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The sudden drainage of supraglacial lakes has been previously observed to initiate surface-to-bed hydrologic
connections, which are capable of enhancing basal sliding, in regions of the Greenland Ice Sheet where ice
thickness approaches 1 km. In this study, we develop a robust algorithm, which automatically detects and
tracks individual supraglacial lakes using visible satellite imagery, to document the evolution of a population
of West Greenland supraglacial lakes over ten consecutive melt seasons. Validation tests indicate that the
algorithm is highly accurate: 99.0% of supraglacial lakes can be detected and tracked and 96.3% of reported
lakes are true supraglacial lakes with accurate lake properties, such as lake area, and timing of formation
and drainage. Investigation of the interannual evolution of supraglacial lakes in the context of annual melt
intensity reveals that during more intense melt years, supraglacial lakes drain more frequently and earlier in
the melt season. Additionally, the lake population extends to higher elevations during more intense melt
years, exposing an increased inland area of the ice sheet to sudden lake drainage events. These observations
suggest that increased surface meltwater production due to climate change will enhance the spatial extent
and temporal frequency of lake drainage events. It is unclear whether this will ultimately increase or decrease
the basal sliding sensitivity of interior regions of the Greenland Ice Sheet.

© 2012 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

An acceleration of sea level rise due tomass loss from the Greenland
Ice Sheet has been recently observed. While Greenland contributed
0.21 mm/year of sea level rise between 1993 and 2003, its contribu-
tion increased to ∼0.5 mm/year between 2003 and 2007. During this
latter period, the observed total sea level rise (from all sources) was
∼2.4 mm/year (Cazenave & Llovel, 2010). Current mass loss from the
Greenland Ice Sheet appears to be equally split between runoff from
surface ablation and iceberg calving (Shepherd & Wingham, 2007;
Van den Broeke et al., 2009). It has been speculated that relatively
small increases in surface meltwater production, due to a warming
climate, may result in disproportionately large increases in ice
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discharge via basal sliding (Bartholomew et al., 2010; Zwally et al.,
2002). While observational evidence clearly indicates a link between
increased surface meltwater production and enhanced basal sliding
velocity on a variety of time-scales (Bartholomew et al., 2010;
Joughin et al., 2008; Shepherd et al., 2009; Zwally et al., 2002), several
studies suggest that an increase in surface meltwater production could
result in an earlier seasonal transition to a more efficient subglacial
drainage system, and hence a net decrease in mean annual basal
sliding velocity (Schoof, 2010; Sundal et al., 2011; Van de Wal et al.,
2008).

As large volumes of water are required to propagate crevasses to
the bed via hydrofracture (Van der Veen, 2007), supraglacial lakes
can play an important role in establishing hydrologic connections
between the supra- and sub-glacial hydrologic systems. These near
vertical hydrologic connections, known as “moulins”, can rapidly
route surface water to the bed, where it pressurizes the subglacial
environment and reduces basal friction (Das et al., 2008; Zwally et
al., 2002). Temporal and spatial variability in meltwater delivery to
the subglacial hydrologic system enhances basal sliding velocities
(Schoof, 2010). Moulins, which collect surface meltwater from a rela-
tively large area of the ice sheet, are more efficient in enhancing basal
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sliding than crevasse-type drainage networks, which relatively atten-
uate the surface meltwater pulse at diurnal and other time-scales
(Colgan et al., 2011). Studies have documented that the sudden
drainage of supraglacial lakes results in substantial increases in
basal sliding velocity (Das et al., 2008; Joughin et al., 1996, 2008;
Shepherd et al., 2009). While the velocity anomalies stemming from
lake drainage events are typically local in extent and short in
duration, the cumulative effect of multiple lake drainages could
potentially produce a significant regional summer ice acceleration
(Das et al., 2008; Hoffman et al., 2011). The sudden drainage of supra-
glacial lakes appears to be a key factor in creating moulins in areas of
thick ice (i.e., >1 km) that would not otherwise experience rapid
surface-to-bed hydrologic connectively (Krawczynski et al., 2009;
Pimentel & Flowers, 2011; Shepherd et al., 2009; Sundal et al.,
2009). Thus, a potential increase in the extent and/or frequency of
lake drainage events is expected to increase the extent and/or
frequency of surface-to-bed hydrologic connections in the interior
regions of the ice sheet (where ice thickness exceeds 1 km). This
provides an impetus to understand how the spatial and temporal
distributions of supraglacial lakes, and their associated drainage
events, can be expected to respond to increased surface meltwater
production in a warming climate.

Several studies have investigated Greenland supraglacial lakes
using visible and near infrared satellite imagery. Many of these
studies, however, rely on manual interpretation to track supraglacial
lakes through time, which is not feasible for long-term and large-
scale studies. For example, (McMillan et al., 2007) studied the evolution
of 292 lakes over 12 Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) images using manual identification of
the lakes. Similarly, Lampkin andVanderBerg (2011)manually digitized
1180 lakes for 3 days in 2007 using Landsat-7 Enhanced Thematic
Mapper plus (ETM+) images. Box and Ski (2007) introduced amethod
to automatically detect supraglacial lakes in individual images, based on
prescribed thresholds between various visible and near infrared bands
in Moderate Resolution Imaging Spectroradiometer (MODIS)
imagery, and thenmanually tracked the detected lakes in 170manually
selected cloud-free images over 5 years. Sundal et al. (2009) further
improved the contours of classified lakes in each image, yet continued
to manually track lakes through sequential images (i.e., 268 manually
selected cloud-free MODIS images over 4 years). While several
of these studies have automated the process of detecting lakes
within a single image, all of them require the user to pre-select cloud-
free images and manually track individual lakes between sequential
images.

A semi-automated lake tracking approach was recently proposed
by Selmes et al., 2011. Making the assumption that lake position re-
mains fixed by bedrock topography (i.e., lakes do not advect with
ice flow), lakes were automatically detected in individual visible
MODIS images. A temporal subset of images (∼30 per melt season)
was then selected to superimpose into a single aggregate image to
show the maximum extent of all detected lakes over five years. How-
ever, before superimposing multiple images to create the aggregate
image, false positive lakes (e.g., cloud shadows) had to be manually
removed from the subset images.

