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Abstract

Three results concerning the colon-capturing property for extended plus closures in ex
mixed characteristic rings are demonstrated. It is shown that the extended plus closure
colon-capturing property for arbitrary sets of three parameters. It is also seen that establish
colon-capturing property for the extended plus closure is sufficient to guarantee the existe
balanced big Cohen–Macaulay algebras. Also, for three-dimensional complete domains, the
local cohomology ofR+ is annihilated by arbitrarily small powers of every non-unit.
 2005 Elsevier Inc. All rights reserved.

In several recent articles, [3–5], there has been progress made toward develo
mixed characteristic analog of tight closure. Here we shall present three loosely r
results that advance that cause.

In [5], the following theorem was proved.

Theorem 0.1. Let p,x, y be parameters in R, an excellent local domain. Suppose pNz ∈
(x, y)R. Then for any rational ε > 0, there is a module-finite extension S of R with pεz ∈
(x, y)S. Thus z ∈ (x, y)Repf, the (full) extended plus closure of (x, y)R.
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In dimension three, this result asserts that the extended plus closure has the
capturing property. In dimension four (or higher), it yields a limited colon-captu
property—colon-capturing for sets of three parameters when one of the parametersp. In
Section 1, we show that this can be extended to arbitrary sets of three parameters.

In Section 2, we prove another variant of the original result in dimension three
conclusionpεz ∈ (x, y)S and sopεz ∈ (x, y)R+ raises an obvious question. Is there som
thing special aboutp, is p a natural test element, or can a similar result be proved for o
ring elements? We shall show the following.

Theorem 0.2. Let p,x, y be parameters in R, an excellent local domain of dimension three.
Suppose pNz ∈ (x, y)R. Then for any element c in the maximal ideal and any rational
ε > 0, cεz ∈ (x, y)R+.

This result suggests that if there is to be a theory of test elements for the ext
plus closure, it may resemble the theory for tight closure. Small powers of all elem
which kill the colon ideal suffice;p is not special. It also gives another interesting fa
If (R,P ) is a three-dimensional complete local domain of mixed characteristic, the
local cohomology moduleH 2

P (R+) is actually a vector space over the residue field ofR+.
Unfortunately the proof of Theorem 0.2 is quite intricate. It is patterned after the

of Theorem 0.1. However, unlike the proof of the earlier result, which relied solely o
conducting power ofp, this proof must necessarily utilize the conducting power ofp in
some steps and the conducting power ofc in others. It seems unavoidable that any dir
proof of this result which relies on constructing a polynomial will necessarily be mes

Section 3 is devoted to generalizing the following theorem.

Theorem 0.3 [6]. Let R → S be a local homomorphism of complete local domains of
mixed characteristic and dimension at most 3. Then there is a commutative diagram:

B C

R S

where B is a balanced big Cohen–Macaulay algebra over R and C is a balanced big
Cohen–Macaulay algebra over S.

A key ingredient in Hochster’s proof was the fact that the extended plus closure h
colon-capturing property in dimension three. Since the existence of balanced big C
Macaulay algebras implies the direct summand conjecture while the converse is not k
this result provides a more powerful use of colon-capturing. We want to show t
the extended plus closure has the colon-capturing property more generally, balanc
Cohen–Macaulay algebras exist more generally. Actually, we want even more tha
As it is not clear what the optimal notion for a tight closure analog in mixed characte
is, we want to prove the result for the closure which is eventually chosen. Hence we
duce a new closure operation which contains all of the closures considered in my pr
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articles and demonstrate that colon-capturing for this potentially larger closure yield
anced big Cohen–Macaulay algebras. Moreover, with some additional hypothesis
rings involved, we can even get weakly functorial algebras.

Notation and conventions

Throughout,R will be an excellent integral domain of mixed characteristic, that is,
Jacobson radical ofR will contain a prime integerp which is nonzero as an element
the ring. WhenR is local, we will sometimes write(R,P ) to indicate that the uniqu
maximal ideal ofR is P . R+ will denote the integral closure ofR in an algebraic clo
sure of its quotient field. We will refer tox1, . . . , xn as a set of parameters inR provided
ht(x1, . . . xn)R = n. By Hi(x1, x2, x3,R) andHi(x1, x2, x3,R), we mean the usual Kosz
homology and cohomology, respectively. ByHi

P (R), we indicate local cohomology. W
will make use of the usual description of local cohomology as a direct limit of Ko
cohomology. In particular, whenR is integrally closed of dimension three, we know th
Rc is Cohen–Macaulay for every non-unitc and so every element of the maximal ide
has a power which kills the second local cohomology module and so all of the first K
homology modules.

Next we recall some definitions from [4]. The last two were introduced in that ar
the first has a longer history. We are shortening the closure name to extended plus
(respectively rank one closure), dropping the word full. Also, since we are only conc
with integral domains which do not contain the rational numbers, we may state the
tions more simply.

Definition. If x ∈ R, thenx is in the plus closure ofI if x ∈ IR+ ∩ R. We writex ∈ I+.

Definition. If x ∈ R, thenx is in the extended plus closure ofI if there existsc �= 0 ∈ R

such that for every positive integern, c1/nx ∈ (I,pn)R+. We writex ∈ Iepf.

Definition. If x ∈ R, thenx is in the rank one closure ofI if for every rank one valuation
on R+, every positive integern, and everyε > 0, there existsd ∈ R+ with v(d) < ε such
thatdx ∈ (I,pn)R+. We writex ∈ I r1f.

The three sections of this article can be read independently.

1. Arbitrary parameters

We begin with a formal proof of a standard fact that we will need.

Proposition 1.1. Let R be an excellent normal domain and suppose x, y, z are parame-
ters. Then for some d ∈ Z

+, H1(x
m, ym, zm,R) is isomorphic to H1(x

d, yd, zd ,R) for all
m > d . In particular, xd, yd, zd annihilate H1(x

m, ym, zm,R).

Proof. The first conclusion follows from the second. To prove the second, letI =
(x, y, z)R and consider the local cohomology moduleH 2(R). RecallH1(x

m, ym, zm,R) ∼=
I
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H 2(xm, ym, zm,R) andH 2
I (R) ∼= limm→∞ H 2(xm, ym, zm,R) [1, p. 130]. We note tha

the limit is an ascending union and so the proposition will follow if we showxd, yd, zd

annihilateH 2
I (R).

