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a b s t r a c t

In the first part of this paper we generalize results on common fixed points in ordered cone
metric spaces obtained by I. Altun and G. Durmaz [I. Altun, G. Durmaz, Some fixed point
theorems on ordered cone metric spaces, Rend. Circ. Mat. Palermo, 58 (2009) 319–325]
and I. Altun, B. Damnjanović and D. Djorić [I. Altun, B. Damnjanović, D. Djorić, Fixed point
and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. (2009)
doi:10.1016/j.aml.2009.09.016] by weakening the respective contractive condition. Then,
the notions of quasicontraction and g-quasicontraction are introduced in the setting of
ordered cone metric spaces and respective (common) fixed point theorems are proved. In
such a way, known results on quasicontractions and g-quasicontractions in metric spaces
and conemetric spaces are extended to the setting of ordered conemetric spaces. Examples
show that there are cases when new results can be applied, while old ones cannot.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Ordered normed spaces and cones have applications in applied mathematics, for instance, in using Newton’s approxi-
mation method [1–3] and in optimization theory [4]. Numerous generalizations of the Banach Contraction Principle in the
setting of metric spaces were given by many authors. Abstract (cone) metric spaces were studied by Huang and Zhang [5].
They proved the basic versions of the fixed point theorem, which were later generalized by several authors.
The existence of fixed points in partially ordered sets was investigated, e.g., by Ran and Reurings [6], and then by Nieto

and Lopez [7]. The following two versions of the fixed point theorem were proved, among others, in these papers.

Theorem 1.1 ([6,7]). Let (X,v) be a partially ordered set and let d be a metric on X such that (X, d) is a complete metric space.
Let f : X → X be a nondecreasing map w.r.t. v. Suppose that the following conditions hold:

(i) there exists k ∈ (0, 1) such that d(fx, fy) ≤ kd(x, y) for all x, y ∈ X with y v x;
(ii) there exists x0 ∈ X such that x0 v fx0;
(iii) f is continuous, or
(iii′) if a nondecreasing sequence {xn} converges to x ∈ X, then xn v x for all n.

Then f has a fixed point x∗ ∈ X.
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Fixed point results in ordered metric spaces were investigated by many authors (see, e.g., [8–14]).
Fixed point results in ordered cone metric spaces were obtained by Altun and Durmaz [15], as well as by Altun,

Damnjanović and Djorić [16]. We state the basic result from [15].

Theorem 1.2 ([15]). Let (X,v) be a partially ordered set and let d be a cone metric on X (defined over a normal cone P with
the normal constant K) such that (X, d) is a complete cone metric space. Let f : X → X be a continuous and nondecreasing map
w.r.t. v. Suppose that the following conditions hold:

(i) there exists k ∈ (0, 1) such that d(fx, fy) � kd(x, y) for all x, y ∈ X with y v x;
(ii) there exists x0 ∈ X such that x0 v fx0.

Then f has a fixed point x∗ ∈ X.

In [16], some generalizations of the previous theoremwere proved, including the case when the underlying cone P is not
normal. Also, some common fixed point theorems were obtained. We state the following theorem which is an ‘‘ordered’’
variant of a result of Abbas and Rhoades [17].

Theorem 1.3 ([16]). Let (X,v) be a partially ordered set and let d be a cone metric on X (defined over a cone P with int P 6= ∅)
such that (X, d) is a complete cone metric space. Let f , g : X → X be self-maps such that (f , g) is a weakly increasing pair
w.r.t. v. Suppose that the following conditions hold:

(i) there exist α, β, γ ≥ 0 such that α + 2β + 2γ < 1 and

d(fx, gy) � αd(x, y)+ β[d(x, fx)+ d(y, gy)] + γ [d(x, gy)+ d(y, fx)] (1.1)

for all comparable x, y ∈ X;
(ii) f or g is continuous, or
(ii′) if a nondecreasing sequence {xn} converges to x ∈ X, then xn v x for all n.

Then f and g have a common fixed point x∗ ∈ X.

Note that a pair (f , g) of self-maps on a partially ordered set (X,v) is said to beweakly increasing if fx v gfx and gx v fgx
for all x ∈ X . There are examples (see [16]) when neither of such mappings f , g is nondecreasing w.r.t.v. In particular, the
pair (f , iX ) (iX—the identity function) is weakly increasing if and only if x v fx for each x ∈ X .
We show by the following simple example that a mapping on an ordered cone metric space can be an ‘‘ordered’’

contraction, while it is not a contraction in the classical sense. (Examples of similar kind were given also in [15,16].)

Example 1.4. Let X = {1, 2, 4},v= {(1, 1), (2, 2), (4, 4), (1, 4)}; E = R2, P = {(a, b) : a, b ≥ 0}, d(x, y) = (|x− y| ,
2 |x− y|), and let f : X → X, f 1 = 2, f 2 = 1, f 4 = 1.
The mapping f is a (Banach-type) contraction in the ordered cone metric space (X,v, d), i.e.

d(fx, fy) � λd(x, y), y v x, (1.2)

for some λ ∈ [0, 1). Indeed, we have only to check validity of (1.2) for y = 1, x = 4. But it is equivalent to | f 4− f 1| ≤
λ |4− 1|, i.e., |1− 2| ≤ λ |4− 1|, which is satisfied if (and only if) λ ∈

[ 1
3 , 1

)
.

