q R and sox?, y?, z4 annihilate ((x, y™) :z z™)/
(x™, y™R = H1(x™, y™, 7", R) as desired. O

The next lemma is a special case of the main theorem of this section.

Lemma 1.2. Let R bean excellent normal local domain of mixed characteristic. Assume p,
x,y,z areparametersin Rand suppose w € R suchthat zw € (x, y)R. Thenw € (x, y)®Pf.

Proof. Fix N > 0. It suffices to showpz)Nw € (x, y, pM)Rt. We let So = R[u, zt,
pNzt] with r = u~1, an augmented Rees ring. L&tbe the integral closure ofg. S is
again a graded ring—the summand of degré (z, pN°)" Rt".

Claim 1. (p, x, y)S isa height three ideal.

To see this, aR and henceSy are excellent, it suffices to show thgt, x, y)So is a
height three ideal. Lep be a prime ideal ofp which containgp, x, y)So. If u ¢ Q, then
(So0)o is a localization ofSo[u~1] = R[u,u~'] and so hQ > ht(QNR) > 3. [fu € Q,
thenz € Q and so htQ N R[u]) > 5. It follows that htQ > 3 sinceSy is a polynomial ring
in two variables oveR[«] modulo a height two prime ideal.

Claim 2. There exist elements p/V o, g € St such that p¥/VN (ztw) = xa + yB.

It suffices to prove the claim locally. For those maximal ideals which do not contain
(p, x,y)S, the claim follows immediately. (Ip is a unit,z is in the ring andwt =t (zw) €
(x,y).) So we may assumgis an excellent normal local domain of mixed characteristic.
We may also adjoir with o7~ = p and take the integral closure without destroying our
hypothesis. Thus we may assumfie€ontainse. Now note thattw = xa + yb for some
a,be RCS. ThUSpNZth = (pNzt)(xa + yb) € (x, y)S. Next, by Proposition 1.1, there
existsd € Z* such thatc?, y¢, p¢ annihilateHy(x™, y™, p™, §) for everym. Hence we
may apply [5, Theorem 2.7] with?, y¢ in place ofx, y and(xy)?~1zrw in place ofz to
find y, 8 € S such thatp VN (xy)?~1zrw = x4y + y45. But theny = y?~ 1o, § = x?-18
for somea, B € ST and so the claim follows.

Claim 3. In satisfying Claim 2, we may choose «, 8 to be homogeneous of degree 1.
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Let £(T) be the irreducible polynomial with coefficients i the integral closure of
S[pYN1 which is satisfied by. We may writef (T) = T™ + a1, TY 14 ... +ay. By [3],
the integrality ofg is equivalent to the conditions

i .
M — L
Z( {)aj(ztw)’_fxf ey's
1=

j=0

holding for everyi =1,2,..., M. As S is gradedy is homogeneous, and each term on the
left-hand side except; is homogeneous, we may &} be the degreg term ofa; and we
then have

i .
M— S
E ( ?)cz_j(ztw)l_foey’S
L=

Jj=0

holding for everyi = 1,2,..., M. Replacinga by a root of f(T) = TM 4+ a;TM-1 4+
.-+ ay, we geto, B to be homogeneous of degree 1 as desired.
Now ua andup are homogeneous of degree 0 and so are elemenksofn fact,

they are elements ofz, pN°)R+ = (z¥/N, pN)NR+. By the mixed characteristic ver-
sion of the Briangon—Skoda theorem [3, p. 702], this givesup € (z*/V, pV)N-1R* c
WN=D/N pNYRY. ThuszYNua, z2YNup e (z, p¥)R. Now

1/N

(p2)YNzw = (p2)YVu(zrw) = x2YNua + yzYNup

=x(zs1+ pNtl) + y(zs2+ pNtz) =z(xs1+ ys2) + pY (xt1 + yt2)

for somesz, s2, 11, 12 € RT. Sincez divides p" (xr1 + y2) and no height one prime ideal
contains(z, p)R, it follows that(pz)YN w = xs1 + ysa + pVr for somer e R*. O

Theorem 1.3. Let R be an excellent normal local domain of mixed characteristic. Assume
x, y,z areparametersin R and supposew € R suchthat zw € (x, y)R. Thenw € (x, y)¢Pf.

