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Abstract

This work focuses on the local Hélder exponent as a measure of the regularity of a function around
a given point. We investigate in detail the structure and the main properties of the local Holder
function (i.e., the function that associates to each point its local Hoélder exponent). We prove that it
is possible to construct a continuous function with prescribed kaedpointwise Holder functions
outside a set of Hausdorff dimension O.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

There exist various ways to measure the regularity of a function around a given point.
The most popular one is to use the pointwise Holder exponent (hereafter depptbdt
other characterizations of local regularity exist. These include the local Hélder exponent,
the chirp and oscillation exponents, the local box and Hausdorff dimensions and the degree
of fractional differentiability. We shall mainly be concerned in this paper with the study of
the local Holder exponent and the local Hélder function, i.e., the function that associates
to each point its local Hélder exponent.

There are several motivations for investigating the local Hélder exponent. First, this
exponent is computed through a localization of the global Holder exponent, and is thus
perhaps the most natural exponent in the list above.

Another obvious reason for introducing regularity exponents other dgas that the
knowledge of the sole pointwise Holder exponent does not provide a full description of the
regularity of a function. For instance tlespfunctionx — |x|” and thechirp function
x — |x|” sin(1/|x|#), wherey and g are positive reals, have the same pointwise Holder
exponent at 0, namely. However, they have strongly different behaviours around 0. In
these cases, the local Holder exponentare respectively andy/(1+ 8). The lower
value ofq, for the chirp function gives a clue about the oscillatory behaviour of the function
around 0.

A further advantage of the local Hélder exponent over the pointwise exponent ig that
is stable through fractional integro-differentiation, whijgis not. This means for instance

that the following equality always hoIds,F = oclf +1, WherealF is the local exponent of
a primitive F of f. In contrast, one can only ensure in general &ﬁat; ag +1.
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From a practical point of view, most methods for estimatiggmake implicitly or
explicitly the assumption thatp = «. It is thus of interest to investigate the domain of
validity of this equality.

Finally, in many application, the local Hoélder exponent and its evolution in “time” are
a relevant tool for characterizing or processing signals (see, for instance, [8]).

While the main properties of the pointwise Hélder function have already been
investigated, no such study has been conducted yet for the local one. We prove in this
paper that the class of local Hélder functions of continuous functions is exactly the one
of non-negative lower semicontinuous functions. The next natural question consists in
determining the exact links between the two Hélder-based regularity characterizations, i.e.,
the pointwise and local one. In other words, we want to answer the following question: to
what extent can one prescribe independently the pointwise and local Holder functions of
a continuous function? We show that any couple of functighg) such thatf < g, and
f (respectivelyg) belongs to the class of local (respectively pointwise) Holder functions
can be jointly the local and pointwise Hélder functions of a continuous function except on
a set of Hausdorff dimension 0 (see Theorem 4.1 for a precise statement).

In Section 2, we recall the definition and main properties of the pointwise exponent,
and we start studying the local one. In Section 3, we give the structure of local Hélder
functions. We provide various comparisons between the exponents in Section 4. Section 5
is devoted to the construction of a continuous function with prescribed local and pointwise
Holder functions.

2. Definitions of the exponents

We recall in this section the definitions of the two regularity exponents we are interested
in. The first one, the pointwise Holder exponent, is well-known. The second one is the local
Hélder exponent. We give a slightly enhanced definition of this exponent (as compared to
the one in [4]), and investigate its basic properties.

2.1. Pointwise Hdlder exponent

Definition 2.1. Let f : R — R be a functions > 0,s ¢ N, andxg € R. Then f € C(xp) if
and only if there exists a real> 0, a polynomialP with degree less thgn] and a constant
C such that

Vx € B(xo,n), |f(x) = P(x —x0)| < Clx — xol*. @)
By definition, the pointwise Holderexponent of f at xo, denoted byap(xo), is
sup(s: f € C*(xp)}.
The following wavelet characterization of this exponent, due to Jaffard [7], will be
useful in the sequel by the following proposition.
Proposition 2.1. Assume thaf € C*(xg). If [k27/ — xo| < 1/2, then
|djxl < C27% (1+ 2/ [k277 — xo])*. )

Conversely, if(2) holds for all(j, k)’s such thatk2~7/ — xo| < 2-7/109)? andif f e €09,
then there exist a consta@tand a polynomialP of degree at mogtr] such that

| £(x) — P(x — x0)| < Clx — x0/*(log(|x — xol)). 3)

