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a b s t r a c t

In this paper, we address several properties of the so-called augmented cyclic matrices
of weighted digraphs. These matrices arise in different applications of digraph theory to
electrical circuit analysis, and can be seen as an enlargement of basic cyclic matrices of
the form BWBT , where B is a cycle matrix and W is a diagonal matrix of weights. By
using certain matrix factorizations and some properties of cycle bases, we characterize the
determinant of augmented cyclicmatrices, via Cauchy–Binet expansions, in termsof the so-
called proper cotrees. In the simpler context defined by basic cyclic matrices, we obtain the
dual result of Maxwell’s determinantal expansion for weighted Laplacian (nodal) matrices.
Additional relations with nodal matrices are also discussed. We apply this framework to
the characterization of the differential–algebraic circuit models arising from loop analysis,
and also to the analysis of branch-oriented models of circuits including charge-controlled
memristors.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of electrical and electronic circuits has driven a lot of research in different branches of mathematics. Many
theoretical results within dynamical systems, the theory of differential and differential–algebraic equations, matrix analysis
and, notably, graph theory, have been motivated by electrical circuit applications. The impact of electrical circuit theory in
applied mathematics becomes more relevant with the increasing use of nonlinear devices in electronics in the last decades.

Nodal and cyclic matrices. In particular, several properties of graphs involving e.g. cycles, cutsets, trees or digraph matrices
have shownup in the investigation of different features of electrical circuits; cf. [3,5,8,16]. In this context, a remarkable result
of Maxwell makes it possible to express the determinant of the nodal matrix AWAT of a weighted digraph in terms of a sum
of weight products extended over the digraph spanning trees (see [4,8]). The matrices A andW capture the digraph branch-
node incidence relations and the branchweights, respectively. This result can be seen as a consequence of the Cauchy–Binet
formula [21] and the fact that the incidence matrix A is totally unimodular (i.e. that det AK ∈ {0,±1} for every square
submatrixAK ). If, in particular,W is the identitymatrix, one obtains Kirchhoff’smatrix-tree theorem for the Laplacianmatrix.

Less attention has been paid to cyclic matrices, having the form

Bc = BWBT . (1)

Here B is a cyclematrix (also termed a ‘‘loopmatrix’’ in circuit theory),which needs not be totally unimodular. Cyclicmatrices
arise, for instance, in loop or mesh analyses of electrical circuits [12], and their non-singularity (invertibility) is usually the
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key requirement for the unique solvability of the circuit equations. Moreover, in most real applications one is faced with the
so-called augmented cyclic matrices of the form

Ba =


B1W1BT

1 B0

−BT
0 0


, (2)

where B0, B1 and W1 are certain submatrices of the cycle and weight matrices B,W . The augmented setting displays
additional difficulties and drives the analysis beyond the dual case of Maxwell-type formulas. To avoid terminological
misunderstandings, we will often refer to matrices of the form depicted in (1) as basic cyclic matrices in order to distinguish
them from the augmented ones (2).

In this paper, we address several properties of the cyclic matrices introduced above. Specifically, we will show that the
non-singularity of augmented cyclic matrices (2) can be tackled in terms of the cotrees associated with the so-called proper
trees. In our analysis, we will benefit from the invariance of the absolute value of the determinant of cotree submatrices
(an explicit statement of this property in connection to the minimum cycle basis problem can be found in [27,28]; cf. also
[7,25]). This graph-theoretic result will be combined with the Cauchy–Binet formula and its application requires the use of
smart matrix factorizations. Additionally, we show how the determinant of an augmented cyclic matrix can be expressed in
terms of the twig and link weights defined by a single tree. In the simpler setting of basic cyclic matrices (1), one obtains the
dual result of theMaxwell-type expansionmentioned above. Moreover, when the weight matrixW (which will be assumed
to be diagonal throughout the paper) is non-singular, a close relation between the basic and augmented cyclic matrices and
their nodal counterparts will be proved to hold. These results will be discussed in Section 3.
Electrical circuits and memristors. In Section 4, we will apply this framework to the characterization of different features
of electrical circuit models. We will show that the properties of basic and augmented cyclic matrices here discussed
are of interest not only in the solvability of the models arising in loop analyses of electrical circuits; they also apply to
the index characterization of several differential–algebraic circuit models, a problem which has received much recent
attention [15,24,36,42,44–46]. Although a detailed discussion can be found in Section 4, it is worth indicating here that the
presence e.g. of capacitors, inductors or current sources drives loop analysis models beyond the context defined by the basic
cyclic matrix (1); Eq. (17) provides an example of an augmented matrix of the form (2) arising in the analysis of nonlinear
circuits with reactive elements.

Our results will apply in particular to branch-orientedmodels of nonlinear circuits including a recently discovered device
known as a memory-resistor or memristor, under a charge-control assumption. The existence of the memristor, which is a
nonlinear device defined by a flux–charge characteristic, was predicted by Leon Chua in 1971 [11]; its actual appearance
at the nanometer scale [43] has driven a lot of attention to this circuit element. The research has been further motivated
by the announcement by HP that the next generation of commercial memory chips will be based on the memristor [1]. See
also [13,22,23,30–33,38,39,42] and references therein.

