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Abstract

We prove that there exist Banach spaces not containing �1, failing the point of continuity property and
satisfying that every semi-normalized basic sequence has a boundedly complete basic subsequence. This
answers in the negative the problem of Remark 2 in Rosenthal (2007) [12].
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Recall that a Banach space is said to have the point of continuity property (PCP) provided
every non-empty closed and bounded subset admits a point of continuity of the identity map from
the weak to norm topologies. It is known that Banach spaces with Radon–Nikodym property,
including separable dual spaces, satisfy PCP, but the converse is false (see [2]). The PCP has
been characterized for separable Banach spaces in [2] and [5], and this characterization implies
that Banach spaces with PCP have many boundedly complete basic sequences, and so many
subspaces which are separable dual spaces. As PCP is separably determined [1], that is, a Banach
space satisfies PCP if every separable subspace has PCP, it is natural looking for a sequential
characterization of PCP. In this sense, it has been proved in [12] that every semi-normalized basic
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sequence in a Banach space with PCP has a boundedly complete subsequence. The converse
of the above result is false in general, but it is open for Banach spaces not containing �1 (see
Remark 2 in [12]). The goal of this note is to prove in Corollary 2.4 that there exists a family of
Banach spaces failing PCP and not containing �1 such that every semi-normalized basic sequence
has a boundedly complete subsequence. Concretely, the space B∞, the natural predual of the
space JT∞, constructed in [5] is the desired example (Corollary 2.5).

It seems natural recall now the definition of JT∞ and B∞. For this consider the tree T∞ =⋃∞
k=0 N

k . If t = (n1, n2, . . . , nk) ∈ T∞, set |t | = k and for j � k set t | j = (n1, n2, . . . , nj ). The
partial order on T∞ is defined by s � t if |s| � |t | and s = t | |s|. A segment on T∞ is a totally
ordered subset of T∞. Finally the space JT∞ is the completion of vector space of all real-valued,
finitely supported functions on T∞ with the norm

‖x‖ = sup

(
n∑

i=1

(∑
t∈Si

x(t)

)2
)1/2

where the supremum is taken over all families (S1, S2, . . . , Sn) of disjoint segments in T∞. If
{et }t∈T∞ denotes the canonical basis of JT∞ and {e∗

t } is the sequence of biorthogonal functionals
in JT∗∞, then the space B∞ is the closed linear span of the sequence {e∗

t }.
We begin with some notation and preliminaries. Let X be a Banach space and let {en} be

a basic sequence in X. {en} is said to be semi-normalized if 0 < infn ‖en‖ � supn ‖en‖ < +∞,
X∗ denotes the topological dual of X and the closed linear span of {en} is denoted by [en]. {en} is
called

(i) boundedly complete provided whenever scalars {λi} satisfy supn ‖∑n
i=1 λiei‖ < +∞, then∑

n λnen converges;
(ii) shrinking if the scalar sequence {‖f|[en,en+1,...]‖} converges to zero ∀f ∈ X∗;

(iii) supershrinking provided {en} is shrinking and whenever scalars {λi} satisfy
supn ‖∑n

i=1 λiei‖ < +∞ and {λi} → 0, then
∑

n λnen converges;
(iv) strongly summing provided is a weakly Cauchy sequence and whenever scalars {λi} satisfy

supn ‖∑n
i=1 λiei‖ < +∞, then

∑
n λn converges.

A boundedly complete basic sequence spans a dual space and a shrinking basic sequence {en}
spans a subspace whose dual has a basis {fn}, called the sequence of associated functionals to
{en}. A boundedly complete and shrinking basic sequence spans a reflexive subspace and a basic
sequence in a reflexive space is both boundedly complete and shrinking [7].

The supershrinking basic sequences appear in [8] and [9], where it is proved that a Banach
space X with a supershrinking basis not containing c0 is somewhat order one quasireflexive.
Then X has many boundedly complete basic sequences. The space B∞ has a supershrinking
basis (see [8] and Theorem IV.2 in [5]), does not contain c0 and fails PCP [5], so B∞ is a good
candidate to be the desired example. Other examples with a supershrinking basis are c0 and B , the
natural predual of James tree space JT [5]. It is worth to mention that, by a separation argument,
a semi-normalized basis of a Banach space X is supershrinking if and only if

{
x∗∗ ∈ X∗∗: lim

n
x∗∗(fn) = 0

}
= X (1.1)

where {fn} is the associated functional sequence.
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The strongly summing basic sequences appear in [11], where it is proved the remarkable
c0-theorem, which assures that every weak Cauchy non-trivial sequence in a Banach space not
containing c0, has a strongly summing basic subsequence. A weak Cauchy sequence in a Banach
space is said to be non-trivial if does not converge weakly. Finally, we recall that if {en} is a
strongly summing sequence, then {vn} is a basic sequence, where {vn} is the difference sequence
of {en}, that is, v1 = e1 and vn = en − en−1 for n > 1 [11].