C'°9 s the class of functiong whose wavelet coefficients verify
|d; x| < Cc2-J/109j

This regularity condition is stronger than uniform continuity, but does not imply a uniform
Holder continuity.
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2.2. Local Holder exponent

Let f:£2 — R be a function, whereg2 C R an open set. One classically says that
f € C}(£2) where O< s < 1 if there exists a constant such that, for alk, y in £2,

|f@) = f| < Clx—yP. (4)
If m <s <m+1(meN),thenf e C/(£2) means that there exists a constansuch
that, for allx, y in £2,

9" f(x) =™ fF()] < Cla =y

Set nowe (£2) = supls: f € C/(£2)}. Remark that, if2" C 2, o1 (£2') > o (£2). We
will use the following lemma to define the local Holder exponent.

Lemma 2.1. Let (0;);c; be a family of decreasing open séite., O; C O; if i > j), such

that
ﬂ O; = {xo}.

Set
ot|(xo)=Sup{0l|(O,-)Z i EI}. (5)
Thena) (xg) does not depend on the choice of the farily);<;.

Proof. Let (0;)er and(5,~),~e1 be two families of sets satisfying the above conditions,
and let us define the two corresponding exponents

o (xo) = sup{e (0;): i € I}, & (xo) = sup{ (0y): i € 1}.
Assume that, for examplem(xo) > ai(xg). Then there exists an mteg&; such that
o1(0;) > a1(xg). Since the(O )ier are decreasing, and using ttfa}; 0; = = {xo}, there

exists another integé > ip such thatO,1 C Oj.
Thena (xo0) > o (0;i;) = a1(0;,), which gives a contradiction. O

Sinceq is independent of the choice of the fami{y;};, we shall define the local
Hélder exponent using a sequence of intervals containing

Definition 2.2. Let f be a function defined on a neighborhoodx@f Let {I,},en be
a sequence of open decreasing intervals converging.tdhe local Holder exponent of
the functionf atxg, denoted by (xo), is

o) (x0) = supa(I,) = n—hmoo o (1y). (6)

neN

It is straightforward to prove that one always k&éro) < ap(xo).
It is also easy to obtain a wavelet characterizationy@k), which will be a simple
consequence of the following classical proposition [10].

Proposition 2.2. Letxo € R andn > 0. Thenf e C{’ (B(xo, )) if and only if there exists a
constantC, such that for all(j, k) such thatk2~/ € B(xo, n), one hasd; x| < C27%.

The last proposition leads to the following characterization.
Proposition 2.3.

a)(xg) = Iimo(sup{s: 3C, k277 € B(xo,n) = |dj k| < C275}). 7
n—

Proof. The proof is straightforward using the characterization provided by Proposi-
tion2.2. O

Remark 2.1. When dealing with compactly supported functions, one can assume that
compactly supported wavelet, like the Daubechies ones, for example, [2], are used.
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3. Thestructure of Holder functions

One can associate to eacits pointwise Holder exponen, (x). This defines a function
x — ap(x), called the pointwise Hélder function gf. A natural question is to investigate
the structure of the functions,(x) when f spans the set of continuous functions. The
answer is given by the following theorem [1].

Theorem 3.1. Letg:R — R* be a function. The two following properties are equivalent

e gis aliminf of a sequence of continuous functions
e There exists a continuous functighsuch that the pointwise Hdélder function ¢f
ap(x) satisfiesyp(x) = g(x), Vx.

As in the case of the pointwise exponent, one can associate ta ¢heltiocal exponent
of f atx. This defines a local Holder function— «;(x). The structure of local Holder
functions is more constrained than the one of pointwise Hélder functions, since the
former must be lower semicontinuous functions [4]. More precisely, we have the following
theorem.

Theorem 3.2. Letg:R — R* be a function. The two following properties are equivalent

e g is a non-negative lower semicontinudilsc) function.
e There exists a continuous functighsuch that the local Holder function of, o (x),
satisfiesy (x) = g(x), Vx.

Proof. From the definition of (xo), for all € > 0, there exists an intervél containingxg
such that

o1 (le) > o1 (xp) — €.
Then, using the definition af|(y) for everyy € I, one concludes that
Vyele, ai(y)=a(le) >a(xo) —e.

This exactly shows that — «;(x) is an Isc function. Obviously, the continuity gfentails
o) > 0.