On the other hand, f is not a contraction in the (non-ordered) cone metric space (X, d). Indeed, for x = 2, y = 1 we have
that

| f 2− f 1| ≤ λ |2− 1| ⇔ 1 ≤ λ · 1⇔ λ ≥ 1.

It also means that f is not a contraction in the metric space (X, d1)where d1 is the usual metric d1(x, y) = |x− y| on R.

In Section 3 of this paper we generalize results from [15,16] by weakening condition (1.1) (see Theorem 3.1). Then,
in Section 4, the notions of quasicontraction and g-quasicontraction are introduced in the setting of ordered cone metric
spaces and respective (common) fixed point theorems are proved. In such a way, known results on quasicontractions and
g-quasicontractions in metric spaces [18,19] and cone metric spaces [20–23] are extended to ordered cone metric spaces.
Examples show that there are cases when new results can be applied, while old ones cannot.

2. Preliminaries

We need the following definitions and results, consistent with [4,5].
Let E be a real Banach space. A subset P of E is a cone if:

(i) P is closed, nonempty and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P;
(iii) P ∩ (−P) = {0}.
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Given a cone P ⊂ E, we define the partial ordering�with respect to P by x � y if and only if y− x ∈ P . We write x ≺ y
to indicate that x � y but x 6= y, while x� y stands for y− x ∈ int P (the interior of P).
A cone P ⊂ E is called normal if there is a number K > 0 such that for all x, y ∈ P ,

0 � x � y implies ‖x‖ ≤ K‖y‖ (2.1)

or, equivalently, if xn � yn � zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (2.2)

The least positive number K satisfying (2.1) is called the normal constant of P . It is clear that K ≥ 1. Most of ordered Banach
spaces used in applications posses a conewith the normal constant K = 1, and if this is the case, proofs of the corresponding
results are much alike as in the metric setting. If K > 1, this is not the case.

Example 2.1 ([2]). Let E = C1R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x
′
‖∞ and P = {x ∈ E : x(t) ≥ 0 for t ∈ [0, 1] }. This cone is not

normal. Consider, for example, xn(t) = tn
n , yn(t) =

1
n . Then 0 � xn � yn and limn→∞ yn = 0, but

‖xn‖ = max
t∈[0,1]

∣∣∣∣ tnn
∣∣∣∣+ maxt∈[0,1]

∣∣tn−1∣∣ = 1
n
+ 1 > 1;

hence (xn) does not converge to zero. It follows by (1.2) that P is a nonnormal cone.

Definition 2.2 ([5]). Let X be a nonempty set and P a cone in a Banach space E. Suppose that a mapping d : X × X → E
satisfies:

(d1) 0 � d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) � d(x, z)+ d(z, y) for all x, y, z ∈ X .

Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a conemetric space ismore general than that of ametric space, because eachmetric space is a conemetric
space where E = R and P = [0,+∞).
The following remark will be useful in the sequel.

Remark 2.3. (1) If u � v and v � w, then u� w.
(2) If 0 � u� c for each c ∈ int P , then u = 0.
(3) If a � b+ c for each c ∈ int P then a � b.
(4) If 0 � x � y, and 0 ≤ a, then 0 � ax � ay.
(5) If 0 � xn � yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y, then 0 � x � y.
(6) If 0 � d(xn, x) � bn and bn → 0, then d(xn, x)� c where xn, x are, respectively, a sequence and a given point in X .
(7) If E is a real Banach space with a cone P and if a � λawhere a ∈ P and 0 < λ < 1, then a = 0.
(8) If c ∈ int P, 0 � an and an → 0, then there exists n0 such that for all n > n0 we have an � c.

For other basic properties of cone metric spaces we refer to [5].

3. Common fixed points of weakly increasing mappings

In the rest of the paper (X,v, d)will always be an ordered cone metric space, i.e.,vwill be a partial order on the set X ,
and dwill be a cone metric on X with the underlying cone P such that int P 6= ∅ (such a cone will be called solid). Normality
of the cone is not assumed.
In our first result we shall use conditions similar to those used in [17] in non-ordered case.

Theorem 3.1. Let (X,v, d) be an ordered complete cone metric space. Let (f , g) be a weakly increasing pair of self-maps on X
w.r.t.v. Suppose that the following conditions hold:

(i) there exist p, q, r, s, t ≥ 0 satisfying p+ q+ r + s+ t < 1 and q = r or s = t, such that

d(fx, gy) � pd(x, y)+ qd(x, fx)+ rd(y, gy)+ sd(x, gy)+ td(y, fx) (3.1)

for all comparable x, y ∈ X;
(ii) f or g is continuous, or
(ii′) if a nondecreasing sequence {xn} converges to x ∈ X, then xn v x for all n ∈ N.