The next lemma shows a very easy connection between supershrinking, strongly summing
and boundedly complete basic sequences.

Lemma 1.1. Let {en} be a semi-normalized strongly summing basic sequence with difference
sequence {vn}. If {vn} is supershrinking, then {en} is boundedly complete. In fact, [en] is order
one quasireflexive, that is, [en] has codimension 1 in [en]∗∗.

Proof. Let {λn} be scalars so that supn ‖∑n
i=1 λiei‖ < +∞. We have to prove that

∑
n λnen

converges in order to obtain that {en} is boundedly complete. As {en} is strongly summing, hence∑
n λn converges. Define μn = ∑+∞

i=n λi ∀n. Then {μn} converges to zero and

n∑
i=1

μivi =
n−1∑
i=1

λiei + μnen ∀n ∈ N. (1.2)

So, supn ‖∑n
i=1 μivi‖ < +∞ and then

∑
n μnvn converges, by hypothesis. Finally,

∑
n λnen

converges by (1.2), since {μn} → 0.
Now, we conclude that [en] is order one quasireflexive. For this, put e∗

n = v∗
n − v∗

n+1, where
{v∗

n} is the associated functional sequence to {vn}. Then {e∗
n} is the associated functional sequence

to {en}. Observe that [en]∗ = [v∗
n], since {vn} is shrinking. Hence, [e∗

n] has codimension 1 in [en]∗,
since x∗∗(e∗

n) = 0 for every n and x∗∗(v∗
1) = 1, where x∗∗(x∗) = limn x∗(en) for every x∗ ∈

[en]∗ exists because {en} is weakly Cauchy. In fact, [en]∗ = [e∗
n] ⊕ [v∗

1 ]. But [e∗
n]∗ is canonically

isomorphic to [en], since {en} is a boundedly complete sequence. Then [en] has codimension 1
in [en]∗∗. �
2. Main results

Corollaries 2.4 and 2.5 announced in the introduction will be deduced from the following
more general result.

Theorem 2.1. Let X be a Banach space with a semi-normalized supershrinking basis, not
containing c0. Then every non-trivial weak Cauchy sequence has a boundedly complete basic
subsequence.

Before prove this theorem, we need the following stability property of supershrinking basic
block sequences.

Lemma 2.2. Let X be a Banach space with a semi-normalized supershrinking basis {en}. If
vn = ∑σ(n)

k=σ(n−1)+1 λkek is a basic block of {en} with {λn} bounded, then {vn} is a supershrinking
basic sequence.
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Proof. Let {fn}, {gn} be the sequences of associated functionals to {en} and {vn}, respectively. If
we do Y = [vn] we claim that fk|Y = λkgn whenever σ(n − 1) + 1 � k � σ(n). Indeed, for each
n, k such that σ(n − 1) + 1 � k � σ(n) and λk 	= 0 one has that fk |Y (vn)

λk
= 1 and fk |Y (vm)

λk
= 0

for every m 	= n. Furthermore, if λk = 0 for such n, k then fk|Y = 0 (f |Y denotes f restricted to
Y for every f ∈ X∗). Then, from the uniqueness of the sequence of associated functionals to the
basic sequence {vn}, the claim is proved.

In order to show that {vn} is a supershrinking basic sequence we check the equality (1.1).
Pick y∗∗ ∈ Y ∗∗ with limn y∗∗(gn) = 0 then limn y∗∗(fn|Y ) = 0 by the claim, since {λn}

is bounded. Now y∗∗ ∈ Y ∗∗ ⊂ X∗∗ and y∗∗(fn) = y∗∗(fn|Y ) for every n ∈ N. So, y∗∗ ∈
X ∩ Y ∗∗ = Y , since {en} is supershrinking, and then {vn} is also supershrinking. �

Now, we show that Banach spaces with a supershrinking basis without copies of c0 contain
many reflexive subspaces.

