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Abstract

Debroey and Thas introduced semipartial geometries and determined the full embeddings of
semipartial geometries in AG(#n,q) for n = 2 and 3. For n> 3 there is no such classification. A
model of a semipartial geometry fully embedded in AG(4,¢q), ¢ even, due to Hirschfeld and
Thas, is the spg(q — 1,¢%,2,2¢g(q — 1)) constructed by projecting the quadric Q= (5, ¢) from a
point of PG(5,¢)\0(5,¢). In this paper this semipartial geometry is characterized amongst
the spg(q — 1,4%,2,2q(q — 1)) (of which there is an infinite family of non-classical examples
due to Brown) by its full embedding in AG(4, q).
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

A semipartial geometry [9] with parameters s, ¢, o, i, also denoted by spg(s, ¢, o, 1),
is a partial linear space & = (2,4,1) of order (s,¢), such that for each anti-flag
(x, L), the incidence number «(x, L), being the number of points on L collinear with
x, equals 0 or a constant o (¢>0) and such that for any two points which are not
collinear, there are u (1>0) points collinear with both (u-condition).

A semipartial geometry with o = 1 is called a partial quadrangle. 1t was introduced
by Cameron [5] as a generalization of a generalized quadrangle. Semipartial
geometries generalize at the same time the partial quadrangles and the partial
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geometries, which are partial linear spaces of order (s, 7), such that for each anti-flag
(x, L), the incidence number a(x, L) = o (the u-condition is automatically satisfied).
Partial geometries with o = 1 are the well-known generalized quadrangles. See for
instance [13] for more information on generalized quadrangles and [6,7] for more
information on partial and semipartial geometries. A semipartial which is not a
partial geometry, nor a partial quadrangle will be called proper.

The point graph I" of a semipartial geometry is strongly regular. For a point x of
% we will denote by I'(x) the set of points of . different from x and collinear to x.

2. Semipartial geometries and generalized quadrangles

In [2] Brown gives the following general construction method for
spg(q — 1,4%,2,2q(q — 1)). Let & be a generalized quadrangle of order (g,q?)
containing a subquadrangle %’ of order ¢. If x is a point of &\.%’, then each line of
& incident with x is incident with a unique point of &’ and the set (@, of such points
is an ovoid of .. (An ovoid of a generalized quadrangle is a set of points such that
each line of the generalized quadrangle is incident with a unique point of the set.)
The ovoid 0, is said to be subtended by x. A rosette of ovoids of &' is a set of ¢
ovoids meeting pairwise in an exactly one fixed point of .&’. If L is a line of #\.&’,
then the ovoids of .#’ subtended by the points of #\%’ incident with L form a rosette
of .

If for a subtended ovoid (), there is a point y of 9\&’, y+#x, such that ¢, = 0,
then O, is said to be doubly subtended. If each ovoid of &’ subtended by a point of
A\ is doubly subtended, then &’ is said to be doubly subtended in &. If ' is
doubly subtended in %, then the incidence structure with point set the subtended
ovoids of .%’; line set the rosettes of subtended ovoids of .%’; and incidence
containment is an spg(q — 1,¢%,2,2q(q — 1)).

The generalized quadrangle Q(4, ¢) is doubly subtended in Q™ (5, ¢) and hence by
Brown’s construction yields a semipartial geometry which is better known as the
Metz model of TQ(4,q) (we use the notation as introduced in [6]). For ¢ odd and
g€ Aut(GF(g)) the generalized quadrangle Q(4, q) is also doubly subtended in the
Kantor translation generalized quadrangle associated with ¢ [12]. Two such
generalized quadrangles associated with field automorphisms ¢; and o;, respectively,
are isomorphic if and only if oy =0, or o = 02‘1, and similarly for the
spg(q — 1,4%,2,2q(¢ — 1)). In the case where ¢ is the identity the Kantor
construction yields Q~(5,¢) and the associated spg(q — 1,4¢%,2,2q(q — 1)) is the
Metz model of TQ(4, q).

An embedding of a partial linear space in AG(n,q) is a representation of the
geometry with point set a subset of the point set of AG(n, ¢); line set a subset of the
line set of AG(n,q); and incidence inherited from AG(n,q). The geometry is fully
embedded if the embedding has the additional property that for every line L of
AG(n, q) that is also a line of the geometry, each point of AG(n, ¢) that is incident
with L is a point of the geometry. It is also required that AG(n, ¢) is generated by the
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point set of the geometry. In the same way one can define a full embedding of a
partial linear space in PG(n, q).

