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The theory of cotorsion Abelian groups is extended to the category of nilpotent 
groups, and applications are given to the theory of p-adic completions and 
exactness properties of the pmadic completion functor. The pmcotorsion completion 
functor was first extended from Abelian to nilpotent groups by Boustield and Kan, 
who defined and studied it using topological methods. We develop the theory 
group-theoretically, and additional results and applications. 

An important role is played in some parts of Abelian group theory by the 
class of cotorsion groups, introduced in the late 1950s in three independent 
papers by Harrison [8], Nunke [ 121 and Fuchs [4]. These groups are 
precisely the reduced Abelian groups which can be realized as values of the 
functor Ext. They can be characterized as those Abelian groups G for which 
Horn@, G) = Ext(Q, G) = 0. There is a natural completion functor c 
associating to each group G a cotorsion completion c(G) = Ext(Q/Z, G). 

Since Q/Z is the direct sum of the groups Z(p”) for all primes p, we also 
have c(G) = n, c,(G), where c,(G) = Ext(Z(p”), G), so the entire theory 
could have been developed locally, using the p-cotorsion completion functors 
cP. We will follow this approach here, even though it is not traditional in 
Abelian group theory. 

Cotorsion groups are closely related to groups which are complete in their 
p-adic or L-adic topologies, and several points in the theory of complete 
Abelian groups are most naturally done using cotorsion groups as a tool. In 
[1619 much of the theory of p-adically complete groups and p-adic 
completions was extended from the Abelian to the nilpotent case. Several 
points were left groups would fill in the gaps. This was one of the 
motivations of the present study. 

In [3], Bousfield and Kan extended the idea of cotorsion groups from 
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Abelian to nilpotent groups, and defined for any nilpotent groups G and 
“Ext-p-completion” which they again denoted Ext(Z(pm), G). The definition 
of this operation and the development of its properties depended on ideas 
from semi-simplicial topology. 

The first goal of this paper is to develop the group theoretic machinery 
necessary in order to define and study p-cotorsion nilpotent groups group- 
theoretically. To this end, we develop some general ideas about nilpotent 
groups and nilpotent actions in the first section, while in the second section 
we study completion functors in general and the exactness properties of the 
p-adic completion functor on nilpotent groups in particular. The main result 
for what follows is that if N is a normal subgroup of a nilpotent group G, 
then the image of the natural map of p-adic completions SD + 6, is normal 
in 6,. This enables us to define in Section 3 the p-cotorsion completion of a 
group G, c,(G), which can be described as follows: we choose a presentation 
R t) F -++ G with F and R torsion-free and let c,(G) be the cokernel of the 
induced homomorphism xP + FP. This definition is motivated by the fact 
that in the Abelian case, the functor c, can be viewed as the zeroth derived 
functor of the p-adic completion functor. The basic properties of this functor 
are studied and a long exact sequence is obtained in Section 4. 

In Sections 5 and 6 we develop the structure theory of p-cotorsion 
nilpotent groups, obtaining the results parallel to the known structure theory 
in the Abelian case. In particular, in Section 6 we obtain the analogue of 
Harrison’s results on adjusted cotorsion groups. In Section 7 we return to the 
theory of p-adic completions, and use the machinery developed in the 
previous sections to obtain criteria for a group to be complete. We also 
develop the nilpotent analogue of the theory of torsion-complete Abelian p- 
groups. The final section is somewhat peripheral and studies the connection 
between c,(G) and extensions of G by Z(p”). For certain nilpotent groups G 
there is a one-to-one correspondence between equivalence classes of 
extensions of G by Z(p”) and the elements of a certain subgroup of c,(G). 

Though everything we do is local (i.e., concerned with a particular prime 
p), the theory can be developed globally as well. Thus, instead of the p-adic 
completion, we could consider the completion & G/nG, where the limit is 
taken over all positive integers n. This completion, however, is just the 
product of the p-adic completions, and its exactness properties, for example, 
can be studied by an easy reduction to the local case. Similarly, if we 
consider the “zeroth derived functor” of this completion and get a cotorsion 
completion c(G), then we will again have c(G) = n, c,(G). It is therefore 
usually obvious what the global form of a particular local theorem is, and we 
do not state it. The same holds for the remarks (before 2.2 and 
Corollary 2.10) concerning p-pro-finite completions. Globalized, these show 
that if .P- is the class of reduced nilpotent groups G such that G/G” is finite 
for all integers n, then the pro-finite completion gives an exact completion 
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functor F-t.F. (The sepcial case of this which asserts the exactness of the 
pro-finite completion functor on finitely generated nilpotent groups is 
contained in Boustield and Kan [3].) 

This work was clearly strongly influenced by the work of Bousfeld and 
Kan, especially in that the existence of their work showed that it should be 
possible to carry out this program. To see that our functor cp is actually the 
same as the “Ext-p-completion” of Bousfield and Kan, one notices that they 
agree with the p-adic completion (which is the same as their “Zp- 
completion”) on torsion-free groups and are both right exact. Since there is 
only one such functor (up to natural equivalence), these two functors are the 
same. Our “pcotorsion groups’ are defined differently from their “Ext-p- 
complete groups,” but the notions coincide because of Proposition 4.7 below. 
Given these equivalences, part of our Theorem 4.10 and all of our 
Proposition 4.8 and Theorem 4.9 and 5.5 are contained in the work of 
Boustield and Kan, and the proofs we give of Proposition 4.8 and 
Theorems 4.9 and 4.10 are partly adapted from theirs. 

We will use standard notations from [S] and (61 for Abelian groups, and 
from [ 161 for nilpotent groups We let Z [ l/p] denote the subring of the ring 
of rational numbers consisting of the fractions of the form u/p”(a E Z), and 
Z(p”) = Z [ l/p]/Z. We also use the arrows F+ and - for monomorphisms 
and epimorphisms, respectively. 

1. NILPOTENT GROUPS, NILPOTENT ACTIONS, AND RADICABILITY 

We begin this section be reviewing some basic ideas. If a and b are 
elements of a group, then we let [a, b] =a-‘b-lab. If A and B are 
subgroups of a group, then [A, B] is the subgroup generated by elements of 
the form [a, b], a E A, b E B. If G is a group, then the lower central series of 
G is the series of subgroups T,(G) (or simply ri if there is no possibility of 
ambiguity), defined inductively by r,(G) = G and ri+ i(G) = [G, Ti(G)]. 
Similarly, the upper central series of G is the series of subgroups Z;(G) (or 
simply Zi, if there is no possibility of ambiguity) defined by letting Z,(G) be 
the center of G and defining Zi+ i(G) inductively by Zi+ ,(G)/Z,(G) = 
Z,(G/Z,(G)). The class of the nilpotent group G is the smallest integer c 
such that T,(G) = {l}, or equivalently, the smallest integer c such that 
Z,(G) = G. 

We let N be the category of nilpotent groups, and -KC the category of 
nilpotent groups of class at most c. It is not hard to see that there is no such 
thing as a “free nilpotent groups” on more than one generator. However, if F 
is the free group on a set X, then F/TC(F) behaves the way a free object 
should in the cateogry & and is usually called the free nilpotent group of 
class c on the set X. We similarly have difficulty taking coproducts (free 
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products) in the category Jlr but in the category Jy;: this is again very 
natural. If A and B are objects in J$, then the free product in Jys of A and 
B, written A *c B, is defined to be (A * B)/I,(A * B), where A * B is the 
ordinary free product (in the category of groups.) 

1.1. LEMMA. If F is a free group, then F/T,F is torsion-free, for any 
positive integer c. If A and B are free nilpotent groups of class c (i.e., free 
objects in the category <kz), then their coproduct in &, A *C B, is again free 
nilpotent of class c and, in particular, torsion-free. 

Proof In the special case in which F is finitely generated, the first 
statement is a consequence of Witt’s result (see [ 11, 5.121) that the factors 
I,(F)/I,+ ,(F) are all finitely generated torsion-free Abelian groups. If F is a 
free group on an arbitrary set X and G is the (free) subgroup of F generated 
by a subset of X, then there is a retraction F + G taking ri + i F onto Ti + , G. 
We conclude from this that the induced homomorphism riG/Ti+ i G -+ 
IiF/Ii+ ,F is injective. Since any element of IiF/Ii+ ,F is in the image of 
such a map from some finitely generated free subgroup G, it follows that 
IiF/Ii+ , F is torsion-free for any free group F, and hence so is FIT,F. The 
other conclusions of the lemma follow immediately, since coproducts of free 
objects are free. 

If G is a nilpotent group, the elements in G of finite order form a 
subgroup, the torsion subgroup, denoted t(G). Similarly, for any primep, the 
elements of order a power of p form a subgroup, the p-torsion subgroup, 
denoted t,(G). (We refer to [ 16, 4.21 for these facts, first proved by K. 
Hirsch.) A group G is said to be p-radicable (where p is a prime) if for every 
x E G, there is a y E G with yp =x. If G is p-radicable for all primes p, G is 
said to be radicable. It is proved in [ 16, 4.71 that if G is a nilpotent group. G 
has a unique maximal radicable subgroup, denoted p(G), and for each prime 
p, a unique maximal, p-radicable subgroup, p,(G). As the Abelian case, 
P(G/P(G)) = i 1 I and P,WP,W = { 1 I. G is said to be reduced if 
p(G) = ( 1 } and p-reduced if p,(G) = ( 1 }. 

1.2. LEMMA. If G is a nilpotent group and Zi (i = l,..., c) are the terms of 
the upper central series of G, then p,(G) = { 1 } if and only ifp,(Z,) = (1 ), 
and if G is p-reduced, then so are the groups G/Z,. Similarly, p(t,(G)) = ( 1 } 
if and only if p(t,(Z,)) = ( 1 }, and if p@,(G)) = { l}, then for all i, 
P(tp(GIZi)) = { 11. 

Proof The operations assigning to G the subgroups p,(G) and p(t,(G)) 
are both idempotent radicals on the category of nilpotent groups in the sense 
of [ 16, Chap. 41, generated by the classes of p-divisible Abelian groups and 
p-divisible Abelian p-groups, respectively. We use r(G) to denote either of 
these radicals, and we prove the lemma for both cases simultaneously. We 
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infer from [ 16,4.1] that r(G) = ( 1 } if and only if r(Z,) = { 1 }. If r(Z,) = { 1 ), 
then since homomorphisms from Zi+ l/Zi to Z, separate points in Zi+ l/Zi 
([ 16,2.1]) and a homomorphic image of a p-radicable group is p-radicable, 
we conclude that r(Zi+ ,/Zi) = { 1 }. From this it follows (again by [ 16,4.1]) 
that r(G/Zi) = { 1 }, as required. 

The question of when an extension of one nilpotent group by another is 
again nilpotent leads us naturally to the notion of a nilpotent action of one 
group on another. 

DEFINITION. If N is a group, aflag in N of length k is a family of normal 
subgroupsNi, whereN=N,>NN,>...>N,>N,+,=(l}. IfGis agroup 
which acts on N, then the flag is said to be G-invariant if each Ni is G- 
invariant, and the action is said to be nilpotent with respect to this flag if the 
induced action of G on the groups Ni/Ni+, is trivial. 

There is a discussion of this notion in [ 16, Chap. 91. An important, but 
easy, consequence of the Jordan-Holder-Schreier theorem is that if G is a 
group and N a normal subgroup such that G/N are both nilpotent, then G is 
nilpotent if and only if the action of G on N is nilpotent with respect to a 
suitable flag (cf. [ 16,9.3]). 