Then f and g have a common fixed point x∗ ∈ X.
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Proof. Let x0 ∈ X be arbitrary and define a sequence {xn} by x2n+1 = fx2n and x2n+2 = gx2n+1 for all n ∈ N0. Using that
the pair of mappings (f , g) is weakly increasing, it can be easily shown that the sequence {xn} is nondecreasing w.r.t.v, i.e.,
x0 v x1 · · · v xn v xn+1 v · · ·. In particular, x2n and x2n+1 are comparable, so we can apply relation (3.1) to obtain

d(x2n+1, x2n+2) = d(fx2n, gx2n+1)
� pd(x2n, x2n+1)+ qd(x2n, x2n+1)+ rd(x2n+1, x2n+2)+ sd(x2n, x2n+2)+ td(x2n+1, x2n+1)
� pd(x2n, x2n+1)+ qd(x2n, x2n+1)+ rd(x2n+1, x2n+2)+ s[d(x2n, x2n+1)+ d(x2n+1, x2n+2)].

It follows that

(1− r − s)d(x2n+1, x2n+2) � (p+ q+ s)d(x2n, x2n+1),

i.e.

d(x2n+1, x2n+2) �
p+ q+ s
1− (r + s)

d(x2n, x2n+1). (3.2)

In a similar way one obtains that

d(x2n+2, x2n+3) �
p+ q+ t
1− (q+ t)

·
p+ q+ s
1− (r + s)

d(x2n, x2n+1). (3.3)

Now, from (3.2) and (3.3), by induction, we obtain that

d(x2n+1, x2n+2) �
p+ q+ s
1− (r + s)

d(x2n, x2n+1)

�
p+ q+ s
1− (r + s)

·
p+ r + s
1− (q+ t)

d(x2n−1, x2n)

�
p+ q+ s
1− (r + s)

·
p+ r + s
1− (q+ t)

·
p+ q+ s
1− (r + s)

d(x2n−2, x2n−1)

� · · · �
p+ q+ s
1− (r + s)

(
p+ r + t
1− (q+ t)

·
p+ q+ s
1− (r + s)

)n
d(x0,x1),

and

d(x2n+2, x2n+3) �
p+ r + t
1− (q+ t)

d(x2n+1, x2n+2)

� · · · �

(
p+ r + t
1− (q+ t)

·
p+ q+ s
1− (r + s)

)n+1
d(x0, x1).

Let

A =
p+ q+ s
1− (r + s)

, B =
p+ r + t
1− (q+ t)

.

In the case q = r ,

AB =
p+ q+ s
1− (q+ s)

·
p+ r + t
1− (q+ t)

=
p+ q+ s
1− (q+ t)

·
p+ r + t
1− (r + s)

< 1 · 1 = 1,

and if s = t ,

AB =
p+ q+ s
1− (r + s)

·
p+ r + s
1− (q+ t)

< 1 · 1 = 1.

Now, for n < mwe have

d(x2n+1, x2m+1) � d(x2n+1, x2n+2)+ · · · + d(x2n, x2m+1)

�

(
A
m−1∑
i=n

(AB)i +
m∑

i=n+1

(AB)i
)
d(x0, x1)

�

(
A(AB)n

1− AB
+
(AB)n+1

1− AB

)
d(x0, x1)

= (1+ B)
A(AB)n

1− AB
d(x0, x1).
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Similarly, we obtain

d(x2n, x2m+1) � (1+ A)
(AB)n

1− AB
d(x0, x1),

d(x2n, x2m) � (1+ A)
(AB)n

1− AB
d(x0, x1)

and

d(x2n+1, x2m) � (1+ B)
A(AB)n

1− AB
.

Hence, for n < m

d(xn, xm) � max
{
(1+ B)

A(AB)n

1− AB
, (1+ A)

(AB)n

1− AB

}
d(x0, x1) = λnd(x0, x1),

where λn → 0, as n→∞.
Now, using (8) and (1) of Remark 2.3 and only the assumption that the underlying cone is solid, we conclude that {xn} is

a Cauchy sequence. Since the space (X, d) is complete, there exists x∗ ∈ X such that xn → x∗ (n→∞).
Suppose that, for example, f is a continuous mapping, then we have that fxn → fx∗, which (taking n even) implies that

fx∗ = x∗. Now, since x∗ v x∗, taking x = y = x∗ in relation (3.1), we obtain that

d(fx∗, gx∗) � pd(x∗, x∗)+ qd(x∗, fx∗)+ rd(x∗, gx∗)+ sd(x∗, gx∗)+ td(x∗, fx∗),

i.e., since fx∗ = x∗,

d(x∗, gx∗) � (r + s)d(x∗, gx∗).

Since r + s < 1, using Remark 2.3(7), it follows that gx∗ = x∗, and x∗ is a common fixed point of f and g .
The proof is similar when g is a continuous mapping.
Consider now the casewhen condition (ii′) is satisfied. For the sequence {xn}we have xn → x∗ ∈ X (n→∞) and xn v x∗

(n ∈ N). By the construction, fxn → x∗ and gxn → x∗ (n→∞). Let us prove that x∗ is a common fixed point of f and g .
Putting x = x∗ and y = xn in (3.1) (since they are comparable) we get

d(fx∗, gxn) � pd(x∗, xn)+ qd(x∗, fx∗)+ rd(xn, gxn)+ sd(x∗, gxn)+ td(xn, fx∗).

