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The measure problem of Klee asks for the volume of the union of n axis-parallel boxes in a
fixed dimension d. We give an O(n(d+2)/3) time algorithm for the special case of all boxes
being cubes or, more generally, fat boxes. Previously, the fastest run-time was nd/2 2O(log∗ n),
achieved by the general case algorithm of Chan [SoCG 2008]. For the general problem our
run-time would imply a breakthrough for the k-clique problem.
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1. Introduction

We consider a natural geometric problem: Computing the volume of the union of n axis-parallel boxes in Rd , where d is
considered to be constant. This problem was first stated by Klee [12], who gave an O(n log n) algorithm for the case of d = 1
and asked if this was optimal, while leaving the question open how to extend this to arbitrary dimension d > 1. Bentley [3]
gave an algorithm with run-time O(nd−1 logn) for d � 2, which is optimal for d = 2. As Chan [7] noted, this is better than
explicitly constructing the union of the given boxes, which has a worst-case combinatorial complexity of Θ(nd). The next
breakthrough was a paper by Overmars and Yap [14] giving an algorithm with run-time O(nd/2 log n) for d � 2, which was
the fastest known until Chan [7] slightly improved their approach to get a run-time of nd/2 2O(log∗ n) . There is also an O( dn

ε2 )

Monte Carlo (1 + ε)-approximation algorithm for Klee’s measure problem (KMP) [5].
So far, the only known unconditional lower bound is Ω(n log n) for any d [10]. Additionally, there are two hardness

results known for KMP: Suzuki and Ibaraki [15] showed that it is #P-hard for d → ∞, i.e., if we do not consider d to be
constant. Furthermore, Chan [7] showed W[1]-hardness of KMP, meaning that no algorithm of run-time f (d)nO(1) is likely
to exist for any function f depending only on d. His proof relies on a reduction of KMP from the k-clique problem, i.e.,
checking whether a graph with n vertices contains a clique of size k. Since the best-known algorithm for the latter problem
has a run-time of O(nω�k/3�+(k mod 3)) [13], where ω = 2.376 . . . is the exponent occurring in fast matrix multiplication, one

can conclude that any O(n0.396d) algorithm for KMP, and even a combinatorial O(n( 1
2 −ε)d) algorithm, would yield a better

algorithm for the old k-clique problem.
This raises the question whether there are easier special cases of KMP, a problem posed by Jeff Erickson [9]. The two

special cases that got attention so far are the case of all boxes being cubes (or fat boxes), or unit cubes (fat boxes of roughly
equal size), respectively:

Klee’s measure problem on cubes (C-KMP) can be solved in time O(n4/3 logn) for d = 3, using an algorithm of Agarwal
et al. [2]. This run-time has just been improved to O(n log4 n) [1]. For higher dimensions, Chan’s KMP algorithm is the
fastest known. One may generalize the case of cubes to the one of α-fat boxes for some constant α � 1, where we say that
a box is α-fat if its maximal side length is at most a factor of α larger than its minimal side length. A simple reduction
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shows that both problems can be solved in the same asymptotic run-time: Represent a fat box by a union of at most �α�d−1

possibly overlapping cubes. Then the volume of the union of the cubes is the same as the volume of the union of the fat
boxes, and we have increased the number of boxes only by a constant factor.

We speak of Klee’s measure problem on unit cubes (UC-KMP) if all cubes have the same side length. As the union
of n unit cubes has combinatorial complexity Θ(n�d/2�) [4], this special case can be solved in time O(n�d/2�polylog n)

[11], which improves upon general KMP algorithms in odd dimensions. Furthermore, an elaborate algorithm runs in time

O(n�d/2�−1+ 1
�d/2� polylog n) [6], which improves in even dimensions. This case can be generalized to fat boxes of roughly

equal size, analogously to cubes and fat boxes. Note that all of these algorithms have run-time Ω(nd/2−1) in the worst case.

The result. In this paper we present improved results for both of these special cases (in dimensions that are high enough)
by giving a better algorithm for C-KMP. As customary, we assume d to be constant.

Theorem 1. Given a set M of n axis-parallel cubes in Rd, d � 2, we can compute the volume of the union of these cubes, i.e., solve
C-KMP, in time O(n(d+2)/3).

Note that this is faster than any known algorithm for C-KMP in dimensions d � 4 (at least by a factor of 2O(log∗ n))
and faster than any known algorithm for UC-KMP in dimensions d � 9. More importantly, we reduce the exponent from
d
2 + O(1) to d

3 + O(1). As this is notably faster than the bound n0.396d , finding such a good algorithm for the general case
would imply a breakthrough in more classical areas (k-clique).

