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Abstract

We consider the dynamic critical behavior of the propagating mode for the order parameter fluctuation @¥ tHei@burg—Landau theory,
involving the canonical momentum as a degree of freedom. We reexamine the renormalization group analysis of the Langevin equation for thi
propagating mode. We find the fixed point for the propagating mode as well as that for the diffusive one, the former of which is unstable to the
latter. This indicates that the propagating mode becomes overdamped near the critical point. We thus can have a sufficient understanding of tl
phonon mode in the structural phase transition of solids. We also discuss the implication for the chiral phase transition.
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The quantum chromodynamics (QCD) is believed to have a The long-wavelength fluctuations of the slow variables make
rich phase structure in the temperaturg énd baryon chemi- up what we call the slow modes. One should note that there
cal potential 1) plane[1,2]. The study of the dynamic (i.e., are two kinds of slow modes; the propagating mode and the
nonequilibrium) critical phenomena of the second order QCIdiffusive mode. The propagating mode involves oscillation with
phase transitions including the chiral phase transii8e#8], the  dissipation and corresponds to a pole with both the real and
tricritical point, the critical end poin©—13]and the transitions imaginary parts of the spectral function for the slow variables.
associated with the color superconducti\ity] is not only of  The diffusive mode, on the other hand, is purely dissipative and
theoretical interest but also of fundamental importance for unmay be called the relaxational mode, which corresponds to a
derstanding of the relativistic heavy ion collision experimentspole with the imaginary part only.
and the early universe where the systems make time develop- In general, it is possible to classify critical points into the
ments. universality classes. For the static (i.e., equilibrium) case, as is

One of the characteristic features of the dynamic criticabell known, the universality class can be determined solely by
phenomena is the critical slowing down, which means that ithe symmetry and dimensions of the system. For the dynamic
takes very long time for the system near a critical point to relaxcase, a classification scheme was proposed by Hohenberg and
into the equilibrium state. The long relaxation time is attributedHalperin[15]: The dynamic universality classes are dependent
to the slow motion of the long-wavelength fluctuations of theon what kinds of slow variable (the order parameter and con-
so-called slow (or gross) variables. The slow variables are theerved quantities) are contained in the system as well as on the
fundamental degrees of freedom for description of the dynamisymmetry and dimensions. According to the scheme, Hohen-
properties near critical points. Usually the slow variables aréderg and Halperin have classified the whole critical points in the
identified with the collection of the order parameter and thecondensed matter physics in a lucid and systematic[ivaly
conserved quantities of the system. The dynamic universality class of the chiral phase transition
was first discussed in Rg#]. Hohenberg and Halperin’s clas-
sification scheme tells us that the chiral phase transition belongs
to the same dynamic universality class as that of the antiferro-
magnet. In Refs[7,8], however, a crucial difference between
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the two systems has been pointed out. The difference is in th(e,- x,0¢;(y, t’)) =kgT2I'8;;8(x — y)8(t —1'). 3)
slow modes of the order parameter fluctuation. In the disordere S .

phase, the order parameter fluctuation in the antiferromagnet i%letjr" gnéizit?)e i]s\:’;'ssocrzr;%%%?:z;l gohihiu‘rhN%%&?riS?;g
known to be a diffusive mode, while the order parameter fluc-usual an) ls;r’nmetric Ginzburg—Landau freé energy given by
tuation in the chiral phase transition gives the meson or particle
mode, which is a propagating mode. It has been ar at 1 >, I 1

in order to descritI)Je tﬁegmesgn mode appropriatelyig?@canonf[‘f’] =3 / d’x |:V¢i (X, 1) Vi (R, 1)+ rop? + §M¢>4}, (4)
cal momentum conjugate to the order parameter in addition to
the order parameter itself and conserved quantities is need
as a slow variable. The necessity incorporating both the ord 1
parameter and its canonical momentum may be accepted if
think of the Heisenberg equation for the Klein—Gordon field.
We note that the canonical momentum is neither the order parg-q' (3). . . .

meter nor a conserved quantity. This means that Hohenberg and In the Fourier space, the Langevin equation reads
Halperin’s classification scheme is not able to correctly classifydr;; (¢) 2 u

the dynamic universality class of the chiral phase transition and g, [(ro +K)dz + d Z ¢jl?’¢j1?’/¢i%l?/1?’/]
is not a complete one at its face value. O<k’ k<A

ered is the spatial dimension ang andu are the usual
atic parameters. The dynamic parameteend I" represent

e square of the propagating velocity and the damping con-
s%ant, respectively. Thg(x, ¢) is the white noise which satisfies

