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1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. In this paper, we consider
iterative methods to find a simple root of a nonlinear equation f (x) = 0, where f : D C R — R for an open interval D is a
scalar function.

The classical Newton’s method for a single non-linear equation is written as

. f(xn)
f(xn)
This is an important and basic method [1], which converges quadratically.
To improve the local order of convergence and efficiency index, many modified methods have been proposed in the
open literature, see [2-6] and references therein. Chun and Ham [4] developed a family of sixth-order methods by weight
function methods. Kou et al. [5] presented a family of variants of Ostrowski’s method with seventh-order convergence.
Kung and Traub [7] conjectured that a multipoint iteration without memory, based on n evaluations, could achieve optimal
convergence order 2"~!, Kung and Traub [7] also provided two families of multipoint iterations based on n evaluations. For
the case n = 4, the methods can be written as follows:

Yn = Xn + Bf (xn),

(1)

Xn+1 = Xp

Zn=yn— B Fn)f Vn) ’
fn) = f(xn)
I (G5 [ Vi=%  Z—Yn ] o)
f(zn) _f(xn) f(yn) _f(xn) f(zn) _f(yn) '
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f(xn)f(yn)f(zn) { 1 |: Wn — Zn _ Zn —Yn ]
flwn) =) | f(wn) —fOn) Lf(wn) —f(z0)  f@za) —Fyn)
1

Xpy1 = Wn —

3 [ Zn—Yn  Yn—Xn
f(zn) _f(xn) f(zn) _f(yn) f(yn) _f(xn)

where 8 is a constant, and

_y )
" " f'(xa) '
20 =y — F&)f ) Fxn) 3)
[f &%) = F )2 f/(xa)
Koot = 2y — F)f u)f @) %)* + F @I ) — F ()]} £ (%0) .
[f(xn) _f(yn)]z[f(xn) _f(zn)]z[f(yn) _f(zn)]f,(xn)
Bi et al. presented a family of eighth-order convergence methods [2] (see (14) therein):
Yo = Xn — f(xn) 7
' (xn)
_ Zf(Xn) _f(yn) f(Vn)
A o ) — 5 ) ) @

f(zn)
f[zn’ yn] +f[zna Xn, Xn](zn _yn)!

Xnt1 = Zn — H(un)

where u, = ’fr(

family of eighth- order methods [3] (see (13) thereln) is given by:

= 1,H’(0) = 2 and |[H"(0)| < oo. Another new

o fxn)
n = Xn — s
' (x)
Fm)
n=—JYn— h n ) 5
=S e ®)
. F &) + (v + 2)f (za) (@)
Xn41 = Zn —

f(Xn)+Vf(Zn) f[Zmyn] +f[zn’xn7xn](zn_yn),

where y € Ris constant, u, = jf,(&':; and h(t) represents a real-valued function with h(0) = 1, K'(0) = 2, h”(0) = 10 and
[ (0)| < oo.
Recently, using the Hermite interpolation polynomial of the third order, Petkovi¢ [8] provided a general class of n-point

iterative methods with optimal order of convergence 2"~! and optimal computational efficiency 2" . Here the n includes
n— 1 evaluations of the function and one evaluation of the derivative. Thukral and Petkovi¢ [9] developed a family of optimal
eighth-order convergence methods by weight function methods.

In this paper, in three theorems we present three families of eighth-order iterative methods derived by using the method
of weight functions. The method of weight functions can be applied to construct families of iterative methods for nonlinear
equations. Some applications of the weight function methods can be found in [2-4,6], where some kind of weight functions
were used. In this paper, we apply a few weight functions to construct families of iterative methods with high convergence
order and high efficiency index. In terms of computational cost, they require the evaluations of three functions and one
first order derivative per iteration. This gives 1.682 as the efficiency index of the presented methods. The new families of
eighth-order methods agree with the conjecture of Kung and Traub [7] for the case n = 4.