If N is a group and F is a flag in N, we denote by Nil,(N) the group of all 
automorphisms of N which are nilpotent with respect to this flag. We say 
that F is a central flag if for each i, N,/N,+, is in the center of NINi+ , . 

1.3. LEMMA. Let N be a nilpotent group and F a centraljlag of length k 
of normal subgroups of N. Then (i) Nil,(N) is nilpotent of class at most 
k - 1, (ii) if N is p-reduced so is Nil,(N), and (iii) ifN isflnitely generated, 
so is Nil,(N). 

Proof: Statement (i) is an immediate consequence of [ 16,9.2] or [ 7, 3.5 ]. 
For statement (ii), we must show that Nil,(N) cannot have a nontrivial p- 
radicable subgroup. We may suppose, then, that G is a p-radicable subgroup 
of Nil,(N) and show that G is trivial. 

We suppose that F = {Ni}, 1 < i < k + 1, with N, = N and N,, , = (1 }, 
and we proceed by induction on k. We may therefore assume that the 
induces action of G on N,/Nk is trivial. It follows that if d E G, 
4(x) = xg,(x), g,(x) E Nk. It is easy to check that g, E Hom(N, /Nk, Nk) 
and that the correspondence taking 4 to g, is a homomorphism from G to 
the group Hom(N, /Nk, Nk). (Note that Nk is abelian, so this set of 
homomorphisms is, indeed, a group.) Since Nk is p-reduced, so is 
Hom(N,/N,, Nk), and since G is p-radicable, the homomorphism taking d, to 
g, must be trivial. Hence, the action of G is trivial, so G = {I}. Finally, to 
prove statement (iii), we proceed similarly, and assume by induction that the 
image of Nil,(N) in Aut(N/N,) is finitely generated. The kernel of the 
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natural map Nil,(N) -+ Aut(N/N,) can be identified with Hom(N/iV,, N,J, 
which is a finitely generated Abelian group. As an extension of two finitely 
generated groups, Nil,(N) is again finitely generated. 

If G is a group and n a positive integer, we define G” to be the subgroup 
of G generated by elements of the form x”, x E G. It may not be true that 
every element of G” is of the form x”. If p is a prime, we define 
@” = (-)z= r Gp”. It is clear that Gp“’ 2 p,,(G), but well-known Abelian 
examples show that these subgroups are not equal in general. It is in fact true 
that if x E Gp” and n > 0, there is a y E G with x = yp”. This is the first of 
many consequences of the following useful lemma. 

1.4. LEMMA. If p is a prime and c a positive integer, there are positive 
integers d and k, depending on p and c, such that for any positive integer n, 
(a) if G is a nilpotent group of class at most c and x E Gpnid, then for some 
yEG,x=y”“, and (b) if G is nilpotent of class at most c and N is a normal 
subgroup of G, and x E G, y E N, then ~j’“‘~y~“‘” = (xy)P”tkh, where h E Np”. 

Proof: Both of these statements follow from the Hall-Petresco 
commutator formula. The first (observed by Balckburn) is in [ 16,6.4], and 
the second follows from the Hall-Petresco formula [ 16,6.1] and the obser- 
vation that if A is the subgroup generated by x and y, then [A, A ] or N. 

We now turn to some commutativity questions about subgroups of 
nilpotent groups. The first results of this sort are Chernikov’s theorems that a 
radical p-group is Abelian and that in any radicable group, the p-torsion 
subgroup is in the center [ 16,4.11,4.12]. More generally, it is shown in 
] 16,6.13] that for any nilpotent group G, [t,(G), GP”] = ( I }. (Hence, for 
example, if G is a p-group, then G”” is in the center of G.) In general, GP” 
need not be Abelian, and the torsion-free Malcev groups (as in [ 16, 
Chap. 121) are groups of arbitrary class which are p-radicable. However, in 
cases where GP”’ #p,(G), there is more to be said, as the following result 
shows. 

1.5. THEOREM. For any nilpotent group G, (G”“, GP”] C. p,(G). 

ProoJ By factoring out p,(G), we reduce to the case in which 
p,(G) = (1 }, and we must show then that [GP’“, GP”] = (1). We let x and y 
be elements of Gpw, and we show that [x, y] = 1. 

Lemma 1.4 implies that for each positive integer n, there is a z, E G with 
y = zP,“. We let W be the group generated by the elements z, (n > 1) and we 
show that [x, W] = 1. If this were not so, then there would be an integer 
n > 0 such that [x, W] s Zntl, but [x, W] Y$ Z,. By the Hall formulae 
[16, 1.4, 1.51, the map taking w to [x, w] defines a homomorphism 
W--t Z,, , /Z,. Further, according to [ 16,6.13] (cited above), since x E GP”, 
the p-torsion subgroup of W is in the kernel of this homomorphism. Because 
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of the uniqueness of roots in W/f,( IV) [ 16,4.10], and the fact that 
(z:+ ,)p” = y = zi”, it follows that zp “+, = z, I for some t E tp( IV). Therefore, 
W/tp( IV) is a homomorphic image of Z [ l/p], and hence p-radicable. 
However, Lemma 1.2 implies that Z,, ,/Z, is p-reduced, so 
Hom( W/tp( IV), Z,, i/Z,) = 0. It follows that [x, IV] s Z,. This contradicts 
our previous hypothesis, and completes the proof of the theorem. 

An obvious question that arises from this result is whether we can do 
better. If G is p-torsion, then GP” is in the center of G. We have shown that 
if p,(G) = (l), then P” is Abelian. Are there reasonable hypotheses which 
imply that Gp” is in the center? In general, what is the relation (if any) 
between the class of G/p,(G) and the class of G/Gp’“‘? The following example 
shows that if G is not p-torsion, then even if p,(G) = { 1 ), the Abelian 
subgroup GP” can be very far from the center, and the class of G/Gnu can be 
much smaller than that of G. 

1.6. PROPOSITION. For every positive integer n, there is a nilpotent group 
G of class n + 1 such that p,(G) = (I}, G/t(G) is cyclic, and GIGP” is 
Abelian. 

Proof: We construct our example by finding an Abelian p-group N and 
an action of the group Z of integers on N and taking G to be the semidirect 
product N >a L (with respect to this action). From our discussion earlier in 
this section, or [ 16, Chap. 91, we know that G will be nilpotent if this action 
is nilpotent. 

We remind the reader that if N is an Abelian group (written additively), 
we can define p”N = nz=, p”N, and, inductively, puCki- “N =pw(pwkN). 
We let B = @z, Z/p’Z. According to Zippin’s existence theorem [6,76.2], 
there is a p-group N such that N/p”N E B and for all k, k < n, 
P”~NIP o(k+ ‘)N) z B, while pw(n+ 1) N = 0. An application of Ulm’s theorem 
[6, 77.31 shows that p”N r N/p,“, so that there is a nilpotent 
endomorphism 4: N -+ N such that 4(N) = p”N and #(pwkN) = pwCk+‘)N 
(k < n). We now let a be the automorphism 1 + #, and we use this 
automorphism to construct the semidirect product of N with the additive 
group Z of integers. If G = N ~1 Z, then according to our previous remarks, 
G is a nilpotent group. We easily verify that GP” =p”N (still using additive 
notation for N), and that G is p-reduced. It is also easy to identify the center 
of G with p”“N and, more generally, Zi(G) = pwc”-it ‘IN (i < n), so that the 
class of G is exactly n + 1. Finally, G/GP” % Z @ N/p”N. (In fact, 
[G, G] = GP”.) 
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2. THEP-ADIC COMPLETION FUNCTOR ON NILPOTENT GROUPS 

In this section we make some remarks on completion functors in general, 
and then study the p-adic completion functor on nilpotent groups in some 
detail. This can be regarded as a continuation of the study in Chapter 7 of 
[ 161. We are particularly interested in the extent to which the p-adic 
completion functor fails to be exact. 

DEFINITION. If .Fp is a category and V a subcategory, then F is a full 
subcategory if for any two objects X and Y of GF’, the set of morphisms 
between X and Y in JZZ is the same as the set of morphisms between X and Y 
in 5F. We call %? a reflexive subcategory if there is a functor c: &’ -+ ‘Z and a 
natural transformation r: Id, -+ c satisfying the following universal property: 
for any X in .d, any Y in G?‘, and any morphism f: X -+ Y, there is a unique 
morphism 4 (in 5F), 4: c(X) -+ Y, such thatf = +,. In this case, the functor c 
is called the reflector of & into V’, and c(X) is the reflection of X. 

Many natural operations in algebra can be described as reflections. It will 
be convenient for us to have another description of this situation (of a full, 
reflexive subcategory), in terms of the reflector. 

2.1. THEOREM. Let JS? be a category and F: .d + M a functor such that 
there is a natural transformation r: Id,,+ F. Call an object X of .cP F- 
complete tf the morphism 7x : X + F(X) is an isomorphism. The following 
properties of F are equivalent: 

(i) For all X in M’, the morphisms F(r,) and rrcx, are isomorphisms. 

(ii) The full subcategory of F-complete objects is a reflexive 
subcategory with reflector F. 

This implies that for any functor F satisfying condition (i), we have the 
following universal property: for every X in JS?, every F-complete object Y, 
and every morphism f: X + Y, there is a unique morphism 4: F(X) --t Y such 
that f = osx. In particular, rrtxj = F(t,) for any object X. 

DEFINITION. We will call any functor F satisfying the conditions of the 
previous theorem a completion functor. 

Remark. A monad (or triple) on & consists of a functor F: ,G#’ + ~8 and 
natural transformations r: Id& + F and K: FF + F satisfying certain natural 
condition (cf. [ 13, Sects. 2.3, 2.41.) We note that a completion functor F 
gives us a monad, where K can be taken to be the identity. This special kind 
of monad is sometimes called an idempotent monad (e.g., [ 2, p. 561). 

Proof of Theorem 2.1. We suppose that condition (i) holds, that X is an 
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object of A? and Y an F-complete object. We consider the commutative 
square 

X&Y 

T 
i 1 

TY 

F(X) - Fm F(Y) 

Since the vertical arrow on the right is an isomorphism, we conclude that 
there is a morphism 4 = r; ‘F(f): F(X) + Y such thatf = #rx, as desired. To 
complete the proof of property (ii), we must show that this 4 is unique. 

We first consider a commutative triangle 

and we apply the functor F to the entire diagram, obtaining a commutative 
triangle 

Since the vertical arrow here is an isomorphism, we conclude that 
F( d = F(f) F(rx) - ‘2 so that at least F(g) is uniquely determined. We now 
consider the commutative square 

F(X) -h Y 

tF(X) 
i I 

=v 

F(F(X)) F(g) F(Y) 

Since both vertical arrows here are isomorphisms, it follows that g is deter- 
mined by F(g). Since F(g) = F(4), it follows that g = 4. This completes the 
proof of property (ii). 

The proof that (ii) implies (i) is rudimentary, and we omit it. 

EXAMPLE 1. In the category of metric spaces with uniformly continuous 
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maps as morphisms, it is well known that the functor associating to each 
space its completion satisfies the above conditions and is a completion 
functor. For our applications, it is more natural to consider pseudo-metric 
spaces (that is, spaces equipped with a distance function d satisfying all of 
the usual conditions except that d(x, y) = 0 need not imply that x = y). On 
the category of these spaces (again with uniformly continuous maps) the 
completion is again a “completion functor,” though this time the natural 
transformation taking a space to its completion is not generally an 
imbedding. The correct general context for this is the category pf uniform 
spaces and uniformly continuous maps, and we refer to [ 1, Chap. 2, Sect. 3, 
No. 7, Theorem 31. 