The associated primes ofH 2
I (R) are those depth two primes ofR containingI , a sub-

set of Ass(R/(x, y)) and hence a finite set. Thus it suffices to show some powerx,
y, z kill H 2

I (R) locally. So we may assumeR is local. Next we completeR. As R is

excellent,R̂ is again a normal domain; in particular it is (S2). Thus by [2],H 2
I R̂

(R̂)

is annihilated by a power ofI . It follows that for somed ∈ Z
+, xd , yd , zd annihilate

H1(x
m, ym, zm, R̂) for all m. But H1(x

m, ym, zm, R̂) ∼= ((xm, ym) :R̂ zm)/(xm,ym)R̂ ∼=
((xm, ym) :R zm)/(xm,ym)R ⊗ R̂ and so xd , yd , zd annihilate ((xm, ym) :R zm)/

(xm,ym)R ∼= H1(x
m, ym, zm,R) as desired. �

The next lemma is a special case of the main theorem of this section.

Lemma 1.2. Let R be an excellent normal local domain of mixed characteristic. Assume p,
x, y, z are parameters in R and suppose w ∈ R such that zw ∈ (x, y)R. Then w ∈ (x, y)epf.

Proof. Fix N > 0. It suffices to show(pz)1/Nw ∈ (x, y,pN)R+. We let S0 = R[u, zt,

pN2
t] with t = u−1, an augmented Rees ring. LetS be the integral closure ofS0. S is

again a graded ring—the summand of degreen is (z,pN2
)nRtn.

Claim 1. (p, x, y)S is a height three ideal.

To see this, asR and henceS0 are excellent, it suffices to show that(p, x, y)S0 is a
height three ideal. LetQ be a prime ideal ofS0 which contains(p, x, y)S0. If u /∈ Q, then
(S0)Q is a localization ofS0[u−1] = R[u,u−1] and so htQ � ht(Q ∩ R) � 3. If u ∈ Q,
thenz ∈ Q and so ht(Q ∩ R[u]) � 5. It follows that htQ � 3 sinceS0 is a polynomial ring
in two variables overR[u] modulo a height two prime ideal.

Claim 2. There exist elements p1/N ,α,β ∈ S+ such that p1/N(ztw) = xα + yβ .

It suffices to prove the claim locally. For those maximal ideals which do not co
(p, x, y)S, the claim follows immediately. (Ifp is a unit,t is in the ring andzwt = t (zw) ∈
(x, y).) So we may assumeS is an excellent normal local domain of mixed characteris
We may also adjoinσ with σp−1 = p and take the integral closure without destroying
hypothesis. Thus we may assumeS containsσ . Now note thatzw = xa + yb for some
a, b ∈ R ⊂ S. ThuspN2

ztw = (pN2
t)(xa + yb) ∈ (x, y)S. Next, by Proposition 1.1, ther

existsd ∈ Z
+ such thatxd , yd , pd annihilateH1(x

m, ym,pm,S) for everym. Hence we
may apply [5, Theorem 2.7] withxd , yd in place ofx, y and(xy)d−1ztw in place ofz to
find γ, δ ∈ S+ such thatp1/N(xy)d−1ztw = xdγ + ydδ. But thenγ = yd−1α, δ = xd−1β

for someα,β ∈ S+ and so the claim follows.

Claim 3. In satisfying Claim 2, we may choose α, β to be homogeneous of degree 1.
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Let f (T ) be the irreducible polynomial with coefficients inS, the integral closure o
S[p1/N ] which is satisfied byα. We may writef (T ) = T M +a1T

M−1 +· · ·+aM . By [3],
the integrality ofβ is equivalent to the conditions

i∑
j=0

(
M − j

i − j

)
aj (ztw)i−j xj ∈ yiS

holding for everyi = 1,2, . . . ,M . AsS is graded,y is homogeneous, and each term on
left-hand side exceptaj is homogeneous, we may letaj be the degreej term ofaj and we
then have

i∑
j=0

(
M − j

i − j

)
aj (ztw)i−j xj ∈ yiS

holding for everyi = 1,2, . . . ,M . Replacingα by a root off (T ) = T M + a1T
M−1 +

· · · + aM , we getα, β to be homogeneous of degree 1 as desired.
Now uα and uβ are homogeneous of degree 0 and so are elements ofR+. In fact,

they are elements of(z,pN2
)R+ = (z1/N ,pN)NR+. By the mixed characteristic ve

sion of the Briançon–Skoda theorem [3, p. 702], this givesuα,uβ ∈ (z1/N ,pN)N−1R+ ⊆
(z(N−1)/N ,pN)R+. Thusz1/Nuα, z1/Nuβ ∈ (z,pN)R+. Now

(pz)1/Nzw = (pz)1/Nu(ztw) = xz1/Nuα + yz1/Nuβ

= x
(
zs1 + pNt1

) + y
(
zs2 + pNt2

) = z(xs1 + ys2) + pN(xt1 + yt2)

for somes1, s2, t1, t2 ∈ R+. Sincez dividespN(xt1 + yt2) and no height one prime ide
contains(z,p)R, it follows that(pz)1/Nw = xs1 + ys2 + pNr for somer ∈ R+. �
Theorem 1.3. Let R be an excellent normal local domain of mixed characteristic. Assume
x, y, z are parameters in R and suppose w ∈ R such that zw ∈ (x, y)R. Then w ∈ (x, y)epf.

Proof. (x, y)R is unchanged ifx is replaced by an element of the formx + ry and so we
may use prime avoidance to assume ht(p, x)R = 2. Likewise, the conditionzw ∈ (x, y)R

is unaffected by replacingz by an element of the formz + ry and so we may assum
ht(x, z,p) = 3. Now we writezw = ax + by. Next we fix a primary decomposition fo
(x, z)R and write(x, z)R = Q1 ∩ Q2 ∩ Q3 whereQ1 is the intersection of the isolate
primary components,Q2 is the intersection of the embedded primary components w
contain a power ofp, andQ3 is the intersection of the embedded primary compon
which do not contain a power ofp. (Either of the latter two may beR.) SinceQ3 is not
contained in any height 3 prime which contains(x, z,p)R, we may choosev ∈ Q3 such
that ht(x, z,p, v) = 4 (orv = 1 if Q3 = R). Asb ∈ Q1, clearlyvpnb ∈ (x, z)R for somen.