For the sake of readability we present our algorithm in such a way that its space requirement is O(n(d+2)/3). However,
it is possible to use the same trick as Overmars and Yap [14, Section 5] to reduce the amount of storage to O(n).1

Our result uses ideas from Overmars and Yap [14] as well as from Agarwal et al. [2]. However, our algorithm is not a
generalization of the latter, which works only for d = 3. Instead, we work with a different base case. The contribution of
this paper can be seen as the identification of this simpler base case, and the idea on how to solve it. The differences to
existing algorithms will be highlighted again in Section 2.

In the following section we give a structural overview of our algorithm for C-KMP. Sections 3 to 5 give the details of the
algorithm in 3 steps. In Section 6 we give concluding remarks.

2. Structural overview

In this section we give a rough overview of the algorithm. We start by defining some notation and the problem: In
dimension d ∈ N we define a box to be a set [x1, y1] × · · · × [xd, yd] ⊆ Rd, xi � yi for all i. A cube is a box with yi − xi =
y j − x j for all dimensions i, j, i.e., for 1 � i, j � d. We refer to xi (yi) as the lower (upper) ith coordinate of the box or cube.
For a set U ⊆ Rd we define Vol(U ) as the Lebesgue measure of U . If we want to point out the dimension we are working
in, we use Vold instead of Vol. Moreover, for a box C we define VolC (U ) := Vol(C ∩ U ), the volume of U inside C . For a set
of boxes M , we define U (M) := ⋃

B∈M B . Then Vol(U (M)) is the volume of the union of the boxes in M .
The problem C-KMP now is to compute Vol(U (M)) for a given set M of n cubes. Using a bounding box B of all the boxes

in M , this quantity is the same as VolB(U (M)).

Representation of sets of boxes. Similar to a construction of Overmars and Yap [14], we will represent a set of boxes M in the
following way: We have sorted doubly linked lists Li of reals, 1 � i � d, containing the ith (upper and lower) coordinates of
the boxes in M . Thus, every box occurs 2d times in the d lists. Furthermore, each occurrence of a box will have a pointer to
the next occurrence, such that all occurrences of a box are in a cyclic structure of 2d pointers.

Such a representation allows us to do several things quickly: For example, given a pointer to one occurrence of a box,
we can delete this box from the set M in time O(1), as we can iterate through all occurrences of the box in constant time.
Also, we may iterate through all boxes sorted by lower ith coordinate or sorted by upper ith coordinate. More importantly,
we will at some points in this paper be in the position that we iterate through some Li and define a subset M ′ of M by
deciding during the iteration whether the current box belongs to M ′ or not. Then a representation of M ′ can be computed
in time O(|M|) by marking elements of M ′ in all lists Li and computing L′

i by iterating through Li and taking marked
elements.

This representation will save us a logarithmic factor in run-time. Computing this representation when given any standard
representation of sets of boxes can be done in time O(n log n). This does not increase the overall run-time for d � 2.

2.1. Space partitioning

We compute the volume VolB(U (M)) by splitting up the bounding box: We define a partitioning of a box B to be a finite
set P of boxes with

⋃
R∈P R = B and that for two different boxes R, R ′ ∈ P the intersection is a null set, i.e., Vol(R ∩ R ′) = 0.

We refer to the boxes in a partitioning as regions.

1 In our case this simply amounts to computing the partitioning in a depth first instead of breadth first manner and computing the volume inside a
region as soon as the region is constructed. This way, we do not have to store the whole partitioning.
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Fig. 1. An example of piles and quasi-piles of a region R . P1 and P2 are 1-piles, Q 1 and Q 2 are (1,2)-quasi-piles. Note that in 2D all cubes partially
covering R are piles or quasi-piles. This does not hold in higher dimensions.

Now, if we have a partitioning P of the bounding box B, we can compute the quantity of interest as Vol(U (M)) =
VolB(U (M)) = ∑

R∈P VolR(U (M)).
We want such a partitioning to have several nice properties and we need some definitions to state them: We say

that a box B partially covers a region R , if Vol(R) > VolR(B) > 0. A region is said to be fully covered by a box B , if R ⊆ B .
Furthermore, for a box B = [x1, y1]×· · ·×[xd, yd] we call Bi := [xi, yi] the i-interval and |Bi | = yi −xi the ith side length of B .
We call a box B an i-pile for region R and a dimension i, if we have Rk ⊆ Bk for all dimensions k = i, and ∅ � Rk ∩ Bk � Rk
for k = i. We call B an (i, j)-quasi-pile, i = j, if we have Rk ⊆ Bk for all dimensions k = i,k = j, and ∅ � Rk ∩ Bk � Rk
for k = i and k = j. We call it a pile, if it is an i-pile for some i, similarly for quasi-pile. Note that any (quasi-)pile of a
region R partially covers R . Intuitively, a box is a pile (quasi-pile), if it covers the region R in all but one (two) dimensions;
see Fig. 1 for an example.

