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Abstract

Debroey and Thas introduced semipartial geometries and determined the full embeddings of

semipartial geometries in AGðn; qÞ for n ¼ 2 and 3. For n43 there is no such classification. A

model of a semipartial geometry fully embedded in AGð4; qÞ; q even, due to Hirschfeld and

Thas, is the spgðq � 1; q2; 2; 2qðq � 1ÞÞ constructed by projecting the quadric Q�ð5; qÞ from a

point of PGð5; qÞ\Q�ð5; qÞ: In this paper this semipartial geometry is characterized amongst

the spgðq � 1; q2; 2; 2qðq � 1ÞÞ (of which there is an infinite family of non-classical examples

due to Brown) by its full embedding in AGð4; qÞ:
r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

A semipartial geometry [9] with parameters s; t; a; m; also denoted by spgðs; t; a; mÞ;
is a partial linear space S ¼ ðP;B; IÞ of order ðs; tÞ; such that for each anti-flag
ðx;LÞ; the incidence number aðx;LÞ; being the number of points on L collinear with
x; equals 0 or a constant a ða40Þ and such that for any two points which are not
collinear, there are m ðm40Þ points collinear with both (m-condition).
A semipartial geometry with a ¼ 1 is called a partial quadrangle. It was introduced

by Cameron [5] as a generalization of a generalized quadrangle. Semipartial
geometries generalize at the same time the partial quadrangles and the partial

ARTICLE IN PRESS

E-mail addresses: mbrown@maths.adelaide.edu.au (M.R. Brown), Frank.DeClerck@ugent.be

(F.D. Clerck), mdelanote@yahoo.fr (M. Delanote).

0097-3165/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0097-3165(03)00093-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82116312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


geometries, which are partial linear spaces of order ðs; tÞ; such that for each anti-flag
ðx;LÞ; the incidence number aðx;LÞ ¼ a (the m-condition is automatically satisfied).
Partial geometries with a ¼ 1 are the well-known generalized quadrangles. See for
instance [13] for more information on generalized quadrangles and [6,7] for more
information on partial and semipartial geometries. A semipartial which is not a
partial geometry, nor a partial quadrangle will be called proper.
The point graph G of a semipartial geometry is strongly regular. For a point x of

S we will denote by GðxÞ the set of points of S different from x and collinear to x:

2. Semipartial geometries and generalized quadrangles

In [2] Brown gives the following general construction method for

spgðq � 1; q2; 2; 2qðq � 1ÞÞ: Let S be a generalized quadrangle of order ðq; q2Þ
containing a subquadrangle S0 of order q: If x is a point of S\S0; then each line of

S incident with x is incident with a unique point of S0 and the set Ox of such points

is an ovoid of S0: (An ovoid of a generalized quadrangle is a set of points such that
each line of the generalized quadrangle is incident with a unique point of the set.)

The ovoid Ox is said to be subtended by x: A rosette of ovoids of S0 is a set of q

ovoids meeting pairwise in an exactly one fixed point of S0: If L is a line of S\S0;
then the ovoids ofS0 subtended by the points ofS\S0 incident with L form a rosette

of S0:
If for a subtended ovoid Ox there is a point y of S\S0; yax; such that Oy ¼ Ox;

then Ox is said to be doubly subtended. If each ovoid of S0 subtended by a point of

S\S0 is doubly subtended, then S0 is said to be doubly subtended in S: If S0 is
doubly subtended in S; then the incidence structure with point set the subtended

ovoids of S0; line set the rosettes of subtended ovoids of S0; and incidence

containment is an spgðq � 1; q2; 2; 2qðq � 1ÞÞ:
The generalized quadrangle Qð4; qÞ is doubly subtended in Q�ð5; qÞ and hence by