Using Proposition 1.1 and [5, Theorem 2.7], there is a module-finite extensionS of R

such thatp1/Nvb ∈ (x, z)S. Next, we may use (1.2) to getp1/Nb ∈ (x, z)epf and so it
follows that b ∈ (x, z)epf. Thus, for somec ∈ R, α,β, γ ∈ R+, we may writec1/Nb =
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xα+zβ+pNγ . It follows thatzc1/Nw = c1/Nax+c1/Nby = c1/Nax+y(xα+zβ+pNγ )

and soz(c1/Nw−yβ) = x(c1/Na+yα)+pNyγ . Again we may apply [5, Theorem 2.7]
getp1/Nyγ ∈ (x, z)R+. So we writep1/Nyγ = xσ + zδ with δ, σ ∈ R+. Substituting this
into the previous equation and lettingd = N −1/N , we havez(c1/Nw −yβ) = x(c1/Na +
yα) + pd(xσ + zδ). Rearranging, we see thatz(c1/Nw − yβ − pdδ) ∈ xR+, soc1/Nw −
yβ − pdδ ∈ xR+, and finallyc1/Nw ∈ (x, y,pd)R+. Thusw ∈ (x, y)epf. �
2. Arbitrary annihilators of small order

The proof of Theorem 2.8 is patterned after the proof of [5, Theorem 2.7]. Accord
we will begin with a collection of lemmas, mostly without proof, which either appeare
the earlier article or resemble lemmas from [5].

Definition. For a positive integern, expressn − 1 in basep and letτ̄ (n) be the sum of the
digits. We takeτ̄ (1) = 0. Then define

τ(n) = τ̄ (n)

p − 1
.

Lemma 2.1 [5, Lemma 1.6]. Let 0< j < i < pL be integers.

(a) The highest power of p which divides
(
i−1
j−1

)
is τ(j) + τ(i − j + 1) − τ(i).

(b) The highest power of p which divides
(
pL−j
i−j

)
is also τ(j) + τ(i − j + 1) − τ(i).

(c) The highest power of p which divides
(
pL

i

)
is L + τ(i + 1) − τ(i) − τ(2).

The next is a variant of a lemma in [5].

Lemma 2.2. Let R be an excellent integrally closed domain and let ε > 0 be a rational
number. Let c, x, y, z ∈ R where no height one prime ideal contains both c and y. Suppose
z = xw + yv where w, v are integral over R[c−1] and w satisfies the monic polynomial
T n + a1T

n−1 + · · · + an. Further suppose cεj aj is integral over R for every j . Then cεw

and cεv are integral over R.

Proof. Sincecε is integral overR, we may adjoin it toR without altering our hypothesis
After taking the integral closure, we may assumecεj aj ∈ R. Letting bj = cεj aj , we see
thatcεw satisfiesT n + b1T

n−1 + · · · + bn and so is integral overR. Now this implies that
cεv is integral overR[y−1]. By hypothesis,cεv is also integral overR[c−1]. SinceR is
integrally closed and no height one prime ideal contains bothc andy, we see thatcεv is
integral overR. �
Lemma 2.3 [3, Lemma 2.1]. Suppose x, y, z ∈ R with y �= 0. Let

f (T ) =
n∑

aiT
n−i
i=0



R.C. Heitmann / Journal of Algebra 293 (2005) 407–426 413

d that
eldom

poth-
here in
torial
be a monic polynomial over R and suppose w is an element in an extension domain of R

such that f (w) = 0. For 0� i � n, set

bi = (−1)i
i∑

j=0

(
n − j

i − j

)
aj z

i−j xj

and let

g(T ) =
n∑

i=0

biT
n−i .

Then g(z − xw) = 0. In particular, if each bi ∈ yiR, (z − xw)/y is integral over R.

In the original statement of the next lemma and those that follow, it was assume
S contained the rational numbers although the full strength of that assumption was s
needed. Unlike the earlier article, we will not be applying the lemmas toS = R[p−1] and so
this hypothesis is unacceptable. Accordingly, we will state the results without that hy
esis when possible. The proofs will not be affected. That assumption was used now
the proof of the next lemma. In the succeeding lemma, there is division by combina
symbols and it is necessary to assumeS containsZ(p).

Lemma 2.4 [5, Lemma 2.2]. Let S be an integral domain. Suppose z = ax + by with
a, b, x, y ∈ S and let n be a positive integer. Further suppose a0 = 1, a1, . . . , ak−1 ∈ S

have been chosen with k � n so that

i∑
j=0

(
n − j

i − j

)
aj z

i−j xj ∈ yiS for i = 1, . . . , k − 1.

Then we may find ak ∈ S such that

k∑
j=0

(
n − j

k − j

)
aj z

k−j xj ∈ ykS.

Lemma 2.5 [5, Lemma 2.5]. Let S be an integral domain which contains Z(p). Suppose
M > L are positive integers and x, y, z, a1, . . . , ak are elements of S such that

i∑
j=0

(
pL − j

i − j

)
aj z

i−j xj ∈ yiS for all i � k

where k is an integer less than pL. If

ãj =
(

j−1∏ pM − m

pL − m

)
aj for each j > 0,
m=0
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then ãj = pM−Lqjaj where qj is a unit in Z(p) and

i∑
j=0

(
pM − j

i − j

)
ãj z

i−j xj = pM−Lqi

i∑
j=0

(
pL − j

i − j

)
aj z

i−j xj ∈ yiS for all i � k.

The last lemma in the sequence does require thatS contain the rationals. Unfortunatel
the hypothesis of [5, Lemma 2.6] was incorrectly worded. What appears here is the
which was actually proved and used in the earlier article.

Lemma 2.6 [5, Lemma 2.6]. Let S be an integral domain which contains the rational
numbers. Let d, i,M,L be integers with L � M , 0< d < i � pM , and i−d � pL. Suppose
x, y, z, a0, a1, . . . , ai−1 are elements of S such that

h∑
m=0

(
pL − m

h − m

)
amzh−mxm ∈ yhS

for all integers h < i − d . Let ãj = 0 for j < d and

ãj = yd

(
pL − j + d

i − j

)
aj−d

/(
pM − j

i − j

)
for d � j � i − 1. Then

k∑
j=0

(
pM − j

k − j

)
ãj z

k−j xj ∈ ykS

for all k < i.

We need one additional new lemma for our proof.

Lemma 2.7. Let D, n be fixed positive integers and suppose ε > 0. For an integer K > D,
let Ji = {j � i | j � pnK+D and τ(j) > nK}. If K is sufficiently large, then |Ji | < εi for
all i.

Proof. First we bound the cardinality ofJi . If j � pnK+D and τ(j) > nK , then
τ(pnK+D − j + 1) = nK + D − τ(j) < D. So it is equivalent to count the s
{j � pnK+D | τ(j) < D}. Thus we are counting ordered sequences ofnK + D digits,
none of which exceedsp − 1, which sum to at mostD(p − 1) − 1. Since we merely nee
to bound the cardinality, we can replace the set by a larger one and drop the restricti
no digit exceedsp − 1. Also, adding an additional digit, we may assume that the sequ
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sums to exactlyD(p − 1) − 1. Now the cardinality of the set is an easy computation
equals

(
nK + Dp − 1

nK + D

)
=

(
nK + Dp − 1

D(p − 1) − 1

)
� (nK + Dp)Dp.