That the converse property holds, i.e., any non-negative Isc function is the local Hélder
function of a continuous functioyi: R — R, will be a consequence of Theorem 4.1

Now that we have discussed the structures of lagtandap, we proceed to examine
the relation between them.

4. Relations between ) and ap
We start with two simple general bounds.

Proposition 4.1. Let f: I — R be a continuous functio(¥ is an interval ofR). Letap
ando be respectively its pointwise and local Holder functions. Theng 1,

1) < min(ap(x), iminf ap(x)). 8)

Proof. We give the proofin the casg, < 1.

By definition, Ve, there exists a constarf such that, fors close enough tor,
| (1) — f(x)| < C|t — x|%™)~=¢, Comparing this to the definition @fp(x), one deduces
thata (x) < oy (x) — €, Ve, hencey (x) < ap(x).

On the other hand, for every > 0, Yy € B(x,n), one hasw (B(x,n)) < ap(y).
Combining this with the fact that|(x) = lim,- o0 (B(x, n)), one obtains thad (x) <
liminf;, ap(?). O
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Proposition 4.2. Let f: 1 — R be a continuous functiofY is an interval ofR). If there
existsa such that{x: ap(x) = «} is dense aroundp, theno (xo) < c.

Proof. The proofis straightforward using Proposition 4.1

This proposition has an important consequence in multifractal analysis: “multifractal”
functions, as IFS (see below and [1]) or repartition functions of multinomial measures [3],
usually have the property that, for al] E, = {x: ap(x) = a} is either dense on the support
of the function or empty. For functions of this king, is constant. A consequence is that
it is not interesting in general to base a multifractal analysis on the local Hoélder exponent,
since the corresponding spectrum would be degenerate.

Let us now make a few remarks that go against some common thoughts about the
relation between local and pointwise Hélder exponents.

e x — ap(x) is a continuous function does not imply thaix) = ap(x) for everyx.
For a counter-example, consider the sum of a Weierstrass function with pointwise
exponentr and a chirp(e, 8) at 0, wheref < o. Theno(x) = ap(x) = « for all
x #0, andap(0) = « while o (0) = 8 < .

e The converse proposition is also falses> «(x) is a continuous function does not
imply thatey (x) = ap(x) for everyx: Any well-chosen IFS has a constant local Holder
exponent whilex — ap(x) is everywhere discontinuous.

We now move to a different kind of relation betweeg and ;. The following
proposition assesses that the two exponents can not differ everywhere.

Proposition 4.3. Let f:I — R be a continuous function, wheteis an interval ofRR.
Assume that there exists> 0 such thatf € C¥ (I). Then there exists a subgetof I such
that

e D is dense, uncountable and has Hausdorff dimen8ion
o Vx €D, ap(x) =aj(x).

Furthermore, this result is optimal, i.e., there exist functions with global Holder regularity
y > 0 such thatxp(x) # o (x) for all x outside a set of Hausdorff dimension

Proof. We give the proof of the last Proposition in the c&sg ap(x) < 1. The general
result follows with similar arguments.

Let us consider a balB(xo, n0) C I. We construct three sequences of poifxs},,
{yn}n, {zn}n by the following method.

Let {¢,}, be a positive sequence converging to 0 wher +oo. Let us denote byg
the real numbety (B(xg, no/2)). By definition of«;, there exist two real numbesg and
z1 such that

y1 € B(xo, n0/2), 71 € B(x0,10/2),
yi<zi and |f(y1)— f(za)| > |y1 —zalfoteo.

Let us now denote by; the middle point of y1, z1], and byn; the number mit2~2, |y; —

z11/2).
Now consider the smaller ba#t(x1, n1/2), and its associated exponeiit= o (B(x1,
n1/2)). There exist two real numbegs andzz such that

y2 € B(x1,1n1/2), 22 € B(x1,11/2),
v2<zz and |f(y2) — f(z2)| > ly2 — zolfrFeL.

We denote by, the middle point of yo, z2], and bynz the real number mi@ 2, |y —
221/2).