For the first and fourth term on the right-hand side we have d(xn, x∗) � c and d(x∗, gxn) � c (for c ∈ int P arbitrary
and n ≥ n0). For the second term, d(x∗, fx∗) � d(x∗, xn) + d(xn, gxn) + d(gxn, fx∗) (again the first term on the right can be
neglected), and for the fifth term d(xn, fx∗) � d(xn, gxn)+ d(gxn, fx∗). It follows that

(1− q− t)d(fx∗, gxn) � (q+ r + t)d(xn, gxn).

But, xn → x∗ and gxn → x∗ implies that d(xn, gxn) � c , which means that also d(fx∗, gxn) � c , i.e. gxn → fx∗. It follows
that fx∗ = x∗ and, in a symmetric way (using that x∗ v x∗), gx∗ = x∗. �

Remark 3.2. Theorem 1.3 is a special case of Theorem 3.1, obtained for α = pβ = q = r and γ = s = t .

Now, adapting an example from [24], we give an example of the situation when Theorem 3.1 can be applied, while
Theorem 1.3 cannot.

Example 3.3. Let X = {1, 2, 3},v= {(1, 1), (2, 2), (3, 3), (2, 3), (3, 1), (2, 1)}, and d : X × X → C1R[0, 1] be defined by
d(x, y)(t) = 0 for x = y and

d(1, 2)(t) = d(2, 1)(t) = 6et , d(1, 3)(t) = d(3, 1)(t) =
30
7
et , d(2, 3) = d(3, 2) =

24
7
et .

Further, let fx = 1, x ∈ X , and g1 = g3 = 1, g2 = 3.
We have that d(f 3, g2)(t) = d(1, 3)(t) = 30

7 e
t . But, the right-hand side of (1.1) for x = 3, y = 2 has the form

αd(3, 2)+ β[d(3, f 3)+ d(2, g2)] + γ [d(3, g2)+ d(2, f 3)]

= α
24
7
et + β

(
30
7
et +

24
7
et
)
+ γ (0+ 6et) =

24α
7
et +

54β
7
et + 6γ et ,

which is less than 307 e
t for arbitrary α, β, γ satisfying the condition α+2β+2γ < 1. Indeed, 247 α+

54
7 β+6γ <

30
7 follows

from 24
30α +

54
30β +

42
30γ < α + 2β + 2γ < 1.

Hence, the conditions of Theorem 1.3 are not fulfilled and this theorem cannot be used to conclude that f and g have a
common fixed point.
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On the other hand, taking p = q = r = s = 0, t = 5
7 all the conditions of Theorem 3.1 are fulfilled. Indeed, since

f 1 = g1 = f 3 = g3 = 1, we have only to check that

d(f 3, g2)(t) � 0 · d(3, 2)(t)+ 0 · d(3, f 3)(t)+ 0 · d(2, g2)(t)+ 0 · d(3, g2)(t)+
5
7
d(2, f 3)(t),

which is equivalent to

30
7
et �

5
7
d(2, f 3)(t) =

5
7
d(2, 1)(t) =

5
7
· 6et =

30
7
et .

Thus, we can apply Theorem 3.1 and conclude that the mappings f and g have a (unique) common fixed point u = 1.

The next example (where the idea is taken from [25]) shows that the condition p+q+r+s+ t < 1 alone is not sufficient
to obtain the conclusion of Theorem 3.1. We shall stay in the setting of metric spaces—it would be easy to adapt it to the
setting of ordered cone metric spaces.

Example 3.4. Let X = {x, y, u, v}, where x = (0, 0, 0), y = (4, 0, 0), u = (2, 2, 0), v = (2,−2, 1), and let d be the
Euclidean metric in R3. Consider the mappings

f =
(
x y u v
u v v u

)
, g =

(
x y u v
y x y x

)
.

By a careful computation it is easy to obtain that

d(fa, gb) ≤
3
4
max{d(a, b), d(a, fa), d(b, gb), d(a, gb), d(b, fa)}, (3.4)

for all a, b ∈ X . We shall show that f and g satisfy the following contractive condition: there exist p, q, r, s, t ≥ 0 with
p+ q+ r + s+ t < 1 and q 6= r, s 6= t such that

d(fa, gb) ≤ pd(a, b)+ qd(a, fa)+ rd(b, gb)+ sd(a, gb)+ td(b, fa) (3.5)

holds true for all a, b ∈ X . Obviously, f and g do not have a common fixed point.
Taking (3.4) into account, we have to consider the following cases:

1◦ d(fa, gb) ≤ 3
4d(a, b). Then (3.5) holds for p =

3
4 , r = t = 0 and q = s =

1
9 .

2◦ d(fa, gb) ≤ 3
4d(a, fa). Then (3.5) holds for q =

3
4 , p = r = t = 0 and s =

1
5 .

3◦ d(fa, gb) ≤ 3
4d(b, gb). Then (3.5) holds for r =

3
4 , p = q = t = 0 and s =

1
5 .

4◦ d(fa, gb) ≤ 3
4d(a, gb). Then (3.5) holds for s =

3
4 , p = r = t = 0 and q =

1
5 .

5◦ d(fa, gb) ≤ 3
4d(b, fa). Then (3.5) holds for t =

3
4 , p = r = s = 0 and q =

1
5 .