Proof. (x, y)R is unchanged ik is replaced by an element of the fonn- ry and so we
may use prime avoidance to assumephk)R = 2. Likewise, the conditionw € (x, y)R
is unaffected by replacing by an element of the form + ry and so we may assume
ht(x, z, p) = 3. Now we writezw = ax + by. Next we fix a primary decomposition for
(x,z)R and write(x, z)R = Q1 N Q2 N O3 where O is the intersection of the isolated
primary componentsQ- is the intersection of the embedded primary components which
contain a power op, and Qs is the intersection of the embedded primary components
which do not contain a power gf. (Either of the latter two may b&.) Since Q3 is not
contained in any height 3 prime which contaips z, p) R, we may choose € Q3 such
that hix, z, p,v) =4 (orv=1if Q3= R). Asb € Q1, clearlyvp"b € (x, z) R for somen.
Using Proposition 1.1 and [5, Theorem 2.7], there is a module-finite exteSsidrR
such thatpY/Nvb € (x,z)S. Next, we may use (1.2) to get’/Vb € (x, )P and so it
follows thatb € (x, z)¢P". Thus, for some € R, o, 8,y € RT, we may writec/Vp =
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xa+zB+pNy. Itfollows thatzeNw = cYNax +cYNby = cYNax + y(xa +z8+ pNy)
and s (cYNw —yB) = x(cYNa+ ya) + pVyy. Again we may apply [5, Theorem 2.7] to
getpNyy e (x, 2)RT. So we writep/N yy = xo + z8 with §, 0 € RT. Substituting this
into the previous equation and lettidg= N — 1/ N, we havez(cY/Yw — y8) = x(c¢¥Na +
ya) + p?(xo + z8). Rearranging, we see thatc’Yw — yg8 — p?8) e xR, socNw —
yB — p?s e xRT, and finallye¥Nw € (x, y, pY)R. Thusw € (x, ). O

2. Arbitrary annihilatorsof small order

The proof of Theorem 2.8 is patterned after the proof of [5, Theorem 2.7]. Accordingly
we will begin with a collection of lemmas, mostly without proof, which either appeared in
the earlier article or resemble lemmas from [5].

Definition. For a positive integet, express: — 1 in basep and lett (n) be the sum of the
digits. We taker (1) = 0. Then define

Lemma2.1[5, Lemma 1.6]Let0 < j <i < p’ beintegers.

(@) The highest power of p which divides (j:i) ist(j)+tl@ —j+1 —1(@).
(b) The highest power of p which divides (plL:/) isalsoz(j)+ 1@ —j+1) — ().
(c) The highest power of p which divides (”iL) isL+t(+1)—1t@()— (2.

The next is a variant of a lemma in [5].

Lemma 2.2. Let R be an excellent integrally closed domain and let ¢ > 0 be a rational
number. Let ¢, x, y, z € R whereno height one primeideal contains both ¢ and y. Suppose
z=xw + yv where w, v are integral over R[c~1] and w satisfies the monic polynomial
T" +a1T" 1+ ... 4 a,. Further suppose c®/a; isintegral over R for every j. Then cfw
and c®v areintegral over R.

Proof. Sincec? is integral overR, we may adjoin it toR without altering our hypothesis.
After taking the integral closure, we may assurﬁézj € R. Lettingb; = cgjaj, we see
thatc?w satisfiesI” + b1 7"~ + ... + b, and so is integral oveR. Now this implies that
cfv is integral overR[y—1]. By hypothesis¢?v is also integral oveR[c~1]. SinceRr is
integrally closed and no height one prime ideal contains bathdy, we see that®v is
integral overkR. O

Lemma 2.3 [3, Lemma 2.1] Suppose x, y, z € R with y # 0. Let

=) at"

i=0
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be a monic polynomial over R and suppose w is an element in an extension domain of R
suchthat f(w)=0.For 0<i <n, set

i .
. n—j T
b = (-1 E <i 3 j)ajz’ Ix7
Jj=0
and let

g()=Y bT".

i=0
Then g(z — xw) = 0. In particular, if each b; € y' R, (z — xw)/y isintegral over R.

In the original statement of the next lemma and those that follow, it was assumed that
S contained the rational numbers although the full strength of that assumption was seldom
needed. Unlike the earlier article, we will not be applying the lemma&s+taR[p—1] and so
this hypothesis is unacceptable. Accordingly, we will state the results without that hypoth-
esis when possible. The proofs will not be affected. That assumption was used nowhere in
the proof of the next lemma. In the succeeding lemma, there is division by combinatorial
symbols and it is necessary to assusneontainsz,) .

Lemma 2.4 [5, Lemma 2.2] Let S be an integral domain. Suppose z = ax + by with
a,b,x,y € S and let n be a positive integer. Further suppose ag = 1,a3,...,ax,-1 € S
have been chosen with & < n so that

i .
Z(n J,)ajzi_jxj eyiS fori=1,...,k—1.
. L—]

Jj=0

Then we may find a; € S such that

k n—1j .
Z (k J,)ajzk_/x-’ e yks.
j=o "/

Lemma 2.5 [5, Lemma 2.5] Let S be an integral domain which contains Z,). Suppose
M > L arepositiveintegersand x, y, z, a1, ..., a; are elements of S such that

Z(p. .]>a,'zlfx]ey‘S for all i <k
Nt

where k isan integer lessthan pr. If

3 =M —m .
aj= 1_[ oL m a; foreach >0,
m=0
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thena; = pM~Lq;a; where g, isaunitin Z,, and

LM L (Pt
—\- i owmeL - NP '
Z(i_.)ajz’ Ix)=p qiz<i_j>ajz’ Ix/ey'S foralli<k.

j=0 J j=0

The last lemma in the sequence does requireStwaintain the rationals. Unfortunately,
the hypothesis of [5, Lemma 2.6] was incorrectly worded. What appears here is the lemma
which was actually proved and used in the earlier article.