In this Letter, we investigate the propagating mode for the or- _r do, + () )
der parameter fluctuation in the®) Ginzburg—Landau theory dr ik
that involves the canonical momentum as a degree of freedontig;; (1)
We analyze the Langevin equation for the propagating mode by ¢ A, ©®)
using the renormgllzanon group technilque. For simplicity, w .Cil?(t)gjl?(t/» =ksT2I8;;8; _p8(t — 1), (7)
ignore other possible conserved quantities. The system we will
consider is the simplest possible model. whereL is the system volume. The wavenumber of the fluctu-

In fact, we know a critical point in the condensed matterations is cutoff atA.
physics, the soft mode for which is a propagating mode involv- Our Langevin equation for the propagating mode should be
ing the canonical momentum. It is the structural phase transitioin some connection with the Langevin equation for the diffu-
of solids[16]. The soft mode is a phonon mode, which is asive mode. In general, when the friction or damping constant is
vibrational mode of the lattice. Experimentally, it is observedvery large, the oscillation becomes overdamped and the oscil-
that the phonon mode becomes overdamped, eventually turkatory nature is lost. The Langevin equation for the propagating
ing into a diffusive mode near the critical point. This fact may mode should be reduced to that for the overdamped or diffusive
suggest that the meson mode in the chiral transition also benode for the large damping constant. Actually, this reduction
comes overdamped and its dynamic universality class reduce&sin be proven explicitly if the nonlinear interaction coupling
to that of the antiferromagnet near the critical point as discussed is absen{18]. Consider the Langevin equati¢®)—(7) with
in Ref. [4]. This is indeed the case as we will see later. In ax = 0. If we take the overdamped limit by imposing the condi-
theoretical side, the phonon mode was examined in R8f,  tion AI"2 > ro + k2, then the canonical momentum turns out to
in which essentially the Langevin equation for the propagatbe the faster degree of freedom and we can integrate it out ex-
ing mode was analyzed. However, the analysis will be foundlicitly to find the Langevin equation for the slower degree of
not to be adequate in the sense discussed below. Our investiaeedome, ; (t);
tion will elucidate the profound background of the overdamping

phenomenon. The purpose of this Letter is to give a reanaly':igd)”;(t) =—y 1] + g/]_{.([), (8)
of the Langevin equation for the propagating mode of th& D dr 8¢; ¢ '

Ginzburg—Landau model and to examine the role of the canon- 1 Na .

ical momentum in the critical dynamics. The model incIudesF[¢ik] - Ekz;\(rOJrk )¢ik¢i*k’ ©)

the structural phase transition as &in= 1 case and the chiral | . )
phase transition a& = 4. Our analysis brings us new findings <§,~;;(f)§j;;/(t ))=ksT2y8;;6; 18t —1), (10)
missed in the previous work, which lead to a deeper insight into

/7 - - . 1 .
the structural transition and the chiral transition as well as intaNhereFi/?(f) isthe rengrmghzed noise term.andz 1/17' This
the classification scheme of dynamic universality classes. ~ €auation is for the diffusive mode and gives nothing but the

The Langevin equation that describes the propagating mod&©del A withu = 0 in Ref.[15],

for the order parameter fluctuation is given by a natural exten- 'NOW We apply the renormalization group to the Langevin
sion of that for the Brownian particld.7]: equation for the propagating mode, not necessarily assuming
the overdamping condition. The renormalization group analy-

dri (X, 1) _ A U pd¢i (x, 1) (3 1 sis leading to the recursion relati¢h5)—(18)has already been
- - + é‘l (-xa t)a ( )
dr 8¢i(x,1) dr
M =Am;i(X,1), (2) 1 In the formalism of the Fokker—Planck equation, this reduction corresponds

d to that from Kramer’s equation to Smoluchowski equation. See[R@f.
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performed in Ref[15]. Although the following calculation is =00
: . . D(z=2)®

not new, we will present the calculation below to make the dis- o= @ ;

cussion self-contained.

The renormalization group program consists of the two pro-
cedureq18,20j (i) integrate out the short-wavelength fluctua-
tion with A/b < k < A, and (ii) make the scale transformation
of ¢.; — b1/, - (tb~7). After the procedures, we have the
recursion relation for the parametdps I, ro, u). We employ
thee-expansion assuming thais of ordere, wheree =4 —d.

In this Letter, we consider only the lowest order of the expan-
sion. The dynamic response function for the order parameter
fluctuation is given in the form of

1
—%w2+ro+k2—in+E(§,w)7

i
|
|
i
|
I
i
|
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Fig. 1. The two fixed points and the renormalization group flow.