Brown’s construction yields a semipartial geometry which is better known as the
Metz model of TQð4; qÞ (we use the notation as introduced in [6]). For q odd and
sAAutðGFðqÞÞ the generalized quadrangle Qð4; qÞ is also doubly subtended in the
Kantor translation generalized quadrangle associated with s [12]. Two such
generalized quadrangles associated with field automorphisms s1 and s2; respectively,
are isomorphic if and only if s1 ¼ s2 or s1 ¼ s�12 ; and similarly for the

spgðq � 1; q2; 2; 2qðq � 1ÞÞ: In the case where s is the identity the Kantor

construction yields Q�ð5; qÞ and the associated spgðq � 1; q2; 2; 2qðq � 1ÞÞ is the
Metz model of TQð4; qÞ:
An embedding of a partial linear space in AGðn; qÞ is a representation of the

geometry with point set a subset of the point set of AGðn; qÞ; line set a subset of the
line set of AGðn; qÞ; and incidence inherited from AGðn; qÞ: The geometry is fully

embedded if the embedding has the additional property that for every line L of
AGðn; qÞ that is also a line of the geometry, each point of AGðn; qÞ that is incident
with L is a point of the geometry. It is also required that AGðn; qÞ is generated by the
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point set of the geometry. In the same way one can define a full embedding of a
partial linear space in PGðn; qÞ:
Let S be a generalized quadrangle fully embedded in a projective space PGðn; qÞ;

hence S is classical and n ¼ 3; 4 or 5 [4]. Let p be a point of PGðn; qÞ and let P be a
hyperplane of PGðn; qÞ not containing p: Let P1 be the projection of the point set of
S from p onto P and let P2 be the set of points of P on a tangent through p at S:
Consider the incidence structure Sp ¼ ðPp;Lp; IpÞ with Pp ¼ P1\P2; Lp the set of

lines of P with q points in Pp and incidence Ip inherited from the projective space.

If S ¼ Q�ð5; qÞ (fully embedded in PGð5; qÞ) or S ¼ Hð4; q2Þ (fully embedded in

PGð4; q2Þ) the incidence structure Sp is a semipartial geometry.

Assume S ¼ Q�ð5; qÞ is fully embedded in PGð5; qÞ and p is not on the quadric

Q�ð5; qÞ; then Hirschfeld and Thas [11] proved that projection yields an spgðq �
1; q2; 2; 2qðq � 1ÞÞ that is isomorphic to the semipartial geometry TQð4; qÞ: For the
other examples we refer to [7]. If q is even, the Hirschfeld–Thas model of TQð4; qÞ
yields a semipartial geometry which is fully embedded in AGð4; qÞ:
In [8] Debroey and Thas classified the proper semipartial geometries that may be

fully embedded in AGðn; qÞ for n ¼ 2 and 3, as well as the possible models for the
embeddings in these cases. For n43 there is no such classification. There are two
examples known, one being the Hirschfeld–Thas model of TQð4; qÞ; q even.
We will prove the following main theorem.

Main Theorem. Let S be a semipartial geometry spgðq � 1; q2; 2; 2qðq � 1ÞÞ
fully embedded in AGð4; qÞ: Then q ¼ 2h and S is the Hirschfeld–Thas model of

TQð4; qÞ:

3. The spgðq � 1; q2; 2; 2qðq � 1ÞÞ embedded in AGð4; qÞ

In this section, let S be an spgðq � 1; q2; 2; 2qðq � 1ÞÞ fully embedded in
AGð4; qÞ; qa2:
Let PN denote the hyperplane at infinity of AGð4; qÞ: The line set ofS is a subset

of the line set of AGð4; qÞ; which in turn is a subset of the line set of PGð4; qÞ; the
projective completion of AGð4; qÞ: Thus a line of S will be said to intersect PN in
the point of PN incident with the line in PGð4; qÞ: The same symbol will be used to
refer to such a line in the three different contexts.