The conditions in the theorems are general and basic. For a specific iterative method, one only needs to choose the
functions such that the conditions in the theorem are satisfied. In particular, one could first write down the preferable
functions with undetermined coefficients, then uses the conditions in the theorem to determine the coefficients in the
functions. Examples of the specific iterative methods are presented after each theorem. The presented methods are
comparable with Newton’s method and other methods. The efficacy of the methods is tested on a number of numerical
examples. Notice that Bi et al.’s method in [2,3] are special cases of the presented eighth-order methods. Based on the
weight function methods, new eighth-order methods with high efficiency index 1.682 are derived.

2. The methods and analysis of convergence

Based on (3)-(5), we consider the following three-step iteration scheme by using the method of weight functions:
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N
T )
Fw) - (FOm)
n = A&n — G )
= e (f(xn)) ®)

= T (T (10w (Y]
f(xn) f(xn) Fx) Fom

where G(t), H(t), V(t) and W (t) represent the real-valued functions. The order of convergence of the preceding method is
analyzed in the following Theorem 1.

Theorem 1. Assume that functions G, H, V, W, f are sufficiently differentiable and f has a simple zero x* € D. If the initial
point xq is sufficiently close to x*, then the methods defined by (6) converge to x* with eighth-order under the conditions

G(0) = 1,G'(0) = 1,G"(0) = 4, H(0) = 1— /&, H’(O) =2(1— ZV‘V”“’)) H"(0) = (6 —3W(0)V"(0) +G"(0)), H"(0) =

(=96 +8G"(0) — 4W(0)V"(0) + G (0)), V(0) = yrg5» V' (0) = g and W' (0) # 0.

_ oo . _ fGn) f(n) O ;
Proof. Lete, = x, — x*,s, =y, — X*,a, = f(x ,d n— X", by = Tom’ P = Faoy and ¢, = i (X*),k 2,3,....Using
Taylor expansion and taking into account f (x*) = 0, we have
fxa) = f/(x*) [en + 2% + c3€ + Ca€l + C5€) + Coeh + o€, + czes + Oed)]
f'(xa) = f'(x*) [14 2c2e, + 3c3€% + dcse; + 5cs€) + 6cse, + 7c7eS + 8cge) + 0(ed)]

;,(();n)) = e, — Czerz1 + 2(C22 — c3)ei + (7cyc3 — 4C23 — 3C4)e‘,: + 2(4c§l — 1OC§C3 + 3C§ + 5¢5¢c4 — 2c5)eﬁ
n
+ (—16¢; + 52cjc3 — 33cyc3 — 28c2cq + 17¢3¢4 + 13c265 — 5¢6)€8 — aze! — aged + 0(e)),
Si = €2 — 2(c2 — c3)ed — (Tcycs — 4c; — 3cq)el — 2(4cd — 10c2cs + 3¢2 + 5¢a¢4 — 205)€D 7)
— (—16¢; + 52¢5¢3 — 33ca¢2 — 28c5¢4 + 17¢3¢4 + 13c205 — 5¢6)€S + azel + aged + 0(e),
FOn) =/ &) [sn + 257 + c35, + casp + 0(ey) ],
an = Czen+ (=3¢ + 2c3)e2 + (8c; — 10cy¢3 + 3ca)e: + (—20c¢, + 37cacs — 8c2 — 14cycy + 4cs)en
+ (48¢; — 118c;c3 + 55¢2¢5 + 51cicq — 22c3¢4 — 18¢2¢5 + 5¢6)e. + Boed + Brel + 0(ed),
where
= —2(16¢5 — 64c;ycs + 63cics — 9¢3 + 36¢;5c4 — 46CyC3¢4 + 6¢; — 18c5cs + 11c3¢5 + 8cac6 — 3¢7),
ag = 64c, — 304c;c3 + 408cics — 135¢,¢5 + 176¢5 ¢4 — 348c5c3cq + 75¢2¢4 + 64cyc; — 92¢3cs
+ 118cyc3¢5 — 31c4c5 + 446265 — 27c3¢6 — 19¢,¢7 + 7cg,
and Bs and B; are functions of ¢y, . . ., cg.
Expanding G (;g:;) about 0 yields
G(an) = G(0) + G'(0)a, + (;”2(!0) a; + G/;(!O) a, + G(Z!(O) a, + G(S;!(O) @+ G(Z!(O) ay + 6(77)!(0) 7+ 0(ed),
p
- = e potice ®)
= (1= G(0)es + c2(G(0) — G'(0))el + (2¢3(G(0) — G'(0))) — %c§(4c(0> —8G'(0)
+G"(0))e, + O(ep).
With the conditions G(0) = 1, G'(0) = 1, G"(0) = 4, we have
dn = ya€) + yse;, + veey + yre; + yseh + 0(e)), (9)
where
Ya=—C03+ 6 (5 - %CW(O)> )