EXAMPLE 2. Just to remind the reader of non-topological examples, we 
recall that the operation associating to a module M over a commutative ring 
its localization MP at a prime ideal P is another example of what we have 
called a completion functor. 

EXAMPLE 3. Two completions frequently used which are not completion 
functors on the category of groups are the pro-finite and p-pro-finite 
completions. These are the completions with respect to the uniform 
structures defined by taking respectively the normal subgroups of finite index 
or the normal subgroups of index a power of p as neighborhoods of the 
identity. For example, if G is the direct sum of an infinite number of cyclic 
groups of order p (for some fixed prime p), then the pro-finite and p-pro- 
finite completions of G are the same, and this completion is not complete in 
its own pro-finite topology. However, if we restrict our attention to the 
category LFP of nilpotent groups G such that G/GP” is finite for all positive 
integers n, then the p-pro-finite topology agrees with the p-adic topology 
dicussed below. It is a consequence of our next theorem that the p-pro-finite 
completion restricts to a completion functor ,;“, -+ <Fp. 

DEFINITION. If G is a nilpotent group, the p-adic topology on G is 
defined by taking the subgroups P” (defined in the previous section) as 
neighborhoods of the identity. The p-adic completion of G, written Gp, is the 
completion of G with respect to this pseudo-metric, or, equivalently, 
@z G/Pn. 

2.2. THEOREM. The functor associating to each nilpotent group G its p- 
adic completion, together with the natural map ~a: G -+ G, (taking an 
element of G to the constant Cauchy sequence), is a completion functor, with 
the following additional properties: (a) the p-adic metric on Gp coincides with 
the metric induced from the p-adic pseudo-metric on G, (b) iff : G -+ H is an 
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..^ ^ 
epimorphism, then so is f, : G, --* H,, and (c) the kernel of K, is the subgroup 
GP”. 

Proof. Statement (a) is just [ 16, 7.101. This fact, together with the 
standard facts about pseudo-metric spaces cited above (in Example 1), show 
that the p-adic completion is a completion functor. Statement (b) follows 
from the fact that HP” = f(GP”) for all n, from which one can see easily that 
every Cauchy sequence in H is the image of a Cauchy sequence in G. 
Statement (c) similarly follows from the fact that 6, = @J G/GP”, since 
P” = n;!, GP”. 

Remark. We note that the completion of a group is always Hausdorff 
(separated) in its p-adic topology. Since, in keeping with the terminology at 
the beginning of this section, we wish the “complete” groups to be precisely 
the values of the completion functor, a complete group will be just a group 
which can be identified with its own completion. Equivalently, a complete 
group is one in which every Cauchy sequence converges and which is 
Hausdorff in its p-adic topology. 

The p-adic completion of G can be regarded as a universal object with 
respect to homomorphisms from G to nilpotent groups K of exponent a 
power of p, i.e., such that for some n, KP” = { I}. Several similar completions 
appear in the literature. In particular, in [3], Bouslield and Kan define the 
“Zp-completion” of a group as the universal object with respect to 
homomorphisms of G to groups K such that K has a finite central series 
whose factors are all p-elementary (i.e., are Abelian with every element other 
than the identity of order p.) That this is the same as our p-adic completion 
is a consequence of the following routine lemma. We recall that the 
subgroups T{(G) of a group G are defined inductively, where r:+,(G) is 
generated by elements of the form xyx-‘y-it”, x E G, y, z E r:(G). (This is 
clearly the fastest descending central series with p-elementary factors.) 

2.3. LEMMA. The following properties of a group G are equivalent: 
(i) For some integer n, n > 1, T:(G) = { 1 }; (ii) G has a finite central series 
whose factors are all p-elementary, (iii) G is nilpotent and for some n > 1, 
GP” = { I}. 

ProoJ If (i) holds, then the series r:(G) is a series satisfying the 
conditions of (ii), so (ii) holds. If (ii) holds with a series of length It, then for 
any x E G, xp” = 1, and G is clearly nilpotent, so (iii) holds. If (iii) holds, 
then since G is nilpotent, it has a finite central series with factors which are 
Abelian groups in which every element has order dividing p*. Every such 
Abelian group has a finite normal series (of length at most n) for which the 
factors are p-elementary, so that we can obtain a refinement of our original 
series to obtain a finite central series satisfying the conditions of (ii). Finally, 
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to show that (ii) implies (i), we note that if G = G, 2 G, 1 I.. 1 G, = { 1) is 
any series satisfying the conditions of (ii), then by a routine induction, 
Gi 1 T;(G), so that (i) holds. 

We now turn briefly to the relationship between the class of a nilpotent 
group and the class of its completion. It is clear that the groups of arbitrarily 
large class can have trivial completion, as we see, for example, by taking 
finite q-groups for some q, q # p, or by taking torsion-free radicable groups 
(as in [ 16, Chap. 111) whose completions at every prime are trivial. It is less 
clear what happens for p-reduced groups, which have a particular importance 
in the rest of this paper. 

2.4. THEOREM. If G is a nilpotent group and c?~ its p-adic completion, 
then the class of 6, is the same as the class of G/GP”. If G is p-reduced, then 
the kernel of the natural map from G to C?, is Abelian. 

Remark. Example 1.6 is a p-reduced group of arbitrarily large class 
whose completion (according to the above result) is Abelian. 

Proof: If c is the class of G, then the class of G/G”” is at most c for all 
n 2 1. If c’ is the least upper bound of the classes of the groups G/GP”, then 
the product of the groups G/GP” has class c’. G/GP” and Gp are both 
subgroups of this product, and so have class at most c’, and both have G/GP” 
has a homomorphic image (for all n) so they both have class exactly c’. The 
second statement follows from Theorems 2.2(b) and 1.5. 

If N is a subgroup of a nilpotent group G, and 4: N+ G is the inclusion 
map, then there are three naturally defined subgroups of G, arising from N. 
Two of these are the image of N itself, K~#(N), and the closure of this 
subgroup in the p-adic topology. The third is the image of fip under the map 
Jp : I%‘~ + Gp. We want to consider these subgroups in more detail and to see 
what we can conclude if N is normal in G. For the first of these subgroups, it 
is easy to see that the image of N in G, need not be normal even if N is 
normal in G. We show, in particular, that the image of G in 6, need not be 
normal. 

EXAMPLE. There is a finitely generated torsion-free nilpotent group G 
which is not normal in its completion. We let L act on L @ Z by the action 
taking IZ to right multiplication by the matrix (A 7). If G is the semi-direct 
product Z K L @ L with respect to this action, then one easily identifies 6, 
with the semidirect product 2, K 2, @ 2, with respect to the action taking r 
to the automorphism (i ‘;). We compute, for example, that if x = (0, (1,O)) 
and y = (r, (0, 0)), then xP ‘y -‘xy = (0, (0, r)). Hence any normal subgroup 
containing x also contains a copy of the p-adic integers, (0, (0, 2,)). 

Our next results concern the closure of K~(N) and its relation to the image 
of fip in Gp. This leads to results (in Theorem 2.6 and Corollary 2.9) on the 
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exactness of the p-adic completion functor. Recall that if N >-tf G -++ Q is a 
short exact sequence of nilpotent groups, then it is immediate from 
Theorem 2.2 that gP& is trivial, and that gP is an epimorphism. The only 
exactness questions that arise, therefore, are whether Ker( g,,) = Im(& and 
whether & is injective. 

2.5. LEMMA. If f: G + H is an epimorphism of nilpotent groups, and K is 
the kernel off, then K, the closure of K in the p-adic topology, is precisely 
f -‘(HP”). 

Proof We note that KGP” = f -‘(HP”), and that E = n pz, KGPt’. It 
follows immediately that K = f - I (HP”). 

2.6. THEOREM. If G is a nilpotent group, N a normal subgroup, 
K~ : G + 6, the natural transformation, and L = K&V), then the closure, L, 
is a normal subgroup of-Gp. Further, iff: G + G/N is the natural map, then 
L= Ker &, so that Gp/L E (G/N),. In particular, if N 2--1 G -++ Q is a short 
exact sequence of nilpotent groups, then the induced sequence i?p --t 6, -+ 
Qr + 1 is exact I$ and only f the image of fiD in ep is closed. 

Proof: If x E L, and y E G,,, then for any positive integer n, we can write 
x = hzP”, y = gwP”, with h E L, gE K~(G), and z and w in G,,. Clearly, 
y-‘xy and g-‘hg are congruent modulo (GJ”. Since g-‘hg E L, it follows 
that y-‘xy E L(G,J’” for all n, so y-ixy E L. Hence t is normal. 

For the second point, we let f : G + G/N be the natural map and show 
that & : GP + (G/N); is an epimorphism with kernel L. That & is an 
epimorphism follows from Theorem 2.2(b) above. Lemma 2.5 and the fact 
that (G/N); is Hausdorff in its p-adic topology shows that LE Ker &. We 
thus have an induced epimorphism g: _dp/L + (G/N);. Lemma 2.5 implies 
that 6,/E is Hausdorff, and hence G,/L is p-adically complete group. Since 
H is in the kernel of the natural map G -+ GP/L, the universal mapping 
property (2.1) of the p-adic completion shows that the epimorphism 
g: G,/J?+ (G/N); splits, and it u is the splitting, then the following diagram 
commutes: 1 - 

G - G,/L 

’ II L” ff 
(GIN);, 

Since the image of G in each of these groups is dense and the groups are 
Hausdorff in the p-adic topology, it follows that g is an isomorphism with 
inverse 0. 

2.7. PROPOSITION. If G is a nilpotent group and H a subgroup, and if 
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the topology on H induced by the p-adic topology on G is the same as the p- 
adic topology on H, then the natural map @,, -+ GD is injective and its image 
is closed. Conversely, if H contains a countable subset which is dense in H 
with respect to the p-adic topology on H, and g the natural map I?* -+ Gp is 
injective and its image is closed, then the p-adic topology on H agrees with 
the topology induced by the p-adic topology on G. 

Proof: If the two topologies on H are the same, then a sequence of 
elements of H which converges to 1 with respect to the topology of G also 
does so with respect to the topology of H. This shows that the induced map 
fip + Gp is injective. It is easy to see that if there is an element in the closure 
of the image of fip in Gp which is not actually in the image of fip, then there 
must be a sequence of elements of H which is a Cauchy sequence with 
respect to the uniform structure on G, but not Cauchy with respect to the 
uniform structure on H. However, if {xi} is this sequence, and yi = xi ‘xi+ i, 
then yi E H and yi -+ 1 in the topology of G. Hence, yi -+ 1 in the topology of 
H also, which means that {xi} is Cauchy with respect to the topology of H. 

For the second point, we note that an embedding H >--f G induces for each 
positive integer n an embedding HGP”/GP” H G/GPn. If we adopt the 
notation of Theorem 2.6 and call L the image of H in 6, and t its closure, 
then we can identify z with !ir~ HGP”IGP”. Our condition, therefore, is that 
the induced map 

is an isomorphism. The exact sequence of &r yields 

{ 1 } -+ &(H n Gpn)/Hpn + fip -+ &J HGP”/GP” 

+ @‘(H n GP”)/HP” -+ * 

(where we recall that @’ is not always a group) [ 141. Since 6 is an 
isomorphism, we conclude in particular that b’(H n GP”)/HP” = { 1 }. Since 
Hf? Gp”/HP” is countable, we infer from [ 14, Proposition 61 that the system 
H n GP”/H”” satisfies the Mittag-Leffler condition. Upon examination, this 
condition and the fact that @(H n GP”)/HP” = { 1 } say that for any n, there 
is a k such that the induced map 

(H n Gpntk)/Hpntk -+ (H n GP”)/HP” 

is trivial. This says precisely that H n Gpntk z HP”, so the topologies do 
agree. 