In this study we investigate a population of supraglacial lakes over
ten consecutive melt seasons (2000 to 2009) in a 16,500 km2 area of
the Greenland Ice Sheet centered on Jakobshavn Isbrae, West
Greenland, using 9040 daily MODIS images. Since manual or
partially-manual schemes are impractical to detect and track such a
large population of supraglacial lakes, we develop a robust algorithm
(Section 2) to automatically detect and track supraglacial lakes using
MODIS visible imagery. This algorithm is capable of selecting high-
quality images (i.e., fully or partially cloud-free images), detecting
and tracking supraglacial lakes and removing false positives, all with-
out manual intervention. Evaluation of the algorithm shows that the
algorithm successfully tracks lakes with high accuracy (Section 3).
The interannual evolution of the tracked supraglacial lakes is then
evaluated in the context of annual melt intensity (Section 4),
followed by a discussion on the implications for the Greenland Ice
Sheet (Section 5).

2. Lake tracking algorithm

2.1. Data

This study uses daily MODIS band 1 top-of-the atmosphere (TOA)
reflectance data (650 nm; visible) at 250 m spatial resolution (Level
1B MOD02 data, http://modis.gsfc.nasa.gov/, (Hall et al., 2007)),
from 2000 to 2009, for an approximately 16,500 km2 study area
extending from 68:06∘N to 70:43∘N and 48:27∘W to 51:92∘W in West
Greenland (Fig. 1). Similar to Sundal et al. (2009), we take the melt
season as May 1st to October 1st, a sufficiently long period of time
to encompass the full range of seasonal changes in lake area. Visible
MODIS data at 250 m and/or 500 m spatial resolution have been
used in previous studies detecting supraglacial lakes on the
Greenland Ice Sheet (Box & Ski, 2007; Selmes et al., 2011; Sundal et
al., 2009). While MODIS reflectance data at 250 m spatial resolution
are available for both band 1 (650 nm; visible) and band 2 (857 nm;
near infrared), only band 1 reflectance data were used. This is because
even though the reflectance contrast between lakes and snow or dry
bare ice surfaces is higher in the near-infrared, the contrast between
lakes and wet snow/ices is higher in the visible than the near infrared
(Warren, 1982). Thus, the algorithm is able to detect lakes even
when the surrounding surface is undergoing melt.

In order to flag cloudy pixels and determine the spatial extent of
the ice sheet, the corresponding MOD10-L2 product was used to
provide a cloud mask and binary snow extent mask at 500 m spatial
resolution (Hall et al., 2006). The MOD10-L2 cloud mask has been
shown to be unreliable over snow-covered surfaces (Ault et al.,
2006). In Sections 2.2 and 2.3, we describe how errors in the cloud
mask are handled by the algorithm. Both the snow cover extent and
the cloud mask were resampled to 250 m resolution. Hereafter, we
refer to the retrieved distributions of cloud and snow as “cloud
mask” and “snow mask” respectively. All data were georectified into
the Equal-Area Scalable Earth Grid (EASE-Grid) using the MS2GT
tool available from the US National Snow and Ice Data Center
(Haran, 2003). In total, 9040 MOD02 images and 9040 MOD10-L2
images, spanning the 2000 to 2009 melt seasons, were downloaded,
pre-processed, and analyzed by the algorithm

2.2. Automatic Image Selection

Since the algorithm tracks lakes in cloud-free regions within the
ice sheet (i.e., cloud-free ice sheet), the first processing step was to
mask out all non-ice sheet areas from the images (i.e., land and
ocean). Towards this end, a single ice sheet mask was generated for
each year based on all available daily MOD10-L2 snow masks.
Because snow masks may include cloudy pixels (e.g., Fig. 2(a)),
aggregating multiple snow masks helps to ensure all ice sheet pixels
in our study region are included. The composite annual ice sheet
mask contains all pixels identified as snow for more than 50% of the
melt season (e.g., Fig. 2(d)). Finally, using the annual ice sheet mask
and daily cloud mask from MOD10-L2, a “valid region” for each
image was produced (e.g., Fig. 2(e)). The valid region denotes the
cloud-free ice sheet area used by lake-tracking algorithm.

The next step was to select the “highest quality” daily MOD02
image for input to the lake detection/tracking algorithm. This step
screens out poor quality images and decreases uncertainty in the
final results. Typically, several MOD02 images cover the study area
each day. To select the highest quality image for a particular day,
four properties are simultaneously evaluated: (P1) the percentage of
cloud-free ice sheet, (P2) the mean reflectance of MOD02 pixels

http://modis.gsfc.nasa.gov/


Fig. 1. Left: The black rectangle denotes the study area (68:06∘N to 70:43∘N and 48:27∘W to 51:92∘W) in West Greenland. Right: A MODIS MOD02 250 m reflectance image (optical
wavelength: 620 nm to 670 nm) acquired on July 8th, 2009. The white rectangle encloses Jakobshavn Fiord. Jakobshavn Isbrae flows from east to west. The white circle denotes a
single supraglacial lake. White stars denote the locations of three weather stations (Crawford Point is located 96 km northeast of Swiss Camp and outside the study area).
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located in cloud-free ice sheet, (P3) the sum of the local spatial
gradients in the MOD02 reflectance, and (P4) number of possible
lake pixels present in a given MOD02 image.

The first property seeks to maximize the percentage of the cloud-
free ice sheet. The second property seeks to maximize the contrast
between relatively high reflectance of the snow/ice pixels and
a) Snow Mask b) Cloud Mask c) Satellite

Fig. 2. Developing a daily valid region: (a)–(c) are input images on July 30th, 2006: (a) Snow
(d) Ice sheet mask for year 2006 (white pixels: ice sheet). (e) Valid region, where the algo
relatively low reflectance of the supraglacial lakes pixels. The third
property, the sum of local spatial gradients in reflectance, is higher
in “sharper” images. This property is defined as the sum of the 1st de-
rivatives of reflectance in both the x and y directions over a distance
of 1 pixel. Finally, P4 ensures that possible lakes are indeed present
in the image before the data is input into the lake detection/tracking
 Image d) Ice Sheet e) Valid Region

mask (white pixels: snow). (b) Could mask (white pixels: cloud). (c) MOD02 image.
rithm tracks lakes, for July 30th, 2006 (white pixels: cloud-free ice sheet).
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algorithm. The process of detecting possible lakes in each image is
described in Section 2.3. No subsequent analysis is performed when
P4=0. This can occur either when all surface water is frozen, or the
entire study area is covered by clouds.