We call a partitioning P of the bounding box proper if it fulfills the following two properties:

(P1) Every region R ∈ P is either fully covered by some cube in M or partially covered by O(n2/3) cubes in M , of which
O(n1/3) are quasi-piles for R and all other are piles for R .

(P1) The number of regions in P is O(nd/3).

In Section 3 we will give a construction for such a partitioning. It returns the set of regions together with their sets of
partially covering cubes or a fully covering box. This shows the following theorem:

Theorem 2. A proper partitioning can be computed in time O(n(d+2)/3) for d � 2.

The construction does not use that the given boxes are cubes. It is very similar to the one of Overmars and Yap [14],
just with a different parameter, and the same as a generalization of Agarwal et al. [2] would do. The only difference is that
we solve a static problem, while the mentioned algorithms do a sweep first and solve a dynamic problem. This is why they
need to handle a partition tree, where one can insert and delete boxes, while we only need a partitioning, without any tree
build on it. Our reason for solving the static problem is that it seems impossible to do a similar construction to ours for the
(harder) dynamic base case.

See also [8] for a more general partitioning result subsuming ours. The latter’s construction time, however, has not been
explicitly studied, making it necessary for us to elaborate on the implementation details of our construction.

2.2. The remaining subproblem

We are left with the following subproblem:

Definition 1 (Subproblem I). Given a region R ⊂ Rd and a set M of at most n cubes, which are all piles or quasi-piles for R ,
and such that there are O(

√
n) quasi-piles in M , compute the volume VoldR(U (M)).

We could have defined Subproblem I more general, but we only need it with a particular relation between the number of
piles and quasi-piles, so to shorten notation we explicitly demand that. Observe that after computing a proper partitioning
we are left with O(nd/3) instances of Subproblem I with O(n2/3) piles and O(n1/3) quasi-piles, so the square root relation
is exactly fulfilled.

We want to split up Subproblem I into a few easier problems. For this, we refer to the points (z1, . . . , zd) with zi ∈ {xi, yi}
for all dimensions i as the vertices of a region R = [x1, y1] × · · · × [xd, yd]. We call a (quasi-)pile of R vertex-containing, if it
contains a vertex of R . We define another subproblem as follows.
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Definition 2 (Subproblem II). Given a region R ⊂ Rd and a set M of at most n boxes, which are all vertex-containing piles or
vertex-containing quasi-piles for R , compute the volume VoldR(U (M)).

To solve Subproblem I we will reduce it to (a few instances of) Subproblem II. This reduction uses that we are facing
cubes, rather than general boxes, in Subproblem I; note that Subproblem II no longer has the assumption of the boxes being
cubes. Denoting the time to solve Subproblem I (II) by T d

I (n) (T d
II(n)) this yields the following theorem, whose proof can be

found in Section 4.

Theorem 3. Subproblem I can be solved in time T d
I (n) = O(

√
n · T d−1

II (O(
√

n)) + n).

Moreover, we have found a way to solve Subproblem II in linear time.

Theorem 4. Subproblem II can be solved in time T d
II(n) = O(n).

Here, we use the standard technique of a space sweep to get a dynamic problem with dynamic piles and static quasi-
piles. Then we solve this dynamic problem by considering a few smaller dynamic problems. The elaborate details of this
step can be found in Section 5.

Note that Theorems 3 and 4 yield a linear time algorithm for Subproblem I. Together with Theorem 2 we get a
O(n(d+2)/3) time algorithm for C-KMP, which proves Theorem 1. Hence, all we are left with are the (independent) proofs of
Theorems 2, 3, and 4.

For differentiating between our approach and [14] or [2], one has to point out that our Subproblem I is a static problem,
while the mentioned algorithms solve a dynamic one. Furthermore, the identification and solution of Subproblem II is
completely novel.

3. Construction of the space partitioning

In this section we prove Theorem 2, i.e., we describe how to compute a proper partitioning of the bounding box of a
set of points M in time O(n(d+2)/3), where n = |M|. Our construction will additionally compute for each region R of the
partitioning the set of partially covering cubes of R in M or a fully covering cube.