268 S. Seuret, J. Lévy Véhel / Appl. Comput. Harmon. Anal. 13 (2002) 263-276

We iterate this construction scheme, and thus obtain the desired three sedqughges
{yn}n, {zn}n- Now one easily proves that:

e The sequencegx,}, convergesto a real number
e The sequencey,}, and{z,}, also converge ta.
e For alln, one has the inequalities

|yn — 2z |yn — znl
%gu_)’ﬂgb’n_znh %<|x_zn|<|yn_zn|-
One can sum up these inequalities by writing
Vi, |x =yl ~|x =zl ~ |yn — Znl. 9

Let us now study the local and pointwise Hélder exponents of the limit point
respectively denoted by, ando, . Sincef € C7 ([0, 1]), one hay < By < ay.

First remark that the sequenf, },, is non-decreasing, since the intervalé,, n,,/2)
are embedded. By Proposition 3.2, one |8as= lim,, 8,. Indeed, since one can choose
any decreasing sequence of open sets convergingtioe specifically chooses the interval
B(x,,n,/2) (the converge 0B, is ensured by the fact than one always fas< ;).

Let us now turn to the pointwise Holder exponent. For every 0, there exist) > 0
and a constanf such that¥y € B(x, n), one hagf(x) — f(y)| < C|x — y|**—€. On the
other hand, there exists an infinite number of coupglgsz,) such thaty, € B(x, n) and
zn € B(x, n). For those couples, one can write

| f ) = f ()| = lyn — zalPrten

and, on the other side,

| fOm) = F@)| < | fOn) = FO] + | F&) = fzn)]

<
SClyn = x|+ Clx —z,|* ¢
< C|yn - Zn|ax7€a
where one has used (9).

Assume now thaB, < a,, and let us take < (a, — B8x)/4. Since lim, B, + €, = Bsx,
there existaV such that: > N implies 8, + ¢, < ax — 2¢. For suchn’s, one has

V=N, Clyn— 22 % < Clyn — zal?* <[ f(yn) — f(za)| and
| FOm) = )| < Clyn — zal™ ¢,
which gives
V> N, Clyn =2l % < Clya — 2l

Sincel|y, — z,| — 0 whenn goes to infinity, this is absurd.

One concludesa, = B, for the x we have found.

A simple modification of the above construction shows that théxsetp(x) =« (x)} is
uncountable. Indeed, starting from the interkg= [yo, zo], one can split it into five equal
parts. Focus now on the second and the forth subintervals, and apply the construction we
have described above. One thus obtains two subintel%adthe “left” one) andIl2 (the
“right” one). Iterating this scheme, at each stageone obtains 2 distinct intervalsi/,
ie€{l,2,...,2"}. Using this method one constructs a CantorGgt It is easy to see that
it is uncountable, and that each paing C still satisfiesxp(x) = o (x).

Finally, both the optimality and the fact that the set where the exponents coincide
has Hausdorff dimension 0 are a consequence of Theorem 4.1 below. Alternatively, one
may consider the case of an IFS, for which one bds) = ap(x) exactly on a dense
uncountable set of dimension 0. More precisely, consider an (attractor of an) IFS defined
on [0, 1], verifying the functional identity

fx)=c1f(2x)+ca(f)(2x = 1), (10)
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where 05 < |c1] < |c2| < 1. It is known that for such a functiomy (1) = —10g,(|c2|)

for all ¢. Furthermore (see [1])p(?) is everywhere discontinuous, and ranges in the
interval [—log,(|c2|), —100,(|c1])]. Finally, for all « in this interval, the set of for
whichap(t) = « is dense irf0, 1]. This is thus an example where the local and pointwise
exponents have drastically different behaviors, with a consgaand a wildly varyingxp.

It is easy to show that the s&t on whichap(r) = o) (t) = —log,(|c2|) is exactly the set of
points for which the proportion of 0 in the dyadic expansion is 1. That thi®sstdense,
uncountable, and of Hausdorff dimension 0 is a classical result in number theory.

So far, we have proved thai must be not larger thaamp, in the sense made precise
by Proposition 4.1, and that both exponents must coincide at least on a subset of a certain
“size.” Are there other constraints that rule the relations betwgandap? The following
theorem essentially answers in the negative.

Theorem 4.1. Let y > 0, f:[0,1] — [y, +00) a liminf of continuous functions, with

I flloo < 400, and g: [0, 1] — [y, +o0) a lower semicontinuous function. Assume the
compatibility condition, i.e.,Vr € [0,1], f(t) > g(¢t). Then there exists a continuous
functionF : [0, 1] — R such that

e forall x, o (x) = g(x),
o for all x outside a seD of Hausdorff dimensiof, ap(x) = f(x).