Proposition 2.3. Let X be a Banach space with a semi-normalized supershrinking basis {en}
without isomorphic subspaces to c0. Then every subsequence of {en} has a further subsequence
whose closed linear span is a reflexive subspace.

Proof. It is clear that it is enough to prove that {en} has a subsequence whose closed linear span
is a reflexive subspace.

For this, we apply the Elton Theorem [3] to obtain {eσ(n)} a basic subsequence of {en} such
that

lim
k

∥∥∥∥∥
k∑

i=1

aieσ(i)

∥∥∥∥∥ = +∞ ∀{ai} /∈ c0.

We put Y = [eσ(n)]. To see that Y is reflexive it suffices to prove that {eσ(n)} is a boundedly
complete basic sequence in Y , since {eσ(n)} is a shrinking basic sequence.

Let {λn} ⊂ R such that supn ‖∑n
k=1 λkeσ(k)‖ < +∞. Then {λn} ∈ c0 and

∑
n λneσ(n) con-

verges, since {eσ(n)} is supershrinking, that is, Y is reflexive. �
Proof of Theorem 2.1. Let {fn} be the functional sequence associated to {en} and assume, with-
out loss of generality that {en} is monotone, that is, ‖Qn‖ � 1 ∀n ∈ N, where {Qn = ∑n

k=1 fk} is
the sequence of the projections of the basis {en}. Put M = supn ‖en‖ and let {xn} be a non-trivial
weak Cauchy in X. By the c0-theorem, we can assume that there is a strongly summing basic
subsequence of {xn}, so we in fact assume that {xn} itself is a non-trivial weak Cauchy strongly
summing basic sequence.

We claim that there exist integers 0 < σ(1) < σ(2) < · · · , 0 = m0 < 1 = m1 < m2 < · · · and
{vn} a basic sequence such that

(i)
∣∣fh(xσ(n)) − fh(xk)

∣∣ <
1

2n+3mnM
∀k � σ(n), h � mn, n ∈ N, (2.1)

(ii) vn ∈ [ek: mn−1 + 1 � k � mn+1] ∀n ∈ N,

(iii) ‖vn − zn‖ < 1/2n+1 ∀n ∈ N,
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where {zn} is the difference sequence of {xσ(n)}, that is, z1 = xσ(1), zn = xσ(n) − xσ(n−1) for all
n > 1.

As {xn} is weakly Cauchy, there is σ(1) ∈ N such that

∣∣f1(xσ(1)) − f1(xk)
∣∣ < 1/24M ∀k � σ(1). (2.2)

Choose m2 > m1 such that ‖∑+∞
n=m2+1 fn(xσ(1))en‖ < 1/22 and put v1 = ∑m2

n=1 fn(xσ(1))en.

Then ‖z1 − v1‖ = ‖∑+∞
n=m2+1 fn(xσ(1))en‖ < 1/22.

Pick now σ(2) > σ(1) such that

∣∣fh(xσ(2)) − fh(xk)
∣∣ <

1

25m2M
∀k � σ(2), h � m2. (2.3)

Chose m3 > m2 such that ‖∑+∞
n=m3+1(fn(xσ(2)) − fn(xσ(1)))en‖ < 1/24.

Put now v2 = ∑m3
n=m1+1(fn(xσ(2)) − fn(xσ(1)))en. Then ‖z2 − v2‖ � ‖(f1(xσ(2)) −

f1(xσ(1)))e1‖+‖∑+∞
n=m3+1(fn(xσ(2))−fn(xσ(1)))en‖ < 1/24 +1/24 = 1/23, by (2.2) and (2.3).

Assume, inductively, that m2 < m3 < · · · < mn+1, σ(2) < σ(3) < · · · < σ(n), v1, v2, . . . , vn

have been constructed such that

∣∣fh(xσ(n)) − fh(xk)
∣∣ <

1

2n+3mnM
∀k � σ(n), h � mn. (2.4)

Pick now mn+2 > mn+1 such that

∥∥∥∥∥
+∞∑

n=mn+2+1

(
fn(xσ(n+1)) − fn(xσ(n))

)
en

∥∥∥∥∥ < 1/2n+3. (2.5)

Put vn+1 = ∑mn+2
i=mn+1(fi(xσ(n+1)) − fi(xσ(n)))ei . Then ‖zn+1 − vn+1‖ � ‖∑mn

i=1(fi(xσ(n+1)) −
fi(xσ(n)))ei‖ + ‖∑+∞

i=mn+2+1(fi(xσ(n+1)) − fi(xσ(n)))ei‖ < 1/2n+3 + 1/2n+3 = 1/2n+2, by
(2.4) and (2.5).