2. Background

In this section, we compile certain notions and properties coming from digraph theory which will be useful later; see [2,
3,5,14,16] for detailed introductions to graph and digraph theory. Note that by tree, we implicitly mean ‘‘spanning tree’’ and,
similarly, a cotree is implicitly assumed to be defined by a spanning tree. Tree and cotree branches will be called twigs and
links, respectively. When defining proper trees in Section 3 we will make use of the fact that, if J and K are disjoint sets of
branches, there exists a tree comprising all the J-branches and no K -branch if and only if J has no loops and K has no cutsets.

2.1. Cycle bases

Consider a connected digraph G withm branches and n nodes. Let us call a closed path without self-intersections a loop,
and assume without further explicit mention that loops are oriented. Assign to every loop a vector u = (u1, . . . , um) ∈ Rm

defined componentwise as

uj =

1 if branch j is in the loop with the same orientation
−1 if branch j is in the loop with the opposite orientation
0 if branch j is not in the loop.

Wewill call the subspace ofRm spanned by all these vectors the cycle space (cf. [5,9]). Its dimension is given by the cyclomatic
number p = m − n + 1.

A cycle basis is a set of loops whose incidence vectors define a basis of the cycle space. We will call a matrix B whose
rows are defined by the incidence vectors of a cycle basis a cycle matrix. In circuit theory this is usually termed a reduced
loop matrix and, sometimes, simply a loop matrix. A cycle basis is said to be totally unimodular if its cycle matrix B is totally
unimodular, that is, if each non-vanishing subdeterminant of B is either +1 or −1 [28].

Given a (spanning) tree, it is well known that every link defines a unique loop together with some twigs; these twigs
are defined by the unique path in the tree which connects the incident nodes of the link. We will assume that the loop has
the same orientation as the link and call it a fundamental loop. A cycle basis (as well as its associated cycle matrix) is called
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strictly fundamental if it is defined by the fundamental loops of a tree. Every strictly fundamental cycle matrix is known to
be totally unimodular (cf. [28]).

2.2. Digraph matrices

The (p × p)-submatrices of the cycle matrices B ∈ Rp×m introduced above are known to be non-singular if and only if
their columns are defined by the branches of a cotree (see e.g. [3]). More is true, as stated in the following result borrowed
from [27,28].

Lemma 1. Any two non-singular (p × p)-submatrices B̃, B̂ of a given cycle matrix B verify det B̃ = ± det B̂.

This means that | det B̃| = k > 0 for all the submatrices of a given B defined by cotrees. This constant k is called in [28]
the determinant of the corresponding cycle basis. Note that, if B is the strictly fundamental matrix defined by a given tree,
the submatrix B̃ defined by the branches of the corresponding cotree is an identity matrix and, therefore, k = | det B̃| = 1.
Actually, the identity k = 1 holds for all totally unimodular cycle matrices.

An important rolewill also be played by the so-called incidence and cutset matrices. The entries of the (reduced) incidence
matrix A = (aij) ∈ R(n−1)×m are defined as

aij =

1 if branch j leaves node i
−1 if branch j enters node i
0 if branch j is not incident with node i.

In order to define the cutset matrix, assign each (oriented) cutset a vector v = (v1, . . . , vm)with

vj =

1 if branch j is in the cutset with the same orientation
−1 if branch j is in the cutset with the opposite orientation
0 if branch j is not in the cutset.

The subspace of Rm spanned by these vectors is called the cut space and has dimension n − 1, provided that the digraph is
connected. A cutsetmatrix is any (n−1)×mmatrixwhose rows are defined by n−1 linearly independent vectors associated
with n− 1 cutsets. In particular, the choice of a tree yields a system of n− 1 linearly independent fundamental cutsets, each
one defined by a twig together with some links. The cutset matrix will be, in this case, said to be strictly fundamental.

The rows of the incidence matrix A can be checked to define a basis of the cut space. This means that, given any cutset
matrix Q , a relation of the form A = PQ holds for some non-singular matrix P . Additionally, an (n− 1)× (n− 1) submatrix
Ã of A is non-singular if and only if their columns correspond to the branches of a tree (see for instance [3,10]). In this case,
it is det Ã = ±1. In the light of the relation A = PQ mentioned above, it then follows that Ã = PQ̃ and, therefore, among
the (n− 1)× (n− 1) submatrices Q̃ of a cutset matrix Q , only those corresponding to trees are non-singular. Moreover, the
relation det Q̃ = ±(det P)−1 holds for all of them. This means that Lemma 1 is also valid for cutset matrices, that is, there
exists a constant κ > 0 such that | det Q̃ | = κ for all non-singular (n − 1) × (n − 1) submatrices of Q . In particular, for a
strictly fundamental cutset matrix it is κ = 1; the matrix P arising in the relation A = PQ verifies in this case det P = ±1.