We prove this theorem in the next section, by explicitly construcfing

5. Joint prescription of the Holder functions
5.1. The case wheig is constant

We are going in this section to present a function whose local Hélder function is
constant, and whose pointwise Hélder function is everywhere constant (and thus equal to
the local Holder exponent) except at 0, whepg0) > ap(x), x # 0. This is the “inverse”
case of a cusp or a chirp, where the regularity at a single point is lower than at all the other
points.

This construction is paving the way to the more general result we will prove in the next
section.

Proposition 5.1. Let 0 < 8 < o a be two real numbers. Then there exists a function
f:1-1,1[ - R such thatvx # 0, ap(x) = g andap(0) = «. Moreover, one has) (x) = 8,
Vx e]-1,1].

Proof. The existence of such a function is obvious: take, for example, the function
Ay:x — |x[*PWg(x),
whereWy is the Weierstrass function

+00
Wg(x) =Y 27" sin(2w2"x). (11)
n=1
We will exhibit another functiory’ with the same property. This function is built using
a wavelet method that can be generalized to prescribe arbitrary Hélder functions.
First we are going to select some particular coupjes) among the whole set of indices
{(j,k)}jen, kez- To achieve this, consider the functigrdefined by

e V¥ if x £0,

g')H{o, if x =0,
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It is known that this function is infinitely differentiable at 0, and that offee N,

g0 =0
For alln € N*, choose one integére {1, ..., 2"}, and define
gi2™)
Pin = o (12)

Consider the unique integgrsuch that i 2/ p; , < 2, and define another (unique) integer
k=i2/—",

We have thus built a function, which associates with each co@ple (wheren > 1
andi € {1, ..., 2"}) another couple of indiceg, k). Let us denote by this set of selected
indices.

Let us define the following set of wavelet coefficients:

. » 2-iB, it (jk)erl
v , diog=2 ]Ut’ di:r = ’ ’ 5
J J.0 ok {0, everywhere else

We add, in a uniform manner, some larger coefficients along exponential curves in the
time—frequency domain.
We can define a functioii by the reconstruction formula

£=Y divj (13)
ik

Let us now prove that this function satisfies the desired properties.
First this function is well defined, sinc&(j, k), |d; | < 2778, By the theorem of
Jaffard, f is at leasiC# (x) for all x € ]—1, 1.

Case (x #0).Vj, Vk, one hagd, x| < 27/F. Thusap(x) > B.

The proof ofap(x) < B is more delicate. For each integerdefine the unique integer
i verifying i,27" < x < (i, + )27". Whenn — +o00, i,27" — x, and, sinceg is
continuousg(i,27"") ~ g(x). The associated coupig, k) satisfies

g(ln )
2n
One can rewrite the last inequality in
g(in2™)27" <27 < glin227",

or equivalently, using thag(i,2™") ~ g(x) whenn goes to infinity, and taking the
logarithm,

n—I—Cx\ (n+1)+Cx,

whereC, is a constant depending only an
Now, for the associated couplg, k), one has

2 x —k27| < c2tx — k27| < C2"Hx —i27"| < C2,
since by constructiofx — i,27"| < 27". Thus for such coupleg, k), one has exactly
djj =278 ~279F(14 2/ |x —k277|)". (14)

Hence, the inequalityj, k, |d; x| < C27/P(1+ 2/ |x —k27/])# is optimal, andxp(x) < B.
One concludeap(x) = B, since we already showegh(x) > 8.

k27 =i,27", 1< <2

Case (x = 0). One notices first that, by construction, fér= 0, d;o = 277 thus
ap(0) < a.

If £ #0,d; =0, exceptif there exists an integee> 1, and an integere {1, ..., 2"},
such that
gi2™)

k27 =i27", 1< o <2
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Then, for this kind of indicesj, k),
djul =277 < (27g(i2)” < (i27) (s(i27™))".

But, using the structure of the functignthere exists a consta@t(independent of) such
that,Vx > 0, g(x) < C|x|@tD/B,
Thus

\dj x| =C(|i2_”{)ﬁ({iZ_"|(“+1)/ﬂ)ﬂ < C|i2_”{“+ﬁ+1 < C|k2‘j|a+ﬂ+1
< szj(a+ﬁ+l)(1+ |k|)a+ﬂ+l.