The resulting quality score is defined as the normalized sum of
each of the four properties (i.e., the sum of each property divided by
its maximum for a given day) and the image with the highest quality
score is subsequently selected for analysis (Fig. 3). All selected images
also need to meet minimum thresholds. Specifically, images cannot
be too cloudy (P1 >30% of annual ice sheet mask), or too dark
(P2 >0.15), and must contain possible lakes pixels (P4 >0). While
any two successive images should ideally be 1 day apart, high quality
images are not necessarily available every day after automated image
selection. From the initial 9040 MOD02 images, 893 were auto-
matically selected as high quality. Over the ten year study period,
the mean duration between two successive images is 1.7 days.

2.3. Automatic supraglacial lake detection and tracking

In the visible portion of the electromagnetic spectrum, lake pixels
have a relatively low reflectance in comparison to ice pixels. The
algorithm uses this intrinsic property to detect individual lakes by
calculating the difference in reflectance between a given pixel and
its surrounding neighborhood using a 25×25 pixel moving window.
The size of the moving window influences the size of detected lakes.
Our choice of a 25×25 pixel window is designed to capture lakes
that have one dimension, in either the x or y axis, smaller than 25
pixels (i.e., 6250 m). Box & Ski (2007) studied supraglacial lakes
near Jakobshavn Isbrae and found the largest lake area to be
∼16.9 km2. If the maximum lake area is approximated with a square,
it is smaller than a 5 km×5 km window (i.e., 20×20 pixels). Thus,
our choice of window size (i.e., 25×25 pixels) is expected to capture
all supraglacial lakes in the study region. For each pixel, the neighbor-
hood reflectance is calculated as the weighted mean of reflectance
within the moving window. The algorithm puts a greater weight on
a) 3.14 b) 3.77

Fig. 3. Illustrative example of quality score: Four images taken on July 4th, 2009 with individ
image (c), and the image with low reflectance (d), (b) is the best-quality image with the h
the reflectance of pixels closer to the center of the window than
pixels at the edge of the window. The reflectance difference of each
pixel is then determined by subtracting the center pixel reflectance
from the neighborhood reflectance.

The algorithm computes one threshold to classify the lakes in each
image of each day. For each image, a histogram comprised of the
reflectance differences of all pixels located in the cloud-free ice
sheet area is calculated (Fig. 4).

In the histogram, the reflectance difference of lake and ice pixels
form two distinct populations that can be separated by a properly
chosen threshold. For images without lakes, the reflectance
differences of ice pixels form an approximately normal distribution
(e.g., Fig. 4(a)). For images with lakes, the reflectance differences of
lake pixels are higher than that of ice pixels and the histogram exhibits
a positive tail (e.g., Fig. 4(b)). To separate the ice and lake pixels, the
algorithm prescribes a reflectance difference threshold at a close-to-
zero histogram slope (0.01) in the positive (outward) direction
along the x-axis of the histogram (i.e., red vertical line in Fig. 4(b)).
Pixels whose reflectance difference exceeds the threshold are identi-
fied as possible supraglacial lake pixels.

After detecting possible lakes by reflectance difference in each
image, the algorithm then verifies real lakes by tracking these possible
lakes in sequential images. While reflectance difference detects most
lakes, it cannot detect cloud covered lakes andmay report false positive
lakes due to cloud shadows, wet snow patches, etc. (e.g., 2nd row in
Fig. 6). Cloud cover is common inWest Greenland during the melt sea-
son. For example, (Box & Ski, 2007) studied the region near Jakobshavn
Isbrae (67:55∘N to 69.96∘N,47:40∘W to51:66∘W) from 2000 to 2005 and
found on average 4.7 completely cloud-free MOD02 images per month
during summer through manual selection. Therefore, partially cloudy
images are included in the analysis to fully utilize the regions that are
cloud-free (Section 2.2).

However, the cloud masks retrieved fromMOD10-L2 are unreliable
in identifying small-scale clouds, such as isolated or scattered clouds,
over snow and ice covered surfaces (Ault et al., 2006). Thus, a
c) 3.25 d) 2.53

ual quality scores listed above them. Compared to the cloudy image (a), the less sharp
ighest quality score.
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a

b

Fig. 4. Histograms of reflectance difference. In both sub-figures, the gray histograms
(insets) are overviews and black histograms are zoom-ins. (a) Images without lakes:
reflectance difference of ice pixels takes on an approximately normal distribution.
(b) Images with lakes: reflectance difference of lake pixels is relatively high and results
in a substantial positive tail. Based on the slope of the histogram, the algorithm dynam-
ically determines the reflectance difference threshold (red vertical line in (b)) to best
isolate the positive tail (i.e., lakes) from the normal distribution (i.e., ice).
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Fig. 5. A subset of supraglacial lakes in corresponding 15 m resolution ASTER (top) and
250 m resolution MODIS (middle) images with classified lake pixels denoted as black.
Bottom: relation between lake area in ASTER vs. algorithm-classified lake areas in
MODIS (correlation: r=0.99).

131Y.-L. Liang et al. / Remote Sensing of Environment 123 (2012) 127–138
supraglacial lake that is located in a cloud-free region in the cloudmask
may still be obscured by small-scale clouds not reported by the
MOD10-L2 data. This unreliable cloud masking poses a significant
challenge when attempting to track individual lakes.