The construction. Say the bounding box of M is B = [x1, y1] × · · · × [xd, yd]. We will proceed in d levels, starting with B
on level 1: On a level 1 � � � d we are given a box B = [x′

1, y′
1] × · · · × [x′

�−1, y′
�−1] × [x�, y�] × · · · × [xd, yd] and the set

MB,� ⊆ M of cubes partially covering B . For a cube C in MB,� let h = h(C) be the number of dimensions k, 1 � k < �,
such that C has a kth coordinate in the open interval (x′

k, y′
k). We split MB,� into three subsets: Mi

B,� contains all cubes C
with h(C) = i for i ∈ {0,1,2}. We will show in a moment that no cube has h > 2. We will maintain the following invariant:

∣
∣M1

B,�

∣
∣ = O

(
n2/3) and

∣
∣M2

B,�

∣
∣ = O

(
n1/3). (∗)

Obviously, |M1
B,�| = O(n) holds as well. Now, we split the interval [x�, y�] into O(n1/3) intervals, each of whose interior

contains O(n2/3) �th coordinates of cubes in M0
B,� , O(n1/3) �th coordinates of cubes in M1

B,� and no �th coordinate of a

cube in M2
B,� . Considering invariant (∗) this is achieved by splitting at every n1/3th coordinate in a sorted list of coordinates

of the boxes in M0
B,� and M1

B,� and splitting at every coordinate of the boxes in M2
B,� . This way we split the box B into

O(n1/3) smaller boxes (children). If such a child B ′ has a fully covering cube in MB,� we are done with B ′ , as this allows to
compute the volume VolB ′ (M) trivially. The region B ′ will be part of our partitioning and we report its fully covering cube.
Otherwise, we recurse to level � + 1 after computing the sets of partially covering cubes MB ′,�+1 of B ′ .

All the boxes we end up with on level � = d + 1 will be regions in our partitioning. For each such region R , we are
given MR,d+1, the set of partially covering cubes of R in M , and split it into three subsets, Mi

R,d+1, i ∈ {0,1,2}, just as we
did on lower levels. This way, invariant (∗) holds for � = d + 1, too.

Correctness. We need to prove two facts to show that this construction works: The first is that no cube will ever have h > 2
(on any level 1 � � � d + 1). Any such cube would have h = 2 on some lower level �′ < �, so it would be in M2

B,�′ on that
level. But then we split so that no coordinate of the cube is in the interior of a new interval, so its h-value cannot grow.

The second fact is the validity of invariant (∗). It is true on level � = 1 since the sets Mi
B,� with i > 0 are empty

there by definition. Also, it is maintained during the split at a level �: For each child B ′ of the box B we have |M1
B ′,�+1| �

|M1
B,�|+|M0

B,�|/n1/3 = O(n2/3) by construction of the splitting, similarly we have |M2
B ′,�+1| � |M2

B,�|+|M1
B,�|/n1/3 = O(n1/3).

As the number of levels is d, a constant, invariant (∗) holds in all levels.
It is easy to show that the above construction yields a proper partitioning, i.e., that properties (P1) and (P2) hold:

Observe that the set of quasi-piles of R is exactly M2
R,d+1 and the set of piles of R is M1

R,d+1. Moreover, the way we

constructed M0
R,d+1 no cube in it can partially cover R , since every cube in this set has no kth coordinate contained in the

interior of the interval Rk for any k, so either we have found a fully covering cube or this set is empty. Invariant (∗) shows
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that each region without fully covering cube is partially covered by O(n2/3) piles, O(n1/3) quasi-piles, and no other boxes
in M , which is property (P1). For (P2) note that we split the box into O(n1/3) smaller boxes at each of the d levels, so we
create O(nd/3) regions.

Implementation details. It remains to describe how to implement our construction of a partitioning with the aforementioned
run-time of O(n(d+2)/3), for the trivial upper bound being O(n(d+3)/3 log n). We use here the representation of sets of cubes
by sorted lists of coordinates in every dimension. Having these lists, we can split the set MB,� into Mi

B,� and find the
split of the current interval in time O(n) (this would not be possible without a sorted order). After we split the box into
O(n1/3) children, we compute the set of partially covering boxes for each child and build sorted lists of coordinates of these
boxes from the sorted lists we got for MB,� . This can be done in O(n) per child. For each level 1 � � < d, this run-time is
admissible, as we get a run-time of O(n · n(d−1)/3) = O(n(d+2)/3).

On the last level � = d, finding the positions for splits can be done in O(n), too, which is admissible, as there are
O(n(d−1)/3) problem instances on level d. However, computing the sets of partially covering cubes for the children has to
be done in (amortized) time O(n2/3) per child. This is easy for cubes that become i-piles or (i, j)-quasi-piles with i, j < d
in the children: Any such (quasi-)pile is partially covering one child if and only if it partially covers all children. Thus, a list
of these (quasi-)piles can be constructed in time O(n), i.e., O(n2/3) per child. For cubes that become d-piles or (i,d)-quasi-
piles, i < d, we use that any such (quasi-)pile is partially covering at most 2 children, since each of its two dth coordinates
may lie in the interior of another child. If we go through the children and the sorted list of dth coordinates of these
cubes “in parallel”, we can also find the children a cube partially covers in (amortized) constant time. Hence, also these
(quasi-)piles can be computed in O(n2/3) per child. Since any partially covering cube of a child is a pile or quasi-pile by
property (P1), we are done with these two cases. After this, we have to split the set MR,d+1 into the sets Mi