2.8. PROPOSITION. Let G be a nilpotent group and H a normal subgroup 
and 4: G -+ G/H the natural map. Suppose that there is a fixed integer 
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m > 0, and for every x E t,(G/H) there is a y E G such that 4(y) = xpm and 
y has the same order as xPm. Then the induced map fip + Gp is injective, and 
its image is normal and closed. 

Proof: According to Theorem 2.6 and Proposition 2.7, it will suffice to 
show that for any positive integer n, there is a positive integer r such that 
HP” 2 H n Gpntr. In the notation of Lemma 1.4, we let c be the class of G 
and choose r = m t k t d where k and d are the integers depending only on 
c which appear in Lemma 1.4. 

Let x E Gn HP”“. We prove the result by showing x E HP”. According to 
Lemma 1.4, there is a y E G with x = ypn+m+t. By hypothesis, there is a z E G 
such that z-‘Yp” E H and zpnik = 1. We let w = Z-‘ypm, and notice that by 
Lemma 1.4 again, 

n+k z~ ,+,p”+k = (zw)P”+kh 

with h E HP”. Since z~“+~ = 1 and zw = ypm, we conclude that 

w”“+’ = xh, 

and since w E H, we see that x E HP” as required. 

2.9. COROLLARY. Let N >--, G+ Q be a short exact sequence of 
nilpotent groups such that t,(Q) is bounded (i.e., for some positive integer n, 
tp(Q)p” = { 1 }.) Then the induced sequence 

is exact. 

2.10. COROLLARY. Let 9Fp be the category of nilpotent groups G such 
that p,(G) = { 1) and G/I’;(G) is finite. Then the p-pro-jlnite completion 
functor restricts to an exact completion functor 9Fp --t 9Fp. 

ProoJ By [16, 6.10 and 1.91, if GE .5PXp, then G/Gp” is finite for all 
integers n. It follows that the p-pro-finite and p-adic topologies agree, and we 
infer from Theorem 2.2 that the p-pro-finite completion gives a completion 
functor taking 5PYp into itself. From [ 16,6.1 l] we conclude that the p- 
torsion subgroup of a group in &?Fp is finite, and we infer the exactness of 
the p-pro-finite completion from Corollary 2.9. 

2.11. THEOREM. If G is a nilpotent group and N a normal subgroup, with 
inclusion map 0: N -+ G, and if Jp : HP 
is a normal subgroup of 6,. 

-+ ep is the induced map, then Im(Jp) 

ProoJ Use the action of G on N given by conjugation to form the 
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semidirect product L = N ~1 G. We let v: N + L be defined by w(h) = (h, 1) 
and f: L -V G be defined by f((h, g)) = hg. Note that f is an epimorphism 
and f,~ = 4. The subgroup w(N) of L clearly satisfies the conditions of 
Proposition 2.8, from which we infer that I/?~ : fip + t, is injective and Im($J 
is a normal subgroup of i,. The epimorphism f induces an epimorphism 
& : i, -+ G,. Since the image of a normal subgroup is normal, we conclude 
that Im(&J is normal in G,. Since 7~~ = $,, , this proves Theorem 2.11. 

This result is fundamental for all that follows. In the category of Abelian 
groups, the p-adic completion functor is neither right nor left exact, and its 
zeroth derived functor is the p-cotorsion completion cp. The theorem above 
enables us to extend this functor to the category of nilpotent groups, and this 
extended functor is the main object of study in the rest of this paper. This 
theorem also enables us to say something about the homology of the 
completion functor in the following sense. 

If N H G-H Q is a short exact sequence of nilpotent groups, then as in 
the proof of Proposition 2.7, the homology of the sequence ND--t G, --) Q, is 
precisely &‘(N n GP”)/NP”, which we now know (because of Theorem 2.11) 
is a group. We will see later that this is an Abelian group, and we can say 
more about it in certain cases. 

3. DEFINITION OF THE p-COTORSION COMPLETION 

In this section we define the p-cotorsion completion of a nilpotent group. 
We begin by restricting our attention to groups in MC. Let G be a nilpotent 
group of class Qc and let F: R w” F ++ G be a free presentation of G in -4 i, 
i.e., a short exact sequence where F is a free object in 4. By Theorem 2.11 
the image of the induced homomorphism ,L?, : fip -+ p,, is normal in Fp. This 
enables us to define 

and c;(F) = Ker &, . 

3.1. PROPOSITION. (1) c,(F) and c;(F) d o not depend on the presentation 
F, but onZy on G (hence we can write c,(G) and c;(G), respectively). (2) For 
a given homomorphism f: G -+ H there are induced homomorphisms c,(f) 
and c;(f) making CT,(-) and ci(-) into functors MC -+ -6’. 

Proof. We proceed exactly as in the definition of the left derived functors 
of an additive functor (cf., e.g., [ 10, pp. 130-1321). The only difficulty arises 
in the proof of the subsequent lemma. 

Let f: G + H be a morphism in ,4 and let E: R ++@ E+ G and 
F: S 2--t” F-H H be free presentations in &. Then there are homomorphisms 
4: E + F and w: R --t S such that the diagram 
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RAE-G 

b I@ k 
S+--+F-H 

is commutative. The diagram of p-adic completions corresponding to the left- 
hand square 

is likewise commutative and induces well-defined homomorphism 
f+t :c,(E)+ c,(F) andf:,: c;(E)+ c;(F). 

3.2. LEMMA. The homomorphisms f* and f: do not depend on the 
choice of 4. 

Proof: Assume that both #, 0’: E + F induce f and denote their 
restrictions by w, w’ : R -+ S, respectively. We consider the map U: E + F 
which is given by 

u(x) = (‘(x) q+(x-1). 

In general u is not a homomorphism, but it is uniformly continuous w.r.t. the 
padic pseudo-metrics on E and F. Indeed it follows from Lemma 1.4(a) that 
for any x E E and n > 0, u(XEP’+~) G U(X) Fp”, where d is as in Lemma 1.4. 

Since both 4 and $’ inducef, it follows that Im u G Im V, hence there is a 
map V: E + S such that u = VU. We claim that u is uniformly continuous 
w.r.t. the p-adic pseudo-metrics on E and S. Let r = d + k where d, k are as 
in Lemma 1.4, let x E E and suppose that z E u(xEp”+‘). Then there is y E E 
such that z = z+cypntk). By the definition of v we obtain 

z = 4’(x) qqy)p”+kfqy-‘)p”+kq5(X-1), 

where, from now on, S and v(S) are identified. Since o’(y) #(y-l) E S, we 
infer from Lemma 1.4(b) that there is an h E Sp” such that 

$'(y-')p"+k(fj'(y) fj(y-l))p"+k = g(y-')p"+kh. 

It follows that 

p(yy'+k~(y-')~"+k = (f(y) ~(y-y+*h-’ E SP”. 



COMPLETIONS OF NILPOTENT GROUPS 419 

Therefore, since S’” is normal in F, there is an h’ E S”” such that 

z = u(xyp”+k) = f(x) $4(x-‘) h’ = v(x) h’; 

hence u(xE~“~‘) & u(x) Sp”. This proves our claim. 
Now by Example 1 after Theorem 2.1 there are unique uniformly 

continuous maps zip : gp 
cpKE = KS& where K,, 

-+ pp and fip : fp -+ gp such that cp K~ = K,U and 
K, and ICY denote the respective completion maps. On 

the other hand, the map U: gp -+ Fp which is given by U(x) = J;(x) $p(x-‘) is 
likewise uniformly continuous, and an easy computation shows that 
zip, = K, u. Therefore we have U = Gp and, since uIp = flp Cp, we conclude that 

(i) $,(fip(x)) = 6;(x) Jp(x- ‘) for all x E IZp. 
Similarly, since for x E R, v(,u(x)) = v’(x) ly(x-I), we infer that 

(ii) rIYp,cli,(x)) = i&(x) $p(x-‘) for all x E Xp. 

From (i) and (ii) it follows easily that 4 and 4’ induce the same maps 
f* : c,(E) + c,(F) and f i : c;(E) -+ c;(F). This completes the proof of the 
lemma. 

The remaining steps of the proof of Proposition 3.1 can easily be tran- 
slated from [lo]. 

Next we will show that c,(G) and c:(G) do not depend on the class c. 

3.3. PROPOSITION. Let c < d be positive integers. The jiinctors cp and ci 
defmed on 4 are naturally equivalent to the respective restrictions to NC of 
cp and CL defined on A$. 

ProoJ: Let G be a group in XC. For the moment let c,(G, c) and ci(G, c) 
denote the respective values of the functors cp and ci at G defined on 4. 
Suppose that E: R w E + G is a free presentation of G in A$. Then 
F = E/T,(E) is free nilpotent of class c and maps onto G. Therefore we 
obtain a free presentation F: S H F -++ G of G in Jy;: and a commutative 
diagram 

RAE-G 

k I@ II 
SAF-G 

where 4 is the natural projection. So $ and w are both epimorphisms and 
have the same kernel, say K. Now the commutative diagram of p-adic com- 
pletions 
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” ip - 
S, - F P 

gives rise to homomorphism r: c,(G, d) + c,(G, c) and t’: cA(G, d) -+ ci(G, c). 
It is easy to see that this definition does not depend on the choice of E and is 
natural. By Lemma 1.1, F (and hence S also) is torsion-free; thus we infer 
from Corollary 2.9 that Jp and qp have the same kernel, namely, gp. It 
follows that r and ri are isomorphisms. This completes our proof. 

The above proposition allows us to extend c,, and CL to functors X -+ JV. 

DEFINITION. We call c,(G) the p-cotorsion completion of G. 

Remark. On the category of Abelian groups the functors cp and CL agree 
with Ext(Z(pm), -) and Hom(Z(p”O), -), respectively, This can be verified as 
follows. Let R >--) F + G be a free Abelian presentation of the Abelian group 
G. Then the induced long exact sequence for Hom(Z(p”), -) reduces to 

0 + Hom(Z(p”), G)-+ Ext(Z(p”O), R) + Ext(Z(p”O), F) 

+ Ext(Z($‘), G) --t 0. 

Now by [ 12, Theorem 6.31 there is a natural transformation 6: 
Ext(Wf9-I-+ <-I;, which is an equivalence on torsion-free groups (cf. 13, 
p. 1661). Therefore the middle terms of the above sequence can be naturally 
identified with xp and Rp, respectively, and hence by definition we have 

c,(G) z Ext(ZQP), G) and c;(G) z Hom(iZ(pm), G). 

The last result of this section fays that c,(G) and c:(G) may be computed 
by means of any torsion-free nilpotent presentation of G. By the latter we 
mean a short exact sequence S 2-) F --H G, where F and S are torsion-free 
nilpotent groups. 

3.4. PROPOSITION. Let G be a nilpotent group and let S ++” F -++E G be 
any torsion-free nilpotent presentation of G. Then there is a natural exact 
sequence 

Proof. Let E be a free nilpotent group such that there is an epimorphism 
4: E -+ F, and let R be the kernel of ~4. Then there is a commutative 
diagram 
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with exact rows and epimorphic columns. Now as in the proof of 
Proposition 3.3 we obtain natural isomorphisms Ker & 2 Ker $ and 
:JIrn bp z Fp/Irn tip which provide the natural maps c;(G)+ S, and 
F,, + c,(G) of the sequence. This completes our proof. 