For a point x of S; let yx denote the set of q2 þ 1 points in PN determined
by the intersection of PN with the lines of S through x: Since a ¼ 2 any line
N ofPN intersects yx in at most three points. A line of PN intersecting yx in 0,1,2 or
3 points will be referred to as an external line, tangent, secant or 3-secant,
respectively.
Let ðx;LÞ be an antiflag of S; M ¼ /x;LS-PN and p ¼ L-PN: If aðx;LÞ ¼

0; then M is either a tangent of yx at p or an external line of yx; while for aðx;LÞ ¼ 2;
we obtain that either peyx and M intersects yx in two points, or pAyx and
M intersects yx in three points.
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Lemma 1. Let x be a point of the semipartial geometry S and let M be a projective

line of PN intersecting yx in three points p1; p2; p3: Then all of the points of

/M; xS\M are points of S and the 3q affine lines in /M; xS through p1; p2 or p3 are

exactly the lines of S contained in the plane /M; xS: Furthermore, q is a power of 3.

Proof. Let y be a point of /x; p1S\fx; p1g: Since aðy;/x; p2SÞ ¼ 2 we obtain a line
/y; zS of S with zA/x; p2S\fx; p2g which also intersects /x; p3S in the point u: If
uap3; then aðx;/y; zSÞ42; a contradiction, and so u ¼ p3: Similarly since
aðy;/x; p3SÞ ¼ 2 it follows that the line /y; p2S is a line of S: Since this is true
for any yA/x; p1S\fx; p1g we have that each affine line through p2 or p3 is a line of
S: Clearly by similar arguments we also have that each affine line through p1 is a line
of S: If N is any line of /M;xS not incident with p1; p2 or p3; then N cannot be a
line of S since for any point y of /M; xS\M not on N we would have aðy;NÞ42:
Now let the affine lines of /M; xS through p1 be labelled L1;y;Lq: For any Li

there are q3ðq � 1Þ=2 antiflags ðy;LiÞ of S with incidence number 2; and hence

q2ðq2 � 1Þ=2� q3ðq � 1Þ=2� q ¼ ðq3 � q2Þ=2� q antiflags ðz;LiÞ with incidence
number 0: Counting the number of points z of S such that zA/M; xS or aðz;LiÞ ¼
0 for some Li we have at most q3ðq � 1Þ=2 points, fewer than the total number of
points of S: Consequently there exists a point x0 of S such that x0e/M; xS and
aðx0;LiÞ ¼ 2 for all Li: Hence there are 2q points of /M; xS collinear with x0 in S:
Let this set of points be O: Since jOj ¼ 2q it follows that each affine line through p2
or p3 is incident with 2 points of O: If N is any line of /M; xS not incident with
p1; p2 or p3; then /N; x0S contains at most 3 lines of S on x0 and so N contains at
most 3 points of O: So now consider any yAO: Then lines /y; p1S; /y; p2S and
/y; p3S cover 4 points of O while the remaining q � 2 lines of /M; xS on y must
cover the remaining 2q � 4 points of O with at most 2 points of O\fyg on a line.
Consequently, each such line contains exactly 3 points of O: It follows that each line
of /M; xS not incident with p1; p2 or p3 is incident with 0 or 3 points of O:Now let p

be any point of M\fp1; p2; p3g: By considering the lines of /M; xS on p we see that O
may be partitioned into sets of size 3 and so 3jq: &

Lemma 2. Let x and y be two collinear points of S; then a line M of PN incident with

p ¼ /x; yS-PN is either a tangent of both yx and yy; a secant of both yx and yy with

M-yx-yy ¼ fpg; or a 3-secant of both yx and yy with jM-yx-yyj ¼ 3:

Proof. Let M be a line of PN incident with p ¼ /x; yS-PN: Since a ¼ 2; both
jM-yxj and jM-yyj are at most 3. If M-yy ¼ fpg and jM-yxj41; then this

contradicts a ¼ 2: Hence if M-yy ¼ fpg; then it is also the case that M-yx ¼ fpg;
that is, M is a tangent of both yx and yy:

Assume that jM-yxj ¼ 3; then by Lemma 1 every point of the affine plane
/x;MS is incident with three lines of S and belonging to that plane; more
particular this holds for the point y and so jM-yyj ¼ 3:

Hence the only possibility which is left is jM-yxj ¼ jM-yyj ¼ 2 with

M-yx-yy ¼ fpg: &
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If jM-yx\yyj ¼ jM-yy\yxj ¼ 1; then M is said to be of type ðAÞ with respect to x

and y: If jM-yx-yyj ¼ 3; and hence jM-yx\yyj ¼ jM-yy\yxj ¼ 0; then M is said

to be of type ðBÞ with respect to x and y:

Lemma 3. Let x be a point of S; then yx is an ovoid of PN and q is even.