R,d+1. Note that

this can be done in O(n2/3) trivially, as we proved above that |M0
R,d+1| = 0, |M1

R,d+1| = O(n2/3) and |M2
R,d+1| = O(n1/3), so

that the overall number of cubes in MR,d+1 is small enough to allow linear time procedures.
So far we lack the computation of a fully covering box for each fully covered region. We will compute those boxes on

level d, too. For this, we go through the sorted list of dth coordinates of all cubes in M . At the same time, we go through
the children in the same sorted order. For a cube we can tell in constant time, whether it fully covers the current child. If
so, we save it as a fully covering box for this child and go on in the list of children (and check the current cube with the
next child). If not, we go on in the list of cubes or of children, respectively. This way, we compute a fully covering box for
any child in time linear in the number of cubes in M and the number of children, i.e., in O(n), which is O(n2/3) per child.

Thus, we proved Theorem 2.

4. Reduction of Subproblem I

In this section we prove Theorem 3, i.e., we show how to simplify Subproblem I to Subproblem II. Recall the definitions of
Subproblems I and II, Definitions 1 and 2. We describe how to solve Subproblem I by solving O(

√
n) instances of Subproblem

II on O(
√

n) boxes using additional run-time of O(n). This is the only point where we use that we are dealing with cubes
rather than general boxes.

Dealing with most piles. Without loss of generality we may assume that the side lengths of region R are in sorted order |R1| �
|R2| � · · · � |Rd|. Consider a non-vertex-containing cube B partially covering R . Then there is an i � d with Bi ∩ ∂ Ri = ∅ and
Bi ⊂ Ri , so |Bi | < |Ri |. Since B is a cube, we also have |B j| < |R j | for j > i. This shows that any i-pile B of R with i < d is
already vertex-containing, as otherwise we would have |Bd| < |Rd|, so that we cannot have Rd ⊆ Bd , but this contradicts B
being a pile. It also shows that any (i, j)-quasi-pile of R with i < j < d is vertex-containing, as otherwise again |Bd| < |Rd|.
For this we used the fact that we are facing cubes, rather than general boxes.

Dealing with the vertex-containing i-piles with i < d in the computation of VolR(U (M)) is easy: Out of the i-piles B
with Bi containing the lower ith coordinate of R we take the pile P1 with largest interval Bi ∩ Ri . Similarly, out of the
i-piles B with Bi containing the upper ith coordinate of R we take the pile P2 with the largest interval Bi ∩ Ri . Then we
have for any i-pile B: B ∩ R ⊆ (P1 ∪ P2) ∩ R . Thus, we can remove all i-piles other than P1, P2 from M and still get the
same volume VolR(U (M)). We have reduced the number of i-piles with i < d to a constant this way.

Sweep along dimension d. Now we sweep along dimension d. Let Rd = [y1, y2] and let z1 � · · · � zm be the dth coordinates
of boxes in M that lie in Rd . Let z0 := y1 and zm+1 := y2. We sweep a horizontal hyperplane along dimension d from y1
to y2 stopping at each zi, 0 � i � m + 1. Let Π(t) be the hyperplane satisfying xd = t . For each 0 � i � m the cross-
section Π(z)∩ R ∩ U (M) is the same for all z ∈ (zi, zi+1). Let vi denote the (d − 1)-dimensional volume of this cross-section.
Then VolR(U (M)) = ∑m

i=0 vi(zi+1 − zi). In every interval (zi, zi+1) where a d-pile is active, i.e., where there exists a d-pile B
of R with (zi, zi+1) ⊆ Bd , the volume vi is trivially equal to

∏
j =d |R j |. Not looking at these trivial vi , the sequence of vi ’s

changes only if a box in M which is not a d-pile is inserted or deleted. The number of those boxes is bounded by O(
√

n),
as we reduced the number of i-piles, i < d, to a constant. Thus, we have to compute O(

√
n) vi ’s, each with O(

√
n) partially

covering boxes and no fully covering ones. We spent time O(n) so far, since all this can be implemented in linear time with
the coordinates already sorted. Note that we are not trying to compute vi dynamically by updating vi−1, but consider them
as independent problems.
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Fig. 2. We want to cut out the 2-piles P1 and P2. This is done by cutting out the intervals (z2, z3) and (z4, z5). The right side depicts the result, where
dashed lines denote that we have deleted an interval there.