4. BASIC PROPERTIES OF THEP-COTORSION COMPLETION 

We start our discussion of the functor c,, by showing that it is really a 
completion functor (in the sense of Theorem 2.1). 

4.1. THEOREM. There is a natural transformation y: Id,+ cp making cp 
into a completion functor. 

Proof. Let G be a nilpotent group and let R >-tp F--H G be a free presen- 
tation in Jy^, (for an appropriate c). The commutative diagram 

induces a homomorphism yG : G--f c,(G). Clearly the definition of yG does 
not depend on the choice of F and is natural. Now let S H” E-H G be any 
torsion-free nilpotent presentation of G. By Proposition 3.4 the cokernel of 
ip,+Ep is c,(G), and the same argument as in the proof of 
Proposition 3.4 shows that the homomorphism p: G -+ c,(G) which is induced 
by the commutative diagram 

coincides with yc. 
It remains to verify that both c,(y,) and y,(G) are isomorphisms. For this 

purpose we consider the exact sequence K H* pD -Hi c,(G) where F is as 
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above and K = Im &. By Lemma 1.1 and [ 16, 7.51 this is a torsion-free 
nilpotent presentation of c,(G). Therefore by Proposition 3.4 and the first 
part there is a commutative diagram 

ti & II,, c,(G) 

;r 1 Ki. P i 
YCp(G) 

Izp - @p); - cp(cp(GN 

with exact rows. Furthermore, we observe that K is complete in its own p- 
adic topology. Therefore K~ and KF are isomorphisms, and hence so is 
yCp(G). Now by Theorem 2.1, KR agrges with (K,),^, and by Proposition 3.4 
we have c,(y,)~ = v(K~)~. ThusPc,(y,) agrees with yCp(G), hence cp(yc) is 
likewise an isomorphism. 

DEFINITION. We say that a nilpotent group G is p-cotorsion if yc: G + 
c,(G) is an isomorphism. (According to Theorem 2.1 such a G should be 
called c,-complete; it seemed to us more natural, however, to emphasize the 
connection with cotorsion Abelian groups). 

4.2. COROLLARY. If G is a nilpotent group, then 

(1) c,(G) is p-cotorsion, and 

(2) for any homomorphism f: G + H into a p-cotorsion nilpotent group 
H there is a unique homomorphism 4: c,(G) + H such that f = #yc. 

Remark. If G is an Abelian group, yG agrees with the connecting 
homomorphism 6, : G z Horn@ G) --t Ext(Z(pa), G) of the long exact 
sequence for Hom(-, G) associated with the short exact sequence 
E w Z[ l/p] -++ Z(p”). This follows from the fact that Ext(Z(p”), -) 
together with 6 is a completion functor with the same complete objects as cp. 

The next result will enable us to investigate the precise relationship 
between p-adic and p-cotorsion completion. 

4.3. THEOREM. For any nilpotent group G there is a natural 
epimorphism zG : c,(G) ++ ep such that (1) t, yG = ICY ; (2) Ker rG = c,(G)““. 

ProoJ (1) Let R w” F -++x G be a free nilpotent presentation of G and 
let r denote the projection jp-++ c,(G), Then by definition we have 
Kerq=Im&, * on the other hand, we know that Im I(i, < Ker Z,,. It follows 
that there is an epimorphism zG: c,(G) ++ Gp such that ti, = z,~. Therefore, 
by commutativity of the diagrams 
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F4 G FAG 

we obtain rc,rc = ZD!cF = zcr~F = rG yGrt, hence r6 satisfies condition (1). 
Clearly, tG does not depend on the choice of F and is natural. 

(2) It follows from the definition of q and tc that q-i(Kerr,) = 
Ker 5. By Theorem 2.6, Ker 7i, is the p-adic closure of Im & = Ker r,r. Thus 
we infer from Lemma 2.5 that Ker r6 = c&G)~“. 

Remark. In the Abelian case the kernel of r, can be identified with 
Pext(Z(p”), G), the subgroup of Ext(Z(p”O), G) which classifies the pure 
extensions of G by Z(p”). This follows from Theorem 4.3, [5, Theorem 53.33 
and the fact that Ext(Z(pa), G) is divisible by each prime #p. 

4.4. COROLLARY. For any nilpotent group G we have c&G); E 6,. 

4.5. PROPOSITION. Let G be a nilpotent group such that t,(G) is 
bounded. Then tc : c,(G) --) 6, is an isomorphism, and c;(G) = ( 1). 

ProoJ Let R t--*p Fun G be a free nilpotent presentation of G. Then by 
Corollary 2.9 the sequence of p-adic completions 

is exact. It follows that Ker Zp = Ker q, where q denotes the projection 
pp + c,(G). Therefore by definition (cf. proof of Theorem 4.3) r, is an 
isomorphism. Moreover, since & is monomorphic, it follows that 
c;(G) = ( 1). 

A more general result will be proved (by different methods) in Section 7. 
As an important tool we now introduce a long exact sequence for the p- 
cotorsion completion cp and its “first derived” cj. In view of Theorem 4.10 
below this sequence generalizes that of Hom(L(p”O), -) for Abelian groups. 

4.6. THEOREM. Let N d G -4 Q be a short exact sequence of nilpotent 
groups. Then there is a natural connecting homomorphism 6: c;(Q) --$ c,(N) 
such that the sequence 

ill--+ c;(N) = c;(G) = c;(Q) L q-h'0 

df% c,(G) 2 c,(Q) - (11 
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is exact. Moreover, if f : H tt G is any monomorphism of nilpotent groups, 
then c;(f): c;(H) --t c;(G) is likewise a monomorphism. 

Proof. Suppose that the class of G is (c, and let R ME ++ N and 
S w F -+ Q be free presentations of N and Q, respectively, in MC. Let 
E *c F be the coproduct of E and F in & ; by Lemma 1.1 E *C F is free 
nilpotent. It is easily seen that there is a commutative diagram 

where h is the natural injection and k the natural projection. The first row is 
not exact in general, but the kernel K of k contains Im h and is torsion-free. 
Therefore we obtain a commutative diagram 

where U = Ker E and T = Ker R. Since F is torsion-free, by Corollary 2.9 the 
upper rectangle induces a commutative diagram of p-adic completions 

with exact rows. Thus the first part of the theorem follows from the “snake 
lemma” [ 10, 111.5. l] which of course is also valid in our situation. Note that 
we apply Proposition 3.4 in order to identify c,(N) with gp/Irn & and c;(N) 
with Ker p,, , respectively. 

Now let f: H t-1 G be a monomorphism of nilpotent groups of class <c. 
Let K +? F -+n G be a free presentation of G in ,y^,, and let E = 7c-‘(Im f). 
Then there is a commutative diagram 
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K-E-H 

with exact rows. Since E is torsion-free, Proposition 3.4 provides a 
commutative diagram 

We conclude that c;(f) is a monomorphism, and this completes our proof. 

4.7. PROPOSITION. If G is a p-cotorsion nilpotent group, then 
c;(G) = { 1 }. 

Proof: Let R w” F -++ G be a free nilpotent presentation of G. If G is p- 
cotorsion, then there is an exact sequence Rp -+Lip8p ++ G. Therefore, in 
order to determine c;(G) we may as well use the torsion-free presentation 
K t--) fp -H G where K = Im ,L?~. Since K~ and KF~ are both isomorphisms, it 
follows that c;(G) = { 1). 

We turn to study the kernel of y G: G + c,(G). For this we need the 
following proposition. 

4.8. PROPOSITION. For any nilpotent group G, c,(G) = { 1 } if and only if 
G is p-radicable. 

Proof. If c,(G) = {l}, then by Theorem 4.3, Gp = { 1). We infer from 
Theorem 2.2 that Gp” = G, hence, by the comment preceding Lemma 1.4, G 
is p-radicable. Conversely, suppose that G is p-radicable. Then for any x E G 
there is a homomorphismf: Z [ l/p] -+ G such that x E Im f: We consider the 
commutative diagram 

z[l/pl ---L G 

I 
~ZlllCl 

I 
YG 

cp(Z [~/PI) = c,(G) 

It is easy to see that c,(Z[ l/p]) z Ext(E(p”O), Z [ l/p]) = { 1}, hence yGf is 
the trivial map. Since every x E G lies in the image of such an f, it follows 
that yG is trivial. Therefore we have c,(G) = ( 1) by Corollary 4.2. 



426 HUBERANDWARFIELD 

4.9. THEOREM. For any nilpotent group G, Ker yG = p,(G), the maximal 
p-radicable subgroup of G. 

Proof: Let K be the kernel yc and let 4 denote the inclusion K -+ G. As 
G/K maps monomorphically into c,(G), we infer from Theorem 4.6 and 
Proposition 4.7 that ci(G/K) = { 1 }. Therefore by Theorem 4.6, c,($) is a 
monomorphism. Since by hypothesis yc$ is the trivial map, commutativity of 
the diagram 

K&G 

I 
YK 

1 
YG 

c,(K) _cp(,) c,(G) 

yields that yx is likewise trivial. Therefore c,(K) = (1) and hence K is p- 
radicable by Proposition 4.8. On the other hand, we see from the 
commutative diagram 

that p,(G) is contained in K, since by Proposition 4.8, c,@,(G)) = { 1). This 
completes the proof of Theorem 4.9. 

Remark. By definition of c,(G) and by Theorem 2.4 the class of c,(G) is 
always less or equal than the class of G. If G is p-reduced, Theorem 4.9 
implies that the two classes are equal. 

We conclude this section by showing that the functor cj is naturally 
equivalent to HomAZ(p”O), -) which is in fact a functor N-+ XZ’ (the 
category of Abelian groups). 

4.10. THEOREM. For any nilpotent group G, 

(1) HomAW”)~ G) is a p-adically complete torsion-free Abelian 
group; 

(2) c;(G) is naturally isomorphic to Hom#(p”3), G), in particular, 
c;(G) = { 1) if and only ifp(t,(G)) = { 1). 

Proof. (I) Let K = p(t,(G)), so that K is a radicable p-group and hence 
Abelian by [ 16,4.11]. Since every homomorphism f: Z(p”) --) G lands in K, 
we may identify Hom,(Z(pm), G) with Hom(Z(p”O), K), which clearly is a 
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torsion-free Abelian group. To verify that Hom(Z(p”),K) is p-adically 
complete, we use the isomorphism 

Hom(Z(p”O), K) z @ Hom(Z/p”Z, K), 

where the maps L/p”Z -+ Z/p”+‘Z of the direct system (Z/p”Z},,, are the 
multiplication by p. 

(2) By Proposition 4.5 we have cj(G/t,(G)) = {I}. Therefore 
Theorem 4.6 implies that c;(G) z cj(t,(G)). Furthermore, we infer from 
Theorem 4.9, Proposition 4.7 and Theorem 4.6 that cL(t,(G)/K) = { 1 }, where 
K is as above. It follows that ci(t,(G)) E c;(K) and hence, using the remark 
before Proposition 3.4, we obtain 

c;(G) E c;(K) g Hom(Z(p”), K) = Horn-AZ(p”O), G), 

where all the isomorphisms are natural. It follows, in particular, that 
c;(G) = ( 1 } if and only if K = { 1 }. This completes our proof. 