For i � pnK , the conditionτ(j) > nK cannot be satisfied and soJi is empty. Thus|Ji | = 0
for i � pnK and |Ji | � (nK + Dp)Dp for i > pnK . It follows that |Ji |/i is bounded by
(nK + Dp)Dp/pnK . However, this fraction approaches zero asK goes to infinity and so
the lemma is proved. �

We are now ready to prove a special case of the main result of this section. Th
theorem will then easily follow.

Theorem 2.8. Let R be a three-dimensional integrally closed excellent domain of mixed
characteristic and suppose pc,x, y is a system of parameters with ht(p, c)R = 2. Assume
there is an element σ ∈ R with σp−1 = p and that pN,x, y, c kill H1(p

m,xm,ym,R) for
every positive integer m. Further suppose that z ∈ ((x, y) :pN) = ((x, y) : c). Then for any
rational ε > 0, there is a module-finite extension S of R with cεz ∈ (x, y)S.

Proof. We prove the result by constructing a polynomialf (T ) = T pL + a1T
pL−1 + · · · +

apL with coefficients inR[c−1] such that ifw is any root off (T ), v = (z − xw)/y is
also integral overR[c−1]. If we can accomplish this for fixedε with cεj aj integral overR
for everyj , then, by Lemma 2.2, the conclusion holds withS = R[cε, cεw, cεv]. Thus the
entire proof rests on our ability to satisfactorily choose theaj ’s. UnfortunatelyL is not
determined at the start of the process; it will be chosen in the recursive procedure.

Let D = λ(H1(p
m,xm,ym,R)), the length of the homology module. Fix an integ

K > D. After describing the recursion, we shall show that by makingK arbitrarily large,
we can makeε arbitrarily small. We first describe the goals of the recursive proces
which we construct the polynomial. For each integeri, we choose a setΓi with Γ1 = {1}
and, in general,Γi = Γi−1 or Γi = Γi−1 ∪ {i}. We let Gi = |Γi |. We also shall choos
integersFi � Fi−1 and Li � Li−1 with KGi < Li � KGi + D, as well as element
a1i , . . . , aii such that the following conditions are satisfied:

(1) aji ∈ pKGi−τ(j)R[c−1] for everyj ;
(2) cFi aji ∈ R for everyj andcF2j aji ∈ R whenever 2j < i; and
(3) with a0i = 1, the condition

k∑
j=0

(
pLi − j

k − j

)
ajiz

k−j xj ∈ ykR
[
c−1]

will be satisfied for eachk � i.
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The procedure ends wheni = pLi (something we still must demonstrate happens), at w
time we get the desired polynomialf (T ) with L = Li andaj = aji for everyj . We also
let z1 = z and fori > 1, we let

zi = p−Ei cFi−1

i−1∑
j=0

(
pLi−1 − j

i − j

)
aj,i−1z

i−j xj

whereEi = sup{KGi−1 − τ(i) + τ(2),0}. We shall also show that

(4) zi ∈ ((xi, yi) : c).

In general, we letQi = (xi, yi, {(xy)i−nzn | n ∈ Γi−1})R. Qi/(x
i, yi)R naturally

embeds inH1(p
m,xm,ym,R) via a map which factors throughφi :Qi/(x

i, yi)R →
Qi+1/(x

i+1, yi+1)R. This is the standard mapping used in showing the second
cohomology module is a limit of Koszul cohomology. LetDi be the least nonnega
tive integer such thatpDi zi ∈ Qi . Trivially, Di � D − λ(Qi/(x

i, yi)R) and, if i ∈ Γi ,
Di � λ(Qi+1/(x

i+1, yi+1)R)−λ(Qi/(x
i, yi)R). We shall chooseLi = Li−1 wheni /∈ Γi

andLi = Li−1 +K +Di wheni ∈ Γi . By the above, takingL1 = K +D1, we clearly have
Li � Li−1 andKGi < Li � KGi +D by an inductive proof (providedD1 > 0, a harmless
assumption). To conclude this preliminary note, we point out that we shall never c
i ∈ Γi unlessDi > 0. Consequently, for alli, Gi � D andLi � (K + 1)D and so the
process must terminate.

Now we are ready to describe the recursive procedure. For the initial step(i = 1), we
may finda ∈ R such thatpD1z + ax ∈ yR. ChooseF1 = 0 anda11 = pKa. Trivially we
see that the first three conditions are satisfied witha11 ∈ pKR = pK−τ(1)R. By hypothesis,
z1 ∈ ((x, y) : c).

For i > 1, we first demonstrate (4). As we know that

k∑
j=0

(
pLi−1 − j

k − j

)
aj,i−1z

k−j xj ∈ ykR
[
c−1] for eachk < i,

Lemma 2.4 yields

i−1∑
j=0

(
pLi−1 − j

i − j

)
aj,i−1z

i−j xj ∈ (
xi, yi

)
R

[
c−1]

and sozi ∈ (xi, yi)R[(pc)−1]. To see thatzi ∈ R, it suffices to prove it one term at a tim
Also, asp andc are relatively prime, it suffices to prove each term is inR[p−1] ∩ R[c−1].
That each term is inR[p−1] follows from cFi−1aj,i−1 ∈ R. To see that each term is
R[c−1], it is enough to show

p−Ei

(
pLi−1 − j

)
aj,i−1 ∈ R

[
c−1].
i − j
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By Lemma 2.1, (
pLi−1 − j

i − j

)
∈ pτ(j)+τ(i−j+1)−τ(i)R,

and so it suffices to show(−KGi−1 + τ(i) − τ(2)
) + (

τ(j) + τ(i − j + 1) − τ(i)
) + (

KGi−1 − τ(j)
)
� 0

when j > 0. But this is clear since the left-hand side is justτ(i − j + 1) − τ(2). For
j = 0, we need(−KGi−1 + τ(i) − τ(2)) + (Li−1 + τ(i + 1) − τ(i) − τ(2)) � 0. Since
Li−1 � KGi−1 + 1, it suffices to show that 1+ τ(i + 1) � 2τ(2) and this too is clear. S
zi ∈ R and aszi ∈ (xi, yi)R[c−1] ∩ R, it follows thatzi ∈ ((xi, yi) : c) and so (4) holds a
desired.

Now we consider three cases.