This proves that these coefficients, which are larger thait 2are nevertheless seen as
very regular ones from the point 0. The main contribution to the pointwise regularity is thus
given by the wavelet coefficients that are located at Odttye One concludeap(0) = o.

To end the proof, we need to prove thatx) = 8, Vx € ]—1, 1[. This is easily done.
Indeed, using the characterization given by (7), one obtains/thgt 0, o (x) = 8. At 0,
one can still write;(0) > B, but on the other hand one uses (8) and concludes that
1(0) < liminf, g (x) = B. This concludes the proof.O0

5.2. The general case

In the last section, we have built a function whose pointwise exponent at 0 was larger
than all the other ones. In particular, at 0, we have forced the local exponent to be equal
to a given valugd, while at the same time the pointwise exponent was forced to be larger
thang. The next step is to be able to do this uniformly, on a set a6 large as possible.

The purpose of this subsection is to prove the theorem stated in Section 4 that we recall
here for convenience.

Theorem 5.1. Let0 < y <1, f:[0,1] — [y, +o00) a liminf of continuous functions,
with || fllec < +00, and g:[0, 1] — [y, +00) a lower semicontinuous function. Assume
the compatibility condition, i.e.,vt € [0, 1], f(t) > g(¢). Then there exists a continuous
functionF : [0, 1] — R such that for allx:

ol (x) = g(x), (15)
outside a seD of Hausdorff dimensiof,
ap(x) = f(x). (16)

Let us make a few remarks:

e The proof is a kind of generalization of the method used in Proposition 5.1. We are
going to enlarge some coefficients, but this time we are going to do this “uniformly”
and not only around a single point.

e Our construction introduces an asymmetry between the local and the pointwise
exponent: one can prescribeerywherghe local exponent, while one can not do the
same thing at the same time (with this construction) for the pointwise exponent.

e Eventually, we will see that, applying the method we introduce, one can prescribe
the pointwise exponent everywhere except on a set of Hausdorff dimension 0. This
restriction is weaker that the one which occurs when one wants to prescribe at the
same time thehirp and the pointwise Holder exponent: Jaffard [6] has proved that, in
this frame, the excluded set is of Lebesgue measure 0 and of Hausdorff dimension 1.
Working with the local Holder exponent thus allows more flexibility.

Proof. We shall one more time construct the function by a wavelet method.
First we are going to construct some specific approximations sequences of continuous
functions that will approximate the functiorfsandg.
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By definition, one knows that there exist two sequences of continuous funt{:pf,@ns
and{g?}, such that

liminf £0= £, (17)
supgl = g. (18)

We will use the two following lemmas, that roughly say that one slamv downthe
speed of convergence of these two sequences.

Lemma 5.1. Let f be a liminf of continuous functions. Then there exists a sequence of
polynomialsf.! that verifies

£ (&) =liminf o), vrelo,1],

1(£Y ]« <logn, Vn>1and:e[0,1].
The proof of this fact can be found in [5] or [1].

Lemma 5.2. Letg be an Isc function. Then there exists a sequence of polynogidet
verifies

g(t) =supgl@r), Vvirel0,1],

I(s3) @], <logn, Vn>1land:e[0,1].

Proof. This is a little bit more complicated. First let us define, foraland x, g,,z(x) =
maxpgn{g{(x)}. One still hasg(x) = sup, g?(x). One also hag(x) = sup, g>(x) with
g3(x) = gZ(x) — 1/n.

For eachn > 0, there exists a polynomiat, such thau|g,:f — PyllLe <27, One has
thus built a sequence of polynomials such that sup, P,.

One can now, by the same method as in Lemma 5.1, slow down the sedughgce
such that it will satisfy the desired conditionst

We now set the desired sequenégs}, and{g,}, by
8o () =maxXgy(0.7/2). [ (1) =maxX£1(0). u(0) + 1/n).

They verify the following properties:

e They still respectively satisfy (17) and (18).

e For each, the right and left derivatives @f, and f;,, at each poink < [0, 1] are lower
than logn, since they are maxima of a finite number of polynomials of derivative lower
than logn.

e g, is non-decreasing, i.ev¢ € [0, 1], {g, (1)}, is an non-decreasing sequence of real
numbers.

e One has the inequalityj, > g, for all n € N*.

We are now going to select some couples of indices, which will be the basis of our
construction of a functio satisfying (15) and (16).