Proof. Let y be a point ofS collinear with x and let p ¼ /x; yS-PN: By the proof
of Lemma 2 a line of PN containing p is either tangent to both yx and yy; or is either

of type ðAÞ or of type ðBÞ with respect to x and y: To prove that yx is an ovoid, we
have to show that there are no lines of type ðBÞ with respect to x and y:
Let L be the line /x; yS ofS: For any line N ofS intersecting L (in a point ofS)

/L;NS-PN is a line of type ðAÞ or ðBÞ (with respect to x and y). Let this line be M

and suppose that M is of type ðAÞ such that yx-M ¼ fp; p1g and yy-M ¼ fp; p2g:
Let z ¼ /p2; yS-/p1; xS and suppose that z is incident with a third line of S in
/M;LS: Since z is collinear with x and y and a ¼ 2 this third line must be /z; pS:
As aðy;/z; pSÞ ¼ 2 there is a third line of S on y in /M;LS; contradicting the fact
that M is a 2-secant of yy: Consequently z is incident with exactly two lines of S in

/M;LS: Similar arguments show that each point of /x; p1S\fp1g is incident with
exactly two lines ofS in /M;LS: It follows that there are exactly q þ 1 lines ofS in
/M;LS: Also a ¼ 2 implies that no two of these lines meet on M: Hence the lines of
S in /M;LS form a dual oval with nucleus M; from which it follows that q is even.
By Lemma 1 if M is a line of type ðBÞ; then q is a power of 3. Thus we have two

distinct cases for the lines of PN through p that are not tangent to both x and y:
either they are all of type ðAÞ or all of type ðBÞ: In the latter case 3jq and the lines
through p partition yx\fpg into sets of size 2 which implies that 2jq; a contradiction.
So we must be in the former case and q is even.
Now suppose that x is an arbitrary point of S and p a point of yx: If

yA/x; pS\fx; pg; then by applying the above argument it follows that every line of
PN on p is either a tangent or a secant of yx: Hence there are no 3-secants of yx and
yx is an ovoid. &

Corollary 4. Let x and y be two collinear points of S; then jyx-yyj ¼ 1:

Proof. Every line of PN incident with p ¼ /x; yS-PN is either a tangent to both
yx and yy or is of type ðAÞ with respect to x and y: &

Lemma 5. Let x and y be two non-collinear points of S and p ¼ /x; yS-PN: Let M

be any line of PN incident with p: Then one of the following is the case:

(i) M is secant to both yx and yy and M-yx-yy ¼ |;
(ii) M is tangent to both yx and yy at a point of yx-yy; or

(iii) M is external to both yx and yy:

Furthermore yx-yy is an oval with nucleus p:
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Proof. Suppose that rAyx-yy: We show that /r; pS is tangent to both yx and yy:

Suppose that /r; pS is a secant line of at least one of the ovoids, say yx: Hence
ðyx-/r; pSÞ\frg ¼ fug for some point u: Let z ¼ /u; xS-/r; yS: Then x and z are
collinear in S while jyx-yzjX2; contradicting Corollary 4. Hence /p; rS is a
tangent line of both ovoids.
Now we show that M is secant to yx if and only if it is secant to yy: Therefore we

first assume that M intersects yx in the point v and yy in the point w; with vaw: Then

/v; xS intersects /w; yS; and so aðy;/x; vSÞ ¼ 2: This implies that M intersects yy

in the distinct points w and w0; and moreover w;w0eyx-yy: Similarly, since

aðx;/y;wSÞ ¼ 2; it follows that M intersects yx in the distinct points v and v0; with
v; v0eyx-yy: In other words, M intersects both ovoids in two points outside their

intersection. Since jGðxÞ-GðyÞ-/x; y;MSj ¼ 4 and jGðxÞ-GðyÞj ¼ m ¼ 2qðq � 1Þ
it follows that there are exactly qðq � 1Þ=2 lines incident with p that are secant to
both yx and yy: Since this is the number of secants of an ovoid incident with a point

not on the ovoid this means that the set of lines of PN incident with p and secant to
yx is also the set of lines incident with p and secant to yy:

By Lemma 3, q is even and consequently the q þ 1 tangents of yx incident with p

are contained in a plane px on p and similarly the q þ 1 tangents of yy incident with
p are contained in a plane py: There are two cases to consider: px ¼ py and px-py is
a line incident with p: First suppose that px ¼ py: It follows that the tangents of yx

incident with p are precisely the tangents of yy incident with p with a common point
of tangency. Consequently yx-yy is an oval of px with nucleus p: So in this case
jyx-yyj ¼ q þ 1: Now suppose that px-py is a line L incident with p: The line L is a
tangent of both yx and yy at a point oAyx-yy: If MaL then by arguments above M

must be external to yy: From this it follows that px is the tangent plane of yy at o and
similarly py is the tangent plane of yx at o: Since /p; oS is the only line of PN

incident with p that is tangent to both yx and yy it follows that yx-yy ¼ fog; and so
jyx-yyj ¼ 1:
It is now shown that the case jyx-yyj ¼ 1 cannot occur. Suppose that jyx-yyj ¼

1: Let M be secant of both yx and yy: It follows by arguments above that if yx-M ¼
fv; v0g and yy-M ¼ fw;w0g; then fv; v0;w;w0g are four distinct points. Let
fx ¼ x1; x2;y; xqg be the set of q points of S incident with the line L ¼ /x; vS:
By Corollary 4, yxi

-yxj
¼ fvg for i; jAf1;y; qg; iaj; and by a consequence of

Lemma 2, the ovoids yx1 ;y; yxq
have a common tangent plane at v; pv say. It

follows that the ovoids yx1 ;y; yxq
partition the points of PN\pv into q sets of size q2:

Without loss of generality assume that y is collinear with the points x2 and x3 of L;
so by Corollary 4 jyy-yx2 j ¼ jyy-yx3 j ¼ 1: By above arguments it follows that for
i ¼ 4;y; q; jyy-yxi

j ¼ 1 or q þ 1:

Suppose that jpv-yyj ¼ 1; then since veyy the ovoids yx1 ;y; yxq
partition the q2

points of yy\ðpv-yyÞ into q sets with size either 1 or q þ 1: This requires q � 1 sets of

size q þ 1 and 1 set of size 1: However jyxi
-yyj ¼ 1 for i ¼ 1; 2 and 3, a

contradiction. Now suppose that jpv-yyj ¼ q þ 1; then since veyy the ovoids

yx1 ;y; yxq
partition the q2 � q points of yy\ðpv-yyÞ into q sets with size either 1 or

q þ 1: This requires q � 2 sets of size q þ 1 and 2 sets of size 1; again a contradiction.
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It follows that jyx-yyj cannot be 1 and so px ¼ py and yx-yy is an oval of px with

nucleus p: &

Theorem 6. Let S be a semipartial geometry spgðq � 1; q2; 2; 2qðq � 1ÞÞ fully

embedded in AGð4; qÞ: Then q ¼ 2h; S is isomorphic to TQð4; qÞ and is fully

embedded as the Hirschfeld–Thas model.