Case 1. SupposeKGi−1 − τ(i) � 0 and zi /∈ Qi . Here we setΓi = Γi−1 ∪ {i} and
Fi = Fi−1. This will be the only case wherei ∈ Γi , a fact we shall utilize. We hav
Gi = Gi−1 + 1 andLi = Li−1 + K + Di . Let

aji0 =
(

j−1∏
m=0

pLi − m

pLi−1 − m

)
aj,i−1.

By Lemma 2.5, we have

k∑
j=0

(
pLi − j

k − j

)
aji0z

k−j xj ∈ ykR
[
c−1]

for k < i. We also see that

i−1∑
j=0

(
pLi − j

i − j

)
aji0z

i−j xj = (
pDi u

)(
pEi+Kc−Fi−1zi

)
,

whereu is the unit(
∏i−1

m=1(p
Li − m)/(pLi−1 − m)). SincepDi zi ∈ Qi , we have a relation

pDi zi + rxi +
∑
n∈Γi

cn(xy)i−nzn = byi

and so

pEi+Kc−Fi−1u

(
pDi zi + rxi +

∑
cn(xy)i−nzn

)
∈ yiR

[
c−1].
n∈Γi
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Lettingaii0 = pEi+Kc−Fi−1ur , we have

i∑
j=0

(
pLi − j

i − j

)
aji0z

i−j xj = pEi+Kc−Fi−1u
(
pDi zi + rxi

)
.

For eachn ∈ Γi , we intend to finda1in, . . . , ai−1,in such that

i−1∑
j=1

(
pLi − j

i − j

)
ajinz

i−j xj = pEi+Kc−Fi−1ucn(xy)i−nzn.

Then we setaji = aji0 + ∑
n∈Γi

ajin for 0 < j < i and aii = aii0. Clearly (1) will be
proved if we show

(1′) ajin is in pKGi−τ(j)R[c−1] for everyj , n.

Likewise (2) will follow from

(2′) cFi ajin ∈ R for everyj , n andcF2j ajin ∈ R for everyn whenever 2j < i.

To prove (3), we note that theith condition follows from the definition:

i∑
j=0

(
pLi − j

i − j

)
ajiz

i−j xj

=
i∑

j=0

(
pLi − j

i − j

)
aji0z

i−j xj +
∑
n∈Γi

i−1∑
j=1

(
pLi − j

i − j

)
ajinz

i−j xj

= pEi+Kc−Fi−1u
(
pDi zi + rxi

) +
∑
n∈Γi

pEi+Kc−Fi−1ucn(xy)i−nzn ∈ yiR
[
c−1].

Thus (3) will follow if we show

(3′)
∑k

j=0

(
pLi −j
k−j

)
ajinz

k−j xj ∈ ykR[c−1] for everyn and 0< k < i.

We shall define the set{ajin} and prove (1′), (2′) and (3′) using three subcases:n = 0,
n = 1, n > 1. Forn = 0, {ajin} is already defined and (3′) was previously noted. Agai
by Lemma 2.5,aji0 ∈ pK+Di ajiR and so (1′) and (2′) are trivial forj < i. Finally aii0 ∈
pEi+Kc−Fi−1R gives the final case sinceEi +K > KGi − τ(i) andFi = Fi−1. Forn = 1,
we get

i−1∑(
pLi − j

i − j

)
ajinz

i−j xj = pEi+Kc−Fi−1ucn(xy)i−1z
j=1
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by choosing

ajin = (
pEi+Kc−Fi−1ucny

i−1)/(
pLi − j

i − j

)
whenj = i − 1 andajin = 0 otherwise. That

k∑
j=1

(
pLi − j

k − j

)
ajinz

k−j xj ∈ ykR
[
c−1]

for everyk < i is trivial since eachajin ∈ yi−1R[c−1]. To see thatajin ∈ pKGi−τ(j)R[c−1],
we note thatajin = 0 unlessj = i − 1. In the latter case, we need only show

pEi+K
/(

pLi − (i − 1)

1

)
∈ pKGi−τ(i−1)R.

This requires only(KGi−1−τ(i)+τ(2))+K −(τ (i−1)+τ(2)−τ(i)) � KGi −τ(i−1)

and, asGi = Gi−1 + 1, this is an equality. (2′) is trivial sinceFi = Fi−1.
Now we fixn > 1. To get

i−1∑
j=1

(
pLi − j

i − j

)
ajinz

i−j xj = pEi+Kc−Fi−1ucn(xy)i−nzn,

we recall that

zn = p−EncFn−1

n−1∑
j=0

(
pLn−1 − j

n − j

)
aj,n−1z

n−j xj .

We can obtain the desired equality provided

(
pLi − j

i − j

)
ajin = pEi+Kc−Fi−1ucny

i−np−EncFn−1

(
pLn−1 − j − n + i

i − j

)
aj+n−i,n−1

for j = i − n, . . . , i − 1 andajin = 0 otherwise. So forj = i − n, . . . , i − 1,

ajin = pEi+KcFn−1−Fi−1ucny
i−np−En

(
pLn−1 − j − n + i

i − j

)
aj+n−i,n−1

/(
pLi − j

i − j

)

= (
pEi+K−EncFn−1−Fi−1ucn

)
yi−n

(
pLn−1 − j + (i − n)

)
aj−(i−n),n−1

/(
pLi − j

)
.

i − j i − j
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To prove (1′), we first note that sincen ∈ Γi , thenth step used Case 1. ThusKGn−1 −
τ(n) � 0 andEn = KGn−1 − τ(n) + τ(2). Now, to see thatajin ∈ pKGi−τ(j)R[c−1], it
suffices to show that

pEi+K−En

(
pLn−1 − j − n + i

i − j

)
aj+n−i,n−1

/(
pLi − j

i − j

)
∈ pKGi−τ(j)R

[
c−1].

For j + n − i > 0, we apply Lemma 2.1 to see that this is equivalent to(
KGi−1 − τ(i) + τ(2)

) + K − (
KGn−1 − τ(n) + τ(2)

) + τ(j + n − i)

+ τ(i − j + 1) − τ(n) + (
KGn−1 − τ(j + n − i)

) − (
τ(j) + τ(i − j + 1) − τ(i)

)
� KGi − τ(j).

However, the two sides of this expression are clearly equal.
For j + n − i = 0, we must show

pEi+K−En

(
pLn−1

i − j

)/(
pLi − j

i − j

)
∈ pKGi−τ(j)R.

Using Lemma 2.1, it suffices to show(
KGi−1 − τ(i) + τ(2)

) + K − (
KGn−1 − τ(n) + τ(2)

)
+ (

Ln−1 − τ(i − j) + τ(i − j + 1) − τ(2)
) − (

τ(j) + τ(i − j + 1) − τ(i)
)

� KGi − τ(j).