5. p-COTORSION NILPOTENT GROUPS 

In this section we give a characterization ofp-cotorsion groups in terms of 
their upper central series and study the relationship between p-cotorsion and 
p-adically complete groups. We begin by listing some elementary results on 
p-cotorsion groups. 

5.1. PROPOSITION. Every p-cotorsion nilpotent group is p-reduced and 
uniquely q-radicable for every prime q # p. 

Proof. Let G be p-cotorsion. Then by definition Ker yG = (I}, hence G is 
p-reduced by Theorem 4.9. To verify the second assertion we consider a free 
nilpotent presentation R +? F--H G. By hypothesis we have G z gp/lK, 
where K = Im ci,. Since xB is q-radicable, so is K. Since gD is uniquely q- 
radicable, it follows that G is q-radicable and has no q-torsion, and hence is 
uniquely q-radicable for every prime q # p. 

5.2. PROPOSITION. Let N ++f G -+# Q be a short exact sequence of 
nilpotent groups, where G is p-cotorsion. Then the following conditions are 
equivalent: 

(1) N is p-cotorsion; 

(2) Q is p-reduced; 

(3) Q is p-cotorsion. 
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Proof: By Theorems 4.1 and 4.6 there is a commutative diagram 

NAG--Q 

I YN 
I 

YG I YQ 

c;(Q) - c,(N) c,v, c,(G) = c,(Q) 

with exact rows, where by hypothesis yG is an isomorphism. If N is p- 
cotorsion, in particular yN is epimorphic and hence yp is monomorphic. 
Therefore by Theorem 4.9 Q is p-reduced. If Q is p-reduced, then it is p- 
cotorsion, because yrr is epimorphic anyway. Finally, suppose that Q is p- 
cotorsion. .Then c;(Q) = { 1) by Proposition 4.7, and hence yN is an 
isomorphism. 

5.3. PROPOSI~ON. Let NH G* Q be a short exact sequence of 
nilpotent groups. If N and Q are p-cotorsion, then so is G. 

Proof We consider the diagram in the previous proof. By hypothesis yN 
and yc are isomorphisms, hence c;(Q) = { 1) by Proposition 4.7. It follows 
that yG is likewise an isomorphism. 

5.4. PRoPosmoN. If G and H are p-cotorsion nilpotent groups, then for 
every homomorphism f: G + H, Ker f and Im f are p-cotorsion. 

Proof: By Proposition 5.1, H is p-reduced, hence Im f is p-reduced. But 
then Proposition 5.2 implies that Im f is p-cotorsion. Therefore, again by 
Proposition 5.2, Ker f is p-cotorsion as well. 

5.5. THEOREM. A nilpotent group is p-cotorsion if and only if each of the 
factors of its upper central series is p-cotorsion. 

Proof: For Abelian groups the theorem holds trivially. Let G be a 
nilpotent groups of class c > 1, and assume that the result is true for 
nilpotent groups of class <c. If each factor of the upper central series of G is 
p-cotorsion, then the center Z, of G is p-cotorsion, and so is G/Z, by the 
induction hypothesis. Hence G is p-cotorsion by Proposition 5.3. Conversely, 
suppose that G is a p-cotorsion. Then G is p-reduced, and hence by 
Lemma 1.2, G/Z, is p-reduced. Thus it follows from Proposition 5.2 that 
both Z, and G/Z, are p-cotorsion. Hence by the induction hypothesis each 
of the factors of the upper central series of G is p-cotorsion. This completes 
our proof. 

The further results of this section concern the relation between p-cotorsion 
and p-adically complete groups. They correspond to results in [5, Sect. 541 
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but are mostly proven differently. Following [ 161 a nilpotent group G is 
called residually p-bounded if GP” = ( 1 }. 

5.6. PROPOSITION. A p-cotorsion group is p-adically complete if and 
only if it is residually p-bounded. 

Proof. If G is p-cotorsion, then K,: G + Gp is epimorphic by 
Theorem 4.3. Therefore, G is p-adically complete if and only if K~ is a 
monomorphism, which means the same as Gp”’ = {l}. 

5.1. PROPOSITION. Every p-adically complete nilpotent group is p- 
cotorsion. 

Proof. Let G be p-adically complete, and let K denote the kernel of rc. 
Then by Theorem 4.3(l) 7G yG is an isomorphism. Therefore so is cp(tG), 

because c,(y,) is an isomorphism anyway (by Theorem 4.1). We infer from 
Theorem 4.6 that the induced map c,(K) -+ c,(c,(G)) is trivial. Therefore by 
commutativity of the diagram 

K ,---+ c,(G) 

I 
YK 

I 
YLyG) 

c,(K) - c,(W)) 

and Theorem 4.1 we obtain K = { 1 }, and hence both 7G and yG are 

isomorphisms. 

5.0. PROPOSITION. A nilpotent group is p-cotorsion if and only if it is p- 
reduced and a homomorphic image of a p-adically complete group. 

Proof. Let G be p-cotorsion, and let R *F ++ G be a free nilpotent 
presentation. Then there is an epimorphism pp -H G, and G is p-reduced by 
Proposition 5.1. Conversely, suppose that G is p-reduced and there is an 
epimorphism H-H G where H is p-adically complete. Then G is p-cotorsion 
by Propositions 5.7 and 5.2. 

5.9. THEOREM. If G is p-cotorsion nilpotent group, then GP” is a p- 
cotorsion Abelian group. 

Remark. By Theorem 4.3(2) this means, in particular, that for any G, 
Ker rG is Abelian (cf. [3, p. 1691). 

Proof. Since Gp” is the kernel of K~: G -+ G,, GP” is p-cotorsion by 
Propositions 5.7 and 5.4. Furthermore, as G is p-reduced, it follows from 
Theorem 2.4(ii) that Gp” is Abelian. 
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5.10. PROPOSITION. For a nilpotent torsion group G the following 
conditions are equivalent: 

(1) G is p-adically complete; 

(2) G is p-cotorsion; 

(3) G is a bounded p-group. 

Proof. (1) j (2) is a special case of Proposition 5.7, while (3) + (1) is 
trivial. So it remains to prove (2) * (3). Suppose first that G is a p-cotorsion 
Abelian group. Then by Proposition 5.6, G/p”G is a p-adically complete 
torsion groups and hence a bounded p-group (cf., e.g. [5, Sect. 401). It 
follows that for some positive integer n, p”G = p”G. Therefore p”G is p- 
radicable, and hence p”G = ( I} by Proposition 5.1. Suppose now that G is a 
p-cotorsion nilpotent torsion group of class c > 1. Then by Theorem 5.5 each 
of the factors of its upper central series is p-cotorsion and torsion, hence a 
bounded p-group. Therefore G itself is a bounded p-group. 

Combining this with Proposition 4.5 we obtain the following immediate 
consequence. 

5.11. COROLLARY. Let G be either a p-group or p-torsion-free. Then G 
is p-cotorsion if and only if it is p-adically complete. 

6. THE STRUCTURE OFP-COTORSION NILPOTENT GROUPS 

In this section we are mainly interested in the extent to which Harrison’s 
theory of cotorsion Abelian groups [8] carries over to our case. 

6.1. PROPOSITION. Let G be nilpotent and let K be a normal subgroup of 
c,(G) such that Im ho <K. Then c,(G)/K is radicable. 

Proof. Let G’ = G/p,,(G) and let 71: G --+ G’ denote the projection. In the 
commutative diagram 

G -?-f+ G' 

I 
YG 

I 
YG’ 

c,(G) = c,(G’) 

by Theorem 4.6 and Proposition 4.8, the bottom map is an isomorphism. 
Hence it suffices to prove the proposition for p-reduced G. By 
Proposition 5.1, c,(G) is q-radicable for all primes q # p. Thus it remains to 
show that c,(G)/K is p-radicable. Let L be the full preimage of p,(c,(G)/K) 
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in c,(G), so that c,(G)/,5 is p-reduced. We claim that L = c,(G). From 
Lemma 1.2 we know that G/Z, is p-reduced, and Theorem 4.6 yields an 
exact sequence 

c;WZ,) -+ cJZ,> -+ c,(G) -+ c,(G/Z,> -+ (11, 

where by Theorem 4.10 the first term is trivial. We further know that Z, < L, 
and by the remark after Corollary 4.2 we have cp(Z,)/Zl z Ext(Z [ l/p], Z,), 
hence c,(Z,)/Z, is p-radicable. Since c,(G)/L has no p-radicable subgroups 
other than (I}, it follows that c,(Z,) s L. We conclude that c,(G)/L E 
c,(G/Z,)/L’, where L’ is a normal subgroup of c,(G/Z,) containing G/Z,. 
By induction on the class of G, the result is proved. 

6.2. THEOREM. Let G be a nilpotent group such that p(t,,(G)) = (I}. 
Then the groups c,(Zi(G)) can be identtjied with subgroups of c,(G), and as 
such they form a central series for c,(G). In particular, this is true if G is p- 
reduced or jinitely generated. 

Remark. This series need not be the upper central series for c,(G), even 
in the torsion-free case (cf. [ 16, 7.81). 

Proof: We note that by Lemma 1.2, p(t,(G/Z,)) = ( 1 }. Therefore the long 
exact sequence of cp (Theorem 4.6) shows that the maps cp(Zi)-, c,(G) are 
monomorphisms, and that cp(Zi+ ,)/cp(Zi) can be naturally identified with 
cp(Zi+ i /Zi). Since this is a normal series for c,(G), the result will be proved 
if we can show that the action of c,(G) on cp(Zi+ , /Zi) is trivial. We know 
that the action of G on Zi+ ,/Zi is trivial, and hence by Corollary 4.2 we 
infer that the action of G on c,(Z,+ , /Zi) is trivial. Therefore the kernel K of 
the action of c,(G) on cp(Zi+ i /Zi) contains G. Since cp(Zi+ ,/Zi) is p- 
reduced and the action is nilpotent, it follows from Lemma 1.3(ii) that 
c,(G)/K is p-reduced. However, as G E K, Proposition 6.1 implies that 
c,(G)/K is p-radicable, from which we conclude that K = c,(G). Hence the 
action of c,(G) on cp(Zi+ , /Zi) is trivial, as desired. 

6.3. THEOREM. If G is a p-reduced nilpotent group, which we identify 
with the image of yc, then t(c,(G)) = t(G). 

ProoJ If G is p-reduced Abelian, there is an exact sequence 

0 --t G -% Ext(Z(p”), G) -+ Ext(Z[ l/p], G) + 0. 

As 6, agrees with yc (cf. the remark after Corollary 4.2), it follows that 
c,(G)/G is p-torsion-free. Since for every prime q # p, c,(G) has no q- 
torsion, we infer that t(c,(G)) = t(G). 

Now suppose that G is nilpotent of class c > 1 and assume that the 
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theorem holds for all groups of class <c. By Lemma 1.2 and induction 
hypothesis we conclude that t(c,(G/Z,)) = t(G/Z,). Since we can identify 
c,(G/Z,) with c,(G)/c,(Z,), it follows that every x E t(c,(G)) may be written 
as x = yz, where y E c,(Z,), z E G such that for some positive integer n, 
zp” E Z, . (Here we make use of the fact that for every prime q # p, G has no 
q-torsion.) As c,(Z,) is central (by Theorem 6.2), we see that xp” = ypnzp” 
where xp” E t(c,(Z,)). It follows that xpn and zp” are in Z, , whence yp” E Z, . 
Since c,(Z,)/Z, is p-torsion-free and y E c,(Z,), we conclude that y E Z,, 
which implies that x E G. This completes our proof. 