¥s = —2¢5 — 2004 — C2c3(—32 + G (0)) + ¢ ( 36 + G”’(O) c<4> (0))
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3 1
Y6 = —7c3¢s + (=35 — 2¢5(—33 + G (0))) — 5c§c4(—32 +G"(0) + §c§C3(—786 +37G"(0)

1
—G¥(0)) — ﬁc§’(—20400 + 1240G" (0) — 65G™ (0) + G®(0))

and y7 and y are functions of c,, . . ., ¢z, G”(0), ..., G7(0). The complex expressions are omitted here.

() = F/ (&) (dn + coyiel + 0(eD)).

Pn = va€y + (vs — 2vaC2)e) + (V6 — 2¥5C2 + 4vaC — 3yaca)en + (v7 — 2¥6C2 + 4ysC; — 8YaCy
— 3503 + 12940203 — dyaca)e], + (vs — 8YsC; + 16yac; — 3ys¢3 + 9yacs + 4¢3 (v — 9y4C3)
— 4yscs + Ca(y§ — 2y7 + 12503 + 16y44) — 5yacs)els + O(e)).

1 2 17 2 1 11 3 11 (10)
by = [ —c5— Ecz(—30 +G"(0)) ) e2 + ﬁ(—48c4 — 16¢2¢3(—30 + G (0)) — ¢ (624 — 32G"(0)
(4) 3 1 11 2 1"
+G?(0))e; + ﬁ(—120czc4(—29 + G”(0)) — 40(9¢s + ¢5(—57 + 2G"(0)))
—10c2¢3(1560 — 86G”(0) + 3G (0)) — 3 (—11160 + 820G” (0) — 55G(0) + G (0)))el + 0(e).
Expanding H Gg‘:;) ,V (,’:33) , W (%’3) about 0 yields
H// 0 H/// 0 H(4) 0
H(an) = H(0) + H'(0)a, + 2(, Yoz 4 35 Yad 4 4,( Lt + o).
V// 0 V/// 0 V(4) 0
V(an) = V(0) + V'(0)ay + 2(, Loz 4 3f Lt 4 4,( Lt 1 06, (1
/ WU(O) 2 5
W (b,) = W(0) + W'(0)b, + o b2+ 0(e).
Using (7)—(11), we have
Xn+1 — X =d, — pn[H(an) + V(an)W (bn)]
= Rqel + Rse] + ReeS + Rye] + Rged + 0(e)). (12)
With the Conditions H(0) = 1 — V(O)W(0),H'(0) = 2 — W(0)V'(0), V(0) = g H'(0) = 3(6 — 3W(0)V"(0) +
G"(0)), V'(0) = Wi(o) H"'(0) = (—96 + 8G"(0) — 4W (0)V"(0) + G (0)), there are
Ry = y4(1 - H(0) — V(O)W(0)) = 0,
Rs = y46,(2 — H'(0) — W(0)V'(0)) =0,
1
Rs = 6;/4(6c3(—1 + V(0)W'(0)) + c2(—3(—12 + H"(0) + W(0)V"(0)) + V(0)W'(0)(—30 + G"(0)))) = 0,
1
R, = i7/4c2(24c3(—4 + V/(0)W'(0)) 4 c2(384 + 4V’ (0)W'(0)(—30 + G (0))
—8G"(0) — 4H"'(0) — 4W (0)V"(0) + G¥(0))) = 0, (13)