Corollary 3.5. Let (X,v, d) be an ordered complete cone metric space. Let f : X → X be a self-map such that x v fx for all
x ∈ X. Suppose that the following conditions hold:

(i) there exist p, q, r, s, t ≥ 0 satisfying p+ q+ r + s+ t < 1 and q = r or s = t, such that

d(f mx, f ny) � pd(x, y)+ qd(x, f mx)+ rd(y, f ny)+ sd(x, f ny)+ td(y, f mx)

for some m, n ∈ N,m ≤ n and all comparable x, y ∈ X;
(ii) f is continuous.

Then f has a fixed point x∗ ∈ X.

Proof. Follows from Theorem 3.1 by putting f m ≡ f , f n ≡ g . �

Takingm = n = 1 in the previous corollary, one obtains

Corollary 3.6. Let (X,v, d) be an ordered complete cone metric space. Let f : X → X be a self-map such that x v fx for all
x ∈ X. Suppose that the following conditions hold:

(i) there exist p, q, r, s, t ≥ 0 such that p+ q+ r + s+ t < 1 and

d(fx, fy) � pd(x, y)+ qd(x, fx)+ rd(y, y)+ sd(x, fy)+ td(y, fx) (3.6)

for all comparable x, y ∈ X;
(ii) f is continuous.

Then f has a fixed point x∗ ∈ X.
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Note that here (when just one function f is considered) there was no need for additional assumptions on coefficients
p, q, r, s, t .

Remark 3.7. In the case, as in the previous corollary, when just one function f is considered, it can be easily shown that
conditions (3.6) and (1.1) (in a special case when f = g) are equivalent. Indeed, it is enough to change places for x and y
in (3.6) and after adding up both sides of two inequalities, denote α = p

2 , β =
q+r
2 , γ =

s+t
2 to obtain condition (1.1). When

two functions f and g enter these conditions, this procedure cannot be applied.

Remark 3.8. One possible condition that can guarantee the uniqueness of fixed point (or common fixed point) was given
in [6,7]. This condition is: ‘‘every pair of elements in (X,v) has a lower bound and an upper bound’’.

4. Fixed points of quasicontractions on ordered cone metric spaces

The notion of a quasicontraction in a metric space was first used by Ćirić [18] and Das and Naik [19]. Cone metric version
of this notion was considered by Ilić and Rakočević [20], as well as Kadelburg, Radenović and Rakočević [21] and Pathak
and Shahzad [22]. Generalized g-quasicontractions in conemetric spaces were investigated in [23]. We shall introduce here
the notion of an ordered g-quasicontraction in an ordered cone metric space and prove the respective common fixed point
theorem.
Let (f , g) be a pair of self-maps on an ordered cone metric space (X,v, d) such that f (X) ⊂ g(X). Let the mapping f

be g-nondecreasing, i.e., let for each x, y ∈ X , gx v gy implies fx v fy. Suppose also that there is a point x0 ∈ X such that
gx0 v fx0. Then it is possible to construct a so called Jungck sequence in the following way: starting with the given x0, choose
x1 ∈ X such that fx0 = gx1 (which is possible since fX ⊂ gX). Now it is gx0 v gx1 which implies that fx0 v fx1. Then there
exists x2 ∈ X such that fx1 = gx2, and again fx0 v fx1 implies that gx1 v gx2 and fx1 v fx2. Continuing this procedure, we
obtain:

fx0 v fx1 v fx2 v · · · v fxn v fxn+1 v · · ·

and

gx1 v gx2 v · · · v gxn+1 v gxn+2 v · · · .

Definition 4.1. The mapping f is called an ordered g-quasicontraction if there exists λ ∈ [0, 1/2) such that for each x, y ∈ X
satisfying gy v gx, there exists

u ∈ M f ,g0 (x, y) = {d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)}, (4.1)

such that d(fx, fy) � λ · u holds.

Theorem 4.2. Let (f , g) be a pair of self-maps on a complete ordered cone metric space (X,v, d) such that f (X) ⊂ g(X) and
such that there is a point x0 ∈ X with gx0 v fx0. Suppose that

(i) f is an ordered g-quasicontraction;
(ii) g(X) is closed in X;
(iii) f is g-nondecreasing;
(iv) if {g(xn)} ⊂ X is a nondecreasing sequence, converging to some gz, then gxn v gz and gz v ggz.

Then f and g have a coincidence point, i.e., there exists z ∈ X such that fz = gz.
If, further, f and g are weakly compatible, then they have a common fixed point.

Recall (see [26,27]) that themappings f and g are said to beweakly compatible if, for each x ∈ X, fx = gx implies fgx = gfx.