Finally, for later use we compile below a characterization of the existence of certain types of loops and cutsets in terms
of the cycle matrix (cf. [37, Lemmas 5.7 and 5.8]).

Lemma 2. A set K of branches of does not contain loops if and only if BG−K has full row rank. It does not include cutsets if and
only if BK has full column rank.

3. Cyclic matrices and cotrees

3.1. Basic and augmented cyclic matrices

In different problems arising in electrical circuit theory, it is important to assess the non-singularity of cyclic matrices.
When all weights are positive, the basic cyclic matrix Bc = BWBT in (1) is positive definite and hence non-singular. Recall
that the weight matrix W is diagonal; we will denote the entries in the diagonal by wi, i = 1, . . . ,m. In many practical
situations some of the weights may become negative (e.g. when the weight matrix comes from active devices in electrical
circuits), and the characterization of the non-singularity of Bc is more intricate. In this setting the problem can be addressed
in terms of cotrees using determinantal expansions. This is also the case for augmented cyclicmatrices, which can be actually
understood to cover basic ones as a particular case.

Determinantal expansions for cyclic matrices will be based on the Cauchy–Binet formula, stated as Lemma 3 (see [21]).
Within this statement, the index sets α and β , together withω = {1, . . . , p}, are used to specify certain p×p submatrices of
D, E, F : the first and second superscripts specify the rows and columns defining each submatrix (e.g. Dω,α is the submatrix
of D defined by all the rows and the columns indexed by α).
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Lemma 3 (Cauchy–Binet). Consider a product of three matrices D ∈ Rp×m, E ∈ Rm×m, F ∈ Rm×p, with p ≤ m. Then

detDEF =

−
α,β

detDω,α det Eα,β det Fβ,ω, (3)

where α and β range over all possible subsets of {1, . . . ,m} with cardinality p.

The form of the augmented cyclic matrix (2) assumes a splitting of the cycle matrix B in three submatrices B0, B1 and B2,
each one comprising certain columns of B. The submatrices B0 and B1 are those which enter the upper-right and upper-left
blocks of (2), respectively, whereas the submatrix B2 comprises all the columns (if any) of Bwhich are not present either in
B0 or in B1. The digraph branches corresponding to columns in Bi will be termed type-i branches (i = 0, 1, 2). In practice,
both the splitting of B and the taxonomy of branches aremotivated by the different nature of these in actual applications; for
instance, in electrical circuit modeling these typesmay correspond to resistive, capacitive or inductive branches. In turn,W1
is a diagonal matrix whose (diagonal) entries are defined by the type-1 weights, that is, the weights of the type-1 branches.

In this context, a tree is called proper if it includes all the type-2 branches and (maybe) some of the type-1 branches, but
no type-0 branch. Accordingly, a proper cotree includes all the type-0 branches, possibly some of the type-1 branches, and
no type-2 branch. The existence of a proper (co)tree requires the absence of cutsets defined by type-0 branches and of loops
defined by type-2 branches.

Theorem 1. For the determinant of the augmented cyclic matrix (2) not to vanish, there must exist at least one proper cotree.
If this is the case, the determinant equals the sum of type- 1 weight products extended over the set of proper cotrees, up to a
positive constant which does not depend on the actual weight values. If B is totally unimodular (or, in particular, if it is strictly
fundamental) then this constant is 1.

Proof. We will proceed by means of the Cauchy–Binet formula using a factorization of the augmented cyclic matrix (2) of
the form

Ba = DEF ,

with

D =


B1 B0 0
0 0 I0


, E =

W1 0 0
0 0 I0
0 −I0 0


, F = DT

=

BT
1 0

BT
0 0
0 I0

 . (4)

The order of the identity matrices I0 in (4) equals the number of type-0 branches. The form of the matrix D shows that
(B1B0)must have full row rank for Ba to be non-singular. This precludes the existence of loops formed by type-2 branches,
according to Lemma 2. Additionally, the non-singularity of Ba requires B0 to have full column rank (cf. (2)); again in the
light of Lemma 2, this rules out the existence of cutsets defined by type-0 branches. The existence of a proper (co)tree then
follows as a necessary condition for the non-vanishing of the determinant of Ba.

Recall from Lemma 3 the notation for the submatrices of D, E, F entering the Cauchy–Binet formula (3). When D, E and
F take the form displayed in (4), the presence of the I0 matrices imposes certain restrictions on the submatrices Dω,α, Eα,β
and Fβ,ω yielding non-vanishing determinants in the Cauchy–Binet expansion. It is not difficult to check that the blocks B0
and BT

0 and all the identity matrices I0 must be present in these submatrices for their determinants not to vanish. Using the
diagonal form ofW , it follows that any non-null determinant must be defined by submatrices having the structure

Dω,α =


B̃1 B0 0
0 0 I0


, Eα,β =

W̃ 0 0
0 0 I0
0 −I0 0

 , Fβ,ω =

B̃T
1 0

BT
0 0
0 I0

 ,
where B̃1 is a submatrix of B1 defined by some of its columns, W̃ being the corresponding weight matrix. Note that
Fβ,ω = (Dω,α)T .

