A singular value inequality for Heinz means

Koenraad M.R. Audenaert
Institute for Mathematical Sciences, Imperial College London, 53, Prince's Gate, London SW7 2PG, United Kingdom
Received 25 September 2006; accepted 5 October 2006
Available online 27 November 2006
Submitted by R.A. Brualdi

Abstract

We prove a matrix inequality for matrix monotone functions, and apply it to prove a singular value inequality for Heinz means recently conjectured by Zhan. © 2006 Elsevier Inc. All rights reserved.

Keywords: Matrix inequality; Singular value; Matrix monotone function; Matrix mean

1. Introduction

Heinz means, introduced in [2], are means that interpolate in a certain way between the arithmetic and geometric mean. They are defined over \mathbb{R}^{+}as

$$
\begin{equation*}
H_{\nu}(a, b)=\left(a^{\nu} b^{1-v}+a^{1-v} b^{\nu}\right) / 2 \tag{1}
\end{equation*}
$$

for $0 \leqslant v \leqslant 1$. One can easily show that the Heinz means are "inbetween" the geometric mean and the arithmetic mean:

$$
\begin{equation*}
\sqrt{a b} \leqslant H_{v}(a, b) \leqslant(a+b) / 2 . \tag{2}
\end{equation*}
$$

Bhatia and Davis [3] extended this to the matrix case, by showing that the inequalities remain true for positive semidefinite (PSD) matrices, in the following sense:

$$
\begin{equation*}
\left\|\left\|A^{1 / 2} B^{1 / 2}\right\|\right\| \leqslant\left\|H_{v}(A, B)\right\|\|\leqslant\|\|(A+B) / 2\| \|, \tag{3}
\end{equation*}
$$

[^0]where ||| •||| is any unitarily invariant norm and the Heinz mean for matrices is defined identically as in (1). In fact, Bhatia and Davis proved the stronger inequalities, involving a third, general matrix X,
\[

$$
\begin{equation*}
\left\|\mid A^{1 / 2} X B^{1 / 2}\right\|\|\leqslant\|\left\|\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) / 2\right\|\|\leqslant\|\|(A X+X B) / 2\| \| . \tag{4}
\end{equation*}
$$

\]

Zhan $[6,7]$ conjectured that the second inequality in (3) also holds for singular values. Namely: for $A, B \geqslant 0$,

$$
\begin{equation*}
\sigma_{j}\left(H_{v}(A, B)\right) \leqslant \sigma_{j}((A+B) / 2) \tag{5}
\end{equation*}
$$

is conjectured to hold for all j. These inequalities have been proven in a few special cases. The case $v=1 / 2$ is known as the arithmetic-geometric mean inequality for singular values, and has been proven by Bhatia and Kittaneh [4]. The case $v=1 / 4$ (and $v=3 / 4$) is due to Tao [5]. In the present paper, we prove (5) for all $0 \leqslant v \leqslant 1$. To do so, we first prove a general matrix inequality for matrix monotone functions (Section 3). The proof of the conjecture is then a relatively straightforward application of this inequality (Section 4).

Remark. One might be tempted to generalise the first inequality in (3) to singular values as well:

$$
\begin{equation*}
\sigma_{j}\left(A^{1 / 2} B^{1 / 2}\right) \leqslant \sigma_{j}\left(H_{v}(A, B)\right) \tag{6}
\end{equation*}
$$

These inequalities are false, however. Consider the following PSD matrices (both are rank 2):

$$
A=\left(\begin{array}{lll}
2 & 4 & 2 \\
4 & 8 & 4 \\
2 & 4 & 4
\end{array}\right), \quad B=\left(\begin{array}{lll}
5 & 0 & 4 \\
0 & 0 & 0 \\
4 & 0 & 4
\end{array}\right)
$$

Then $\sigma_{2}\left(A^{1 / 2} B^{1 / 2}\right)>\sigma_{2}\left(H_{v}(A, B)\right)$ for $0<v<0.13$.

2. Preliminaries

We denote the eigenvalues and singular values of a matrix A by $\lambda_{j}(A)$ and $\sigma_{j}(A)$, respectively. We adhere to the convention that singular values and eigenvalues (in case they are real) are sorted in non-increasing order.

We will use the positive semidefinite (PSD) ordering on Hermitian matrices throughout, denoted $A \geqslant B$, which means that $A-B \geqslant 0$. This ordering is preserved under arbitrary conjugations: $A \geqslant B$ implies $X A X^{*} \geqslant X B X^{*}$ for arbitrary X.