This is equivalent to−KGn−1 + τ(n)+Ln−1 − τ(2)− τ(i − j) � 0. Sincei − j = n, this
is equivalent toLn−1 � KGn−1 + τ(2). As τ(2) � 1, (1′) holds.

To prove (2′), it is enough to showcFi cFn−1−Fi−1aj+n−i,n−1 ∈ R for every j and
cF2j cFn−1−Fi−1aj+n−i,n−1 ∈ R whenever 2j < i. The first half is trivial since
cFn−1aj+n−i,n−1 ∈ R. For the second half, note that 2j < i andj +n− i � 0 imply 2n > i.
Becausen ∈ Γi , n ∈ Γn. Again, this is possible only if thei = n step utilized Case 1. Henc
Fn = Fn−1 andGn = Gn−1 + 1. Sincen � pLn−1, it has at mostLn−1 � KGn−1 + D dig-
its in its basep representation. AsD < K , if n < k � pn, k has at mostKGn digits and
so τ(k) < KGk−1. This means that thei = k step utilizes either Case 1 or Case 2 (t
is actually how the cases are defined). We have seen in Case 1 and will see in
that Fi = Fi−1. Thus, asi < pn, Fi−1 = Fn = Fn−1 and we are reduced to showin
cF2j aj+n−i,n−1 ∈ R whenever 2j < i. If 2j � n − 1, this is clear sinceF2j � Fn−1 while
if 2j < n − 1, it follows from thei = n − 1 step sincej + n − i < j .

Finally, to prove (3′), we apply Lemma 2.6 withR[(pc)−1] for S, i − n for d , Li for
M , Ln−1 for L, andaj,n−1 for aj . This gives

k∑(
pLi − j

k − j

)
ajinz

k−j xj ∈ ykR
[
(pc)−1] for n ∈ Γi, 0< k < i.
j=0
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However, by (2′), a power ofc will conduct eachajin into R and sincep andy are rela-
tively prime, the sum is actually inykR[c−1] as desired.

Case 2. SupposeKGi−1 − τ(i) � 0 andzi ∈ Qi . As promised, we letΓi = Γi−1 and
Fi = Fi−1. HereGi = Gi−1. The demonstration of this case is a simplified version of
previous one. SinceDi = 0 andLi = Li−1 and soaji0 = aj,i−1, there is no need to invok
Lemma 2.5. Otherwise the proof is identical to the previous case.

Case 3. SupposeKGi−1 − τ(i) < 0. Again we letΓi = Γi−1, but this time we setFi =
Fi−1 + 1. Forj < i, setaji = aj,i−1. Since (4) holds, we may writeczi = rxi + syi with
r, s ∈ R. Setaii = −pEi c−Fi r . (1) and (2) hold trivially and the choice ofaii was precisely
that needed to give (3).

It only remains to show that we can pickK so thatcεj aj is integral overR. We will actu-

ally prove integrality by showingc�εjaj ∈ R. AscF2j aj ∈ R for j < pL/2 andcF
pL aj ∈ R

for largej , it suffices to showεj > F2j . This is equivalent to showingFi < (ε/2)i and,
of course, the 2 only affects the choice ofK , not the existence. So we consider the
quenceFi . As i increases,Fi either remains the same (in Cases 1 and 2) or incre
by one (in Case 3). ThusFi is a counter which measures how many times the cond
KGi−1 − τ(i) < 0 holds. In this setup,i � pLi−1 � pKGi−1+D . Since there are only fi
nitely many choices forGi−1, Lemma 2.7 asserts that we may chooseK sufficiently large
so thatFi < εi for all i. �
Theorem 2.9. Let (R,P ) be a three-dimensional local excellent domain of mixed charac-
teristic and suppose p,x, y is a system of parameters for R. Suppose that z ∈ ((x, y) :pN)

and c ∈ P . Then for any rational ε > 0, cεz ∈ (x, y)R+.

Proof. We may adjoin, if necessary a(p − 1)st root ofp and then take the integral closu
without endangering our hypothesis. Using prime avoidance, we can easily choosec1, c2 ∈
P such that bothx, y, pc1c2 andp, c1, c2 are systems of parameters. Replacingx, y, c1, c2
by powers if necessary, we may assume that each of these four elements killsH 2

P (R). Now
we may apply the previous theorem withc = c1 and again withc = c2 to getpεz, cε

1z, c
ε
2z ∈

(x, y)R+.
Let c ∈ P be arbitrary. For somem, cm ∈ (p, c1, c2)R. It suffices to prove the conclusio

with c replaced byc3m. By the above, we are done ifc3mε ∈ (pε, cε
1, c

ε
2)R

+. However,
sincecm ∈ (p, c1, c2)R, we see thatc3mε is in the integral closure of(pε, cε

1, c
ε
2)

3R+. By
[3, Theorem 2.13],c3mε ∈ (pε, cε

1, c
ε
2)R

+ as desired. �
Remark. A more sweeping generalization of [5, Theorem 2.7] would draw the same
clusion from the hypothesis thatp, x, y are parameters in a local excellent domain
c is contained in every embedded associated prime ideal of(x, y)R. The need to assum
dimension three here makes this result somewhat weaker. I believe that this is an
of the proof, rather than a suggestion that the stronger result is not true. In the p
hand, the finite length ofH 2

P (R) gives us ourD. If the local cohomology is merely finitel
generated but not of finite length, the procedure will still terminate and some numbe
necessarily play the role ofD. However, it is not yet clear that thisD-equivalent will not
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depend onK and so thwart our efforts to get smaller values ofε. In any event, a successf
resolution of this problem would seem likely to add yet another level of complexity to
already burdened proof.

Corollary 2.10. Let (R,P ) be a three-dimensional complete domain of mixed character-
istic. Then H 2

PR+(R+) is a vector space over R+/Q, where Q is the maximal ideal of R+.

Proof. If c ∈ Q, then we apply theε = 1 case of Lemma 2.9 to the integral closure
R[c]. �
3. Big Cohen–Macaulay algebras

In the quest for a mixed characteristic analog of tight closure, the optimal defin
for the closure is not yet clear. We would like theorems which assert that if our cl
has the colon-capturing property, other good results follow. To circumvent the uncer
it seems useful to define a comparatively large closure operation—one that will ha
colon-capturing property if other reasonable choices do. If we can show that demons
the colon-capturing property for this larger closure implies the desired results, we ca
obtain the results for smaller closures. To pursue this line, we will need the follo
definitions.