The set of columns of B1 entering B̃1 mustmake (B̃1B0)non-singular. According to the discussion in Section 2.2, thismeans
that the branches defined by the columns entering B̃1 together with the type-0 branches must define a cotree. Moreover,
since it contains all the type-0 branches and no type-2 branch, it will be a proper cotree. Note that detDω,α = det Fβ,ω = ±k,
where the constant k stands for | det(B̃1B0)|, and recall that this constant is the same for all digraph cotrees. Additionally,
by exchanging the columns of the I0-blocks in Eα,β one can easily check that det Eα,β = det W̃ , this determinant being
defined by the product of weights in the branches defined by B̃1. Altogether, these remarks show that the Cauchy–Binet
determinantal expansion reads in this case

detDEF = k2
−
α∈Γp

∏
i∈α̃

wi, (5)

whereΓp is the family of index sets defined by proper cotrees, and α̃ ⊆ α specifies the indices within αwhich correspond to
type-1 branches. Up to the positive constant k2, the right-hand side of (5) equals the sumof type-1weight products extended
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over the set of proper cotrees. Finally, when the cycle matrix B is totally unimodular (or, in particular, strictly fundamental),
we have k2 = k = 1. �

From Theorem 1, it follows that the augmented cyclic matrix Ba will be non-singular if and only if the sum of type-1
weight products in proper cotrees does not vanish. Note that in the statement of Theorem 1, we implicitly assume that the
type-1 weight product of a proper cotree without type-1 branches (i.e. just defined by type-0 branches) is set to 1.

By noticing that in the absence of type-0 and type-2 branches all trees are proper, from Theorem 1 we may derive the
corresponding result for basic cyclic matrices (1). We give an independent proof because of the intrinsic interest of this case.

Corollary 1. The determinant of the basic cyclic matrix BWBT equals, up to a positive constant, the sum of weight products
extended over the set of digraph cotrees. If B is totally unimodular (or, in particular, if it is strictly fundamental) then this constant
is 1.

Proof. Now, applying the Cauchy–Binet formula to the cyclic matrix BWBT , we get

det BWBT
=

−
α,β

det Bω,α detWα,β det(BT )β,ω. (6)

As explained in Section 2.2 above, Bω,α has a non-vanishing determinant if and only if the branches specified by α define a
cotree. Additionally, the diagonal nature ofW requires, for detWα,β not to vanish, that α = β . Denoting by Γ the family of
index sets which correspond to cotrees, we may therefore write (6) as

det BWBT
=

−
α∈Γ

[det Bω,α]2 detWα,α.

The result then follows from the fact that det Bω,α = ±k for all cotrees (cf. Lemma 1), so that

det BWBT
= k2

−
α∈Γ

detWα,α
= k2

−
α∈Γ

∏
i∈α

wi.

In particular, for a totally unimodular cyclematrix B the constant k amounts to 1, showing that in these cases the determinant
of the cyclic matrix matches exactly the sum of weight products in the digraph cotrees. �

From Corollary 1, it follows immediately that the basic cyclic matrix Bc = BWBT is non-singular if and only if the sum of
weight products extended over the set of digraph cotrees does not vanish.

The sum arising in Theorem 1 can be computed in terms of a single proper tree T , as stated in Theorem 2. However, in
contrast to the sum in Theorem 1, which does not involve any coefficients coming from the digraph cotrees, the determinant
arising in Theorem 2 involves informationwhich is specific to T . More precisely, wemake use of thematrix K = (kij)whose
entries relate the type-1 twigs and links defined by T as follows:

kij =


1 if the j-th type-1 twig belongs to the fundamental loop defined

by the i-th type-1 link with the same orientation
−1 if the j-th type-1 twig belongs to the fundamental loop defined

by the i-th type-1 link with the opposite orientation
0 otherwise.

(7)

Theorem 2. Assume that the digraph has at least one proper tree T . The sum of type- 1weight products in proper cotrees arising
in Theorem 1 equals

det(W1co + KW1trK
T ), (8)

where W1co and W1tr comprise the weights of W1 which correspond to links and twigs of T , and K = (kij) is the matrix whose
entries are defined in (7).

Proof. Consider the strictly fundamental cycle matrix associated with T , writing it as
0 K I L
I M 0 N


(9)

for certain submatrices K (defined componentwise in (7)), L,M and N . The first group of columns corresponds to type-0
branches (all of which are links); in turn, the second and third groups of columns correspond to type-1 twigs and type-1
links, whereas those coming from the last group correspond to type-2 ones (which are twigs).