To deal with unexpected and highly transient cloud cover, the
algorithm tracks lakes by their temporal consistency in both location
and size. Small-scale clouds generally change within minutes or hours
while lake area tends to change more slowly, remaining a similar size in
the same location for days. For example, if the cloud mask indicates that
a given lake location is cloud-free on Day1, Day2 and Day3, but the algo-
rithm initially only detects the given lake on Day1 and Day3, the algo-
rithm concludes that the lake also existed on Day2. We then track
individual lakes by their temporally-consistent locations and sizes.

Tracking temporally-consistent lakes is performed by pairing
“matching lakes” in sequential images. If a given possible lake in
two sequential images fully or partially overlaps between images
and has a similar area, it is confirmed as one lake. However, if we
cannot find its matching lake in the previous and subsequent image,
the possible lake is assessed as a noise. Similar lake area is defined
as follows; If the algorithm detects a possible lake 1 (area =A1) in
one image and another possible lake 2 (area =A2) in the subsequent
image, we define A1 and A2 as being similar when:

0:5A1bA2≤2 A1 þ 8 pixels ð1Þ

The parameters in Eq. (1) were assessed based on the assumption
that, for slowly-varying lakes, lake area is expected to neither double
nor half in size between consecutive images. The uncertainty of
8 pixels is derived from an uncertainty of 2 pixels in 4 corners.

The concept of temporal consistency (i.e., pairing matching lakes)
is also useful for mapping suddenly-changing lakes, such as lakes
merging or lakes undergoing full or partial drainage. For most
slowly-varying lakes, the algorithm can find their matching lakes
with similar area (Eq. (1)) in the subsequent images. For lakes with
sudden area changes, their areas are similar to that of lakes in the pre-
vious images. For example, assume a possible lake appears from Day1
to Day3 and drains between Day2 and Day3. Because of a dramatic
area change, the possible lakes in Day2 and Day3 do not satisfy
Eq. (1). It does not mean that the possible lake in Day2 represents
noise, since its area is similar to that of lake in Day1. Therefore, unlike
transient clouds or noise, a real lake has a matching lake in the follow-
ing or previous day regardless of sudden changes.

The tracking of an individual lake is performed as follows: (1) A
new lake is confirmed if the lake shows up twice within 6 successive
days and appears a total of 3 times over the melt season. If, however,
the lake has not been seen for 5 days during cloud-free conditions
before the 3rd appearance, it is not confirmed as a lake; (2) For an
existing lake, if the algorithm can find its matching lake in the
previous and subsequent image, the lake is mapped for that particular
day; (3) A lake is defined as “disappeared” when the lake has not
been seen for 5 days during cloud-free conditions.



Fig. 6. Illustrative example of tracked lakes: 1st row: Original satellite images (MOD02); 2nd row: Images with possible lakes (i.e., whitest pixels) detected by reflectance
difference; 3rd row: Images with tracked lakes (i.e., whitest pixels). From left to right column are July 8th, 10th, 12th, and 13th in 2006. In the 2nd row, detecting possible lakes
in each image works well in cloud-free images (July 8th and 13th), but not in less sharp (July 10th) and cloudy (July 12th) images. The algorithm robustly tracks lakes in sequential
images regardless of this noise (i.e., 3rd row).
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These parameters were selected as conservative bounds for the
temporal variability of supraglacial lakes. For example, instead of
confirming a lake when it appears twice, the algorithm confirms a
lake after its third appearance. Confirming a lake disappearance is
more difficult due to frequent cloud coverage, as ice and cloud can
be indistinguishable in MODIS images. Thus, instead of confirming
lake disappearance after a single day of absence, the algorithm con-
firms a lake disappearance after a five-day absence.

After the initial tracking process, the algorithm removes false
positives, such as wet snow patches, shadows of clouds, and other
geographic features. This is done by recording the mean reflectance
of each individual lake over the observation period. False positives
generally have a median reflectance, which is between that of ice/
snow (i.e., relatively high reflectance) and lake water (i.e., relatively
low reflectance). While some false positives, such as wet snow, do
eventually become lakes (i.e., relatively low reflectance), most false
positives maintain median reflectance. The range of “relatively low
reflectance” is defined as reflectance below the (95th percentile
reflectance)/2, where 100th percentile reflectance is the highest value
when all reflectances are sorted from low to high in a given image.
The algorithm then removes false positive lakes, which have mean
reflectances that do not drop to relatively low reflectance value during
the melt season. This step automatically removes the false positives
that were manually identified by (Selmes et al., 2011).
3. Algorithm performance and output

3.1. Algorithm performance

Fig. 6 is an illustrative example of the algorithm performance.
Despite poor image quality due to an oblique satellite viewing angle
on July 10th and extensive cloud cover on July 12th, the use of tempo-
ral lake mapping between sequential days allows the algorithm to
track lakes even when they are obscured by clouds (i.e., 3rd row in
Fig. 6). Note, however, instances where lakes that are initially missed
in an individual image (i.e., 2nd row) may be successfully tracked in
sequential images (i.e., 3rd row).

The accuracy of classified lake area was assessed by comparing
lake areas classified in MODIS images (250 m resolution) with that
in high resolution ASTER images (15 m resolution, Fig. 5). Because
of coarse resolution (250 m), uncertainty in classified lake area in
MODIS images could be large. Lake areas in 15 m ASTER images are
much more reliable, and may be treated as ground truth. Lake area
difference between these two image types therefore represents the
error of classified lake area derived from the algorithm. Fig. 5 demon-
strates the lake area of 63 classified lakes in these two image types is
strongly correlated (r=0.99). The error of classified lake area was
quantified by root mean square error (RMSE), which favors smaller
lakes (i.e., produces smaller error), and root squared error per 1 km2
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lake (RSE/km2), which favors bigger lakes. RSE/km2 is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ AMODIS−AASTERð Þ2

� �r
= ∑AMODISð Þ, where AMODIS and AASTER are

individual lake areas in MODIS and ASTER images, respectively. For
our algorithm, RMSE is 0.20 km2 and RSE/km2 is 0.027, which are
comparable with classification results reported in previous studies
(i.e., 0.22 km2 and 0.045 in Sundal et al. (2009); 0.11 km2 and 0.040
in Selmes et al. (2011)).