Most boxes are vertex-containing. For computing a vi we are facing a (d − 1)-dimensional instance of Subproblem I on O(
√

n)

boxes. In fact, in these instances all piles and quasi-piles are vertex-containing, except some piles that stem from (i,d)-
quasi-piles in the d-dimensional problem (for any i < d). This follows from the fact that any i-pile with i < d and any
(i, j)-quasi-pile with i < j < d of the d-dimensional problem is vertex-containing (see second paragraph of this section).

Cutting out non-vertex-containing piles. What do we do with the remaining piles that are non-vertex-containing? We simply
cut them out: For each 1 � i � d−1 we do the following. Let Ri = [y1, y2] and let y1 = z0 � · · · � z2m = y2 be a partitioning
of Ri such that each R1 ×· · ·× Ri−1 ×(zk, zk+1)× Ri+1 ×· · ·× Rd−1 is fully covered by some i-pile for even k but neither fully
nor partially covered by a i-pile for odd k, and m = O(

√
n ). In this partitioning we want to cut out the intervals (z2k, z2k+1),

as depicted in Fig. 2. Formally, one can write this using a compression function κ defined as follows: For an x ∈ (y1, y2] we
find the k with x ∈ (zk, zk+1]. If k is odd, i.e., we do not cut out (zk, zk+1), we define κ(x) := x − ∑(k−1)/2

j=0 (z2 j+1 − z2 j), if k
is even we define κ(x) := zk − ∑(k−2)/2

j=0 (z2 j+1 − z2 j). Moreover, we set κ(x) := x for x � y1, and κ(x) := x − Z for x > y2,
where Z := ∑m−1

j=0 (z2 j+1 − z2 j) is the total length of cut intervals. For a box B = [x1, x′
1] × · · · × [xd−1, x′

d−1] we define
κ(B) := [x1, x′

1] × · · · × [xi−1, x′
i−1] × [κ(xi), κ(x′

i)] × [xi+1, x′
i+1] × · · · × [xd−1, x′

d−1], for a set of boxes M we define κ(M) :=
{κ(B) | B ∈ M}. Computing Vold−1

κ(R)(U (κ(M))) is then the compressed problem on the right-hand side in Fig. 2. We now have

Vold−1
R (U (M)) = Vold−1

κ(R)
(U (κ(M))) + Z

|Ri | · ∏d−1
j=1 |R j |. Observe that we can compute κ(R), κ(M) and Z in time O(

√
n ), as

we have sorted lists of coordinates.
In the problem Vold−1

κ(R)(U (κ(M))) all partially covering boxes of κ(R) are vertex-containing piles or vertex-containing
quasi-piles, as we cut out all non-vertex-containing piles and all other boxes where vertex-containing before. Note that the
function κ may destroy the property of being a cube, but we did not require this for Subproblem II. It follows that the
problem of computing Vold−1

κ(R)(U (κ(M))) is an instance of Subproblem II. This finishes the reduction and, thus, the proof of
Theorem 3.

5. A linear time algorithm for Subproblem II

In this section we prove Theorem 4, i.e., we show how to solve Subproblem II in linear run-time. Recall the definition
of Subproblem II: We want to compute VoldR(U (M)) of a set M of n boxes that are vertex-containing piles and vertex-
containing quasi-piles for R . We may assume without loss of generality that each box in M is contained in R (otherwise
take the intersection with R). This simplifies the representation of sets of piles and sets of quasi-piles.

We will solve Subproblem II by sweeping along dimension d, which leaves us with a dynamic version of the problem,
that will be called Subproblem III. As described in more detail in the previous section, we sweep a horizontal hyperplane
along dimension d from y1 to y2 for Rd = [y1, y2], stopping at each dth coordinate zi of a box in M . Between two such
stops the (d − 1)-dimensional volume vi stays the same, so that we get VolR(U (M)) as

∑
i vi(zi+1 − zi). In the dynamic

problem of computing those vi , all ( j,k)-quasi-piles and j-piles of R with j,k < d contribute to all vi , so they are static, and
all ( j,d)-quasi-piles become dynamic j-piles, that may get inserted or deleted. Observe that each ( j,d)-quasi-pile is either
already present in the initialization of the dynamic problem and may be deleted, or may be inserted but never deleted, as
we are facing vertex-containing (quasi-)piles. A d-pile of R becomes a fully covering box in the (d−1)-dimensional problem.
As computing vi is trivial if a d-pile B is active, i.e., if (zi, zi+1) ⊆ Bd , we may assume that there are no fully covering boxes
in the dynamic problem.