Since k = 1 for a strictly fundamental cycle matrix, the sum of type-1 weight products in proper cotrees matches exactly
the determinant of the corresponding augmented cyclic matrix, which readsW1co + KW1trK

T KW1trM
T 0

MW1trK
T MW1trM

T I
0 −I 0

 , (10)



R. Riaza / Discrete Applied Mathematics 160 (2012) 280–290 285

the upper-left block coming from the product
K I
M 0


W1tr 0
0 W1co


K T MT

I 0


.

The result then follows from the fact that the determinant of (10) can be easily checked to equal that ofW1co +KW1trK
T . �

This result will be used in the proof of Theorem 3 and also in the index characterization of memristive circuits addressed
in Section 4.2 (cf. (21)).

Remark. The reader can easily derive the corresponding result for the basic cyclic matrix Bc = BWBT ; in this case the
sum of weight products in cotrees characterizing (up to a positive constant) the determinant of BWBT in Corollary 1 can be
computed from a single tree as Wco + KWtrK T , where the matrix K now relates all the twigs and links in the digraph. This
property is obtained in a straightforward manner by working with the strictly fundamental cycle matrix (K I).

3.2. Cyclic and nodal matrices

A natural question arises from the results discussed so far, namely, how are they related to Maxwell’s determinantal
expansions of nodal matrices and the augmented variants considered in [40]. When the weights entering the cyclic matrix
BWBT do not vanish, its non-singularity is closely related to that of the nodal matrix AW−1AT ; the same will happen with
augmented matrices. These results are detailed in Theorem 3.

Within the second assertion of Theorem 3 we make use of the augmented nodal matrix

An =


A1W−1

1 AT
1 A2

−AT
2 0


, (11)

where the submatrices Ai of the incidence matrix A are defined by the columns which correspond to type-i branches. The
same notational criterion will be applied to the submatrices of the cutset matrix Q .

Theorem 3. Assume that all weights are non-null. Then the cyclic matrix Bc = BWBT in (1) is non-singular if and only if it is
AW−1AT .

In the augmented setting defined by (2), assume that there exists at least one proper tree, and that the type-1 weights do not
vanish. Then, the augmented cyclic matrix Ba in (2) is non-singular if and only if it is the augmented nodal one (11).

Proof. The proof of the claim involving the basic matrices BWBT and AW−1AT can be derived in a straightforward manner
from the one detailed below for augmented matrices, and therefore we leave the details to the reader in this regard.

Let us then consider the augmented matrices (2) and (11). Fix a proper tree T , and use the fact that the augmented
cyclic matrix (2) is non-singular if and only if it is the matrixW1co + KW1trK

T arising in Theorem 2. This matrix is the Schur
complement [21] of W−1

1tr in
W1co K
−K T W−1

1tr


. (12)

This means that the non-singularity of (2) amounts to that of (12).
In the setting of Theorem 2, the strictly fundamental cutset matrix associated with T reads

Q =


−MT I −K T 0
−NT 0 −LT I


(cf. (9)). Denote

Q0 =


−MT

−NT


, Q1 =


I −K T

0 −LT


, Q2 =


0
I


.

In turn, splitting the incidence matrix A as (A0A1A2), the relation A = PQ (with det P = ±1) detailed in Section 2.2 yields
Ai = PQi for i = 0, 1, 2. This makes it possible to rewrite the augmented nodal matrix (11) as

A1W−1
1 AT

1 A2

−AT
2 0


=


P 0
0 I


Q1W−1

1 Q T
1 Q2

−Q T
2 0


PT 0
0 I


. (13)

Some simple computations show that the second matrix in the right-hand side of (13) readsW−1
1tr + K TW−1

1coK K TW−1
1co L 0

LTW−1
1coK LTW−1

1co L I
0 −I 0

 .
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The determinant of this matrix equals that of W−1
1tr + K TW−1

1coK , which is the Schur complement of W1co in (12). The non-
singularity of the augmented nodal matrix (11) is then equivalent to that of (12) and therefore to that of (2), as we aimed to
show. �

Remark. Using the properties of Schur complements (see [21]), the sum of type-1 weight products in proper cotrees can be
written as

det(W1co + KW1trK
T ) = det


W1co K
−K T W−1

1tr


detW1tr ,

but in turn

det

W1co K
−K T W−1

1tr


= detW1co det(W

−1
1tr + K TW−1

1coK)

and therefore

det(W1co + KW1trK
T ) = detW1 det(W−1

1tr + K TW−1
1coK).

Without going into technical details, this shows that the sum of type-1 weight products in proper cotrees equals the sum
of products of inverse type-1 weights in proper trees coming from the determinantal expansion of the augmented nodal
matrix (11) (cf. [38]), up to the factor detW1.