A matrix function f is matrix monotone iff it preserves the PSD ordering, i.e., $A \geqslant B$ implies $f(A) \geqslant f(B)$. If $A \geqslant B$ implies $f(A) \leqslant f(B)$, we say f is inversely matrix monotone. A matrix function f is matrix convex iff for all $0 \leqslant \lambda \leqslant 1$ and for all $A, B \geqslant 0$,

$$
f(\lambda A+(1-\lambda) B) \leqslant \lambda f(A)+(1-\lambda) f(B)
$$

Matrix monotone functions are characterised by the integral representation [1,7]

$$
\begin{equation*}
f(t)=\alpha+\beta t+\int_{0}^{\infty} \frac{\lambda t}{t+\lambda} \mathrm{d} \mu(\lambda) \tag{7}
\end{equation*}
$$

where $\mathrm{d} \mu(\lambda)$ is any positive measure on the interval $\lambda \in[0, \infty), \alpha$ is a real scalar and β is a non-negative scalar. When applied to matrices, this gives, for $A \geqslant 0$,

$$
\begin{equation*}
f(A)=\alpha \mathfrak{1}+\beta A+\int_{0}^{\infty} \lambda A(A+\lambda 1)^{-1} \mathrm{~d} \mu(\lambda) . \tag{8}
\end{equation*}
$$

The primary matrix function $x \mapsto x^{p}$ is matrix convex for $1 \leqslant p \leqslant 2$, matrix monotone and matrix concave for $0 \leqslant p \leqslant 1$, and inversely matrix monotone and matrix convex for $-1 \leqslant p \leqslant 0$ [1].

3. A matrix inequality for matrix monotone functions

In this section, we present the matrix inequality that we will use in the next section to prove Zhan's conjecture.

Theorem 1. For $A, B \geqslant 0$, and any matrix monotone function f :

$$
\begin{equation*}
A f(A)+B f(B) \geqslant\left(\frac{A+B}{2}\right)^{1 / 2}(f(A)+f(B))\left(\frac{A+B}{2}\right)^{1 / 2} . \tag{9}
\end{equation*}
$$

Proof. Let A and B be PSD. We start by noting the matrix convexity of the function $t \mapsto t^{-1}$. Thus

$$
\begin{equation*}
\frac{A^{-1}+B^{-1}}{2} \geqslant\left(\frac{A+B}{2}\right)^{-1} \tag{10}
\end{equation*}
$$

Replacing A by $A+1$ and B by $B+1$,

$$
\begin{equation*}
(A+1)^{-1}+(B+1)^{-1} \geqslant 2(1+(A+B) / 2)^{-1} . \tag{11}
\end{equation*}
$$

Let us now define

$$
C_{k}:=\frac{A^{k}}{A+1}+\frac{B^{k}}{B+1},
$$

and

$$
M:=(A+B) / 2
$$

With these notations, (11) becomes

$$
\begin{equation*}
C_{0} \geqslant 2(1+M)^{-1} . \tag{12}
\end{equation*}
$$

This implies

$$
\begin{equation*}
C_{0}+\sqrt{M} C_{0} \sqrt{M} \geqslant 2(1+M)^{-1}+2 \sqrt{M}(1+M)^{-1} \sqrt{M}=21, \tag{13}
\end{equation*}
$$

where the last equality follows easily because all factors commute.
Now note: $C_{k}+C_{k+1}=A^{k}+B^{k}$. In particular, $C_{0}+C_{1}=21$, and thus (13) becomes

$$
\begin{equation*}
\sqrt{M}\left(21-C_{1}\right) \sqrt{M} \geqslant C_{1} . \tag{14}
\end{equation*}
$$

Furthermore, as $C_{1}+C_{2}=2 M$, this is equivalent with

$$
\begin{equation*}
C_{2} \geqslant \sqrt{M} C_{1} \sqrt{M}, \tag{15}
\end{equation*}
$$

or, written out in full:

$$
\begin{equation*}
\frac{A^{2}}{A+1}+\frac{B^{2}}{B+1} \geqslant\left(\frac{A+B}{2}\right)^{1 / 2}\left(\frac{A}{A+1}+\frac{B}{B+1}\right)\left(\frac{A+B}{2}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

We now replace A by $\lambda^{-1} A$ and B by $\lambda^{-1} B$, for λ a positive scalar. Then, after multiplying both sides with λ^{2}, we obtain that

$$
\begin{equation*}
\frac{\lambda A^{2}}{A+\lambda 1}+\frac{\lambda B^{2}}{B+\lambda 1} \geqslant\left(\frac{A+B}{2}\right)^{1 / 2}\left(\frac{\lambda A}{A+\lambda 1}+\frac{\lambda B}{B+\lambda 1}\right)\left(\frac{A+B}{2}\right)^{1 / 2} \tag{17}
\end{equation*}
$$

holds for all $\lambda \geqslant 0$. We can therefore integrate this inequality over $\lambda \in[0, \infty)$ using any positive measure $\mathrm{d} \mu(\lambda)$.

Finally, by matrix convexity of the square function, $((A+B) / 2)^{2} \leqslant\left(A^{2}+B^{2}\right) / 2[1,7]$, we have, for $\beta \geqslant 0$,

$$
\begin{equation*}
A(\alpha \mathbb{1}+\beta A)+B(\alpha \mathbb{1}+\beta B) \geqslant\left(\frac{A+B}{2}\right)^{1 / 2}(2 \alpha \mathbb{1}+\beta(A+B))\left(\frac{A+B}{2}\right)^{1 / 2} \tag{18}
\end{equation*}
$$

Summing this up with the integral expression just obtained, and recognising representation (8) in both sides finally gives us (9).