Now, choose σ(n + 1) > σ(n) such that

∣∣fh(xσ(n+1)) − fh(xk)
∣∣ <

1

2n+4mn+1M
∀k � σ(n + 1), h � mn+1. (2.6)

Then the induction is complete and the claim is proved.
From the claim, it is clear that {vn} is a basic sequence equivalent to {zn}, the difference

sequence of {xσ(n)}, since
∑+∞

n=1 ‖zn − vn‖ < 1/2 (see Proposition 1.a.9 in [7]). Also, we ob-
tain from (ii) of the claim that [vn, vn+1, . . .] ⊂ [emn−1+1, emn−1+2, . . .] ∀n ∈ N. Then {vn} is a
shrinking basic sequence, since {en} is shrinking.

Now, let us see that {vn} is a supershrinking basic sequence. For this, we chose {λn} a scalar
sequence such that supn ‖∑n

k=1 λkvk‖ < +∞ and we have to prove that
∑

n λnvn converges,
whenever {λn} → 0.

From the proof of the claim v1 = ∑m2
n=1 fn(xσ(1))en, and for every n > 1, vn =∑mn+1 (fk(xσ(n)) − fk(xσ(n−1)))ek .
k=mn−1+1
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Put μi = λ1fi(xσ(1)) for 1 � i � m1, μi = λ1fi(xσ(1)) + λ2(fi(xσ(2)) − fi(xσ(1))) for m1 +
1 � i � m2 and μi = λk−1(fi(xσ(k−1))−fi(xσ(k−2)))+λk(fi(xσ(k))−fi(xσ(k−1))) for mk−1 +
1 � i � mk and k > 2.

As {λn} → 0, {en} is a semi-normalized basis of X and {xn} is bounded, we deduce that
{μn} → 0. Furthermore, we have the following equality for all n ∈ N:

n∑
k=1

λkvk =
mn∑
k=1

μkek +
mn+1∑

k=mn+1

λn

(
fk(xσ(n)) − fk(xσ(n−1))

)
ek. (2.7)

Hence, whenever mn + 1 � p < mn+1, n > 1 we have

p∑
k=1

μkek =
n∑

k=1

λkvk +
p∑

k=mn+1

λn+1
(
fk(xσ(n+1)) − fk(xσ(n))

)
ek

−
mn+1∑

k=p+1

λn

(
fk(xσ(n)) − fk(xσ(n−1))

)
ek. (2.8)

Now, as {xn} and {Qn} are bounded and {λn} → 0, we obtain that

lim
n

mn+1∑
k=p+1

λn

(
fk(xσ(n)) − fk(xσ(n−1))

)
ek

= lim
n

p∑
k=mn+1

λn+1
(
fk(xσ(n+1)) − fk(xσ(n))

)
ek = 0, (2.9)

since for every mn + 1 � p < mn+1, n ∈ N, n > 1 we have:

mn+1∑
k=p+1

λn

(
fk(xσ(n)) − fk(xσ(n−1))

)
ek = λn(Qmn+1 − Qp)(xσ(n) − xσ(n−1)),

p∑
k=mn+1

λn+1
(
fk(xσ(n+1)) − fk(xσ(n))

)
ek = λn+1(Qp − Qmn)(xσ(n+1) − xσ(n)). (2.10)

From (2.8) and (2.10), it can be deduced that supp ‖∑p

n=1 μnen‖ < +∞ and so,
∑

n μnen con-
verges, since {μn} → 0 and {en} is supershrinking. Then

∑
n λnvn converges by (2.8) and (2.9)

and we have proved that {vn} is a supershrinking basic sequence equivalent to the difference
sequence of {xσ(n)}. Finally, {xσ(n)} is boundedly complete by Lemma 1.1, since it is strongly
summing. In fact, [xσ(n)] is order one quasireflexive, by Lemma 1.1. �
Corollary 2.4. Let X be a Banach space with a semi-normalized supershrinking basis not
containing c0. Then every semi-normalized basic sequence in X has a boundedly complete sub-
sequence spanning a reflexive or an order one quasireflexive subspace of X.
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Proof. Let {xn} be a semi-normalized basic sequence in X. As X does not contain isomorphic
subspaces to �1, we can assume that {xn} itself is weakly Cauchy, by the �1-theorem [10]. If {xn}
is not weakly convergent, then {xn} is a semi-normalized non-trivial weak Cauchy sequence and
{xn} has a boundedly complete subsequence spanning an order one quasireflexive subspace, by
Theorem 2.1, and we are done.