Ry = (v4(360c; (4 — ca)W'(0) 4 180c5 (—2W'(0) + W"(0))

1
" 360W/(0)
—60czc3(3W/(0)*V"(0) + W'(0)(—120 + G”(0)) — W (0)(—30 + G”(0)))
+ ¢ (=30W'(0)2V"(0)(—30 + G"(0)) + 5W"(0)(—30 + G (0))*
+ 3W’'(0)(—6000 + 200G" (0) — 10G* (0) + 5H® (0) + 5W (0)V?(0) — G® (0))))).

With the condition W’(0) # 0, it is clear that Rg # 0, thus (6) converge to x* with eighth-order, and the error equation
becomes

enp1 = ((6c2¢3 + €3 (=30 + G”(0))) (—360c,caW'(0) + 180c2(—2W'(0) + W (0))

2160W’(0)
— 60cZc3(3W/(0)*V"(0) + W'(0)(—114 4 G”(0)) — W (0)(—30 + G"(0)))
+ ¢ (—30W'(0)2V"(0)(—30 + G"(0)) + 5W"(0)(—30 + G (0))* + 3W'(0)(—5400 + 180G” (0)
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—10G*(0) + 5H® (0) + 5W (0)V™@ (0) — G®(0)))))ed + 0(e). (14)
After some simplifications, we can easily obtain the conditions of Theorem 1. This finishes the proof of Theorem 1. O

There are four weight functions in scheme (6). With some choice of weight functions G(t) = % and W (t) = t, the
scheme (6) becomes

o=y f(xn)
T )
_ fGn) ) —fOn) (15)
f'n) F(Xn) — 2f ()’
. _ f(Zn) f(.Vn) f(yn) f(zn)
N T [H (f(xn)) v (f(xn)> fcyn)] '

Theorem 1 can then be simplified as follows.

Zn = Xp

Theorem 1. Assume that functions H, V, f are sufficiently differentiable and f has a simple zero x* € D. If the initial point X is
sufficiently close to x*, then the methods defined by (15) converge to x* with eighth-order under the conditions H(0) = 1, H'(0) =

2,H”(0) = 10,H"(0) =72,V (0) = 1,V’'(0) = 4.

In what follows, we give some concrete forms of iterative schemes (6) and (15).

Example 1.1. The functions G(t), H(t), V(t), W (t) defined by

Gty = = HD) = - V(t)—5+8t+2t2 W) = >+t
12t 2 - 5—-12t 2
satisfy the conditions of Theorem 1. A new eighth-order method is then obtained
Yo = Xy — J(xn)
" " ' (xn) ’
Xn Xn) — n
f@n) f(xn) —f(yn) (16)

T ) F ) — 2f ()
f(zn) [1 5F (%n)? + 8f (%n)f Vn) + 2f (Vn)? (1 N f(zn)ﬂ

Xnt1 = Zn — ] = ) =
f (Xn) 2 Sf(xn) - 12f(Xn)f(YH) 2 f(yn)
Example 1.2. The functions H(t), V(t) defined by
H(t)—5_2t+t2 V() =1+ 4t
o 5-—12t B
satisfy the conditions of Theorem 1. A new eighth-order method is then obtained
Vo= 2y — S ()
T )
X Xn) —
S&n) f(xn) —f(yn) (17)

T ) F ) — 2f ()
@ {Sf(xnf—zf(xn)fcyn) +F () f(yn>]f<zn>}
P | 57 Ga)? — 12f ) ) fow 1 Fom |-

Next, we subjoin a combination of the known information f (z,), f (x,) and consider the following iteration scheme by
using the method of weight functions:

Xn+1 = Zn —|—|:]—|—4

N
T )

o fow  (fow)

T (f(xn)) ’ (18)

Xnp1 = Zn — f(zn) H (f(zn)> |:V (f@n)) W (f(Zn)>i| 7
frxn) \f (xn) fxn) fyn)

where G(t), H(t), V(t) and W (t) are real-valued functions. Similar to the proof of Theorem 1, we can make the following
conclusion.
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Theorem 2. Assume that functions G, H, V, W, f are sufficiently differentiable and f has a simple zero x* € D. If the initial
point xq is sufficiently close to x*, then the methods defined by (18) converge to x* with eighth-order under the conditions
G(0) = 1,6(0) = 1,6"(0) = 4,H(0) = 77, H'(0) = 575, V(0) = —W(0) + W'(0),V'(0) = 2W'(0),V"(0) =

W/ (0)(6 4 G"(0)), V" (0) = $W'(0)(—96 + 8G"(0) + G (0)) and W’(0) # 0. The error equation of (18) is
1
et = Jieowo) @6t ¢5(—30 + G"(0)))(—360c2cs W' (0) + 180c3 (—2W'(0) + W (0))
— 60c;c3(W'(0)(—66 + G”(0)) — W"(0)(—30 + G"(0))) + 5 (5(W"(0)(—30 + G"(0))?

+3V@(0)) + W'(0)(60G” (0) — 3(600 4 10G* (0) + G (0))))))e® + 0(e?). (19)

Again, with some choice of functions G(t) = 4_45_?[[2 and V(1) = 2, (18) becomes:

Yo =y — S ()
T )
_ fxn) 4f (xn)?* — 5 (%a)f (n) — f (vn)?
Zn = Xp — , (20)
f'(xn) 4f (xn)? — 9f (xn)f Vn)

i@, (fow 8 (v f @)
= <f(xn>> [4f(xn> “1irom (f(xn)>] '

Theorem 2 can then be simplified as follows.

Theorem 2'. Assume that functions H, W, f are sufficiently differentiable and f has a simple zero x* € D. If the initial point
Xo is sufficiently close to x*, then the methods defined by (20) converge to x* with eighth-order under the conditions H(0) =

1,H'(0) = 4, W(0) = 1, W'(0) = 1.

In what follows, we give some concrete forms of iterative schemes (18) and (20).

Example 2.1. The functions G(t), H(t), V(t), W(t) defined by

Gty = - H) = 14— Vi) = ——— W) =t
()_1—2t’ = T ira ()_1—2t—t2’ ®=
satisfy the conditions of Theorem 2. A new family of one-parameter eighth-order methods is obtained
Vo= Xy — f ()
T )
p oy O Fo0) =) on
f'(x%n) f(%n) — 2f (Vn)
g f(zn) [1+ 4f (zy) ][ f(xn)? +f(Zn)]
TP L Fe) +af @) ] LF0a)? = 2P Gaf On) —F O FOm ]

where a is a constant.
Example 2.2. The functions H(t), W(t) defined by
H(t) = 1+ 4t, Wi)=1+t

satisfy the conditions of Theorem 2’. A new eighth-order method is then obtained

N (%
TN )’
L 0w A ) — S 0 — F)?
Zn — 4An — ) (22)
f/(xn) 4f(xn)2 - gf(xn)f(yn)
fz) fz) 8 () fz)
il = Zn — 1+4 1 .
Ykl =2 f’(xn)[ N f(xn)] [4f<xn)—nf(yn) i +fcvn)]

By Theorems 1 and 2, we can see that by means of the combination of the known information, we can present new
families of eighth-order methods. A combination of different forms of the known information may constitute new iteration
schemes with high convergence. Finally, we consider the following iterative scheme by using the method of weight
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functions:
Yo = Xy — F(xn)
T )
o fow <fcyn>>
Zn=Yn — G 5
fxn)  \f(xn) (23)
H (fen)
N f (@) (f(xn)>

() y (Lo fOn) fa)’

o)y (f(Xn)> TV (f(x,o) w (f(m)
where G(t), H(t), U(t), V(t) and W (t) represent real-valued functions. Similar to the proof of Theorem 1, we can make the
following conclusion.