Forne{l,2,3,..}andi €{1,2,3,...,2" 1}, let us define the two integeys andk;, ;
by
2i—1

Jn

At eachn, one obtains’21 couples, which are uniformly distributed ¢@, 1] in the sense
that thex, ; = k,,,iz—/'u = (2i — 1)/j, are uniformly distributed of0, 1]. We denote byA
the set of these selected couplés k,.i)-

=2 kni=2
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We are now ready to construct the wavelet coefficientg .dfVe define
dj=2778i0mi) = 2778 ki if (j k) e A,
djp =271 everywhere else

The operation we are doing is a re-scaling of some coefficients, according to the local
regularity.
Remark that for all j, k), |d; x| < 2777/2, thus

Fx)y=Y" "djxpjrx)
ik

is well defined and i€ /2([0, 1)).

5.2.1. Local Hélder exponent
Letxg € [0, 1] ande > 0. One hag (xg) = sup, g (xo), thus there exists an integdi
such thatr > N1 = g,(x0) > g(x0) — €/2. Let N» be an integer such that l62)2~"2 <
€/2. DefineN = max(N1, N2). Then, using the boundedness of the derivativegafif
n=2"", one obtain¥y € B(xo, 1),
|gn (¥) — gn (x0)| < (log N) |y — xo| < (logN)2™N < €/2,
and thusvy € B(xo, 1),

gn(y) = gn(xo) —€/2.

One thus hagy(y) > gnv(x0) — €/2 > g(xp) — €, and since the sequengg is non-
decreasing, the last property is still true for aizy n > N. One obtains the key property

Vy e B(xo,n), Vn =N, gu(y) = g(xo) — €. (19)

Consider now the wavelet coefficients; such that their supportis includedBxo, 1)
(these coefficients are the ones one shall focus on to compWReéxo, 1))). There are two
sorts of such coefficients:

e the “normal” ones, those which do not belongtoOne can write for them
\dj x| <2700 k277) < =igjk27)) < p=j(8(x0)=€)

e those which belong tet. For them,
\d; k] < 2—Jj&n(xn.i) < 2—Jj(gx0)—€)

Eventually, for all the interesting couples of coefficieqfsk), |d; | < 27/(&0)=€),
One concludesy (B(xo, 1)) > g(x0) — €. The result is clearly still true on every ball
B(xo, n1) with n1 < n, thus one haa|(xg) > g(xo) — €.

On the other hand¢n > 0, consider the unique integéthat verifiesx, ; = k, ;2" €
[x0 — j,jl, X0+ j,;l]. Then, using the boundedness of the derivativeg, pbne can write

|8, Geni) — 8, (x0)| < 10Q(jn) jy F <n27".
Let N3 be such thatV,2=V3 < €/2. Forn > max(N3, N) (where N has been above
defined), one has

&jn (xn,i) < g, (x0) +€/2< g(x0) + €. (20)

There is an infinite number of such coupl@gsi), whose associated wavelet coefficients
satisfy

dj k| =1d), ki1 =2 In8jnCni) > 9= Jn(8(X0)t+€) (21)

Now, by Proposition 2.2y (B(xg, n)) < g(xo) + €. Since, one more time, this is also true
for anyn1 < n, one hasy (xg) < g(xo) + €.
Eventually,x (xo) = g(x0).
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5.2.2. Pointwise Holder exponent

The estimation of this exponent is more complicated.iget [0, 1] ande > 0.

Without the rescaled coefficients (i.e., if tdg, x,, were all equal to 2/:/in(n.)) it
has been proved in [1] thaty, ap(x) = f(x). The question is: do we change something
when we modify the values of these specific coefficients? The modifications may have
big influence on regularity, because the new coefficients are larger than the “normal” ones
(indeed, remember that(x) > g(x)).

We will show that in fact, the rescaled coefficients are not seen by most of the points
Thus, for such points, one still hag(x) = f(x).