If {xn} is weakly convergent, then {xn} converges weakly to zero, because {xn} is a basic
sequence. Now, it is straightforward construct a subsequence of {xn} equivalent to a basic block
of the basis. So, we can assume that {xn} is a semi-normalized basic sequence equivalent to a
basic block of the basis. Following the proof of Proposition 1.a.11 in [7], it is easy to construct
this basic block satisfying the hypothesis of Lemma 2.2. Then {xn} is a supershrinking basic
subsequence and, by Proposition 2.3, {xn} has a boundedly complete subsequence spanning a
reflexive subspace, so we are done. �

As we announced in the introduction, it is enough to apply Corollary 2.4 to obtain the follow-
ing

Corollary 2.5. B∞ fails PCP, does not contain isomorphic subspaces to �1 and every semi-
normalized basic sequence in B∞ has a boundedly complete subsequence spanning a reflexive
or an order one quasireflexive subspace.

Proof. The fact that B∞ has a semi-normalized supershrinking basis is a consequence of Theo-
rem IV.2 in [5]. So B∞ has separable dual and does not contain subspaces isomorphic to �1. Now,
B∞ fails PCP and does not contain subspaces isomorphic to c0 [5]. Finally, by Corollary 2.4, ev-
ery semi-normalized basic sequence in B∞ has a boundedly complete subsequence spanning a
reflexive or an order one quasireflexive subspace of B∞. �

Let B be the natural predual of James tree space JT . It is known that B satisfies PCP, and
also B has a semi-normalized supershrinking basis. (See [6] and [9].) As B does not contain
isomorphic subspaces to c0, [6], we can apply Corollary 2.4, as in Corollary 2.5, to obtain the
following

Corollary 2.6. Every semi-normalized basic sequence in B has a boundedly complete subse-
quence spanning a reflexive or an order one quasireflexive subspace of B .

Remark 2.7. (i) It has been proved in [4] that a Banach space X with separable dual satisfies PCP
if, and only if, every weakly null tree in the unit sphere of X has a boundedly complete branch.
Also, it is shown in [4] that this characterization of PCP is not true for sequences, by proving that
every weakly null sequence in the unit sphere of B∞ has a boundedly complete subsequence,
while B∞ fails PCP. Hence Corollary 2.5 improves this result, since every weakly null sequence
in the unit sphere of a Banach space has a semi-normalized basic subsequence.

(ii) From Corollary 2.4 one might think that the good sequential property in order to imply
PCP for Banach spaces with separable dual is that every semi-normalized basic sequence has a
subsequence spanning a reflexive subspace. And this is true, but this property implies reflexivity.
Indeed, assume that X is a Banach space satisfying that every semi-normalized basic sequence
has a subsequence spanning a reflexive subspace. Take a bounded sequence {xn} in X and prove
that {xn} has a weakly convergent subsequence. As X does not contain subspaces isomorphic
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to �1, then {xn} has a weak Cauchy subsequence {yn}, by the �1-theorem. If {yn} is not semi-
normalized, then {yn} and so {xn} has a subsequence weakly convergent to zero and we are
done. Hence, assume that {yn} is a semi-normalized weak Cauchy sequence in X. If {yn} is
not weakly convergent, then, by the c0-theorem, for example, {yn} has a semi-normalized basic
subsequence, since X does not contain isomorphic subspaces to c0. By hypothesis, {yn} has a
subsequence spanning a reflexive subspace and hence, this subsequence is weakly convergent to
zero, so {xn} has a weakly convergent subsequence and we are done.

(iii) It is known that B∞ satisfies the convex point of continuity property CPCP [5], a weaker
property than PCP. So it is natural to ask weather a Banach space (maybe not containing �1)
satisfies CPCP, whenever every semi-normalized basic sequence has a boundedly complete sub-
sequence.
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