Lemma 2.6 [5, Lemma 2.6] Let S be an integral domain which contains the rational
numbers. Letd, i, M, L beintegerswith L < M,0<d <i < pM,andi —d < p’. Suppose
x,y,z,4ap, a1, ...,a;—1 are elements of S such that

h L —m
Z (p )amzh_mxm ey's
h—m

m=0

for all integersh <i —d. Leta; =0for j <d and

_ 4(pPF-j+d pM—j
aj=y i aj_q -

ford < j <i—1 Then

k —

k M _ '
(p ‘J)&jzk_-’xf eyks
j=0 /

forall k <i.
We need one additional new lemma for our proof.

Lemma 2.7. Let D, n be fixed positive integers and suppose ¢ > 0. For aninteger K > D,
let J; ={j <i|j<p'™*+P and t(j) > nK}. If K issufficiently large, then |J;| < ei for
ali.

Proof. First we bound the cardinality of;. If j < p"®*P and t(j) > nK, then
t(p"K*+P — j 4+ 1) =nK + D — 1(j) < D. So it is equivalent to count the set

{j < p"®*+P | 1(j) < D}. Thus we are counting ordered sequences Kf+ D digits,

none of which exceeds — 1, which sum to at mosb(p — 1) — 1. Since we merely need

to bound the cardinality, we can replace the set by a larger one and drop the restriction that
no digit exceedp — 1. Also, adding an additional digit, we may assume that the sequence
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sums to exacthD (p — 1) — 1. Now the cardinality of the set is an easy computation and
equals

<nK+Dp—1)_<nK+Dp—l

< (nK + Dp)Pr.
nK +D D(p—l)—l) (nK +Dp)

Fori < p"X, the conditionc (j) > nK cannot be satisfied and gpis empty. ThugJ;| =0
fori < p"K and|J;| < mK + Dp)P?P for i > p"K. It follows that|J;|/i is bounded by
(nK + Dp)PP/p"X . However, this fraction approaches zerokagioes to infinity and so
the lemma is proved. O

We are now ready to prove a special case of the main result of this section. The full
theorem will then easily follow.

Theorem 2.8. Let R be a three-dimensional integrally closed excellent domain of mixed
characteristic and suppose pc, x, y is a system of parameters with ht(p, ¢c) R = 2. Assume
thereisan element o € R with o?~1 = p and that pV, x, y, ¢ kill Hi(p™, x™, y™, R) for
every positive integer m. Further supposethat z € ((x, y): p™) = ((x, y) : ¢). Then for any
rational ¢ > 0, there is a module-finite extension S of R with ¢?z € (x, y)S.

Proof. We prove the result by constructing a polynomjall’) = TP + ale’L‘1 +--+
a,L with coefficients inR[¢—1] such that ifw is any root of £(T), v = (z — xw)/y is
also integral oveR[c~1]. If we can accomplish this for fixegwith cgfaj integral overR
for everyj, then, by Lemma 2.2, the conclusion holds wstk= R[c?, c®*w, ¢®v]. Thus the
entire proof rests on our ability to satisfactorily choose dhis. UnfortunatelyL is not
determined at the start of the process; it will be chosen in the recursive procedure.

Let D = A(H1(p™, x™, y™, R)), the length of the homology module. Fix an integer
K > D. After describing the recursion, we shall show that by makihgrbitrarily large,
we can make: arbitrarily small. We first describe the goals of the recursive process by
which we construct the polynomial. For each integewe choose a sdf; with I, = {1}
and, in general]; = I;_1 or I; = I;_1 U {i}. We letG; = |I;|. We also shall choose
integersF; > F;_1 andL; > L;_1 with KG; < L; < KG; + D, as well as elements
ai, ..., a;; such that the following conditions are satisfied:

(1) aj; € pKGi—*D R[] for every j;
() cfiaj; € R for everyj andc’2iaj; € R whenever 2 < i; and
(3) with ag; = 1, the condition

k—j

k Li _j .
<p ']>ajizk_]x] € ykR[c_l]
Jj=0

will be satisfied for each <.
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The procedure ends whegr= pLi (something we still must demonstrate happens), at which
time we get the desired polynomig(T) with L = L; anda; = aj; for every j. We also
letzy =z and fori > 1, we let

i—-1 L: .
_ p i-1 ] L
z=p tichiay” < . ajiaz X

j=o~ "7
whereE; =sugKG;_1 — t(i) + t(2), 0}. We shall also show that
(4) zi € (X', y) o).

In general, we letQ; = (x!, y!, {(xy) ™z, | n € I_1}))R. Q;/(x,y")R naturally
embeds inHy(p™, x™,y™, R) via a map which factors through; : Q;/(x’, y)R —
Qit1/(x'*t1 yith R This is the standard mapping used in showing the second local
cohomology module is a limit of Koszul cohomology. L&; be the least nonnega-
tive integer such thap?iz; € Q;. Trivially, D; < D — A(Q;/(x, y)R) and, ifi € I},

D;i < AMQiy1/ (L yITHR)Y —A(Q;/(x', y)R). We shall choosé; = L;_1 wheni ¢ I}

andL; = L;_1+ K + D; wheni € I;. By the above, taking.1 = K + D1, we clearly have

L; > L;—1andKG; < L; < KG; + D by an inductive proof (provide®; > 0, a harmless
assumption). To conclude this preliminary note, we point out that we shall never choose
i € I unlessD; > 0. Consequently, for all, G; < D andL; < (K + 1) D and so the
process must terminate.