The requirement of invertibility of theweightmatrixmakes an important difference between the cyclic andnodal settings
considered above. For instance, in Section 4.2, the type-1 weights will model electrical resistances and memristances; for
nonlinear devices, these quantities are defined in an incremental sense and may vanish at certain working points, making
the inverse magnitudes (conductances and memductances, respectively) undefined. Under these assumptions, the nodal
matrices AW−1AT and An in (11) are not defined; by contrast, the results based on cyclic matrices discussed in Section 3.1
can be applied even when (some of) the incremental resistances and/or memristances do vanish.

4. Applications in circuit theory

Loop analysis of nonlinear electrical circuits (cf. [12]) has received less attention in the differential–algebraic context than
nodal techniques [15,17,18,35,37,45], being however preferred when the circuit devices are mostly current-controlled. We
illustrate in Section 4.1, how different properties of loop analysis models can be tackled bymeans of the results discussed in
Section 3. Note in particular that our approach makes it possible to accommodate in the index analysis nonlinear resistors
(that is, devices with a non-dynamic relation between voltage and current) with negative incremental resistance, such as
tunnel diodes. Analogously, active memristors, which display a negative memristance at certain working ranges, can be
included in the characterization of branch-oriented models discussed in Section 4.2.

4.1. Loop analysis

Consider a connected electrical circuit withm branches and n nodes. Fixm−n+1 linearly independent loops, denote by
B the associated cycle matrix, and assign a loop current jk, k = 1, . . . ,m−n+1, to each one of these loops. When the circuit
is planar, these loop currents can be taken as the ones defined by themeshes, that is, the loops encircling the different faces
in a planar description of the circuit; note, however, that the circuit need not be planar for the loop analysis to be feasible.

Denote by j the vector of loop currents. The branch currents i can be computed from j simply as i = BT j. The loop analysis
begins with the description of Kirchhoff’s voltage law in the form Bv = 0, and then proceeds by replacing as far as possible
the branch voltages of current-controlled devices in terms of branch currents and, eventually, of loop currents.

We show below how the results of Section 3 can be used in the characterization of several properties of time-domain
circuit models based on loop analysis. Note in particular that our framework makes it possible to include active devices
in the models. For the sake of simplicity, we begin by illustrating how Corollary 1 can be used to characterize the unique
solvability of linear resistive circuits. In the presence of nonlinear devices, the circuit equations are usually set up in the
form of a differential–algebraic equation (DAE); cf. [15,17,18,24,35–37,41,44–46]. A major issue in the characterization of
DAE circuit models is the characterization of their index [6,19,26,29,34,37]. Theorem 1 will make it possible to characterize
index one configurations in loop analysis models of nonlinear RLC circuits. We assume throughout that all circuits are well-
posed, namely, that they do not have either voltage source loops or current source cutsets.

4.1.1. Linear resistive circuits
Consider a linear resistive circuit excited by independent voltage sources. Split the cyclematrix B as (Br Bu), the subscripts

r and u standing for resistors and voltage sources, respectively. Letting R and vs(t) describe the (diagonal) matrix of
resistances and the voltage source excitations, the circuit equations can be easily seen to read

BrRBT
r j + Buvs(t) = 0. (14)
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These equations are uniquely solvable for the loop currents j if and only if the cyclic matrix BrRBT
r is non-singular. If this is

the case, we have j = −(BrRBT
r )

−1Buvs(t) and the branch variables are given by ir = BT
r j, iu = BT

u j, vr = RBT
r j. It is worth

emphasizing that some of the resistances may take on negative values; otherwise BrRBT
r would be positive definite and

hence non-singular, rendering the problem trivial.
In the presence of negative resistances, the non-singularity of the cyclicmatrix BrRBT

r can be characterized via Corollary 1.
Indeed, since the well-posedness of the circuit precludes voltage source loops, it follows that Br is a cycle matrix of the
digraph obtained after contracting voltage source branches. Provided that the weights are defined by the individual circuit
resistances, we immediately get from Corollary 1 the following unique solvability characterization.

Proposition 1. Consider a well-posed linear resistive circuit excited by independent voltage sources. The loop analysis
Eq. (14) describing this circuit are uniquely solvable if and only if the sum of resistance products extended over all resistive cotrees
does not vanish.

4.1.2. Nonlinear RLC circuits
Let us now consider a circuit composed of resistors, inductors, capacitors and independent voltage and current sources.

Both resistors and inductors can be nonlinear and are assumed to be defined by C1 maps of the form vr = γ (ir), ϕl = η(il),
where ϕl is the vector of magnetic fluxes in the inductors. Capacitors may also be nonlinear and are defined by a C1

charge-voltage characteristic qc = ψ(vc). We denote by R(ir), L(il) and C(vc) the incremental resistance, inductance and
capacitance matrices γ ′(ir), η′(il), ψ ′(vc). The resistance matrix is assumed to be diagonal, the k-th incremental resistance
Rk depending only on the branch current of the k-th resistor. Coupling effects are allowed among inductors and among
capacitors, and we only assume that L(il) and C(vc) are non-singular matrices. Finally, the excitation terms coming from the
voltage and current sources are denoted by vs(t) and is(t), respectively.