Definition. An extended valuationv on the local domain(R,P ) is a rank one valuation
on the quotient field ofR+/Q for some prime idealQ of R+ satisfyingv(x) > 0 for all
x ∈ P .

Definition. Let (R,P ) → (S,Q) be a local homomorphism of complete local doma
We may extend this map to anR-algebra homomorphismθ from R+ to S+ by mapping
the roots of a monic polynomial overR to the roots of the image polynomial overS. The
choice ofθ is not unique but we fix a choice once and for all. Now letv be any extended
valuation on(S,Q). By restriction,v induces an extended valuation on(R,P ). We will
call both extended valuationsv and sayv is a compatible valuation onR andS.

Definition. Let I be an ideal inR, x ∈ R and letv be an extended valuation onR. Then
x is in thev-augmented closure of I (denotedI v) provided that, for everyε > 0, t ∈ Z

+,
there existsd ∈ R+ with v(d) < ε such thatdx ∈ (I,P t )R+.

Definition. We say that thev-augmented closure satisfies the colon-capturing prop
for R provided that ifS is a finite integral extension ofR, x1, . . . , xk+1 is a set of parameter
in S, andu ∈ ((x1, . . . , xk) :S xk+1), thenu ∈ ((x1, . . . , xk)S)v .

The basic goal of this section is to show that the colon-capturing property implie
existence of balanced big Cohen–Macaulay algebras which are weakly functorial in
settings. In [6], Hochster demonstrated the existence of weakly functorial big Co
Macaulay algebras for mixed characteristic domains of dimension at most three.
the colon-capturing property is not known at this time for any of the potential closure
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any dimension greater than three, we cannot improve upon his result at this time.
ever, should colon-capturing be demonstrated, our results here will allow us to get w
functorial big Cohen–Macaulay algebras more generally. The methods are heavily
on Hochster’s original proof.

We must first discuss the notion of partial algebra modifications developed by Ho
and used in [6]. We must revamp the notation in order to get our proofs to work
the underlying concept remains the same. LetX1, . . . ,Xk be indeterminates and l
R[X] = R[X1, . . . ,Xk]. By R[X]�N , we mean theR-submodule ofR[X] spanned by
all monomials of total degree at mostN . We will refer to R[X]�N as a partial algebr
overR. Likewise, any finite tensor product of such objects will be called a partial alg
So if T is a partial algebra overR, so isT [X]�N = T ⊗R R[X]�N . Thus a partial algebr
is a submodule of a polynomial ring overR defined by some perhaps complicated bo
on the degrees of the monomials which appear. Of course, to any partial algebra oR,
there is naturally associated a polynomial ring overR.

Definition. Let T be a partial algebra overR, A the associated polynomial ring, an
F1, . . . ,Fn ∈ T . Then

∑n
i=1 FiT is called a pseudo-ideal of(A,T ).

It should be noted that a pseudo-ideal is just anR-submodule ofA. While the definition
depends uponT and the multiplicative structure ofA, a pseudo-ideal will typically not b
a subset ofT and will not have a multiplicative structure.

Definition. If T is a partial algebra overR, A the associated polynomial ring, andJ a
pseudo-ideal of(A,T ), then(A,T ,J ) is called an algebra triple overR.

Next we recall the definition of an algebra modification. LetA be anR-algebra. Assume
x1, . . . , xk+1 is a set of parameters inR with k � 0 and supposeu ∈ ((x1, . . . , xk)A :A
xk+1). Letting F = u − ∑k

i=1 xiXi , A′ = A[X1, . . . ,Xk]/(FA[X1, . . . ,Xk]) is called an
algebra modification ofA.

Definition. Let (A,T ,J ) be an algebra triple overR and letM = T/(J ∩ T ). Assume
x1, . . . , xk+1 is a set of parameters inR with k � 0 and supposeu ∈ T with its im-
age ū ∈ ((x1, . . . , xk)M :M xk+1). Let A′ = A[X1, . . . ,Xk], F = u − ∑k

i=1 xiXi , N be
a fixed positive integer,T ′ = T [X1, . . . ,Xk]�N , andJ ′ = J [X1, . . . ,Xk]�N + FT ′. Then
(A′, T ′, J ′) is called an algebra triple modification of(A,T ,J ).

Of course,(A′, T ′, J ′) is an algebra triple. We note that in this setting,A′/J ′A′ is an
algebra modification ofA/JA. With our notation, we keep track of more information a
this enables us to take advantage of both the algebra modification and the finiten
T/(J ∩ T ).

Definition. Let (A,T ,J ) be an algebra triple overR. Let v be an extended valuation ofR.
We say(A,T ,J ) is v-good if for everyε > 0, t ∈ Z

+, we can findd ∈ R+ with v(d) < ε

and anR-algebra homomorphismφ :A → R+[d−1] such thatφ(T ) ⊂ d−1R+ andφ(J ) ⊂
−1 t +
d P R .
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Lemma 3.1. If the v-augmented closure satisfies the colon-capturing property for integral
extensions of R, (A,T ,J ) is v-good, and (A′, T ′, J ′) is an algebra triple modification of
(A,T ,J ), then (A′, T ′, J ′) is v-good.

Proof. We maintain the same notation;u, F , N are as above. Thus we have a relat
xk+1u = ∑k

i=1 xiui + w with eachui ∈ T and w ∈ J ∩ T . Now choose, if necessar
xk+2, . . . , xn ∈ P so thatx1, . . . , xn is a complete system of parameters.

Fix ε > 0, t ∈ Z
+. Chooses sufficiently large so thatP s ⊆ (xt+1

1 , . . . , xt+1
n )R+. Let

ε1 = ε/2(N + 2). Since (A,T ,J ) is v-good, we can findd1 ∈ R+ with v(d1) < ε1

and a suitableφ1 :A → R+[d−1
1 ] such thatφ1(T ) ⊂ d−1

1 R+ and φ1(J ) ⊂ d−1
1 P sR+.

Sinceφ1(w) ∈ d−1
1 P sR+, we getxk+1φ1(u) = x1φ1(u1) + · · · + xkφ1(uk) + xt+1

1 r1 +
· · · + xt+1

n rn in d−1
1 R+. Multiplying through byd1, we getxk+1d1φ1(u) ∈ (x1, . . . , xk,

xt+1
k+1, . . . , x

t+1
n )R+. Hence, for someb ∈ R+, xk+1(d1φ1(u) − bxt

k+1) ∈ (x1, . . . , xk,

xt+1
k+2, . . . , x

t+1
n )R+. By the colon-capturing property, there existsd2 ∈ R+ with v(d2) < ε1

such thatd2(d1φ1(u) − bxt
k+1) ∈ (x1, . . . , xk, x

t+1
k+2, . . . , x

t+1
n , xt

k+1)R
+. Hence there ex

istsb1, . . . , bk ∈ R+ such thatd2d1φ1(u) − ∑k
i=1 xibi ∈ (xt

1, . . . , x
t
n)R

+ ⊆ P tR+. We set
d3 = d1d2 andd = dN+2

3 ; clearlyv(d) < ε. Now we complete the diagram

R+[d−1
1 ] R+[d−1]