Weyl monotonicity, together with the equality $\lambda_{j}(A B)=\lambda_{j}(B A)$, immediately yields
Corollary 1. For $A, B \geqslant 0$, and any matrix monotone function f :

$$
\begin{equation*}
\lambda_{j}(A f(A)+B f(B)) \geqslant \lambda_{j}\left(\frac{A+B}{2}(f(A)+f(B))\right) . \tag{19}
\end{equation*}
$$

4. Application: Proof of (5)

As an application of Theorem 1 we now obtain the promised singular value inequality (5) for Heinz means, as conjectured by Zhan:

Theorem 2. For $A, B \in M_{n}(\mathbb{C}), A, B \geqslant 0, j=1, \ldots, n$, and $0 \leqslant s \leqslant 1$,

$$
\begin{equation*}
\sigma_{j}\left(A^{s} B^{1-s}+A^{1-s} B^{s}\right) \leqslant \sigma_{j}(A+B) \tag{20}
\end{equation*}
$$

Proof. Corollary 1 applied to $f(A)=A^{r}$, for $0 \leqslant r \leqslant 1$, yields

$$
\begin{align*}
\lambda_{j}\left(A^{r+1}+B^{r+1}\right) & \geqslant \frac{1}{2} \lambda_{j}\left((A+B)\left(A^{r}+B^{r}\right)\right) \\
& =\frac{1}{2} \lambda_{j}\left(\binom{A^{r / 2}}{B^{r / 2}}(A+B)\left(\begin{array}{ll}
A^{r / 2} & \left.\left.B^{r / 2}\right)\right) \\
& =\frac{1}{2} \lambda_{j}\left(\binom{A^{1 / 2}}{B^{1 / 2}}\left(A^{r}+B^{r}\right)\left(\begin{array}{ll}
A^{1 / 2} & B^{1 / 2}
\end{array}\right)\right) .
\end{array} . . \begin{array}{l}
\end{array}\right) .\right. \tag{21}
\end{align*}
$$

Tao's Theorem [5] now says that for any 2×2 PSD block matrix $Z:=\left(\begin{array}{cc}M & K \\ K^{*} & N\end{array}\right) \geqslant 0$ (with $M \in M_{m}$ and $N \in M_{n}$) the following relation holds between the singular values of the off-diagonal block K and the eigenvalues of Z, for $j \leqslant m, n$:

$$
\begin{equation*}
\sigma_{j}(K) \leqslant \frac{1}{2} \lambda_{j}(Z) . \tag{23}
\end{equation*}
$$

The inequality (21) therefore yields

$$
\begin{align*}
\lambda_{j}\left(A^{r+1}+B^{r+1}\right) & \geqslant \sigma_{j}\left(A^{r / 2}(A+B) B^{r / 2}\right) \\
& =\sigma_{j}\left(A^{1+r / 2} B^{r / 2}+A^{r / 2} B^{1+r / 2}\right) \tag{24}
\end{align*}
$$

Replacing A by $A^{1 /(r+1)}$ and B by $B^{1 /(r+1)}$ then yields (20) for $s=(1+r / 2) /(1+r)$, hence for $0 \leqslant s \leqslant 1 / 4$ and $3 / 4 \leqslant s \leqslant 1$.

If, instead, we start from (22) and proceed in an identical way as above, then we obtain (20) for $s=(r+1 / 2) /(1+r)$, which covers the remaining case $1 / 4 \leqslant s \leqslant 3 / 4$.

Acknowledgments

This work was supported by The Leverhulme Trust (grant F/07 058/U), and is part of the QIP-IRC (www.qipirc.org) supported by EPSRC (GR/S82176/0). The author is grateful to Prof. X. Zhan for pointing out a mistake in an earlier draft of the manuscript.

References

[1] R. Bhatia, Matrix Analysis, Springer, Berlin, 1997.
[2] R. Bhatia, Interpolating the arithmetic-geometric mean inequality and its operator version, Linear Algebra Appl. 413 (2006) 355-363.
[3] R. Bhatia, C. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14 (1993) 132-136.
[4] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000) 203-211.
[5] Y. Tao, More results on singular value inequalities, Linear Algebra Appl. 416 (2006) 724-729.
[6] X. Zhan, Some research problems on the Hadamard product and singular values of matrices, Linear Multilinear Algebra 47 (2000) 191-194.
[7] X. Zhan, Matrix inequalities, LNM 1790, Springer, Berlin, 2002.

[^0]: E-mail address: k.audenaert@imperial.ac.uk

 0024-3795/\$ - see front matter © 2006 Elsevier Inc. All rights reserved.
 doi:10.1016/j.1aa.2006.10.006