Split the cycle matrix B as (BrBlBcBiBu), where the subscript r (resp. l, c, i, u) signals resistive (resp. inductive, capacitive,
current source, voltage source) branches. The loop analysis equations then read

L(il)i′l = vl (15a)

C(vc)v′

c = BT
c j (15b)

0 = Brγ (BT
r j)+ Blvl + Bcvc + Bivi + Buvs(t) (15c)

0 = il − BT
l j (15d)

0 = is(t)− BT
i j. (15e)

System (15) is a differential–algebraic equation of the form

M(x)x′
= f (x, y) (16a)

0 = g(x, y), (16b)

with x = (il, vc), y = ( j, vl, vi). Background on general DAEs can be found in [6,19,26,34,37]. Provided that the matrixM(x)
is non-singular (a condition which holds for (15) if and only if the inductance and capacitance matrices L(il) and C(vc) are
non-singular), the DAE (16) is said to be index one if the matrix of partial derivatives gy is non-singular. In this situation, a
straightforward application of the implicit function theoremmakes it possible to describe the local system dynamics in the
formM(x)x′

= f (x, ϕ(x)), where y = ϕ(x) comes from (16b). The characterization of index one DAEs is also important with
regard to the numerical simulation of the system dynamics.

Theorem 1 allows for a full characterization of the situations in which the DAE (15) is index one, as detailed in
Proposition 2. It isworth emphasizing that our frameworkmakes it possible to accommodate situations inwhich some of the
resistances may vanish (ruling out a nodal description of the circuit) or become negative. In the statement of Proposition 2,
a VC-loop is a loop defined by voltage sources and/or capacitors only, and an IL-cutset is a cutset defined just by current
sources and/or inductors. In this context, a proper tree will include all capacitors and voltage sources, and neither inductors
nor current sources. This will be a consequence of the splitting of branches detailed below.

Proposition 2. Assume that L(il), C(vc) are non-singular matrices, and that R(ir) is diagonal. Then, the DAE (15) is index one if
and only if

• the circuit exhibits neither VC-loops nor IL-cutsets, and
• the sum of resistance products in proper cotrees does not vanish.

Proof. The matrix of partial derivatives of (15) with respect to j, vl, vi readsBrRBT
r Bl Bi

−BT
l 0 0

−BT
i 0 0

 (17)
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which is an augmented cyclicmatrix of the form (2). The type-1 (resp. type-0; type-2) branches in (2) correspond to resistors
(resp. inductors and current sources; capacitors and voltage sources). The existence of a proper tree, which in this setting
includes all capacitors and voltage sources and neither inductors nor current sources, requires the absence of VC-loops and
IL-cutsets. The rest of the proof is a straightforward application of Theorem 1. �

In particular, when all resistors are strictly passive (so that all resistances are positive), the sum of resistance products in
proper cotrees is positive; this means that, in a strictly passive setting, the index one nature of the circuit model relies only
on the absence of VC-loops and IL-cutsets.

4.2. Memristive circuits

The results presented in Section 3 apply not only to the characterization of loop analysis equations. We show below that
they also apply to the so-called branch-oriented circuit models, which do not include loop currents or node potentials but
just branch voltages and currents as variables; cf. [20,24,36,37,44]. Specifically, we illustrate how to characterize index one
configurations of branch-oriented models of circuits including charge-controlled memristors.

Memristors were postulated by Leon Chua in 1971 as the fourth basic circuit element, besides resistors, capacitors and
inductors [11]. Memristive devices are characterized by a nonlinear flux–charge relation which, in a charge-controlled
setting, reads ϕm = φ(qm). By differentiating this relation one gets the voltage–current relation vm = M(qm)im, where
M(qm) = φ′(qm) is the so-calledmemristance, which depends on the charge qm.

The physical realization ofmemristors had towait, however, until 2008,when certain nanoscale deviceswere reported to
exhibit amemristive characteristic [43]. In these devices thememristance has the formM(qm) = k1−k2qm, where k1 and k2
are physical constants, k2 being significant at the nanometer scale. This has motivated much recent research on memristive
systems (cf. [1,13,22,23,30–33,38,39,42] and references therein).

In particular, the use of active memristors in the design of nonlinear oscillators has been proposed in [22]. Active
memristors are those for which the memristance becomes negative at certain operating ranges. This fact motivates the
use of the framework discussed in Section 3 for the index analysis of the corresponding circuit models.