Now we are ready to describe the recursive procedure. For the initialisteft), we
may finda € R such thatp?1z 4 ax € yR. ChooseF; = 0 andayy = pXa. Trivially we
see that the first three conditions are satisfied withe pX R = pX—*@ R. By hypothesis,
z1€((x,y)0).

Fori > 1, we first demonstrate (4). As we know that

£ (phr = »
Z ( k— >aj,ilzk_’x/ e y*R[c™Y] foreachk <i,
j=0

Lemma 2.4 yields

MH

Ll . . . . .
( ) )"f’flz"’xf e (¥ y)R[c™]
i—J

and soz; € (x', y)R[(pc)~1]. To see that; € R, it suffices to prove it one term at a time.
Also, asp andc are relatively prime, it suffices to prove each term iRip~ 1N RcL.
That each term is iR[p~1] follows from cFiflaj,i_l € R. To see that each term is in
R[c~1], itis enough to show

Lic1_ :
pFi <p . ' . ])aj,i—le R[fl]

L=
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By Lemma 2.1,

Li—1 _
(P | 1 - J) € prUTi=ith-Ti) g
L=

and so it suffices to show
(~KGi—1+1() —t@)+ (r() + 7l — j+1D) — () + (KGi—1 — (j)) =0

when j > 0. But this is clear since the left-hand side is ju$t — j + 1) — 7(2). For
j=0,weneed—KG;_1+1t()—1(2)+ (Li-1+ (@ +1) — () —t(2) > 0. Since
L;_1> KG;_1+ 1, it suffices to show that 4 7 (i + 1) > 27(2) and this too is clear. So
zi € R and as; € (x', y)R[c~ 1] N R, it follows thatz; € ((x, y'):¢) and so (4) holds as
desired.

Now we consider three cases.

Case 1. SupposeKG;_1 — 1(i) > 0 andz; ¢ Q;. Here we setl; = I';_; U {i} and
F; = F;_1. This will be the only case wherge I}, a fact we shall utilize. We have
Gi=Gj_1+1landL;=L,_1+ K+ D;. Let

(jl pL,' —m )
ajio=\ [1 5=, Jar-+
m=0 prt—m

By Lemma 2.5, we have

k Li _ o
=

J

for k <i. We also see that

i-1

PE =i\
Z( j—j )“jioz’_"x’=(PD"“)(PE"+KC_F"‘1ZI-),

i
j=0

i—-1
m=1

whereu is the unit([T, =, (p% —m)/(p¥i-t —m)). Sincepiz; € Q;, we have a relation

pPizirx + ) ealay) " za = by’

nel;

and so

pEi""Kc_]:i*lu <pDiZl. Lrxl 4+ Z cn(xy)i_"zn) € yiR[C_l].

nel;
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Letting ajio = pFitKc=Fi-1yr, we have

i pri—j i—j j Ei+K —F, D '
Z( i )aj,-ozl_Jx/=p iR e iy (pPiz + rxt).
=0

For eachn € I}, we intend to finday;y, ..., a@i—1,i» SUch that

i—1 L:

> (P. _jj)“jinz"_"xj = phitK e livtue, (xy) "z

j=1

Then we setr; = ajio + Zne]’} ajin for 0 < j <i anda;; = ajjo. Clearly (1) will be
proved if we show

(1) ajin isin pKGi—T)R[c~1] for everyj, n.
Likewise (2) will follow from
(2) cfiaji, € R for everyj, n andc2aj;, € R for everyn whenever 2 < i.

To prove (3), we note that th¢h condition follows from the definition:

i Li _j R
> (7 Yo
t=J

j=0

—Z(p - '>a 07~ ’x“rZZ( - )a,-mz"jxj

nel; j=1

= pEi+Kc_F"*1u(pD"z,- +rxi) + Z pE"+Kc_F"*1ucn(xy)i_”zn € yiR[c_l].

nel;

Thus (3) will follow if we show
3) Yo (” "P)ajin?t~Ix] € y*R[c™1 for everyn and O< k <.

We shall define the sét;,} and prove (1), (2) and (3) using three subcases= 0,
n=1,n>1 Forn=0,{aj;,} is already defined and (Bwas previously noted. Again
by Lemma 2.5¢;;0 € pX™Pia;; R and so (1) and (2) are trivial for j < i. Finally a;;0 €
pEitKc—Fi-1R gives the final case sindg + K > KG; — t(i) andF; = F;_1. Forn =1,
we get

1

i— L- .
D )ajingixd = pEtK Fistye, (xy)i iz
i1 i— ]