To assess the lake tracking accuracy in sequential images, we visu-
ally validated tracked lakes over a temporal (all images in 2000, 2003,
2006 and 2009, 359 images in total) and spatial subset (36% of the
study area) of MODIS imagery. A lake is defined as correctly tracked
by the algorithm if visual identification confirms that (1) it is indeed
a lake and (2) accurate properties have been reported (such as lake
onset and cessation day, lake area, etc.). Results show there is good
agreement between the algorithm-tracked and manually-tracked
lakes in each year (Table 1). In the evaluation, four types of results
were assessed: (TP) true positives, which are correctly tracked lakes,
both temporally and also by area, (FN) false negatives, which are
true lakes that the algorithm failed to track, (FP1) type 1 false
positives, which are not true lakes (i.e., bedrock nunataks) that
were tracked by the algorithm, and (FP2) type 2 false positives,
which are true lakes that are indeed tracked, but for which incorrect
lake properties are reported. False negatives can occur when lakes
are very small and appear for only a short period of time.

Tracking accuracy is expressed by recall and precision. Recall=TP/
(TP+FN)=(correctly tracked lakes)/(all manually tracked lakes)=
0.990, or 99.0% of supraglacial lakes were successfully found by
the tracking algorithm. Precision=TP/(TP+FP1+FP2) = (correctly
tracked lakes)/(all algorithm-tracked lakes)=0.963, or 96.3% of
reported lakes are supraglacial lakes with accurate lake properties.
The algorithm efficiency is characterized by computation time. The
algorithm code was implemented in MATLAB R2011a and executed
on a workstation with 6 GB memory and an Intel(R) Xeon(R)
CPU with 2.27 GHz processor. When provided all 9,040 prepared (i.e.,
georectified and cropped) MODIS MOD02 images, the algorithm took
an average of 477 s (less than 8 min) per melt season to select highest
quality images (Section 2.2) and track supraglacial lakes (Section 2.3).

We perform a sensitivity analysis of lake area as a function of
threshold value. The primary justification of the threshold technique
is that the reflectances of lake and ice pixels are distinct, and form
two populations within the reflectance difference histogram (e.g.,
Fig. 4–(b)). A meaningful threshold, which properly divides these
two populations, occurs where the histogram slope approaches zero
in the positive (outward) direction along the x-axis of histogram. A
threshold slope of 0.01 was used in this study. Imposing a larger
threshold slope (i.e., >0.01) would classify more pixels as lake,
while imposing a smaller threshold slope (i.e., b0.01) would classify
fewer pixels as lake. We assessed the percentage of image area classi-
fied as lake pixels in 2009, or “percentage of lake area”, over a wide
range of threshold slopes (Fig. 7). When the thresholding slope is
≤0.01, the percentage of lake area does not significantly vary
(0.19%−0.29%). When the threshold slope approaches 0.1, the per-
centage of lake area increases significantly (0.82%). The threshold
Table 1
Algorithm evaluation.

Year 2000 2003 2006 2009 Average

TPa 331 312 282 269 –

FNa 6 3 0 3 –

FP1
a 4 3 7 5 –

FP2
a 4 6 9 7 –

Precision 0.976 0.972 0.946 0.957 0.963
Recall 0.982 0.990 1.000 0.989 0.990

a Expressed in “number of lakes”.
slope we prescribed (0.01) was chosen to minimize the discrepancy
between manually delineated and algorithm-derived lake areas. This
sensitivity analysis suggests our results: (1) are relatively insensitive
to a smaller threshold slope, and (2) an order of magnitude change in
threshold slope is required to significantly change our results.

3.2. Interpretation of algorithm output

On an annual basis between 304 and 590 supraglacial lakes were
found to form within the ∼16,500 km2 study region in each melt
season (mean=487, standard deviation=89). For each individual
lake, the algorithm recorded (1) lake center coordinates before the
lake disappeared, (2) daily lake area, “A”, (3) date of lake onset, “jo”,
(4) date of lake cessation, “jc”, (5) which days are cloudy at the lake
location between jo and jc, (6) daily mean MODIS band 1 (620 nm
to 670 nm) reflectance, as well as (7) lake merge/split events. It is
important to note that, due to the relatively coarse spatial resolution
of the MODIS imagery (250 m), the algorithm only tracks lakes with
an area larger than 2 pixels (i.e., >0.125 km2).

As we are using visual band imagery, lakes that are covered by ice
which is sufficiently thick to have the same optical properties as the
surrounding ice, cannot be detected. This limitation is implicit in all
previous studies that used optical imagery (Box & Ski, 2007;
Lampkin & VanderBerg, 2011; McMillan et al., 2007; Selmes et al.,
2011; Sundal et al., 2009).

A set of supraglacial lake parameters were then derived from the
algorithm output. Lake center coordinates, on the date of lake cessation,
were used to determine lake elevation (z) from a photoclinometry-
enhanced digital elevation model (DEM) of Greenland ice sheet with a
nominal horizontal resolution of 625 m (Scambos & Haran, 2002).
Maximum lake area (Amax) was defined as the maximum lake area
obtained by a given lake during the melt season. Lake duration (D)
was determined by differencing the dates of lake onset and cessation
for each lake (i.e., D= jc− jo). The high temporal resolution of the
MODIS dataset allows the rate of change in lake area (Ã; in km2/d
where d is “day”) to be determined for each individual lake between
consecutive images. This was accomplished by dividing the difference
in observed area of a given lake between two successive MODIS images
by the time period between the images (i.e., Ã=△A/△t).