whereX (k, w) is the 1PI self-energy. rise to the Gaussian and Wilson—Fisher (WF) fixed points as
The diagrammatic rules for the perturbation are almost theisual. Although there are two dynamic parameters, one of them
same as those for the diffusive model (model A in R&&]).  just fixes the time scale and only some ratio of the two is
Only the difference is the form of the response function. Formeaningful. It is useful to define the dynamic parameter as
the propagating mode, it includes thé term as seen from Eq. p = +/AI"/A. From the recursion relation, we find that there
(11). For the overdamped limit whebd” > w (or /A" > A),  arise two fixed points associated with the WF fixed point in the
thew? term disappears and the response function reduces to the&rameter spaa@, ro, u).2 SeeFig. 1
of the diffusive modg15]. We note that for the particle mode,  The two fixed points are located at= 0 andp = oo, which
which is a propagating mode and described by the system witill be denoted asP and D, respectively. The fixed poinP
A =1, the pole position lies in the time-like region in thek has the dynamic critical exponent= 1 [6,8] and represents
plane. This is contrary to the diffusive mode for which the polethe purely propagating mode, while the fixed pointhas the

is always in the space-like region. dynamic exponent = 2 [20] and corresponds to the diffusive
After the integration of the fluctuation, the new parametersmode. The dynamic exponents are obtained in a usual man-
are defined by ner[18,20] The arrows indicate the flow of the renormalization
o — lim G‘l(lz o) (12) group. We see that the paramepe'rs relevant with respect Fo
0™ 1 om0 v the fixed pointP and the line extended from the Gaussian fixed
) 1o point to the WF fixed point gives the critical “surface”. Thus
r'= lm 3 iw) G (k, w), (13)  the fixed pointP is unstable to the fixed poirf. The system
1 ’ 52 represented by the point near the critical surface, such as the
Z = lim — ¢k, w), (14)  cross inFig. 1, is firstly taken to the vicinity ofP but eventu-
N ko—0d(—iw)? ally driven away to the fixed poinb; namely, there occurs a
where the last equation is absent in the diffusive model and newrossover between the two fixed points.
in the present model. Up to the lowest order in¢hexpansion, An illuminative example of a crossover phenomenon be-

the self-energy is given by the tadpole diagram, which has ndween two fixed points is provided us with the static critical
frequency and wavenumber dependence. THusnd A’ re-  phenomena in the magnetic syste@i]. Consider the Heisen-
ceive no corrections from the fluctuation integration. After theberg ferromagnet which has the rotational O(3) symmetry. Its

scale transformation, we obtain the recursion relation; critical property would be controlled by the associated fixed
1 1 point, i.e., the Heisenberg fixed point. The full rotational sym-
o :bz—zzx’ (15) metry may be broken into the uniaxial one by, say, distortion
R of the lattice, the effect of which is described by the appro-
rr=b0""r, (16) priate anisotropic Hamiltonian with the coupling constantt
ro= b2(ro + Ar), (17) is known[21] that the Heisenberg fixed point is unstable with
W = b4+ Au). (18) respect to the parametgr The stable fixed points are sup-

plied by the Ising orXY fixed points, depending on the sign
We note that Eq15)is given in Eq. (4.36) in Ref15]. Thefirst  of g. A point with smallg in the parameter space is driven by
two equations are for the dynamic parameters while the last two
for the static ones. We note that the recursions for the dynamic
and static parameters are decoupled to this order. The recu; , .

. . . Actually, we have two fixed points associated with the Gaussian fixed point
sions for the static parameters are the usual ones for the Staué{gwell. The two sets of the two fixed points have the same feature with respect

Ginzburg-Landau theory withr = u(N/2 + 1) f ddqd (ro + to the p-direction because the recursions for the dynamic and static parameters
o (27) are decoupled. We will concentrate on the two fixed points for the Wilson—
g»~tandAu = —u?(N +8)/2 [ -S4

@07 (ro + g% 2, and give  Fisher fixed point.
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the renormalization group to the Ising arY fixed point via  ing the propagating fixed point, the renormalization group flow
the vicinity of the Heisenberg fixed point. This means that thecloses itself. If the system exists which has the parameters just
system firstly exhibits the critical behavior of the Heisenbergin the plane, the propagating fixed point is no longer unsta-
universality class, but the Ising- dfY-like behavior eventu- ble? If the system takes the parameters very close to the plane
ally shows up as the critical point is approached. initially, the overdamped region near the critical point is corre-

Our analysis indicates that the propagating mode crossespondingly small and the critical behavior is almost governed
over into the diffusive mode near the critical point: At first, the by the propagating fixed point. Thus the propagating behavior
propagating mode is softened with the exponeet 1 under  constitutes one dynamic universality class.
the control of the propagating fixed point, and then it becomes Since the propagating mode eventually reduces to the dif-
overdamped to be governed by the diffusive fixed point withfusive mode near the critical point, the canonical momentum
7=2. becomes a rapid degree of freedom and fades out of the mem-