Proof. Let S be a semipartial geometry spgðq � 1; q2; 2; 2qðq � 1ÞÞ fully embedded
in AGð4; qÞ: If q ¼ 2; then S coincides with its point graph which is the unique
complete graph on six vertices and the result follows. Hence we may assume that
q42:
Let K ¼ PN,P; where P is the point set of S: The intersections of K with

a plane of PGð4; qÞ are now considered which will allow the use of a result
of Hirschfeld and Thas in [10] in order to prove the theorem. So let p be a plane of
PGð4; qÞ: If pCPN; then pCK; so suppose that pgPN and that p-PN is the
line M:
Suppose that p contains a point x ofS: Then M may either be a secant, tangent or

external line of yx:
Suppose that M is a secant line of yx: This is the case if and only if there exists an

antiflag ðx;LÞ of S contained in p such that aðx;LÞ ¼ 2: By the proof of Lemma 3
the lines ofS in p form a dual ovalD with nucleus M and these are all the lines ofS
in p: Let z be any point ofS-p and not collinear inS with x: Then by Lemma 5, M

is a secant of yz; hence z is incident with exactly two lines of the dual oval D: It
follows that p-K is a dual hyperoval; or equivalently the complement of a maximal
arc of type ð0; q=2Þ:
Next suppose that M-yx ¼ fpg: Hence M is a tangent of yx at p and all points of

p-S are not collinear in S with x: If y is such a point of S on p; then by Lemma 5
M is a tangent of yy at p and so /p; yS is a line of S: It follows that lines of S in
p are incident with p and that all points of S on p are incident with such a line.
Let z be a point of M\fpg; and let N be a secant of yx incident with z: By the above
the plane /N; xSmeetsK in a dual hyperoval and since zeyx it follows that the line
/z; xS is not a line of S: Hence /z; xS is incident with exactly q=2 points of S and
so p meets the line set of S in exactly q=2 lines each intersecting M in p: So M is a
tangent of yx if and only if p meets K in the point set of q=2þ 1 concurrent lines.
Finally suppose that M is an external line of yx: Let y be any point of M and let L

be a secant of yx incident with y: The line /x; yS is incident with q=2 points of S:
Hence each line of p incident with x is incident with q=2 points ofS: If z is any other
point ofS in p; then since x and z are not collinear and M is an external line of yx it
follows by Lemma 5 that M is also an external line of yz: Hence p meets K in a
maximal arc of type ð0; q=2Þ; and M is an external line to this maximal arc.
By the above discussion a plane section of K is one of the following sets: (i) a

single line; (ii) the entire plane; (iii) a maximal arc of type ð0; q=2Þ; plus an external
line; (iv) a dual hyperoval, or equivalently, the complement of a maximal arc of type
ð0; q=2Þ; or (v) q=2þ 1 concurrent lines.
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From this list it follows that with respect to the intersection with linesK is a set of
points of type ð1; q=2þ 1; q þ 1Þ:
Actually, it is possible to show that no planes of type (i) occur, but we do not need

this. The set K does contain plane sections of type (iv), and for q ¼ 4; K has no
plane section that is either a unital or a subplane. Hence by [10, Theorem 6] the set
K is the projection of a non-singular quadric of PGð5; qÞ onto PGð4; qÞ: Any plane
contained in K is also contained in PN which can only be the case if K is the
projection of an elliptic quadric Q�ð5; qÞ onto PGð4; qÞ: &

We can rephrase as follows our result for an spgðq � 1; q2; 2; 2qðq � 1ÞÞ
constructed from a doubly subtended subquadrangle of order q of a generalized

quadrangle of order ðq; q2Þ:

Corollary 7. Let G be a generalized quadrangle of order ðq; q2Þ; G0 a doubly subtended

subquadrangle of G of order q; and S the spgðq � 1; q2; 2; 2qðq � 1ÞÞ constructed from

G and G0: If S may be fully embedded in AGð4; qÞ; then S ¼ TQð4; qÞ; G ¼ Q�ð5; qÞ;
G0 ¼ Qð4; qÞ and q ¼ 2h:

Proof. By Theorem 6 SDTQð4; qÞ and q ¼ 2h: Since S (in the model of Metz) may
be constructed from the doubly subtended subquadrangle Qð4; qÞ of Q�ð5; qÞ; it
follows from [2, Theorem 3.3] that G0 ¼ Qð4; qÞ and S is the model of Metz in
Qð4; qÞ: Since Qð4; qÞ is doubly subtended in G with all subtended ovoids being
elliptic quadrics on Qð4; qÞ; it follows that G ¼ Q�ð5; qÞ [1,3]. &
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