The uncertainty of each supraglacial lake parameter was conserva-
tively estimated. While the nominal temporal resolution of detected
lakes is one day, the actual period between sequential images can
exceed one day due to missing data or cloudy imagery. Therefore, the
mean interval between any two consecutive and available MODIS
images in each melt season is taken to represent the uncertainty in
the dates of lake onset and cessation (δj), ranging between 1 and
3 days depending on the year. Following standard error propagation
analysis for operations involving addition or subtraction, uncertainty
in annual lake duration (δD) is taken as twice this value (i.e.,
δD=2δj). The stated root-mean-squared error of the DEM (±10 m)



40

60

80

100

2000
2001
2002
2003
2004
2005

ul
at

iv
e 

P
ro

ba
bi

lty
 [%

]

a

134 Y.-L. Liang et al. / Remote Sensing of Environment 123 (2012) 127–138
is taken to represent the uncertainty in lake elevation (δz). In order to
assess lake area uncertainty (δA), we assume an approximately circular
lake geometry (Georgiou et al., 2009; Sundal et al., 2009) and apply an
uncertainty of a half-pixel width (125 m) to the circumference of each
lake. Uncertainty in the rate of change of lake area (δÃ) is taken as un-
certainty in lake area divided by uncertainty in date (i.e., δÃ=δA/δj).

The annual distributions of supraglacial lake parameters were ex-
amined in the context of annual melt intensity (I), defined as annual
positive degree days (PDDs) following (Georgiou et al., 2009). Annual
PDD values are defined as the time integral of air temperatures above
0°C in a given year and have units of °C·d (Hock, 2005). For example,
ten days with a mean air temperature of 1°C and one day with a
mean air temperature of 10°C are both equivalent to 10 PDDs.
Thus, years with warmer temperatures represent more intense melt
years. Hourly air temperatures recorded at Swiss Camp (1152 masl,
69:56∘N, 49:34∘W, Fig. 1) were used to calculate annual PDDs from
2000 to 2009. According to Spearman's rank correlation coefficient
for non-normal populations (ρ), the air temperatures observed at
Swiss Camp between 2000 and 2010 are highly correlated to the air
temperatures observed at three other weather stations that are located
over a broad elevation range within and near the study region: JAR2
(500 mASL; ρ=0.92; ∼33 km SW, or southwest of Swiss Camp),
JAR1 (913 mASL; ρ=0.93; ∼16 km SW), and Crawford Point
(1950 mASL; ρ=0.89; ∼96 km NE) (Steffen & Box, 2001; Fig. 1;
Fig. 8). Thus, the air temperature observed at Swiss Camp may be
considered representative of the study region (Fig. 1).

We limit the scope of the following results to supraglacial lakes
that are >1 km2 and reside at elevations above 750 m. The reasons
are (1) moulins are less likely to form from smaller lakes, which are
less likely to have sufficient water volume (c.f. Van der Veen
(2007)), and (2) lakes at lower elevation can be expected to exhibit
reduced inter-annual variability in response to inter-annual
variations in melt intensity. To normalize the comparison of lake
parameters between years with different numbers of lakes, we aggre-
gate each year of lake elevation, maximum area and rate of change of
lake area data into normalized nonparametric distributions (i.e.,
probability density or cumulative density functions). This allows the
inter-annual variability of different percentiles of lake elevation (z),
maximum lake area (Amax) and rate of change of lake area (Ã) to be
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Fig. 8. Observed (black lines) and statistically interpolated (gray lines) air temperature
at Crawford Point (A; 1950 mASL), Swiss Camp (B; 1106 mASL), JAR1 (C; 913 mASL)
and JAR2 (D; 500 mASL) between 2000 and 2010.
examined in the context of annual melt intensity. Each year's individ-
ual dates of lake onset and cessation, as well as lake duration, are
expressed as mean annual values (�jo, �jc, and �D respectively).
4. Results: supraglacial lake variability

Figs. 9 to 12 summarize the annual distributions of several supra-
glacial lake parameters versus annual melt intensity. In these figures,
line colors are proportional to melt intensity: red denoting the
“warmest” year with the most intense melt and blue denoting the
“coolest” year with the least intense melt. When examining potential
correlations between annual melt intensity and various lake
parameters over the ten-year study period, we assess the correlation
coefficient (r) with nine degrees of freedom (df=9) and seek a
significance level of pb0.05. The p (i.e., p-value) is the probability of
getting a correlation as large as the observed value by random
chance: p=1.0 indicates a random distribution with no correlation
while p=0.0 indicates a true correlation. Significant correlations are
denoted as solid lines and the insignificant ones are shown as dashed
lines. All the values of correlation coefficients (r), p-values (p), and
slopes of regression lines are summarized in Table 2.

Various percentiles of maximum lake area (Amax) for each obser-
vational year were correlated with annual melt intensity (Fig. 9).
We find no significant correlation between annual melt intensity
and the 25th, 50th and 75th percentiles of maximum lake area during
the 2000 to 2009 period (Table 2). We interpret this as suggesting
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Fig. 9. (a) Cumulative percentile histogram of maximum lake area (Amax) for each
observational year (line color is proportional to melt intensity, red is the warmest
year and blue is the coolest year). (b) Values of the 25th, 50th, and 75th percentiles of
annual maximum lake area (△, o, and ▽ respectively) versus annual melt intensity.
All three relations are not significant. Vertical error bars denote uncertainty in lake
area (δA).
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Fig. 10. (a) Cumulative percentile histogram of lake elevation (z) for each observational
year (line color proportional to melt intensity, red is the warmest year and blue is the
coolest year). (b) Annual values of the 25th, 50th, and 75th percentiles of lake elevation
(△, o, and ▽ respectively) versus annual melt intensity. Only the 50th percentile demon-
strates a significant relation with melt intensity (r=0.75). Insignificant relations are
denoted with dashed lines. Vertical error bars denote uncertainty in lake elevation (δz).
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Fig. 11. (a) Mean lake duration (�D) versus annual melt intensity. A significant relation
(r=−0.77) is denoted with the solid line. Vertical error bars denote uncertainty in
mean lake duration (δD). (b) Mean lake onset (�jo , △) and cessation dates (�jc ,▽) versus
annual melt intensity. Insignificant (�jo) and significant (�jc , r=−0.65) relations are
denoted with dashed and solid lines respectively. Vertical error bars denote uncertain-
ty in date (δj).
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that maximum supraglacial lake area neither increases nor decreases
as a function of annual melt intensity in the Jakobshavn Isbrae region
above 750 m in elevation.