/:
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by choosing
i—1 PLi —J
whenj =i — 1 anda;;, = 0 otherwise. That

k

Li _ o
Z <pk 3 j]>ajinzk_jxf € ykR[c_l]

j=1

for everyk < i is trivial since eacla;, € y'"1R[c~1]. To see that ;, € pXGi—T() R[c71],
we note that:;;, = 0 unlessj =i — 1. In the latter case, we need only show

pE,-+K/<PLi —:fi - 1)) c pKG,-—r(i—l)R_

ThisrequiresonlYKG;—1—t()+1t(2Q)+K -t —D+t(2Q—10() > KG;—1t(—1)
and, asG; = G;_1 + 1, this is an equality. (2is trivial sinceF; = F;_;.
Now we fixn > 1. To get

< (Ph -
Z( i—J )“ﬁnz’_’x’ = pFitR e itue, (xy) "z,
j=1 /
we recall that
n—1 L .
_ p n-1 _ j e
n=p E”CF”lZ< 7 )ajn—12t X
j=o "7

We can obtain the desired equality provided
Li _ s Ln71 o .
p J . _F T p J—n+i
( . . )ajin = pElJrKC Ftilucnyl np E,,CF,,1< . . )aj—i-n—i,n—l
L= L=
for j=i—n,...,i —1andaj;, =0 otherwise. Sofoj =i —n,...,i — 1,
L -1 . . L .
) _F i—n — prt—j—n+i P =1
Ajin = pE1+Kanfl Flflucnyt np En< i )aj+n—i,n—l/< i )

Ly1_ ; [ — Li _
K _F i—n (P J+ @G —=n) pr=J
:(pE’+K EnoFn-1 Flflucn)y’ ”( aAj—(i—n)n—1 .

i—J i—j
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To prove (1), we first note that since € I}, thenth step used Case 1. TthGn,l —
t(n) >0 andE, = KG,_1 — t(n) + t(2). Now, to see thati;, € pKCi—*R[c71], it
suffices to show that

. Lt —j—n4i bi—j i—T(j
pEl+K—En (p J >Gj+ni,n1/(p. .J) € PKG’_T(j)R[C_l]'

i—j i—j

Forj 4+n —i >0, we apply Lemma 2.1 to see that this is equivalent to

(KGici—t()+1(2)+ K — (KGpe1—t() + 1) +1( +n—1i)
+1i—j+D) -t + (KGu1—t(+n—0)— (t(H+16G —j+ 1D —70))
> KG; —t(j).

However, the two sides of this expression are clearly equal.
Forj +n —i =0, we must show

L Li _
pEitK=Ex (P 1>/<P -J) e pKGi—T(R.
L= L=

Using Lemma 2.1, it suffices to show

(KGi-1—1()+1(2)+K — (KGp1—1(n) +7(2)
+(Lp—r—tli— D+t —j+D—-1@)—(t(H+1G—j+D—10)
=2 KG; —1()).

This is equivalentte-KG,,_1+t(n)+L,_1—t(2) — (i — j) > 0. Sincei — j = n, this
is equivalenttd.,,_1 > KG,_1+t(2). Ast(2) < 1, (T) holds.

To prove (2), it is enough to showficf-1=Fi-ig; ., ;. 1 € R for every j and
cfecfn1=Fiig; . ., 1 € R whenever 2 < i. The first half is trivial since
cf-1a;1,_; ,_1 € R. For the second half, note that 2 i andj +n —i > 0imply 2z > i.
Becauser € I}, n € I,. Again, this is possible only if the= n step utilized Case 1. Hence
F, = F,_1andG, = G,_1+ 1. Sincen < pl»-1,ithas atmosL,_1 < KG,_1 + D dig-
its in its basep representation. A® < K, if n < k < pn, k has at mosK G,, digits and
sot(k) < KGj_1. This means that the= k step utilizes either Case 1 or Case 2 (this
is actually how the cases are defined). We have seen in Case 1 and will see in Case 2
that F; = F;_1. Thus, asi < pn, F;_1 = F, = F,_1 and we are reduced to showing
cFZfaH,,_,-,n_l € Rwhenever 2 <i.If2j >n — 1, this is clear sincd?; > F,_1 while
if 2j <n—1, it follows from thei =n — 1 step sincg +n —i < j.

Finally, to prove (3), we apply Lemma 2.6 wittR[(pc)~1] for S, i —n for d, L; for
M, L, for L, anda; ,—1 for a;. This gives

k Li _ o
Z (pk 3 jj>aj,-nzk_/x] € ykR[(pc)_l] fornerl:, O<k<i.
j=0
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However, by (2), a power ofc will conduct eachu;, into R and sincep andy are rela-
tively prime, the sum is actually in* R[c 1] as desired.

Case 2. SupposeKG;_1 — t(i) > 0 andz; € Q;. As promised, we lef; = I';_; and

F; = F;_1. HereG; = G;_1. The demonstration of this case is a simplified version of the
previous one. Sinc®; =0 andL; = L;_; and sa;;0 = a;,_1, there is no need to invoke
Lemma 2.5. Otherwise the proof is identical to the previous case.

Case3. SupposeK G;_1 — t(i) < 0. Again we letl'; = I';_1, but this time we sef; =
Fi_1+1.Forj <i, setaj; =a;;_1. Since (4) holds, we may writez; = rx’ + sy’ with
r,s € R. Seta;; = —pFic~Fir. (1) and (2) hold trivially and the choice of; was precisely
that needed to give (3).

