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Table I. Antioxidants and PUFA percentage in melanocytes cultures from ‘low phototype’ (LPM) and ‘high phototype’
(HPM) subjects?

Vit. E, SOD, Cat, Ratio, PUFA,
ng per 10° cells U per 10° cells U per 10° cells SOD per Cat % total fatty acids
LPM 4.10 £ 0.90 0.60 = 0.21 0.25 = 0.09 2.4 18.20 %= 1.20
HPM 2.55 = 0.91* 0.55 * 0.12 0.90 * 0.18* 0.61* 12.90 * 1.50*

“Each result represents the mean of two experiments in duplicate. *p<<0.001.

Table II. Viability of melanocytes cultures from ‘low
phototype’ (LPM) and ‘high phototype’ (HPM) subjects
after treatment with CHU"

0.66 UM 6.6 UM 20 UM
LPM 135 * 10.0% 115 + 4.5% 53 * 4.1*
HPM 97.6 * 4.2 96.2 * 5.3 98.1 = 6.6

“Cells were treated for 1 h in medium without fetal calf serum then
washed and cultured in complete medium. Cell number was evaluated at
24 h by Trypan Blue test. Results are reported as percentage values
compared with respective untreated controls and represent the mean =
SD of two experiments in triplicate. *p<<0.001.
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Retardation of Hair Follicle Development by the Deletion of
TrkC, High-Affinity Neurotrophin-3 Receptor

To the Editor:

Increasing evidence suggests that neurotrophins not only control
neuronal development, plasticity, and maintenance (Lewin and
Barde, 1996; Bothwell, 1997), but also are critically involved in
the control of hair follicle (HF) development and growth
(Holbrook et al, 1993; Crowley et al, 1994; Botchkarev et al,
1998a, 1999a).

Specifically, we have recently shown that neurotrophin-3
(NT-3) is functionally important for HF morphogenesis, as its
overexpression or partial deletion in mice leads to a significant
acceleration or retardation of HF development, respectively
(Botchkarev et al, 1998a). As a member of the neurotrophin
family, NT-3 shows multiple interactions with all types of
neurotrophin receptors: NT-3 binds with high affinity to the
tyrosine kinase C (TrkC) receptor, as well as with low affinity
to the tyrosine kinase A (TrkA), tyrosine kinase B (TrkB), and
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p75 kDa neurotrophin receptor (p75NTR) (Lewin and Barde,
1996; Bothwell, 1997; Dechant and Barde, 1997).

Because all four receptors are expressed in the HF epithelium
or mesenchyme during defined stages of HF morphogenesis
(Botchkarev ef al, 1998a),":? the target receptor(s) that mediate the
stimulatory effects of NT-3 on HF development are still unclear.
TrkC, the high-affinity receptor for NT-3, is expressed by the hair
placode epithelium during the initial steps of HF development,
whereas in the fully developed HF TrkC expression appears in the
dermal papilla, outer root sheath, and hair matrix (Botchkarev ef al,
1998a). In order to explore the relative contribution of TrkC
signaling in the control of HF, we have studied HF morphogenesis

IBotchkareva NV, Botchkarev VA, Peters EM], Paus R: Nerve growth
factor and its receptors in murine skin: expression changes during hair
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Figure 1. Retardation of hair follicle
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in the back skin of TrkC knockout (—/-) mice, generated in a
mixed background as described previously (Klein et al, 1994).