This dynamic problem can be seen to be an instance of Subproblem III:

Definition 3 (Subproblem III). On initialization we are given a region R ⊆ Rd , a set of vertex-containing quasi-piles Q and a
set of vertex-containing piles P 0 and return VoldR(U (Q ∪ P 0)). There are two types of updates: Firstly, a vertex-containing
pile may be inserted; call the set of these inserted piles P 1. Secondly, a pile from P 0 may be deleted. After each update we
have to return the current volume VoldR(U (Q ∪ P 0 ∪ P 1)).
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Note that the piles in P 1 may not be deleted.
With the above sweep approach we get

T d
II(n) � T d−1

III (n) + O(n), (1)

where T d
III(n) denotes the run-time for solving Subproblem III in d dimensions, where the number of boxes we initialize the

problem with plus the number of updates is bounded from above by n.

5.1. Solving the dynamic version

In the remainder of this section we will describe how to solve Subproblem III, the dynamic variant of Subproblem II. We
need to define some notation first. Beside the dimensions 1, . . . ,d we will speak of the 2d directions +1,−1, . . . ,+d,−d.
Intuitively, direction ±i points to ±∞ along dimension i. The opposite direction of r is −r. We say that two directions r, r′
are perpendicular, r ⊥ r′ , if r′ = r and r′ = −r. We can canonically assign to each vertex-containing pile a direction: An i-
pile B gets assigned to direction +i, if the interval Bi contains the upper ith coordinate of R , and it gets assigned to −i, if Bi
contains the lower ith coordinate of R . It will be more convenient to speak of r-piles in the remainder, for directions r, not
i-piles, for dimensions i. We can do the same for quasi-piles: An (i, j)-quasi-piles B gets assigned the directions r = ±i, r′ =
± j, depending on whether Bi contains the upper or lower ith coordinate of R (and the same for j), so that we can speak
of an (r, r′)-quasi-pile. As shorthands we write P = P 1 ∪ P 0 and P 0

r for the r-piles in P 0; we define P 1
r and Pr similarly. We

will store only the sets Q , P 0
r and P 1

r explicitly. Iterating through all boxes can then be accomplished by iterating through
these 4d + 1 sets one after the other.

For a direction r = +i we define the rim to be the hyperplane Πr defined by the equation xi = min{yi | (y1, . . . , yd) ∈
U (Pr)}, or xi = ui , if the set Pr is empty and ui is the upper ith coordinate of R . For a direction r = −i we replace min
by max and ui by �i , the lower ith coordinate of R . This is the hyperplane that splits R into the part covered by r-piles and
the part not influenced by r-piles. We take any r-pile that has non-empty intersection with Πr (normally, this pile will be
uniquely determined) and call it the rim-defining pile of direction r. Fig. 3(a) shows an example with the rims indicated. The
rim-defining piles of directions −1 and +2 are P1 and P3, respectively, the other two directions do not have a rim-defining
pile.

Initialization. We are given the sets Q and P 0 and have to return VoldR(U (Q ∪ P 0)), so we simply solve this as a static
problem, i.e., as an instance of Subproblem II. This costs time T d

II(n) + O(n).
Moreover, we initialize dynamic problems Dr for each direction r = ±i with the (d − 1)-dimensional region

∏
j =i R j and

all boxes in Q ∪ P \ (Pr ∪ P−r) intersecting Πr , the rim in this direction. During the algorithm the following invariant Ir

will hold for all directions r after the initialization and each update: The dynamic problem Dr contains exactly the boxes in
Q ∪ P \ (Pr ∪ P−r) that intersect Πr . We will show that initialization and updates of the instance Dr are of the form of the
dynamic problem Subproblem III, if we re-initialize Dr at the right moment.

Insertions and deletions. When we have to delete an r-pile B , we delete it from P 0
r (assuming that we are given a pointer

to B in P 0
r this can be done in time O(1)). It may be that it was the rim-defining pile in its direction. Then the volume

VoldR(Q ∪ P ) changes. Fig. 3(b) shows this situation, where the old rim was at pold and the new will be at pnew. We may do
a differential volume update, as we already have computed VoldR(Q ∪ P ) before the deletion. For this we need the volume v
overlapped by boxes in Q ∪ P in the subregion from pold to pnew of R . This volume can be computed by a sweep: We
sweep a hyperplane Π parallel to Πr from pold to pnew stopping at all coordinates of boxes in Q . We need to compute the
(d − 1)-dimensional volume of the cross-section Π ∩ R ∩ U (Q ∪ P \ (Pr ∪ P−r)). This is exactly what the dynamic problem
Dr gives us, so we insert or delete the boxes in Q we stop at into or from problem Dr . This way, we can do the sweep by
utilizing the lower dimensional dynamic problem Dr . At the end of this sweep the invariant Ir is fulfilled again. Note that
we assumed for this to work that U (Pr) ∩ U (P−r) = ∅. See the paragraph A Detail for a discussion of this.

Additionally, we have to update the dynamic problems in the other directions: We delete the r-pile B from Dr′ for any
direction r′ ⊥ r. After this, invariant Ir′ holds again.