Proof. Starting with the given x0 construct the Jungck sequence fxn−1 = gxn of the pair (f , g), with the initial point x0.
We shall prove that it is a Cauchy sequence in X .
Let us prove first that

d(fxn, fxn+1) �
λ

1− λ
d(fxn−1, fxn) (4.2)

for all n ≥ 1. Indeed, since gxn v gxn+1, we can apply condition (i) to obtain

d(fxn, fxn+1) � λun, (4.3)

where

un ∈ {d(gxn, gxn+1), d(gxn, fxn), d(gxn+1, fxn+1), d(gxn, fxn+1), d(gxn+1, fxn)}
= {d(fxn−1, fxn), d(fxn, fxn+1), d(fxn−1, fxn+1), 0} .
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There are four possible cases:
1◦ d(fxn, fxn+1) � λd(fxn−1, fxn) � λ

1−λd(fxn−1, fxn) since λ ≤
λ
1−λ ;

2◦ d(fxn, fxn+1) � λd(fxn, fxn+1); it follows that d(fxn, fxn+1) = 0. Hence, (4.2) holds true;
3◦ d(fxn, fxn+1) � λd(fxn−1, fxn+1) � λd(fxn−1, fxn)+ λd(fxn, fxn+1); hence, (4.2) holds true;
4◦ d(fxn, fxn+1) � λ · 0 = 0 and so d(fxn, fxn+1) = 0 and again (4.2) holds.

Put h = λ
1−λ . Then it follows from (4.2) that

d(fxn, fxn+1) � hd(fxn−1, fxn) � · · · � hnd(fx0, fx1),

for all n ≥ 1. Now we have form, n ∈ N, n > m that

d(fxn, fxm) � d(fxn, fxn−1)+ d(fxn−1, fxn−2)+ · · · + d(fxm+1, fxm)
� (hn−1 + hn−2 + · · · + hm)d(fx0, fx1)

�
hm

1− h
d(fx0, fx1)→ 0 asm→∞.

According to Remark 2.3, (1) and (8), {fxn}, i.e., {gxn} is a Cauchy sequence and, since X is complete and gX is closed, there
exists z ∈ X such that

gxn → gz i.e., fxn → gz as n→∞.

We will prove that fz = gz.
Since gxn v gz (condition (iv)) putting x = xn, y = z in (4.1), we get

d(fxn, fz) � λ · un (4.4)

where un ∈ {d(gxn, gz), d(gxn, fxn), d(gz, fz), d(gz, fxn), d(gxn, fz)}. Observe that d(gz, fz) � d(gz, fxn) + d(fxn, fz) and
d(gxn, fz) � d(gxn, fxn) + d(fxn, fz). Now let 0 � c be given. In all of the possible five cases there exists n0 ∈ N such
that (using (4.4)) one obtains that d(fxn, fz)� c:
1◦ d(fxn, fz) � λ · d(gxn, gz)� λ c

λ
= c;

2◦ d(fxn, fz) � λ · d(gxn, fxn)� λ c
λ
= c;

3◦ d(fxn, fz) � λ · d(gz, fz) � λd(gz, fxn)+ λd(fxn, fz); it follows that d(fxn, fz) � λ
1−λd(gz, fxn)�

λ
1−λ

(1−λ)c
λ
= c;

4◦ d(fxn, fz) � λ · d(gz, fxn)� λ c
λ
= c;

5◦ d(fxn, fz) � λ · d(gxn, fz) � λd(gxn, fxn)+ λd(fxn, fz); it follows that d(fxn, fz) � λ
1−λd(gxn, fxn)�

λ
1−λ

(1−λ)c
λ
= c.

It follows that fxn → fz (n→∞). The uniqueness of limit in a cone metric space implies that fz = gz = t . Thus, in the
terminology of [28], z is a coincidence point of the pair (f , g), and t is a point of coincidence.
Suppose now that f and g are weakly compatible. By the assumption (iv), gz v ggz and hence we obtain that

fgz = gfz = ffz = ggz.

Suppose that it is not fz = ffz. Then, the contractibility condition (4.1) for x = z, y = fz implies that

d (fx, fy) = d (fz, ffz) � λu,

where

u ∈ {d(gz, gfz), d(gz, fz), d(gfz, ffz), d(gfz, fz), d(gz, ffz)}
= {d(fz, ffz), 0, d(ffz, ffz), d(ffz, fz), d(fz, ffz)}
= {0, d(fz, ffz)} ,

so we have only two possibilities:
1◦ d(fz, ffz) � λ · 0 = 0⇒ d(fz, ffz) = 0⇒ fz = ffz;
2◦ d(fz, ffz) ≤ λd(fz, ffz)⇒ (by Remark 2.3) d(fz, ffz) = 0, i.e., fz = ffz.

In other words, fz = gz is a common fixed point of the mappings f and g . �

Taking g = iX (the identity function) in Theorem 4.2 we obtain a result for ordered quasicontractions in ordered cone
metric spaces.

Corollary 4.3. Let f be a self-map on a complete ordered cone metric space (X,v, d) such that there is a point x0 ∈ X with
x0 v fx0. Suppose that
(i) f is an ordered quasicontraction, i.e., there exists λ ∈ [0, 1/2) such that for each x, y ∈ X satisfying y v x, there exists

u ∈ {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}, (4.5)

such that d(fx, fy) � λ · u holds;
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(ii) f is nondecreasing;
(iii) if {xn} ⊂ X is a nondecreasing sequence, converging to some z, then xn v z.

Then f has a fixed point in X.