At day 5 of postnatal developments (P5), back skin of TrkC
knockout (n = 3) and corresponding age-matched wild-type
(n = 3) mice was dissected at the level of subcutis, immediately
transferred to liquid nitrogen and embedded as described (Paus
et al, 1994). Eight micrometer cryostat sections were prepared from
frozen skin samples, and histochemical detection of endogenous
alkaline phosphatase activity was performed to identify precisely
the defined stages of HF morphogenesis (Handjiski et al, 1994).
The percentage of HF in different stages of morphogenesis was
assessed and calculated on the basis of accepted morphologic criteria
(Paus et al, 1997; Philpott and Paus, 1998). Only every tenth
cryosection was used for analysis in order to exclude the repetitive
evaluation of the same HF, and 2-3 cryosections were assessed
from each animal. A total of 150-350 follicles in 50—60 microscopic
fields (approximately 50—60 follicles per animal) were analyzed and
compared with that of a corresponding number of HF from the
appropriate, age-matched wild-type mice. Thickness of skin was
assessed as described before (Botchkarev et al, 1998b, 1999b). All
sections were analyzed at X200 magnification, and means and SEM
were calculated from pooled data. Differences were judged as
significant if the p value was < 0.05, as determined by independent
Student’s t test for unpaired samples. Photo-documentation was
performed with the help of a digital image analysis system (ISIS
METASYSTEMS, Altlussheim, Germany).

Comparative, quantitative histomorphometry (Botchkarev et al,
1998a) showed considerable, statistically significant diftferences in
HF development between TrkC null mice and age-matched wild-
type control. In contrast to wild-type mice, where all HF were in
the latest stages of morphogenesis (6—8), TrkC mutants showed a
dramatic retardation of HF development. This was evident by the
predominance of stages 4-7 HF (p < 0.005), and the marked
reduction in the number of stage 8 HF in TrkC null mice
(p < 0.005) (Fig 14, C, D). Furthermore, as an important indirect
indicator for a retarded HF development (Botchkarev ef al, 1998a;
Philpott and Paus, 1998), skin thickness in TrkC mutants was
significantly lower (p < 0.005) than in wild-type mice (Fig 1B-D).

Although the precise roles for other neurotrophin receptors
(TrkA, TrkB, p75NTR) in the mediation of the effects of NT-3
on HF development remain to be elucidated, the current data fully
corroborate our findings in N'T-3 mutants (Botchkarev et al, 1998a),
and suggest that NT-3 most likely stimulates HF morphogenesis
via its high-affinity TrkC receptor. Recent observations in other
models suggest that expression of NT-3 and TrkC are upregulated

morphogenesis in TrkC knockout
mice. The percentage of HF in defined
stages of morphogenesis was evaluated by
quantitative  histomorphometry  using
established morphologic criteria in cryostat
sections of the skin of TrkC knockout and
wild-type mice at P5. (A) Dynamics of
HF morphogenesis in TrkC knockout and
wild-type mice show a presence of HF in
stages 4-6 in TrkC knockout mice, a
significant increase in the percentage of HF
in stage 7 of HF morphogenesis, and a
decline of HF at stage 8 in TrkC knockout
mice, compared with wild-type animals.
(B) Skin thickness in TrkC mutants is
significantly declined at P5, compared with
wild-type mice. (C, D) Representative skin
examples of wild-type (C) and TrkC
knockout mice (D) at P5. HF at different
stages of development are indicated by
arabic numbers. EP, epidermis; PCM,
panniculus carnosus muscle. Scale bars:
200 pm.

TrkC -~

by Wnt- and BMP-family members (Kobayashi et al, 1988; Zhang
et al, 1998; Patapoutian et al, 1999), which are shown to be critical
for HF development (Philpott and Paus, 1998; Millar et al, 1999;
Botchkarev et al, 1999¢). Therefore, serving as a potential target
for Wnt- and/or BMP-regulation, NT-3/TrkC signaling represents
an important stimulatory component in the inductive signaling
cascade driving HF morphogenesis.
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Animal Models of Psoriasis

To the Editor:

The review (Schon, 1999) of animal models in psoriasis does not
convey the importance of microbial antigen in the transgenic
HLA-B27 rat model. When delivered and raised under germ-free
conditions those rats do not demonstrate Reiter syndrome-like
changes in either their gut or their joints (Taurog et al, 1994).
They do show skin and nail disease, but the authors speculate that
those might be due to the presence of nonviable microorganisms
in the sterile but not antigen-free environment of their cages.

Also, psoriasis-like lesions that include the feature of the Muno
abscess can be induced in rabbits by a twice-daily topical application
of heat-killed Malassezia ovalis antigen (Rosenberg et al, 1980; Xu
et al, 1991).
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