Fig. 10 shows the relation between various percentiles of lake
elevation (z) and annual melt intensity for each observational year.
The 50th percentile of lake elevation (i.e., solid line in Fig. 10(b))
shows a significant correlation with annual melt intensity (r=0.75,
Table 2). The 25th and 75th percentiles, however, do not exhibit
significant correlations with melt intensity (Table 2). The difference
in behavior between the 50th and 25th/75th percentiles of lake
elevation is discussed in Section 5.

The relation between mean lake duration ( �D) and annual melt
intensity is shown in Fig. 11(a). Between 2000 and 2009, mean lake
duration exhibited a significant negative correlation with melt intensi-
ty (r=−0.77, Table 2). In contrast to previous findings (Sundal et al.,
2009), this counter-intuitively suggests that increasing annual melt in-
tensity results in a shorter melt season duration for supraglacial lakes.
Supraglacial lakes become inactive by the winter through one of
three mechanisms: (1) freezing over, (2) draining via supraglacial
channels to neighboring lakes, and (3) draining via moulins to the sub-
glacial system. Increasing melt intensity is expected to delay freezing
over and lengthen the active duration of lakes. Thus, the observation
of a shorter active duration under increased melt intensity must reflect
a sufficiently large population shift towards earlier supra- or sub-
glacial lake drainage, that outpaces the delay in freeze-over. This notion
is supported by Fig. 11(b), which shows the relation between mean
onset (�jo) and cessation (�jc) dates and annual melt intensity. The
mean onset date does not exhibit a significant correlation with annual
melt intensity (�jo in Table 2) while the mean cessation date does (�jc:
r=−0.65, Table 2).

The annual distributions of the rate of change of lake area (Ã)
allows the relation between annual melt intensity and Ã to be
assessed (Fig. 12). For illustrative purposes, we correlate annual
melt intensity with two extreme events of equal magnitude but oppo-
site sign: rapid lake draining (Ãe

−: Ã≤−1.3 km2/d) and filling (Ãe
+:

Ã≥+1.3 km2/d) in Fig. 12. Between 2000 and 2009, the probability
of rapid lake drainage events, “p(Ãe

−)”, is always greater than that of
rapid lake filling events, “p(Ãe

+)” (Fig. 12(b)). In addition, the proba-
bilities associated with both extreme events demonstrate significant
correlations with annual melt intensity (i.e., p(Ãe

−): r=0.80; p(Ãe
+):

r=0.86; Table 2). During more intense melt years, supraglacial
lakes experience both large draining and filling events more frequent-
ly. The slopes of these regressions are approximately equal (△p(Ãe

+)/
△ I=0.00023/PDD; △p(Ãe

−)/△ I=0.00026/PDD, Table 2). These
regression slopes suggest that an increase in annual melt intensity
of 100 PDD increases the probability of extreme drainage event
(Ã≤−1.3 km2/d) by ∼2.6%.

In addition, Fig. 13 demonstrates the recurrence frequency of all
lakes that appeared between 2000 and 2009 in the study area
(whereby recurrence frequency is defined as the number of years
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Table 2
Relations of lake parameters vs. annual melt intensity (air temperature).

Fig. 9 Maximum lake area (Amax)

25th% 50th% 75th%
r −0.07 0.17 0.57
p 0.84 0.64 0.09

Fig. 10 Lake Elevation (z)

25th% 50th% 75th%
r 0.55 * 0.75 0.47
p 0.10 * 0.01 0.17
s – 1.03 (m/PDD) –

Fig. 11 Duration (�D) Onset date (�jo) Cessation date (�jc)

r * −0.77 −0.26 * −0.65
p * 0.009 0.47 * 0.04
s −0.18 (d/PDD) – −0.29 (d/PDD)

Fig. 12 Rapid drainage, p(Ãe
−) Rapid filling, p(Ãe

+)

r * 0.80 * 0.86
p * 0.005 * 0.001
s 0.00026 (1/PDD) 0.00023 (1/PDD)

* (bold font): Significant relation (pb0.05).
r: Correlation coefficient, p: p-value.
s: Regression Slope=△ (lake parameter) /△ (melt intensity).
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that a given lake is active divided by ten years). The statistics show
that larger lakes appear more frequently than smaller lakes. For
example, the average area of lakes with a recurrence frequency of
∼1 (i.e., appear every year) is 2 km2, while the average area of
lakes with a recurrence frequency of ∼0.1 (i.e., appear only once in
10 years) is 0.5 km2 (Fig. 13(b)). Only a small portion of lakes
(13.2%) reappear every year within the study region. (Fig. 13(a)).

5. Discussion

The positive correlation between annual median lake elevation
and annual melt intensity indicates that lakes are more active at
higher elevations during warmer or more intense melt years
(Fig. 10). This suggests that higher elevation regions which normally
do not experience rapid surface-to-bed hydrologic connectivity,
become more susceptible to moulin creation via supraglacial lake
drainage events during more intense melt years (Shepherd et al.,
2009; Sundal et al., 2009). We speculate, however, that the absence
of a positive correlation between annual 25th percentile lake
elevation and melt intensity is due to the abundance of perennial
lakes in the lower elevation portion of the study area. The perennial
lakes, which form in both low and high melt intensity years, are
expected to result in low sensitivity to annual variations in melt
intensity at these lower elevations. We interpret this as suggesting
that only supraglacial lakes above ∼1050 m (i.e., the approximate
25th elevation percentile) exhibit strong inter-annual variability in
response to variations in annual melt intensity. Additionally, we
speculate that the absence of a significant correlation between annual
75th percentile of lake elevation and melt intensity is due to the
presence of an upper elevation limit imposed on the lake distribution;
this upper elevation limit could be physical or artificial. A physical
upper elevation limit may stem from the upstream boundary of basal
sliding. Bedrock depressions are believed to be responsible for the
ice surface depressions that form supraglacial lake catchments
(Echelmeyer et al., 1991; Thomsen et al., 1988). As bedrock topography
is only expressed in ice surface topography in regions experiencing
basal sliding (Gudmundsson, 2003), interior regions of the ice sheet
that do not experience basal sliding are unlikely to contain ice surface
depressions suitable for lake formation. An artificial upper elevation
limit might stem from the study area failing to reach sufficiently far
inland/upglacier (i.e., >1700 m elevation; (Sundal et al., 2009)) to
capture the behavior of the uppermost quartile of lake elevation.