Theorem 3. Assume that functions G, H, U, V, W, f are sufficiently differentiable and f has a simple zero x* € D. If the initial
point xq is sufficiently close to x*, then the methods defined by (23) converge to x* with eighth-order under the conditions
G(0) = 1,G'(0) = 2, H(0) = =V (0)W'(0), H'(0) = V'(0)W'(0), U(0) = —V(0)(W(0) + W'(0)), U'(0) = =W (0)V'(0) +
2V(0)W’'(0), U”(0) = V(0O)W'(0)(—6 + G"(0)) — W(0)V"(0), U"(0) = V(0)W’(0)(—6G"(0) + G (0)) — W(0)V"(0) and
V(0)W’'(0) # 0. The error equation of (23)is

A (c2(2¢3 + c2(G"(0) — 10))(—24c,¢4V (0)W'(0) + 123V (0)W”(0)

48V (0)W'(0)
—12¢5¢3(W'(0)(4V'(0) + V" (0)) + V(0)(W'(0)(G"(0) — 6) — (G"(0) — 10)W" (0)))
+ ¢4 (—24V (0)W'(0)(G"(0) — 10) + 60W'(0)V" (0) — 6W’(0)G" (0)V" (0) 4 V(0)(3(G"(0) — 10)>W"(0)

+W'(0)(—24 + 12G"(0) + 8G”(0) — G*(0))) + U™ (0) + W(0)V ¥ (0))))ed + O(el). (24)

In particular, with

G(t) = 2-t H©O) =1 H'(0) = 2 U(t) = L ﬂ
2 -5t ’ ’ G(t)  (tG(t) + 1?2’
V(e = — [1 L _eO } Wit =t
G(t) (Gt + 12|’ ’

satisfying the conditions of Theorem 3, scheme (23) becomes (4). Therefore, Bi et al.’s method in [2] is a special case of the
presented eighth-order methods.
In particular, with

GO =ho. hO=1, KO=2 K©O=10 H@r)= XTI
1+ yt
U(O-L_M V(t)__|:]+t2G(t)i| W(t)—t
TG [tG@) + 11 ~ e TG 12| -

satisfying the conditions of Theorem 3, scheme (23) becomes (5). Therefore, Bi et al.’s method in [3] is a special case of the
presented eighth-order methods.

Similar to Theorems 1 and 2, with the specific forms of the weight functions, G(t) = =5, U(t) = 43155, W(t) = t,

scheme (23) can be simplified as
P f(xn)
T )

_ Fn) 4 (%2) — fFn)

f'(x%n) 4f %n) = F ) (25)

f(zn)
f (@) H (1)

/(Xn) Af (xn)—11f (yn) fon)\ fzn) '
+V
—4f (xn)=+3f (yn) fGxn) ) flm)

Theorem 3 can then be simplified as follows.

Zn = Yn

Xn+1 = Zn

Theorem 3. Assume that functions H, V, f are sufficiently differentiable and f has a simple zero x* € D. If the initial point
Xo is sufficiently close to x*, then the methods defined by (25) converge to x* with eighth-order under the conditions H(0) =
—1, V(0) =1, H'(0) = V'(0).
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In what follows, we give some concrete forms of iterative schemes (23) and (25).

Example 3.1. The functions G(t), H(t), U(t), V(t), W(t) defined by

6(6) —4+t H(E) 4 — (3+4a)t U@ = -2+ (11 4 2a)t
- —4+49t’ N 4 ’ T 443t
V(t)—2+2at W) = 1—t
43t 14t
satisfy the conditions of Theorem 3. A new family of one-parameter eighth-order methods is obtained
I ()
T )
Zn=Yn — f(yn) _4f(Xn) +f(J/n)
TN fa) —4f (%) + 9f () (26)
4f (én)—(3+40)f (zn)
2 4f ()= (3+4a)f (zn)
Xnt1 = Zn — j:/((xn)) 3 o)+ (1120 () jf(;;)(xn)"'zaf(yn)f(Vn)—f(Zn) ’
T A )3 ) 4 ) =3 On) )+ Gn)

where a is constant.