An insertion of a pile works analogously. Here, we need that we only insert a pile B if it is not already contained in
some other pile B ′ in P 1, i.e., if B ∩ R � B ′ ∩ R . If we do this, then any newly inserted r-pile is “the largest” in P 1

r , so that
we can insert it in time O(1) into P 1

r .

Dr is an instance of Subproblem III. Note that the sequence of insertions and deletions of r-piles that actually change the
volume inside R has a very simple form: It may start with some deletions leaving a box in P 0

r or P 1
r as the rim-defining

pile. Eventually, an insertion changes the volume inside R , implying that the rim-defining pile will be one of P 1
r . From this

point on no box in P 0
r can be rim-defining anymore, so that no deletions will change the volume in R . Hence, the sequence

of volume-changing insertions and deletions starts with a sequence of deletions followed by a sequence of insertions. This
also shows that the (|r|th coordinate of the) rim Πr is monotonically decreasing up to some point, and monotonically
increasing afterwards (or the other way round, depending on the sign of r). Observe that during each of these two phases
the updates to the dynamic problem Dr are of the demanded form: Each pile in P \ (Pr ∪ P−r) always intersects Πr , and
they are either there at the initialization, so also at the initialization of Dr , and may get deleted, or may get inserted but
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Fig. 3. An example of Subproblem III with piles P1, P2, P3 and quasi-piles Q 1, Q 2. In part (b) pile P1 gets deleted, so that we have to compute the volume v
for a differential volume update. We do a sweep from pold to pnew stopping at z1 and z2 to delete Q 1 and insert Q 2 into D−1. We also have to delete P1

from D+2 and D−2.

never deleted. Each (r′, r′′)-quasi-pile in Q , r ⊥ r′, r′′ , always intersects Πr , so always is in Dr . An (r′, r)-quasi-pile with
r′ ⊥ r may get inserted into Dr when sweeping Πr during the deletion of an r-pile. But then it is never deleted from Dr in
a deletion of an r-pile anymore. Similar statements hold for insertions and (r′,−r)-quasi-piles.

We use a trick now to make all dynamic problems of the demanded form of Subproblem III: At the point where we
switch to the second phase in direction r (which is easy to recognize) we re-initialize problem Dr . Without this re-
initialization Dr would not necessarily be of the demanded form, as a quasi-pile might get inserted into Dr during the
deletion of a pile and get deleted from Dr again during the insertion of a pile. With this trick, the dynamic problems are of
the demanded form and we now have at most 4d of them: For all of the 2d directions we may initialize the problem twice.

A detail. So far during a sweep of an insertion or deletion of an r-pile we have considered only the boxes in Q and
P \ (Pr ∪ P−r) for computing the differential volume update. However, the piles in P−r may also influence this volume: If
the two rims of r and −r cross each other we get U (Pr ∪ P−r) = R , but this is not taken into account by our differential
volume update so far (and we would probably return a volume greater than Vol(R)). This detail has a simple fix: During
each sweep we have another stop at the point where the rim crosses its opposite rim, if this happens at all. If this cross is
of the form, that U (Pr ∪ P−r) = R afterwards, then we note this and return at the end of the update not the volume we
computed, but Vol(R). If the cross is of the form, that U (Pr′ ∪ P−r′ ) � R for each direction r′ afterwards, then we reset the
current volume to Vol(R) at this point. This simple fix can be seen to work trivially. It ends our description of the solution
of Subproblem III.

Run-time. To compute the required run-time we note that the number of boxes in each of the 4d dynamic subproblems
is bounded by n and all sweeps (and the rest) can be implemented in linear time, as we have sorted lists of coordinates.
Hence, we get

T d
III(n) � T d

II(n) + 4d · T d−1
III (n) + O(n),

where the first summand comes from the initialization and the second comes from the 4d dynamic subproblems at the
rims. Using bound (1) we get
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T d
III(n) � (4d + 1) · T d−1

III (n) + O(n).

As d is constant, this solves to T d
III(n) = O(n). Here, we have used the observation that Subproblem III can be solved in

linear time in dimension 1: After each update we have to know the rim-defining (+1)-pile and the rim-defining (−1)-pile
to compute the current volume inside the region. But this is simple since we are given sorted lists of coordinates.

6. Conclusion

In this paper we reduced the exponent β in the run-time of O(nβ) for Klee’s measure problem on cubes from β =
d
2 + O(1) to β = d

3 + O(1).
However, it is not clear so far whether an algorithm for C-KMP needs a run-time of nΘ(d) . Proving W[1]-hardness of

C-KMP would give such a result, conditioned on certain complexity theoretic assumptions, but this remains open. On the
other hand, there might still be a “fast” algorithm for this problem, waiting to be found.
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