Supraglacial lakes have been observed to increase in size through-
out one or several melt seasons until a critical water pressure is
achieved, at which time they drain rapidly, presumably through
hydrofracture (Box & Ski, 2007; Das et al., 2008; Georgiou et al.,
2009; Van der Veen, 2007). If the water pressure (or lake depth)
required to initiate hydrofracture and rapid drainage is viewed as a
threshold value, it should not be expected to vary with annual melt
intensity (Krawczynski et al., 2009). As lake area is a reasonable
proxy for lake volume (described in the following paragraph), the
absence of a significant correlation between lake area and annual
melt intensity (Fig. 9) may be interpreted as evidence of no signifi-
cant change in lake volume in response to variations in annual melt
intensity. Thus, we believe that supraglacial lakes in West Greenland
are compensating for observed increases in surface meltwater
production over the study decade (Hanna et al., 2005; Tedesco,
2007) by increasing the frequency of lake drainage events rather
than increasing supraglacial water storage. The observation of earlier
mean lake cessation dates with increasing melt intensity supports
this notion (Fig. 11). The observation that lakes experience extreme
drainage events (i.e., Ã≤−1.3 km2/d) more frequently during more
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Fig. 13. Recurrence frequency of all lakes that appeared between 2000 and 2009 in the
study area, whereby recurrence frequency is number of years that a given lake is active
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intense melt years also supports the inference that the “slow-fill rapid-
drain” lifecycle (Box & Ski, 2007; Georgiou et al., 2009; Krawczynski et
al., 2009) has accelerated to accommodate increased surface meltwater
production (Fig. 12). The positive correlation between extreme lakefilling
events (i.e., Ã≥+1.3 km2/d) and annual melt intensity likely reflects an
earlier transition from relatively slow snowmelt runoff to relatively quick
ice melt runoff in more intense melt years (Georgiou et al., 2009; Sundal
et al., 2009). An earlier snow-to-ice runoff transition would also be
expected to aid lakes in achieving critical water pressures earlier in the
melt season during more intense melt years.

Lake area is a reasonable proxy for lake volume. Several studies
have used the fact that visible band radiation becomes increasingly at-
tenuated with water depth to quantify lake volume from space borne
data (Box & Ski, 2007; Georgiou et al., 2009; Sneed & Hamilton, 2007;
Tedesco & Steiner, 2011). We suggest that there is also a theoretical
basis to expect lake volume to be highly dependent on lake area. If
supraglacial lake geometry is simplified to an upside cone (e.g.,
Krawczynski et al. (2009)) with a diameter to depth ratio α, lake
volume (V) could be expressed as: V=παD3/12, where D is lake di-
ameter. Similarly, lake area (A) may be expressed as: A=πD2/4.
Substituting D yields: V ¼ 2α=3

ffiffiffi
π

p� �
A3=2. This suggests that lake

volume is linearly dependent on diameter to depth ratio (α) and non-
linearly dependent on lake area (A). While A can vary over orders of
magnitude (Box & Ski, 2007), α likely varies over a relatively small
range constrained by variations in ice surface topography (lakes tend
to form in shallow surface depressions that reflect the transmission of
long wavelength bedrock topography features to the ice surface;
(Echelmeyer et al., 1991)). Thus, lake volume can be expected to be
more dependent on lake area than diameter to depth ratio. Previously
published lake area observations and volume estimates confirm that
lake volume is significantly correlated with lake area (i.e., pb0.01,
r=0.79 and df=29 fromTables 5 and 6 in Box & Ski (2007)).We there-
fore take lake area as a proxy for lake volume, and interpret the absence
of a significant correlation between lake area and annual melt intensity
(Fig. 9) as evidence of no significant change in supraglacial lake volume
in response to variations in annual melt intensity.

6. Conclusion

In this study we observed a large population of supraglacial lakes
in West Greenland over ten consecutive melt seasons (2000 to
2009). We developed a robust algorithm to automatically track
supraglacial lakes using visible MODIS imagery through time. The
algorithm operates in a four-step process: (1) selecting the highest
quality MODIS image within each day, (2) applying an adaptive
threshold to detect individual lakes in images of diverse quality,
(3) tracking identified lakes individually, as lakes appear/disappear,
increase/decrease in area and merge/split, and (4) removing false
positives automatically. The algorithm achieves high accuracy in
tracking supraglacial lakes through time: 99.0% of supraglacial lakes
can be detected and tracked by our algorithm and 96.3% of reported
lakes are supraglacial lakes with accurate lake properties.

The parameters of lake onset and cessation, lake elevation,
maximum lake area and rate of change of lake area, were examined
in the context of in situ annual melt intensity observations, where a
higher annual melt intensity represents a year with warmer temper-
atures (and hence more intense meltwater production). Our findings
suggest that, in warmer years, lakes experience more extreme
drainage and filling events and a shorter mean lake duration (as
lakes disappear earlier). Annual maximum lake area, which we take
as a proxy for annual maximum lake volume, exhibits no significant
correlation with annual melt intensity between 2000 and 2009. We
interpret this as suggesting that supraglacial lakes accommodate
increased surfacemeltwater production duringwarmer years by drain-
ing more frequently and earlier in the melt season. Additionally, the
lake population extends to higher elevations during warmer years. In
other words, extreme lake drainage events (and corresponding
surface-to-bed hydrologic connections via moulins) can be expected
to occur more frequently over a larger area of Greenland Ice Sheet in
a warmer climate. It is unclear whether the expected increase in the
spatial and temporal frequency of surface-to-bed hydrologic connec-
tions will increase (e.g. (Zwally et al., 2002)) or decrease (e.g.
(Sundal et al., 2011)) the regional annual ice displacement due to
basal sliding (via a net increase in basal lubrication or an earlier season-
al transition to efficient subglacial drainage, respectively).
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