Let us define the sdty, by

2i—1

2n
where M verifiesM > | flleo- L€t xo be in Ey. Sincex,; = (2i — 1)/2", one has, for
everyi andn > N,,

272Y/M L Clxg — xn.il, (23)

X —

Ey = {x: 3C, AN,, Yn > N,, Vi,

>Cc272r/M } (22)

or equivalently, replacing, andk, ; by their values,
2—i"vIM < C|xo _ kn,,~27j"

We know thaty < gj, and f(xo) < M by construction, thu¥y € [0, 11, g;, (y)/f (x0) >
y /M, and for every andn,

2= Jn8jn )/ f (x0) < C|xo _ kn,iZ*f" )

This is equivalent to
2 Jn&jn n,i) < C|xo _ kn,i2_j” |f(x0)’
which implies

2= in&inGini) < o~ Jnf(x0) (Zjn

S

X0k i27)) 9,

< Cc2~Inf(x0) (1+ n x0 — k,,,,~2*f"

)f(XO)_

Butd), x,, = 2~/8in i) hence, for anytg € Ey, there exists a consta@tsuch that

I ;] < €277 00 (14 20| g — ky, 270 [)7 0O, (24)

This shows that, ifig € Eps N[0, 11, Vi > Ny, Vp, one has (24), which ensureg(xo) =
f(x0). The large coefficients, those which are rescaled, are not “seen” by the pointwise
Holder exponent atp.

To end the proof, it is sufficient to measure the sizeEgf. We prove in Section 6
that the complementary sét,; of the setE, has Hausdorff dimension 0. Moreover, any
rational number = p/q belongstoEy. O

Remark 5.1. One cannot say anything about th's that are inDy; = [0, 1]\ Es, except
that for such pointsc, g(x) = o (x) < ap(x). Nevertheless some of them must satisfy
ap(x) = ai(x) even if the functiong’ andg satisfy f(y) > g(y) for all y in [0, 1].

Remark 5.2. Combining the construction we used with the construction due to Jaffard [6],
one can certainly prescribe, outside a set of Hausdorff dimension 1 but of Lebesgue
measure 0, three different regularity exponents at the same time: the local Holder exponent,
the pointwise Holder exponent, and the chirp exponent [10]. This is a first step towards a
more complete prescription of the regularity of a function. See [9] for more on this topic.

6. Study of theset Ey

We begin by computing the Hausdorff dimension of the complementary g&j; of
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Proposition 6.1. For all M > 0, the Hausdorff dimension of the se}, defined by
Dy =1[0,1N\Eym (25)
is 0.

Proof. Let M > 0, C > 0, and definéE§, by

2i—1 .
ES = {x €[0,1]: ANy, ¥n = Ny, Vi, |x — 12,1 ' > (272 V/M}, (26)
or equivalently,
Eglz{xe[o,l]: N, eN, x¢ F,f}, (27)

n>Ny

where

n—1
e e e J2i-1 o 2=1 iy
FE=|J B, and Bf, = > — C2 o+ C2 :
i=1

Let DS, = [0, 1]\ ES,. It obviously satisfies

b5 =) U Ff.

NeNn>=N
Lete > 0. One has
zn—l
Z Z |Bnc,i |E < Z 2”*1|2czf2m//M‘6 < C/272N(J//M)6+N—1,
n>N i=1 =N

which goes to zero wheN goes to infinity C’ is a constant independent &%). Since for
all N, U,y Fy is obviously a cover oD, by balls of size 22"7/M one has exactly
shown that the:-dimensional Hausdorff measure b, is 0, ¥e > 0. We conclude that
the Hausdorff dimension dbjﬁ is 0.

Remark now thaDy C (), e+ D,lw/". Dy is thus also of Hausdorff dimension 0O

In Theorem 4.1, one may choose, for all f(x) =M > y = g(x) > 0. Using

Proposition 4.3, we deduce thddy, = [0, 1]\E) must be dense and uncountable,
otherwisexy; would be different fromxp on a too large set. This implies

Corollary 6.1. Dy, is uncountable and dense[@, 1].

We remark finally that our construction also allows to prescribe the pointwise Holder
exponent at any rational point (even at dyadic ones). Indeed,

Proposition 6.2. Q N[0, 1] C Eyy.

Proof. Letx = p/q be arational number.
For everyn € N,

2p—1| |p 2p—1| |2'p—(2p—1yg
2 | g n q2n '
Let us decompose the integgras g = 2"+q1, wheregq is an odd integer. Thus, for
n>=nyx+1,
2'p—2p—1g=2" (2”_""17 —@2p - 1)q1) #0,

since 27 "= p is an even integer an@p — 1)g1 is an odd integer. Consequent¥y; such
that 2 > ¢,

2p — 1‘
X — =

X —

2'p—(2p —1yq S 1 (_,,)2
q2" g '

2n
Thusx € Ej and Proposition 6.2 is proved.O
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