Example 3.2. The functions H(t), V (t) defined by

—1+at 1+ct

PO=57p YOS T Ty

satisfy the conditions of Theorem 3'. A new family of three-parameter eighth-order methods is obtained

P f(xn)
T fxa)’
7 = y _ f(yn) _4f(xn) +f(yn)
T F () —4f () + 9F () (27)
—f ) +af (zn)
f(zn) T ) 1bf zn)

Xnt1 = Zn = o S A o1 o) Fon O e
x 1 n n n n
F'On) Zites3on t Fom—tacibom fon

where a, b, ¢ are constants.

The developed methods require evaluations of only three functions and one first derivative per iteration. Consider the

efficiency index (e.g.[1,10,11]) defined as p% ,where p is the order of the method and w is the number of function evaluations
per iteration. Assume that all the derivatives’ evaluations have the same cost as the function’s evaluation. The efficiency index

of the new methods is 8% = 1.682, which is better than those in [4-6] that require four function evaluations but have the
convergence order less than eight. In addition to the high efficiency index methods provided recently in Bi et al. [2] and [3],
this study provides new families of eighth-order methods with efficiency index 1.682.

3. Numerical results and conclusions

In this section, we present the results of numerical simulations to compare the efficiencies of the methods. The considered

methods are (1), (2) with 8 = 1,(3), (4) with H(u,) = 1]‘:311‘,1” , (5) with h(u,) = (ﬁ)% and y = 1, and new methods
(16), (22), (26) with a = —3 and (27) witha = —1,b = 1, c = 3. Here, only the NM method is of the second-order, the
other methods are of the eighth-order.

Numerical computations reported here have been carried out in a Mathematica 4.0 environment. Table 1 shows the
distance between the root x* and the approximation x,, for test functions f;(x) (i = 1, 2, ..., 6) with initial approximation
Xo, where x* is the exact root computed with 800 significant digits and x, is calculated by using the same total number of
function evaluations (TNFE) for all methods. The absolute values of the function (|f (x,)|) and the computational order of
convergence (COC) are also shown in Table 1. Here, COC is defined by [12]