Remark 4.4. If, in the Definition 4.1 of an ordered g-quasicontraction, we use the set

{d(gx, gy), d(gx, fx), d(gy, fy)} ,

instead ofM f ,g0 (x, y), then it can be proved in a similar way that Theorem 4.2 holds even with λ ∈ [0, 1).
If we further reduce this set to {d(gx, fx), d(gy, fy)}, then an ordered version of the known Bianchini’s result [29, (5)] is

obtained.
Finally, ifwe take a singleton {d(gx, gy)}, we obtain an ordered version of a result of Jungckwhich is a direct generalization

of the Banach’s principle.

In the sequel, we shallmodify condition of ordered g-quasicontraction by considering, togetherwithM f ,g0 (x, y) (see (4.1))
the following sets:

M f ,g1 (x, y) =
{
d(gx, gy), d(gx, fx), d(gy, fy),

d(gx, fy)+ d(gy, fx)
2

}
,

M f ,g2 (x, y) =
{
d(gx, gy),

d(gx, fx)+ d(gy, fy)
2

,
d(gx, fy)+ d(gy, fx)

2

}
.

Sets of this kind were used in several papers to introduce contractive-type conditions. In the setting of cone metric spaces,
they were used, for example, in [30,31] (where non-self-mappings were considered) and in [32] (when considering strict
contractive conditions). We shall prove here two related results in the setting of ordered cone metric spaces.

Theorem 4.5. Let (f , g) be a pair of self-maps on a complete ordered cone metric space (X,v, d) such that f (X) ⊂ g(X) and
such that there is a point x0 ∈ X with gx0 v fx0. Suppose that

(i) there exists λ ∈ [0, 1) such that for each x, y ∈ X satisfying gy v gx, there exists

u ∈ M f ,g1 (x, y),

such that d(fx, fy) � λ · u holds.
(ii) g(X) is closed in X;
(iii) f is g-nondecreasing;
(iv) if {g(xn)} ⊂ X is a nondecreasing sequence, converging to some gz, then gxn v gz and gz v ggz.

Then f and g have a coincidence point.
Moreover, if f and g are weakly compatible, then they have a common fixed point.

Proof. Starting from the given x0, construct the Jungck sequence as in the proof of Theorem 4.2:

fx0 v fx1 v fx2 v · · · v fxn v fxn+1 v · · · ,
gx1 v gx2 v · · · v gxn+1 v gxn+2 v · · · .

First we prove that

d(fxn, fxn+1) � λd(fxn−1, fxn) for n ≥ 1. (4.6)

Since gxn v gxn+1, it is

d(fxn, fxn+1) � λ · u,

where

u ∈
{
d(gxn, gxn+1), d(fxn, gxn), d(fxn+1, gxn+1),

d(fxn, gxn+1)+ d(fxn+1, gxn)
2

}
=

{
d(fxn−1, fxn), d(fxn, fxn+1),

d(fxn−1, fxn+1)
2

}
.

Now we have to consider the following three cases.

1◦ If u = d(fxn−1, fxn) then clearly (4.6) holds.
2◦ If u = d(fxn, fxn+1) then according to Remark 2.3(7) d(fxn, fxn+1) = 0, and (4.6) is immediate.
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3◦ Finally, suppose u = d(fxn−1,fxn+1)
2 . Now

d(fxn, fxn+1) � λ
d(fxn−1, fxn+1)

2
�
λ

2
d(fxn−1, fxn)+

1
2
(fxn, fxn+1).

Hence d(fxn, fxn+1) � λd(fxn−1, fxn), and we have proved (4.6).
Now, we have

d(fn, fxn+1) � λnd(fx0, fx1).

We shall show that {fn} is a Cauchy sequence. Form, n ∈ N, n > mwe have

d(fxn, fxm) � d(fxn, fxn−1)+ d(fxn−1, fxn−2)+ · · · + d(fxm+1, fxm),

and we obtain

d(fxn, fxm) �
(
λn−1 + λn−2 + · · · + λm

)
d(fx0, fx0)

�
λm

1− λ
d(fx0, fx1)→ 0 asm→∞.

From Remark 2.3(8) it follows that for 0� c andm sufficiently large, λm(1−λ)−1d(fx0, fx1)� c; then also d(fxn, fxm)� c.
Hence, {fxn} is a Cauchy sequence.
Since f (X) ⊂ g(X), g(X) is closed, and X is complete, there exists u ∈ g(X) such that gxn → u as n→∞. Consequently,

we can find z ∈ X such that gz = u.
Let us show that fz = u. For this we have (because of gxn v gz)

d(fz, u) � d(fz, fxn)+ d(fxn, u) � λ · un + d(fxn, u),

where

un ∈
{
d(gxn, gz), d(fxn, gxn), d(fz, gz),

d(fxn, gz)+ d(fz, gz)
2

}
.

Let 0� c be given. Since gxn → gz, in each of the following cases there exists n0 such that for n ≥ n0 we have d(fz, u)� c.

1◦ d(fz, u) � λ · d(gxn, gz)+ d(fxn, u)� λ · c2λ +
c
2 = c .

2◦ d(fz, u) � λ · d(fxn, gxn) + d(fxn, u) � λ · d(fxn, u) + λ · d(u, gxn) + d(fxn, u) = (λ + 1) · d(fxn, u) + λ · d(u, gxn) �
(λ+ 1) · c

2(λ+1) + λ ·
c
2λ = c .