DEFINITION. A p-cotorsion group G is called adjusted if G/f(G) is 
radicable (cf. Harrison’s definition and Proposition 2.2 in [8]). 

6.4. PROPOSITION. For any nilpotent p-group G, t(c,(G)) = Im yG, and 
thus c,(G) is adjusted. 

Proof: By the same argument as in the proof of Proposition 6.1 we may 
assume that G is p-reduced. Therefore by Theorem 6.3 the image of yG is the 
torsion subgroup of c,(G). Hence by Proposition 6.1, c,(G) is adjusted. 
(Note that in this situation Im yG is normal in c,(G).) 

We are now in the position to prove the main results of this section which 
concern the structure of p-cotorsion groups. They correspond to 
Propositions 2.2 and 2.3 of [8] ( see also [5, Theorems 55.5 and 55.61). 

6.5. THEOREM. Every p-cotorsion nilpotent group G contains a uniquely 
determined adjusted p-cotorsion normal subgroup A (Z c,(tG)), such that 
G/A is torsion-free and p-adically complete. If G is Abelian, then A is a 
direct summand of G. 

Proof: If G is p-cotorsion, then by Theorems 4.6 and, 4.10 there is an 
exact sequence 

11 I -+ cp(t(G)) -, G -+ cpWW) + 111. 

Therefore, by Proposition 6.4, A = Im h is an adjusted p-cotorsion normal 
subgroup of G. We further see from Proposition 4.5 that G/A is isomorphic 
to (G/t(G)); and hence p-adically complete and torsion-free by [ 16, 7.51. If 
A’ is any subgroup of G satisfying the conclusions of the theorem, then, 
necessarily, A’ contains t(G), A//t(G) is radicable, and G/A’ is reduced. This 
shows that A’ = A, so A is uniquely determined. Now suppose that G is 
Abelian. Since every p-cotorsion Abelian group is of the form 
Ext(Z(ptO), H) (cf. the remark after Propositions 3.3), it follows that 
Ext(G/A, A) = 0 (by [5, Theorem 54.61). Hence A is a direct summand. 
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EXAMPLE. It is easy to give an example of a 2-cotorsion nilpotent group 
G of class 2 which is a non-splitting extension of an adjusted 2-cotorsion 
group by a 2-adically complete torsion-free group. 

Let F: @,O f,) X @‘,O f,) -+ Z/22 be the alternating bilinear form 
which can be given by the matrix ( ?i A). Let G be the central extension of 
Z/22 by 2, @ 2, which corresponds to F (via [16, 5.41; note that there is 
exactly one element in HZ@‘, @ t,, Z/2Z) arising from F, because 
Ext@, @ t,, Z/2Z) = 0). S’ mce Z/22 agrees with the commutator subgroup 
of G, the extension cannot split. 

6.6. THEOREM. The functors c,,(-) and t(-) are adjoint equivalences 
between the category of reduced nilpotent p-groups and the category of 
adjusted p-cotorsion nilpotent groups. 

Proof Let G be a reduced p-group, Then by Proposition 6.4, c,,(G) is 
adjusted and its torsion part is isomorphic to G. On the other hand, if G is 
adjusted p-cotorsion, then t(G) is p-reduced, hence a reduced p-group. 
Moreover, the subgroup A in Theorem 6.5 agrees with G; therefore c,(t(G)) 
is isomorphic to G. Finally, it is easy to verify, using Corollary 4.2, that c, is 
left adjoint to t. 

7. APPLICATIONS 

The aim of this section is to apply the theory ofp-cotorsion groups to the 
p-adic completion of nilpotent groups. We first come back to our exactness 
study (cf. Section 2). Given a sequence of groups and homomorphisms 
G +‘H9 K where gf is trivial, the set of left cosets Ker g/Im f will be 
called the homology of this sequence. 

7.1. PROPOSITION. Let N S-J G -& Q be a short exact sequence of 
nilpotent groups. Then the homology of the induced sequence 
fip JP ep &J $, is a group which is isomorphic to the cokernel of the 
induced map g,: cJ~G)~~ --f c,(Q)~” and thus Abelian. In particular, the 
sequence fip -+3~ G, --+ Q, + { 1) is exact tf and only tfg, is an epimorphism. 

Proof By Corollary 2.10, Im fp is a normal subgroup of G,, hence the 
homology of the induced sequence fip-’ G, -+ &, is a group. Now we 
consider the commutative diagram 

c,(N) = c,(G) c,(g) c,(Q) - 111 

I 
TN 

I 
TG 

I TV 

fip A 6, -f% &, 
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By Theorem 4.3 the column maps are epimorphisms, and by Theorem 4.6 the 
top row is exact. Therefore 7G maps Ker c,(g) onto Im &. Hence by 
Theorem 4.3 and the non-commutative version of the “snake lemma,” 
Ker &/Im fp z Coker( g, : c,(G)~” + c,(Q)““) which is Abelian by 
Theorem 5.9. 

The above proposition leads us to the characterization of those nilpotent 
groups G for which 7 G ; c,(G) + Gp is an isomorphism. For this purpose we 
will need the following: 

DEFINITION. We call a nilpotent p-group torsion-complete if its is the 
torsion subgroup of a p-adically complete group. In particular, every 
bounded nilpotent p-group is torsion complete, and every torsion-complete 
nilpotent p-group is reduced. 

7.2. PROPOSITION. For a reduced nilpotent p-group G the following 
conditions are equivalent: 

(1) G is torsion-complete; 

(2) cp(WP” = { 1); 
(3) G z t(ep). 

ProoJ: (1) * (2) Let G be the torsion subgroup of the p-adically 
complete group H. By Theorem 4.10 the top map in the commutative square 

c,(G) - c,(H) 

C?, - 
I 

H P 

is a monomorphism. Since by Proposition 5.7 every p-adically complete 
group is p-cotorsion, it follows that 7, is an isomorphism. Therefore 7, is 
likewise an isomorphism, and hence by Theorem 4.3, c,(G)~” = { I}. 

(2) * (3) By Theorem 6.3 the map yc takes G isomorphically onto 
t(c,(G)). As condition (2) means that tG is an isomorphism, it follows that 
GE t(cp). The implication (3) * (1) holds trivially. 

7.3. THEOREM. For any nilpotent group G, the following conditions are 
equivalent: 

(a) The map t, : c,(G) -+ ep is an isomorphism; 

(b) c,(G)P”= 111; 
(c) t,(G)/p(t,(G)) is torsion-complete. 
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Proof. The equivalence of (a) and (b) is an immediate consequence of 
Theorem 4.3. 

(b) o (c): By Corollary 2.10 and Theorem 4.6 the rows of the 
commutative diagram 

ill - cp(tpW) - c,(G) - c,WpW) - (11 

I 
7 tpc 

I 
=c 

I 
” 

111 - tp(G); - ep - W,(G)); - 111 

are exact, and by Proposition 4.5 the right-hand column map is an 
isomorphism. Thus we infer from Theorem 4.3 that c,@,(G))“” E c,(G)~“. 
Since, by Theorem 4.6 and Proposition 4.8, c,(t,(G)) E c,,(t,(G)/p(t, G)), we 
conclude that c,(G)~“’ z cp(tp(G)/p(tpG))P”‘. The result follows now from 
Proposition 7.2. 

The following are now easy consequences of Proposition 7.1 and 
Theorem 7.3. 

7.4. COROLLARY. Let N H G-H Q be a short exact sequence of 
nilpotent groups, and suppose that tp(G)/p(jp(G)) is torsion-complete. Then 
the homology of the induced sequence fip + GP + &, is isomorphic to c,(Q)~“. 

7.5. COROLLARY. rf Q is a nilpotent group such that t,(Q)/p(t,(Q)) is 
torsion-complete, then for any short exact sequence N M G -++ Q the induced 
sequence fip -+ Gp + Q, + { 1) is exact. 

Remark. One might expect that in Corollary 2.9 the hypothesis on t,(Q) 
could be weakened. However, even in the Abelian case, torsion-completeness 
of t,(Q) does not imply exactness of { 1 } + fip + G, -+ Q, + ( 1 }, as is shown 
by the following example. 

EXAMPLE. Let Q = nTE1 Z/p”Z; so that t,(Q) is torsion-complete (but 
not bounded). Let G be an Abelian group s.t. p”G r Q and G/p”G z Q 
(such a group G exists, e.g., by [ 15, Theorem 2.61). Thus we have a short 
exact sequence 

where Im ,u = p”G. Then, of course, in the induced sequence 

fi, is the trivial map, but $, z Q # 0. 
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Furthermore, Theorem 7.3 enables us to generalize Theorem 6.6 and the p- 
version of 6.9 of [ 161. 

7.6. COROLLARY. If G is a nilpotent group such that t,(G)/p(t,(G)) is 
torsion-complete, then GP” = p,(G). 

7.7. COROLLARY. Let G be a nilpotent group such that t,(G) is torsion- 
complete. Then G is residually p-bounded tf and only tf its center is residually 
p-bounded. 

Proof If G is residually p-bounded, then clearly Z,(G) is residually p- 
bounded. On the other hand, suppose that Z,(G) is residually p-bounded. 
Then Z,(G) is p-reduced and therefore, by Lemma 1.2, G is p-reduced. Since 
t,(G) is torsion-complete, we infer from Corollary 7.6 that G is residually p- 
bounded. 

Finally, we apply the p-cotorsion completion in order to improve part of 
7.4 and 7.6 of [16]. 

7.8. THEOREM. Let G be a nilpotent group s.t. p(t,(G)) = { 1). Then the 
images zi of the natural maps &. : Z,(G); + Gp form a central series for Gp. 
If in particular t,(G) is torsion-complete, then the maps 6 are 
monomorphisms; thus zi can be identtjied with Z,(G);. 

Proof: By Theorem 6.2 the natural maps Cp(Zi(G))~ c,(G) are 
monomorphisms and their images Ci form a central series for c,(G). 
Therefore, t G: c,(G) -+ G, being an epimorphism, the groups rF(Ci) form a 
central series for 6,. But by commutativity of the diagram 

cp(Zi(G)) - c,(G) 

i 

*zim c 

Zi(G); 3i cp 

rG(Ci) coincides with gi. This proves the first part. Now suppose, in 
particular, that t,(G) is torsion-complete. In this case c,(G)~“’ = {I} by 
Theorem 7.3, and hence cp(Zi(G))“” = { 1). Therefore both rc and tZicC) are 
isomorphisms, hence the &‘s are monomorphisms. This completes our proof. 

We remark that Theorem 7.8 applies in particular to finitely generated 
nilpotent groups. 

7.9. THEOREM. Let G be a nilpotent group such that either G is 
residually p-bounded or t,(G) is torsion-complete. Then G is p-adically 
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complete if and only if each of the factors of its upper central series is p- 
adically complete. 

Proof: Let G be a p-adically complete. Then G is residually p-bounded 
and p-cotorsion, the latter by Proposition 5.7. Therefore, Z,(G) is residually 
p-bounded and hence, by [ 16,2.1], each of the factors Zi+ ,(G)/Z,(G) is 
residually p-bounded. Since by Theorem 5.5 these factors are also p- 
cotorsion, Proposition 5.6 implies that they are p-adically complete. 
Conversely, suppose that the factors Zi+ , (G)/Z,(G) are p-adically complete. 
Then by Proposition 5.7 they are p-cotorsion, and hence G is p-cotorsion by 
Theorem 5.5. Now, if GP” = { 1 }, then the assertion follows from 
Proposition 5.6. On the other hand, if t,(G) is torsion-complete, then the 
result is a consequence of Theorem 7.3. 