A

φ1

A′
φ

commutatively by takingφ(yX
f1
1 . . .X

fk

k ) = φ1(y)(d−1
3 b1)

f1 . . . (d−1
3 bk)

fk for anyy ∈ A.
It is easy to check thatφ has all the desired properties. Certainlyφ(T ′) ⊂ d−1

1 d−N
3 R+ ⊂

d−1R+. Also φ(J [X1, . . . ,Xk]�N) ⊂ d−N
3 φ1(JR+) ⊂ d−N−1

3 P tR+, while φ(F ) ∈
d−1

3 P tR+ and soφ(FT ′) ⊂ d−1P tR+; henceφ(J ′) ⊂ d−1P tR+ as desired. �
Lemma 3.2. Let θ : (R,P ) → (S,Q) be a local map of local rings and let v be a compati-
ble valuation on R and S. Suppose (A,T ,J ) is an algebra triple over R which is v-good.
Then (A ⊗ S,T ⊗ S,J ⊗ S) is v-good as an algebra triple over S.

Proof. It is clear that(A ⊗ S,T ⊗ S,J ⊗ S) is an algebra triple overS. Let θ :R+ → S+
be the extension ofθ implicit in the definition of v. For anyε > 0, t ∈ Z

+, we find
the appropriate mapφ1 :A → R+[d−1]. Composing with the map whichθ induces on
R+[d−1], we get a homomorphismφ :A → S+[(θ(d))−1]. Clearlyφ(T ) ⊂ (θ(d))−1S+
and φ(J ) ⊂ (θ(d))−1P tS+. SinceS+[(θ(d))−1], (θ(d))−1S+, and (θ(d))−1P tS+ are
S-modules andv(θ(d)) = v(d), φ induces anS-module homomorphism onA ⊗ S which
has all the desired properties.�
Theorem 3.3. Let R → S be a local homomorphism of complete local domains. Let v be
a compatible valuation on R and S. Further suppose the v-augmented closure satisfies the
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colon-capturing property for integral extensions of R and S. Then there is a commutative
diagram:

B C

R S

where B is a balanced big Cohen–Macaulay algebra over R and C is a balanced big
Cohen–Macaulay algebra over S.

Proof. The basic idea of the proof is the same as that used in [6,7] and the basic p
dates back to the original proof of big Cohen–Macaulay modules in the equichar
istic case. SupposeA is an R-algebra,x1, . . . , xn is a system of parameters inR, and
I = (x, . . . , xk)A. If xk+1u ∈ I but u /∈ I , we have a very specific obstruction toA being
Cohen–Macaulay. This obstruction can be removed by forming an algebra modifi
of A. TakeA′ = A[X1, . . . ,Xk]/(u − ∑k

i=1 xiXi). Intuitively, one may simply construct
long chain of algebra modifications starting fromR to obtain anR-algebra in which all of
the obstructions are gone and so every system of parameters forms a regular seque
limit B will be a balanced big Cohen–Macaulay algebra overR unlessPB = B whereP is
the maximal ideal ofR. Thus, proving the existence ofB comes down to showing 1/∈ PB.
Now if the identity is inPB, the offending equation involves only finitely many eleme
from B and so occurs as the result of one specific modification and so the limit pr
does not really play a role. More formally, in [7],B is constructed as the direct limit of fi
nitely generated algebras constructed from finite sequences of modifications and it
that if 1∈ PB, we actually have 1∈ PA where A is formed fromR via a finite sequenc
of algebra modifications. Likewise,C is constructed as a direct limit using algebra mod
cations ofB ⊗R S. Again following [7], the theorem is valid unless there exists a sequ
of modificationsR = T0, T1, . . . , Tr ,U0 = Tr ⊗R S,U1, . . . ,Us with 1 ∈ QUs for Q the
maximal ideal ofS where eachTi+1 (respectivelyUi+1) is an algebra modification ofTi

(respectivelyUi ). So we simply must show such a sequence is impossible.
Assume we have such a bad double sequence of algebra modifications. UltimatelUs is

constructed as a homomorphic image of a polynomial ring overS. The condition 1∈ QUs

corresponds to an equation in the polynomial ring:

1=
n∑

i=1

xiHi +
m∑

i=1

GiFi,

where eachFi maps to the zero element inUs because it played the role ofF in a specific
algebra modification. Now each modification was performed because of a relation
can be lifted to a relation in the polynomial ring of the form

yk+1u =
k∑

yiui +
j∑

GliFi,
i=1 i=1
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where they ’s andu’s vary from modification to modification. There is clearly some bou
for the degree of the polynomialsHi,GiFi,GliFi, u,ui . and so polynomials of sufficientl
large degree add nothing to the process. Accordingly, Hochster introduced partial a
modifications in [6] and noted that it was sufficient to prove that there are no bad p
algebra modifications.

Thus far, this is just Hochster’s proof worded differently. At this point the pro
diverge. LetR = T0, T1, . . . , Tr , U0 = Tr ⊗R S,U1, . . . ,Us be a bad sequence of alg
bra modifications. Then we have a corresponding bad sequence of algebra triple
ifications (R,R, (0)), (A11, T11, J11), . . . , (A1r , T1r , J1r ), (A1r ⊗ S,T1r ⊗ J1r , J ⊗ S),

(A21, T21, J21), . . . , (A2s , T2s , J2s). The equation

1=
n∑

i=1

xiHi +
k∑

i=1

GiFi

immediately gives, as a relation inT2s , that 1∈ QT2s + J2s since eachGiFi is in J2s .
Next the algebra triple(R,R, (0)) is trivially v-good and repeated application of the le
mas implies(A2s , T2s , J2s) is v-good. Chooseε = v(Q) and t = 1. We then findd ∈ S+
with v(d) < ε and a homomorphismφ :A2s → S+[d−1] such thatφ(T2s) ⊂ d−1S+ and
φ(J2s) ⊂ d−1QS+. Applying φ to our bad relation gives 1∈ Qd−1S+ + d−1QS+. Hence
d ∈ QS+. But v(d) < v(Q), a contradiction which proves the theorem.�
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