3◦ d(fz, u) � λ · d(fz, u)+ d(fxn, u), i.e., d(fz, u)� 1
1−λ · (1− λ)c = c.

4◦ d(fz, u) � λ ·
d(fxn,gz)+d(fz,gz)

2 + d(fxn, u) �
λd(fxn,gz)

2 +
1
2d(fz, gz) + d(fxn, u), i.e., d(fz, u) � (λ + 2)d(fxn, u) �

(λ+ 2) c
(λ+2) = c.

Using Remark 2.3(2) we conclude that d(fz, u) = 0, i.e., fz = u.
Hence, we have proved that f and g have a coincidence point z ∈ X and a point of coincidence u ∈ X such that

u = f (z) = g(z). If they are weakly compatible, then

ggz = gfz = fgz = ffz.

We shall prove that fz = gz is a common fixed point of the mappings f and g . Using gz v ggz (condition (iv)), we obtain
from condition (i) that

d(fz, ffz) � λ · u,

where

u ∈
{
d(gz, gfz), d(fz, gz), d(ffz, gfz),

d(fz, gfz)+ d(ffz, gz)
2

}
=

{
d(fz, ffz), 0,

d(fz, ffz)+ d(ffz, fz)
2

}
= {0, d(fz, ffz)}.

Hence, by Remark 2.3, d(fz, ffz) = 0, i.e., fz = ffz. Similarly, gz = ggz and the theorem is proved. �

Theorem 4.6. Let (f , g) be a pair of self-maps on a complete ordered cone metric space (X,v, d) such that f (X) ⊂ g(X) and
such that there is a point x0 ∈ X with gx0 v fx0. Suppose that
(i) there exists λ ∈ [0, 1) such that for each x, y ∈ X satisfying gy v gx, there exists

u ∈ M f ,g2 (x, y),

such that d(fx, fy) � λ · u holds.
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(ii) g(X) is closed in X;
(iii) f is g-nondecreasing;
(iv) if {g(xn)} ⊂ X is a nondecreasing sequence, converging to some gz, then gxn v gz and gz v ggz.

Then f and g have a coincidence point.
Moreover, if f and g are weakly compatible, then they have a common fixed point.

The proof is similar, and so is omitted.
Note that conditions (i) of Theorems 4.2, 4.5 and 4.6 are incomparable in the cone metric settings (to the contrary with

the situation in metric settings), since for a, b ∈ P , if a and b are incomparable, then also a+b2 is incomparable, both with a
and with b.

Remark 4.7. Putting E = R, P = [0,+∞) in Theorems 4.5 and 4.6, one obtains the respective common fixed point theo-
rems in ordered metric spaces (we could not find explicit formulations for some of these assertions in literature).
For example, taking u = d(gx, gy), g = iX , a result of Abbas and Jungck from [28] is obtained; then, taking E = R, P =

[0,+∞) the respective result in the setting of orderedmetric spaces follows. If we take u = 1
2 (d(gx, fx)+d(gy, fy)), g = iX ,

we obtain an ordered cone metric version of Kannan’s Theorem [29, (4)]; again, ordered metric version of this theorem
follows immediately. The same applies for the known Zamfirescu’s result [29, (19)].

We conclude with an example showing that our Theorems 4.2, 4.5 and 4.6 are proper extensions of the respective
results from the setting of cone metric spaces. Namely, we shall construct an example of a mapping which is an ordered
g-quasicontraction (wherefrom the existence of common fixed point of f and g follows), while it is not a g-quasicontraction
in cone metric sense. Similar conclusion then applies for relationship between contractive conditions in ordered metric
spaces and simple metric spaces.

Example 4.8. Let X = [0,+∞) and let order relationv be defined by

x v y⇔ {(x = y) or (x, y ∈ [0, 1]with x ≤ y)} .

Let E = C1R[0, 1] with ‖x‖ = ‖x‖∞ +
∥∥x′∥∥

∞
and P = {x ∈ E : x(t) ≥ 0 on [0, 1]} (this cone is not normal). Define

d : X × X → E by d(x, y) = |x− y|ϕ where ϕ : [0, 1] → R such that ϕ(t) = et . It is easy to see that d is a cone
metric on X . Consider the mappings

fx =


x
4
, 0 ≤ x ≤ 1,

4x−
15
4
, x > 1;

gx =


x, 0 ≤ x ≤ 1,
3
4
x, x > 1.

Then, for y v xwe have that

d(fx, fy)(t) = | fx− fy| et =
1
4
|x− y| et ≤ λ |x− y| et , ∀t ∈ [0, 1] ⇔ λ ∈

[
1
4
, 1
)
,

while for x, y > 1

d(fx, fy)(t) = | fx− fy| et = 4 |x− y| et ≤ λ
3
4
|x− y| et , ∀t ∈ [0, 1] ⇔ λ ∈

[
16
3
,+∞

)
,

and, checking all other conditions, one concludes that f is an ordered g-quasicontraction, while it is not a g-quasicontraction
in a (non-ordered) cone metric sense. Obviously, f (0) = g(0) = 0.
Similar conclusions apply to conditions of Theorems 4.5 and 4.6.
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