It only remains to show that we can pigkso thatcgjaj is integral overR. We will actu-
ally prove integrality by showinglila; € R. Asc’2ia; € Rfor j < pL/2 andc" a; € R
for large j, it suffices to showj > F;. This is equivalent to showing; < (¢/2)i and,
of course, the 2 only affects the choice Kf not the existence. So we consider the se-
qguenceF;. As i increasesF; either remains the same (in Cases 1 and 2) or increases
by one (in Case 3). Thus; is a counter which measures how many times the condition
KG;_1 — t(i) < 0 holds. In this setup, < pli-1 < pXGi-1+P Since there are only fi-
nitely many choices fo6;_1, Lemma 2.7 asserts that we may chod&seulfficiently large
so thatF; <¢i foralli. O

Theorem 2.9. Let (R, P) be athree-dimensional local excellent domain of mixed charac-
teristic and suppose p, x, y isa system of parametersfor R. Supposethat z € ((x, y): p™)
and c € P. Then for any rational ¢ > 0, ¢’z € (x, y)R™.

Proof. We may adjoin, if necessary(a — 1)st root of p and then take the integral closure
without endangering our hypothesis. Using prime avoidance, we can easily ehoose

P such that bothx, y, pcic2 andp, c1, c2 are systems of parameters. Replacing, c1, c2

by powers if necessary, we may assume that each of these four elememﬁl(iﬁs. Now
we may apply the previous theorem witk= c; and again with: = ¢z to getp®z, cjz, c5z €

(x, y)RT.

Letc € P be arbitrary. For some, ¢ € (p, c1, c2) R. It suffices to prove the conclusion
with ¢ replaced byc®". By the above, we are done if”¢ € (p®, ¢f,c5)RT. However,
sincec™ € (p, c1, c2)R, we see that®"¢ is in the integral closure ofp?, c§, c5)3R*. By
[3, Theorem 2.13]¢3"¢ € (p, c§, c5) R as desired. O

Remark. A more sweeping generalization of [5, Theorem 2.7] would draw the same con-
clusion from the hypothesis that, x, y are parameters in a local excellent domain and

¢ is contained in every embedded associated prime ide@l,of) R. The need to assume
dimension three here makes this result somewhat weaker. | believe that this is an artifact
of the proof, rather than a suggestion that the stronger result is not true. In the proof at
hand, the finite length oH]%(R) gives us oumD. If the local cohomology is merely finitely
generated but not of finite length, the procedure will still terminate and some number will
necessarily play the role db. However, it is not yet clear that thie-equivalent will not
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depend orK and so thwart our efforts to get smaller values ofh any event, a successful
resolution of this problem would seem likely to add yet another level of complexity to this
already burdened proof.

Corollary 2.10. Let (R, P) be a three-dimensional complete domain of mixed character-
istic. Then H12)R+(R+) isa vector spaceover R*/Q, where Q isthe maximal ideal of R™.

Proof. If ¢ € Q, then we apply the = 1 case of Lemma 2.9 to the integral closure of
R[c]. O

3. Big Cohen—Macaulay algebras

In the quest for a mixed characteristic analog of tight closure, the optimal definition
for the closure is not yet clear. We would like theorems which assert that if our closure
has the colon-capturing property, other good results follow. To circumvent the uncertainty,
it seems useful to define a comparatively large closure operation—one that will have the
colon-capturing property if other reasonable choices do. If we can show that demonstrating
the colon-capturing property for this larger closure implies the desired results, we can also
obtain the results for smaller closures. To pursue this line, we will need the following
definitions.

Definition. An extended valuatiom on the local domaifR, P) is a rank one valuation
on the quotient field oR™/Q for some prime idea) of R satisfyingv(x) > 0 for all
x € P.

Definition. Let (R, P) — (S, Q) be a local homomorphism of complete local domains.
We may extend this map to aRralgebra homomorphisi from R* to ST by mapping
the roots of a monic polynomial oveR to the roots of the image polynomial ov€r The
choice of6 is not unique but we fix a choice once and for all. Nowddie any extended
valuation on(S, Q). By restriction,v induces an extended valuation 6R, P). We will

call both extended valuationsand say is a compatible valuation oR andsS.

Definition. Let I be an ideal inR, x € R and letv be an extended valuation g Then
x is in thev-augmented closure of | (denotéd) provided that, for every > 0,1 € Z™T,
there existel € R with v(d) < e such thatix € (I, P)R™.

Definition. We say that thev-augmented closure satisfies the colon-capturing property
for R provided that ifS is a finite integral extension @&, x1, ..., xx+1 IS a set of parameters
in S, andu € ((x1,...,xz) :5 Xk+1), thenu € ((x1, ..., xx)S)".

The basic goal of this section is to show that the colon-capturing property implies the
existence of balanced big Cohen—Macaulay algebras which are weakly functorial in some
settings. In [6], Hochster demonstrated the existence of weakly functorial big Cohen—
Macaulay algebras for mixed characteristic domains of dimension at most three. Since
the colon-capturing property is not known at this time for any of the potential closures for
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any dimension greater than three, we cannot improve upon his result at this time. How-
ever, should colon-capturing be demonstrated, our results here will allow us to get weakly
functorial big Cohen—Macaulay algebras more generally. The methods are heavily based
on Hochster’s original proof.