Now we have obtained a lucid explanation for the phonorber of the slow variables at that point. Thus if one restricts one’s
mode in the structural phase transifiorthe phonon mode interest to the very vicinity of the critical point, Hohenberg
changes its behavior from the propagating into the diffusive aand Halperin's classification scheme of dynamic universality
a consequence of the crossover between the two fixed pointslasses, which is based on the order parameter and conserved
As we mentioned, the recursion relati(itb)—(18)was already quantities, practically works. However, the canonical momen-
derived in Ref[15]. However it was utilized only to discuss the tum is still an important degree of freedom to find the dynamic
stability of the diffusive fixed point with respect to the small universality class associated with the propagating fixed point.
perturbation in thep direction. Namely only the vicinity of the In this respect, Hohenberg and Halperin’s classification scheme
diffusive fixed point was investigated. In the present analysismay be regarded as incomplete.
we have examined the whole region in the parameter space We now turn to the chiral phase transition. Our analysis pre-
within the validity of thee-expansion, and found out the un- dicts that as the system approaches the critical point, the meson
stable propagating fixed point. mode turns into the diffusive mode after the softerinfhus

The finding of the unstable propagating fixed point brings ughe dynamic universality class of the chiral transition certainly
new insights into the structural phase transition: We can haveeduces to that of the antiferromagnet as argued in [Réf.
a simple understanding of the overdamping phenomenon asHowever the propagating behavior of the meson mode is still
crossover between the two fixed points. The mechanism of hownportant to analyze since it shows universal properties belong-
the propagating behavior changes into the diffusive one has béig to a fixed point. There have been various approaches, such
come more concrete. It is clear that because of the instabilitgs the mode coupling theoiy,8], the Nambu—Jona-Lasinio
of the fixed point, the propagating mode inevitably becomesnodel[3] and the microscopic approach in Rf§]. Unfortu-
overdamped even if we start from anywhere in the parametanately, the overdamping phenomenon was not noticed in these
space except in the = 0 plane. Moreover the universality of analyses within the adopted approximations. Actually, up to
the propagating behavior of the phonon mode are confirmedow there have been two kinds of works based on different
by the fixed point. These ingredients give a full explanation instandpoints: some works treat the meson mode as a diffusive
terms of the renormalization group language, which is sufficientnode while others assume the mode to be propagating. These
for understanding of the phonon mode in the structural phasvo standpoints are reconciled now that the crossover between
transition[22]. the two kinds of modes has been realized. We should note that

We note that it is not until the propagating fixed point is the overdamping of the meson mode itself has a significant
given that its universality is guaranteed. In fact, the renormalphysical meaning that the sigma mesons and pions are not able
ization group analysis of the phonon mode has been restrictdd propagate and lose a particle nature near the chiral phase
only to the diffusive behavior near the critical point up to thetransition.
present. The propagating fixed point we have found gives us a To summarize, we have found the fixed point for the propa-
firm basis to discuss the universal nature of the propagating berating mode, which is unstable to the fixed point for the diffu-
havior of the phonon mode. sive mode. This means that the propagating mode for {i#)O

It should be noted that though being unstable, the propagaGinzburg—Landau theory becomes overdamped near the critical
ing fixed point gives one dynamic universality class in the senspoint. The analysis gives a satisfactory account of the charac-
that fixed points and universality classes make a one-to-onter change of the phonon mode in the structural phase transition
correspondence. The Heisenberg fixed point in the magnetiand also predicts the fate of the meson mode near the chiral
system actually gives one universality class although it is unphase transition. In the future work, we will investigate the
stable against the anisotropic interaction. As can be seen frofmigher order calculation in the-expansion, which will clar-
the recursion relatiofil5)—(18) within the p = 0 plane includ-

- 4 The plane within which the renormalization group flow closes itself coin-
3 Although we have considered only the order parameter fluctuation, and theides with theo = 0 plane in the leading order of tkeexpansion. In the higher

other conserved quantity, i.e., the energy, has not been taken care of in thigders, however, the plane may be lifted from the: 0 plane, as suggested by

Letter, we believe that our analysis is sufficient for the qualitative feature of the=q. (4.80) in Ref[15]. This means that those propagating modes, which lie in

phonon mode. This would be so because the instability of the propagating fixethe plane and do not become overdamped, can have a finite width.

point would not be affected even if conserved quantities are taken into account® This means that the pole moves from the time-like to the space-like region.
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ify the deviations of the dynamic critical exponents from the [6] D. Boyanovsky, H.J. De Vega, Phys. Rev. D 65 (2002) 085038, hep-

mean field values obtained in this work. TheNLexpansion is ph/0110012;

also interesting. Moreover it is necessary to take account of the D:- Boyanovsky, H.J. De Vega, Ann. Phys. 307 (2003) 335, hep-
" S ph/0302055.

conserved quantities for the proper description of the structural

™ . o [7] T. Koide, M. Maruyama, nucl-th/0308025;
phase transition, the chiral phase transition and so on. We hope ' 1. koide, M. Maruyama, Nucl. Phys. A 742 (2004) 95, hep-ph/0404133.
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