In a branch-oriented framework, the circuit model takes the form

C(vc)v′

c = ic (18a)

L(il)i′l = vl (18b)

q′

m = im (18c)

0 = vm − M(qm)im (18d)
0 = vr − γ (ir) (18e)

0 = Bcvc + Blvl + Bmvm + Brvr + Buvs(t)+ Bivi (18f)
0 = Qc ic + Qlil + Qmim + Qr ir + Quiu + Qiis(t). (18g)

Notice the description of Kirchhoff laws by means of the cycle and cutset matrices as Bv = 0,Qi = 0 in (18f) and (18g).
In the setting of Proposition 3, the existence of a proper tree (comprising again all capacitors and voltage sources, and

neither inductors nor current sources) will arise as a necessary condition for (18) to be index one. This makes it possible
to recast the model in terms of the strictly fundamental cycle and cutset matrices defined by a proper tree T . Write these
matrices as

B =

K11 K12 K13 Imco 0 0
K21 K22 K23 0 Irco 0
K31 K32 K33 0 0 Ili


(19)

Q =

Imtr 0 0 −K T
11 −K T

21 −K T
31

0 Irtr 0 −K T
12 −K T

22 −K T
32

0 0 Icu −K T
13 −K T

23 −K T
33

 . (20)

For the sake of notational simplicity we have joined together the entries corresponding to inductors and current sources,
and also those coming from capacitors and voltage sources.

Now type-1 branches correspond to resistors and memristors, whereas type-0 and type-2 branches are defined by
inductors and current sources, and capacitors and voltage sources, respectively. The type-1weights are then the incremental
resistances and memristances.

Proposition 3. Let the capacitance and inductance matrices C(vc), L(il) be non-singular. Assume that resistors and memristors
are current-controlled and charge-controlled, respectively, and that neither resistors nor memristors display coupling effects. In
this setting, the circuit model (18) is index one if and only if

• the circuit exhibits neither VC-loops nor IL-cutsets, and
• the sum of resistance–memristance products in proper cotrees does not vanish.
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Proof. In this case the result will be an easy consequence of Theorem 2. Indeed, using the form of B and Q depicted in
(19)–(20), the index one nature of the circuit relies on the non-singularity of the matrix

Imtr 0 0 0 0 −Mtr 0 0 0 0
0 Imco 0 0 0 0 −Mco 0 0 0
0 0 Irtr 0 0 0 0 −Rtr 0 0
0 0 0 Irco 0 0 0 0 −Rco 0
K11 Imco K12 0 0 0 0 0 0 0
K21 0 K22 Irco 0 0 0 0 0 0
K31 0 K32 0 Ili 0 0 0 0 0
0 0 0 0 0 Imtr −K T

11 0 −K T
21 0

0 0 0 0 0 0 −K T
12 Irtr −K T

22 0
0 0 0 0 0 0 −K T

13 0 −K T
23 Icu


.

Some easy computations show that the non-singularity of this matrix is equivalent to that of
Mco + K11MtrK T

11 + K12RtrK T
12 K11MtrK T

21 + K12RtrK T
22

K21MtrK T
11 + K22RtrK T

12 Rco + K21MtrK T
21 + K22RtrK T

22


,

that is,
Mco 0
0 Rco


+


K11 K12
K21 K22


Mtr 0
0 Rtr


K T
11 K T

21
K T
12 K T

22


. (21)

This matrix has the form displayed in (8). The result then follows in a simple manner from Theorem 2. �

When the incremental resistances and memristances do not vanish, then the inverse magnitudes (that is, the
conductances G and the memductances M−1) are well-defined. In this case, using Theorem 3 the index one nature of (18)
can be equivalently expressed in terms of the non-singularity of

M−1
tr 0
0 Gtr


+


K T
11 K T

21
K T
12 K T

22


M−1

co 0
0 Gco


K11 K12
K21 K22


, (22)

the determinant of which equals the sum of conductance–memductance products in proper trees, as detailed in [38]. The
characterization stated in Proposition 3 holds, however, without recourse to this inversion, that is, without assuming that
the inverse descriptions of current-controlled resistors or charge-controlled memristors do exist. Proposition 3 is therefore
applicable to problems in which (some of) the conductances/memductances are not well-defined.

5. Summary

We have tackled in this paper several features of cyclic matrices of the forms depicted in (1) and (2). A key result
in our analysis is a property of cycle matrices, namely, the invariance of the absolute value of the determinant of the
submatrices defined by cotrees. This property makes it possible to characterize the non-singularity of basic cyclic matrices
(1) in terms of cotrees, making use of the determinantal expansions resulting from the Cauchy–Binet formula. In turn, the
use of proper cotrees allows for the extension of these results to the augmented setting defined by (2), which arises in
real applications and displays additional difficulties. We have also characterized the sum of cotree weights emanating from
the Cauchy–Binet formula in terms of a single cotree. Additionally, these results have been shown to be closely related to
Maxwell’s determinantal expansions of nodal matrices.

These results are of interest in different modeling techniques for electrical circuits, e.g. in loop and branch-oriented
analysis. Indeed, unique solvability properties and index one configurations have been addressed for the models resulting
from loop analysis techniques, which are preferred to nodal analysis methods when the circuit devices are mostly current-
controlled. We have shown as well how to characterize index one configurations of branch-oriented circuit models when
they include a recently discovered device known as a memristor, of a potentially great interest in electrical and electronic
engineering, under a charge-control assumption.
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