o N &Ko — X7/ (g — X))
In | (xn — %)/ (1 — x)|
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Table 1
Comparison of various iterative methods under the same total number of function evaluations (TNFE = 8).
[Xn — x| If (xa) | coc [Xn — x*| If (xn)| coc
f1(x), X0 = 2.99 f2x), % = —1.21
(1) 2.60388e—20 3.38504e—19 1.99999877 3.90252e—40 7.92501e—39 2.00000000
(2) 2.36876e—28 3.07939e—27 8.17128707 7.63422e—109 1.55031e—107 7.99923240
(3) 1.17270e—72 1.52452e—71 8.01248268 1.31218e—156 2.66471e—155 7.99992918
(4) 1.47916e—72 1.92291e—71 8.01214361 9.14655e—153 1.85743e—151 7.99998145
(5) 3.74294e—75 4.86583e—74 8.00404108 8.89414e—155 1.80617e—153 8.00013679
(16) 6.46826e—84 8.40873e—83 8.02118000 2.68767e—167 5.45797e—166 8.00005452
(22) 1.16646e—80 1.51639e—79 8.02043636 3.67406e—158 7.46107e—157 7.99985324
(26) 4.15202e—81 5.39763e—80 8.01892109 1.03561e—158 2.10305e—157 7.99989013
(27) 1.28261e—86 1.66740e—85 8.00627985 3.17822e—168 6.45415e—167 7.99948255
(%), x0 =2.15 fa(x), X0 = 1.39
(1) 2.28744e—43 3.18520e—42 1.99999999 1.13930e—31 2.82828e—31 2.00000000
(2) 5.49526e—123 7.65203e—122 8.00354340 2.05523e—111 5.10206e—111 7.99647751
3) 1.42021e—165 1.97761e—164 8.00035003 6.82250e—117 1.69367e—116 8.00330413
(4) 1.79628e—171 2.50128e—170 8.00047285 6.43975e—127 1.59865e—126 8.00747975
(5) 7.24033e—174 1.00820e—172 8.00029861 1.20198e—129 2.98388e—129 8.00509655
(16) 1.20020e—175 1.67125e—174 7.99988368 7.43869e—125 1.84663e—124 7.99987646
(22) 1.86479e—187 2.59667e—186 8.00137896 2.34793e—130 5.82867e—130 7.99823112
(26) 1.38435e—184 1.92767e—183 8.00068175 1.75694e—132 4.36157e—132 7.99597558
(27) 2.88561e—178 4.01815e—177 8.00000935 1.42231e—126 3.53083e—126 8.00098399
fs(x), o = —0.47 fo(x), X0 = 2.26
(1) 4.21072e—28 6.91485e—28 1.99999989 7.11546e—68 3.38853e—67 2.00000000
(2) 4.96057e—91 8.14626e—91 8.00413154 1.54240e—235 7.34523e—235 7.99997814
(3) 2.81655e—106 4.62535e—106 8.00292959 6.45584e—263 3.07440e—262 7.99999329
(4) 3.69596e—107 6.06951e—107 8.00293553 7.78290e—269 3.70637e—268 7.99999082
(5) 1.90899e—109 3.13495e—109 8.00128633 3.33230e—271 1.58691e—270 7.99999418
(16) 1.19166e—119 1.95695e—119 8.00791568 6.41677e—273 3.05579e—272 8.00000220
(22) 1.78201e—117 2.92642e—117 8.00568178 5.58830e—285 2.66126e—284 7.99997157
(26) 9.05325e—118 1.48673e—117 8.00539382 5.46462e—282 2.60236e—281 7.99998622
(27) 6.59410e—121 1.08288e—120 8.00320978 1.47375e—275 7.01831e—275 7.99999978
The test functions f;(x) (i=1, 2, ..., 6) are listed as follows
2
f] (X) — ex +7x-30 __ 1’ X* =3
2 .
fo(x) = xe¥ — sinx+ 3cosx+5, x*~ —1.207647827130918927
f3(x) = x> — 10, x* ~ 2.1544346900318837218
fa(x) = sinx — x> + 1, X" ~ 1.404491648215341226
fs(x) = (x +2)e* — 1, X ~ —0.442854401002388583
fex) = (x — 1)3 — 2, X" A 2.2599210498948731648.

From these numerical experiments, the presented methods appear to be more robust and thus more competitive than
the other methods compared. Table 1 also reveals that the methods introduced in this study have better performance than
the other known methods of the same order.

In the implementation of the iterative methods, the appropriate choice of initial approximation value xg is very important
since a badly chosen initial approximation produces a bad predictor and, consequently, destroys the rapid convergence. A
good study on this topic can be found in [13,14]. The root approximation obtained by using the methods therein is a good
candidate for the initial approximation xy for the iterative methods in this study. The method in [13] (see (5) therein) is
outlined as follows:

b
X~ % {a + b + sgn(f(a)) f tanh (B8 - f(x)) dx} , (28)

where x* is a simple root of f (x) = 0 on an interval [a, b] with f (a) - f(b) < 0,and 8 > 0 is a constant. This method (28) is
used for the initial approximations X, in Table 1. For example, for f; (x), with the choice of a = 0,b = 5 and 8 = 3, the above
method gives xo = 2.98855 and |f (xo)| = 0.138163. For simplification, we use X, = 2.99 as the initial approximation.
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