We must first discuss the notion of partial algebra modifications developed by Hochster
and used in [6]. We must revamp the notation in order to get our proofs to work, but
the underlying concept remains the same. gt ..., X; be indeterminates and let
R[X] = R[X1,..., Xx]. By R[X]<n, we mean theR-submodule ofR[X] spanned by
all monomials of total degree at moat. We will refer to R[X 1<y as a partial algebra
over R. Likewise, any finite tensor product of such objects will be called a partial algebra.
Soif T is a partial algebra oveR, so isT[X]<y =T ®r R[X]<n. Thus a partial algebra
is a submodule of a polynomial ring ov&rdefined by some perhaps complicated bound
on the degrees of the monomials which appear. Of course, to any partial algebi®, over
there is naturally associated a polynomial ring oRer

Definition. Let T be a partial algebra oveR, A the associated polynomial ring, and
Fi,...,F, €T.Then) !_; F;T is called a pseudo-ideal ¢fi, 7).

It should be noted that a pseudo-ideal is jusikasubmodule ofd. While the definition
depends upoff and the multiplicative structure of, a pseudo-ideal will typically not be
a subset of” and will not have a multiplicative structure.

Definition. If T is a partial algebra oveR, A the associated polynomial ring, anda
pseudo-ideal ofA, T), then(A, T, J) is called an algebra triple oveR.

Next we recall the definition of an algebra modification. Udte anR-algebra. Assume
X1,...,Xk+1 IS @ set of parameters iR with £ > 0 and suppose € ((x1,...,Xxx)A :4
xir1). Letting F =u — Y5 xiX;, A’ = A[X1, ..., Xp)/(FA[X1,..., X)) is called an
algebra modification oA.

Definition. Let (A, T, J) be an algebra triple oveR and letM =T /(J N T). Assume
x1,...,Xk+1 IS @ set of parameters iR with £ > 0 and supposea € T with its im-
agei € ((x1,...,x0)M :y xp41). Let A/ = A[X1,..., Xi], F=u— Y*_ x;X;, N be
afixed positive integefl” = T[X1, ..., Xkl<y, andJ' = J[X1, ..., Xxlgy + FT'. Then
(A, T’,J") is called an algebra triple modification 64, T, J).

Of course,(A’, T’, J') is an algebra triple. We note that in this settiag,/J'A’ is an
algebra modification ot /J A. With our notation, we keep track of more information and
this enables us to take advantage of both the algebra modification and the finiteness of
T/(JNT).

Definition. Let (A, T, J) be an algebra triple oveR. Let v be an extended valuation &
We say(A, T, J) is v-good if for everys > 0,¢ € Z*, we can findd € R* with v(d) < ¢
and anRr-algebra homomorphisgh: A — RT[d~1] such thap(T) c d~1R* and¢ (J) C
d~1P'RT.
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Lemma 3.1. If the v-augmented closure satisfies the colon-capturing property for integral
extensionsof R, (A, T, J) isv-good, and (A’, T’, J’) is an algebra triple modification of
(A, T, J), then (A, T’,J) isv-good.

Proof. We maintain the same notation; F, N are as above. Thus we have a relation
Xf41U = Zf;lxiui + w with eachu; e T andw € J N T. Now choose, if necessary,
Xk42, -+, Xy € P SO thatxy, ..., x, is a complete system of parameters.

Fix e > 0,t € Z™. Chooses sufficiently large so thaP® C (xi*l, L xIPHRT. Let
g1 =¢/2(N + 2). Since (A, T, J) is v-good, we can findd; € RT with v(d1) < &1
and a suitablep1: A — RT[d; '] such thatpi(T) C di 'Rt and ¢1(J) € dy*P*R*.
Since g1 (w) € dy *P*R*, we getxgi11(u) = x1¢1(u1) + -+ - + xedr(ug) + x4y +
.-+ x!1r, in d71RT. Multiplying through byds, we getxiadigr(u) € (x1, ..., Xk,
Xt xITHRY. Hence, for someb € RY, xipa(diga(u) — bxl, ) € (x1,.... %%,
x,ﬁjj ..., x/*1)R*. By the colon-capturing property, there exigise R+ with v(d2) < &1
such thatda(dig1(u) — bxj 1) € (x1, ..., xk,x]t(ié, . .,x,’ﬁl,x,’{H)R“L. Hence there ex-
istshy, ..., by € RT such thadadiy(u) — Y k_y xib; € (xL, ..., x})RT C P'RT. We set

d3z =dido andd = dé”z; clearlyv(d) < . Now we complete the diagram

RY[d{ ] — R*[d™Y

o] o

AC—— A

commutatively by taking (yX{* ... X[*) = ¢1(y)(dg tb1) /1 ... (d3 2by) i for anyy € A.
It is easy to check that has all the desired properties. CertaiglgT") C d{ldgNR+ C
d71R*. Also ¢(J[X1,..., Xil<n) C d3¥p1(JRT) C dgV1P'RY, while ¢(F) €
dz*P'R* and sop(FT') C d~1P'R*; hencep(J') c dP'R* as desired. O

Lemma3.2. Letd: (R, P) — (S, Q) bealocal map of local ringsand let v be a compati-
ble valuation on R and S. Suppose (A, T, J) isan algebratriple over R whichis v-good.
Then (A® S, T® S,J ®S) isv-good asan algebratriple over S.