8. EXTENSIONS BY JT(p”) 

If A is an Abelian group, we can make the identification 
c,(A) = Ext(Z(pti), A). Boustield and Kan use the notation Ext(Z(p”O), G) 
for what we have written c,(G), but we have chosen not to do so, partly 
because in the nilpotent case the elements of c,(G) do not describe extensions 
of G by h(p”O), as we shall see. There is, however, a connection between 
extensions and elements of c,(G), which will be described in this section. We 
begin with a general discussion of extensions of a group G by an Abelian 
group A which are obtained by extending the center of G. 

If N is a nilpotent group, we let M(A, N) be the set of equivalence classes 
of nilpotent extensions of N by A (in the sense of [ 10, p. 84 or p. 2061.) 
Here, A will be Abelian group in all of the instances of interest to us. We 
first construct a function 

E: Ext(A, Z,(N)) -+M(A, IV) 

as follows. Given an e E Ext(A, Z,(N)), corresponding to the sequence 

Z1(N)6B+A, 

we let e(e) be the sequence 

where G = (N x B)/D, D = {(a(z), a(z): z E Z,(N)} and u: Z,(N) + N is the 
natural map. (We should remark that despite appearances, this construction 
does not give us a push-out in the category X.) 
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8.1. LEMMA. The map E: Ext(A, Z,(N)) +,X(A, N) just described is 
injective, and its image is precisely the set of equivalence classes of 
extensions 

N-G-HA 

such that the induced homomorphism Z,(G) -+ A is subjective. 

Proof. We first note that we have an extension 

which arises from the construction outlined above, then we can recover the 
original extension as Z,(N) >--t Z,(G) + A. Hence the map E is injective. If 
we have an extension such that the map Z,(G) + A is surjective, then there is 
an epimorphism Z,(G) x N ++ G, which shows that the extension is indeed 
in the image of the map E. 

Remark. As we shall see, though this map is injective, it may happen 
that the image of a non-split extension is split. The point is that Jy‘(A, N) 
may contain many distinct equivalence classes of split extensions. 

We now specialize in the case in which A = Z(p”). If we have an 
extension E: N t-t G-J Z(p”) where G is nilpotent, then the long exact 
sequence of the functor cP yields 

where we note that ciZ(p”) = Hom(h(p”“), Z(p”)) 12, (Theorem 4.10). 
If 1 is the identity map, Z(p”)+ Z(p”), then the correspondence taking E 
to S(1) gives us a map 

A: .H(Z(pm), N) -, cp(N). 

The extension E splits if and only if 1 E Im(cLdf )), which happens if and 
only if S(1) is trivial. For example, this shows that all such extensions split if 
c,,(N) = 1 (a fact which could easily have been derived differently). 

To give a complete description of equivalence classes of extensions of N 
by Z(p”) in terms of elements of c,(N) would presumably be the same as 
saying that the map LI was injective. Even if N is Abelian, this may fail since 
if there is a nontrivial nilpotent action of Z(p”) on N (as there is if 
N = Z @ Z(p”) for example), then there will be at least two non-equivalent 
split extensions. However, in special cases we get strong results. 

8.2. THEOREM. If N is a finitely generated nilpotent group, then every 
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group extension of N by U (p”) is nilpotent and arises from an Abelian 
extension of the center Z,(N) by Z(p”), so that the map 

E: c,(Z,(N)) -.W(P”), N) 

is bijective, and the map 

A:.K(Z(p’O), N) -+ c,(N) 

is injective. 

Proof. We first suppose that we have an extension 

NHG+Z(pm). 

We will use the symbols Zi for the terms of the upper central series of N (not 
G). Since the Zi are characteristic subgroups of the normal subgroup N, it 
follows that they are normal in G. The induced action of G on Zi+ I /Zi has 
N in its kernel, and hence is an action of Z(p”) on Zj+ l/Zi. Since Z(p”) 
has no non-trivial finite-dimensional rational representations, we conclude 
that this action is trivial, and that therefore the subgroups Zi form a central 
series for G. G is therefore a nilpotent group. 

We notice that p(t,(N)) = 1 ( or, equivalently, c;(N) = 1) so that we may 
infer from Theorem 6.2 that the induced map c: c,(Z,(N)) -+ cP(N) is 
injective. The naturality of the connecting homomorphism (Theorem 4.6) 
implies that c = As. We already know from Lemma 8.1 that E is injective, so 
the conclusions of the theorem will be established if we show that E is 
surjective, which we will now do. 

We again let N Y G -++ Z(p”) be any (nilpotent) extension and we let 
C,(N) be the centralizer in G of the subgroup N. Since G/C,(N) is a 
subgroup of Nil,(N), where F is the flag consisting of the subgroups Zi, 
G/C,(N) is finitely generated (by Lemma 1.3). It follows that G/NC,(N) is a 
finitely generated homomorphic image of Z(p”), and therefore is trivial, so 
that G = NC,(N). We conclude that the induced map C,(N)+ Z(p”) is 
surjective, so that C,(N) is an extension of Z, by z(p”). According to 
Lemma 8.1, the result will be proved if we can show that Z,(G) = C,(N). 
Since G = C,(N)N and [N, C,(N)] = 1, it will suffice to show that C,(N) is 
Abelian. If D is the center of C,(N), then D contains Z,(N). If D were not 
all of C,(N), D would be finitely generated and C,(N)/D would be 
isomorphic to Z(p”). This would contradict Lemma 1.2, since D is the 
center of C,(N) and p(t,(D)) = { 1 }. 

We now will give three examples to illustrate what changes can occur if 
we change our conditions on N. The first is a group N such that c,(N) + 1 
but such that there is (up to equivalence) only one extension of N by Z(p”). 
The second is a group N such that c,(Z,(N)) z i?,, but the map 
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c,(Z,(N)) + c,(N) is trivial, thus producing an uncountable family of 
inequivalent split extensions. In both of these cases, N is (necessarily) not p- 
reduced. The third example is a p-reduced p-group N with extensions by 
B(pm) which are not in the image of the map E and thus do not arise from 
an extension of the center. 

EXAMPLE 1. There is a nilpotent group N such that c,(N) # 1 but such 
that every extension of N by Z(p”) splits and is isomorphic to N X Z(pm). 

We choose N to have center isomorphic to Z(p”) and central quotient 
h/pZ @ Z/p& which we easily can do using the techniques of [ 16, Chap. 51. 
Let C be the center of N. If G is an extension of N by Z(p”), then C is a 
normal subgroup of G, and since it is the center of N, one gets an action of 
Z(p”) on C. Since C g Z(p”) and Aut(Z(p”O) is Abelian with finite torsion 
subgroup [6, 127.51, it is easy to see that this action is trivial. Hence C is in 
the center of G. If we factor out C, we get an extension of Z/pZ @ Z1p.Z by 
B(pw), and since Aut(Z/pZ 0 Z/pZ) is finite, the action is again trivial, so 
G is nilpotent of class at most three. It follows from a theorem of Baer’s 
[ 16, 3.241 that the center 2, of G has finite index, and hence the image of 2, 
in Z(p”) is all of Z(p”). We infer from Lemma8.1 that the map 
E: Ext(Z(p”O), C)+M-(Q”), N) is surjective. Since Ext(Z(p”O), C) = 0 and 
since we have previously checked that all extensions of N by Z(p”) are 
nilpotent, we conclude that up to equivalence there is exactly one extension 
of N by Z(p”). 

EXAMPLE 2. There is a nilpotent group N such that c&Z,(N)) g t,, and 
the induced homomorphism c,(Z,(N)) --t c,(N) is trivial, so that the elements 
of c&Z,(N)) index an uncountable family of split extensions of N by Z(p”). 
For this N there are also non-split extensions of N by Z(p”). 

We use the matrix ( _” , i) to define an alternating form A x A -+ Z [l/p], 
where A = Z [ l/p] @ Z [ l/p]. We let B be the subgroup of A given by 
B = iz [ l/p] @ Z. Following this form by a homomorphism, we obtain alter- 
nating forms A x A -+ Z [ l/p]/.77 = Z(p”) and B X B -+ Z(p”). We use these 
as in [ 16, Chap. 51 to construct central extensions Z(p”) x-+ G - A and 
E(pm) P+ N+ B. We note that we have an extension NH G -+ Z(p”), so 
N has non-split extensions by Z(p”). If 4: N-+-P B is the natural map, then 
one sees easily that Z,(N) = #-‘(Z @ 0) and Z,(N) z Z(p”)@ Z. Since 
Pp(w=o-‘(wPloo)~ we see that Z,(N) <p,(N), so the induced map 
c,,(Z,(N)) + c,(N) is trivial, even though c,(Z,(N)) z f, as claimed. 

EXAMPLE 3. There is a countable nilpotent p-reduced p-group N and an 
extension of N by Z(p”) which does not arise from an extension of the 
center of N. 



COMPLETIONS OF NILPOTENT GROUPS 441 

Let A = @,“= i Z(p”) and let the generators of the cyclic summands be g,, 
II > 1. Let e, be the endomorphism of A defined by e,( g,) = a,,,, g,. The 
subgroup of H of Horn@, A) generated by these elements e, is isomorphic to 
A. The homomorphism sending e, to [p-“1 is an epimorphism of H onto 
Z(p”), whose kernel we will denote H’. We let H act on A @A by setting 
(x, y)” = (x, y + h(x)). This is clearly a nilpotent action, and we let G and N 
be the semidirect products 

G=HK(A@A), N= H’ K (A @ A) 

corresponding to this action. We regard N as a subgroup of G and note that 
G/N z Z (p”). This is the extension we are interested in and we must show it 
does not arise from an extension of the center of N. We first show that 
Z,(G) = Z,(N) = (0, (0, A)) ( as a subgroup of H K (4 @A)). It is clear that 
the center of G is the set of elements (x, y) of the normal subgroup A @A 
such that h(x) = 0 for all h E H. By construction, this means x = 0, so 
Z,(G) = (0, (0, A)). To show that this subgroup is also the center of N, it 
suffices to show that if x E A and h(x) = 0 for all h E H’, then x = 0. For 
such an x, the map h -+ h(x) would yield a homomorphism H/H’ -+A. Since 
H/H’ is divisible and A is reduced, this map would be trivial, so h(x) = 0 for 
all h E H, which (as we noted before) implies x = 0. Hence Z,(N) = Z,(G). 

This clearly shows that this extension does not arise from an Abelian 
extension of the center in the sense of Lemma 8.1. In fact, it also does not 
arise in any other sense from an extension of the center, since if we factor 
out the center, we still have a non-split extension. 

8.3. PROPOSITION. If A is a p-reduced Abelian group, then every 
nilpotent extension of A by Z(p”) is Abelian, so that the set of equivalence 
classes of such extensions is in one-to-one correspondence with the elements 
of cpA. 

Remark. It is easy to see that for suitable A (e.g., free of countably 
infinite rank), non-nilpotent extensions may exist, and also that for suitable 
A (not p-reduced) non-Abelian nilpotent extensions may exist. 

Prooj If A is p-reduced, then we infer from Lemma 1.3 that there is no 
non-trivial nilpotent action of Z(p”) on A. It follows that an extension is 
central. If such an extension is 

and if Z,(B) #B, then Z,(B)/A is finite, so Z,(B) is p-reduced, while 
B/Z,(B) = Z(prn) (j us as in the proof of Theorem 8.2). This contradicts t 
Lemma 1.2. 
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