Proof. ltisclearthatA® S, T ® S, J ® S) is an algebra triple oves. Letd: Rt — ST

be the extension of implicit in the definition ofv. For anye > 0, t € ZT, we find
the appropriate map:: A — R*[d~1]. Composing with the map which induces on
R*T[d~1], we get a homomorphism: A — SH[(0(d))~1]. Clearly¢(T) C (6(d))~1st

and ¢(J) C (6(d))"1P'S*. Since ST[(O(d)"1], (0(d))~18T, and (8(d))"1P'ST are
S-modules and (0(d)) = v(d), ¢ induces ars-module homomorphism oA ® S which

has all the desired propertiest

Theorem 3.3. Let R — S be alocal homomorphism of complete local domains. Let v be
a compatible valuation on R and S. Further suppose the v-augmented closure satisfies the
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colon-capturing property for integral extensions of R and S. Then there is a commutative

diagram:
B C
R S

where B is a balanced big Cohen-Macaulay algebra over R and C is a balanced big
Cohen—Macaulay algebra over S.

R

-

Proof. The basic idea of the proof is the same as that used in [6,7] and the basic pattern
dates back to the original proof of big Cohen—Macaulay modules in the equicharacter-
istic case. Supposd is an R-algebra,xy, ..., x, is a system of parameters iR, and
I=(x,...,xp)A. If xppqu € I butu ¢ I, we have a very specific obstruction fobeing
Cohen—Macaulay. This obstruction can be removed by forming an algebra modification
of A. TakeA’ = A[X1, ..., Xi]1/(u — Zle x; X;). Intuitively, one may simply construct a
long chain of algebra modifications starting fratrto obtain anR-algebra in which all of
the obstructions are gone and so every system of parameters forms a regular sequence. The
limit B will be a balanced big Cohen—Macaulay algebra gvenlessP B = B whereP is
the maximal ideal oR. Thus, proving the existence 8fcomes down to showingd P B.
Now if the identity is inP B, the offending equation involves only finitely many elements
from B and so occurs as the result of one specific modification and so the limit process
does not really play a role. More formally, in [7, is constructed as the direct limit of fi-
nitely generated algebras constructed from finite sequences of modifications and it is seen
that if 1Le P B, we actually have £ P A where A is formed fromR via a finite sequence
of algebra modifications. Likewis€; is constructed as a direct limit using algebra modifi-
cations ofB ®g S. Again following [7], the theorem is valid unless there exists a sequence
of madificationsR = Tp, T1, ..., T,,Uo =T, ®g S, U1, ..., Us with 1 € QU, for Q the
maximal ideal ofS where eaclf; 1 (respectivelyU;1) is an algebra modification df;
(respectivelyU;). So we simply must show such a sequence is impossible.

Assume we have such a bad double sequence of algebra modifications. Ultidiatsly,
constructed as a homomorphic image of a polynomial ring Sv@he condition le QU;
corresponds to an equation in the polynomial ring:

n m
1= xH+) GiF,
i=1 i=1

where eachF; maps to the zero element iy because it played the role éfin a specific
algebra modification. Now each modification was performed because of a relation which
can be lifted to a relation in the polynomial ring of the form

k J
Yoy =Y yiui +y_GiiFy,
i=1 i=1
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where they’s andu’s vary from modification to modification. There is clearly some bound
for the degree of the polynomial%, G; F;, G;; F;, u, u;. and so polynomials of sufficiently
large degree add nothing to the process. Accordingly, Hochster introduced partial algebra
modifications in [6] and noted that it was sufficient to prove that there are no bad partial
algebra modifications.

Thus far, this is just Hochster's proof worded differently. At this point the proofs
diverge. LetR = To, T, ..., T, Up =T, ®g S, U1, ..., Us; be a bad sequence of alge-
bra modifications. Then we have a corresponding bad sequence of algebra triple mod-
ifications (R, R, (0)), (A11, T11, J11), - - -, (A1, T1r, J1r), (A, ® S, T1r ® J1r, J @ S),
(A21, To1, J21), ..., (A2, Tos, Jog). The equation

n k
1= inHi +ZGiFi
i=1 i=1

immediately gives, as a relation iy, that 1€ QT»; + Jo; Since eachG; F; is in Jo.
Next the algebra tripléR, R, (0)) is trivially v-good and repeated application of the lem-
mas implies(Ay,, T, Jos) is v-good. Choose = v(Q) andr = 1. We then findd € ST
with v(d) < & and a homomorphisrp : Ao, — SH[d~1] such thaip(T,) ¢ d~15* and

¢ (Jos) Cd~1QST. Applying ¢ to our bad relation gives & Qd—1sT +4-10S*. Hence

d e QST. Butv(d) < v(Q), a contradiction which proves the theorenm
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