Let % be a generalized quadrangle fully embedded in a projective space PG(n, q),
hence & is classical and n = 3,4 or 5 [4]. Let p be a point of PG(n, ¢) and let IT be a
hyperplane of PG(n, ¢) not containing p. Let 2, be the projection of the point set of
& from p onto IT and let 2, be the set of points of IT on a tangent through p at <.
Consider the incidence structure %, = (2, £y, 1,) with 2, = 2,\?,, £, the set of
lines of 11 with ¢ points in &, and incidence I, inherited from the projective space.
If ¥ = Q(5,q) (fully embedded in PG(5,q)) or & = H(4,4*) (fully embedded in
PG(4, %)) the incidence structure &, is a semipartial geometry.

Assume & = Q (5, ¢) is fully embedded in PG(5,¢q) and p is not on the quadric
0~ (5,9), then Hirschfeld and Thas [11] proved that projection yields an spg(q —
1,4%,2,2q(qg — 1)) that is isomorphic to the semipartial geometry TQ(4, ¢). For the
other examples we refer to [7]. If ¢ is even, the Hirschfeld—Thas model of TQ(4, q)
yields a semipartial geometry which is fully embedded in AG(4, q).

In [8] Debroey and Thas classified the proper semipartial geometries that may be
fully embedded in AG(n,q) for n =2 and 3, as well as the possible models for the
embeddings in these cases. For n>3 there is no such classification. There are two
examples known, one being the Hirschfeld-Thas model of TQ(4,¢), ¢ even.

We will prove the following main theorem.

Main Theorem. Let ¥ be a semipartial geometry spg(q—1,4%,2,2q(q—1))
fully embedded in AG(4,q). Then q =2" and & is the Hirschfeld-Thas model of
TQ(4,9).

3. The spg(q — 1,4°,2,2q(q — 1)) embedded in AG(4, q)

In this section, let % be an spg(q—1,4%2,2g(q — 1)) fully embedded in
AG(4,q),q#2.

Let IT,, denote the hyperplane at infinity of AG(4, ¢). The line set of & is a subset
of the line set of AG(4,g), which in turn is a subset of the line set of PG(4,¢), the
projective completion of AG(4,¢). Thus a line of . will be said to intersect IT,, in
the point of I1,, incident with the line in PG(4, g). The same symbol will be used to
refer to such a line in the three different contexts.

For a point x of %, let 0, denote the set of ¢*>+ 1 points in IT,, determined
by the intersection of IT,, with the lines of % through x. Since o =2 any line
N of I ,, intersects 6, in at most three points. A line of IT, intersecting 0, in 0,1,2 or
3 points will be referred to as an external line, tangent, secant or 3-secant,
respectively.

Let (x, L) be an antiflag of &, M = {(x,LY Il and p=LnH,. If a(x,L) =
0, then M is either a tangent of 0, at p or an external line of 0., while for a(x, L) = 2,
we obtain that either p¢6, and M intersects 0, in two points, or pef, and
M intersects 6, in three points.
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Lemma 1. Let x be a point of the semipartial geometry & and let M be a projective
line of I, intersecting 0. in three points py,p>,p3. Then all of the points of
(M, xY\M are points of & and the 3q affine lines in { M, x ) through py,p; or p3 are
exactly the lines of & contained in the plane { M, x ). Furthermore, q is a power of 3.

Proof. Let y be a point of {x,p; >\{x,p1}. Since a(y, {x,p,>) = 2 we obtain a line
{y,zy of & with ze {x,p> >\{x, p>} which also intersects <{x,ps) in the point u. If
u#ps, then a(x,{(y,z»)>2, a contradiction, and so u = p;. Similarly since
a(y, {(x,p3>) =2 it follows that the line {y,p>) is a line of .. Since this is true
for any ye (x,p1 )\{x,p1} we have that each affine line through p, or p; is a line of
& . Clearly by similar arguments we also have that each affine line through p; is a line
of . If N is any line of { M, x ) not incident with py, p, or p3, then N cannot be a
line of & since for any point y of { M, x)>\M not on N we would have a(y, N)>2.

Now let the affine lines of {M,x) through p; be labelled L, ..., L,. For any L,
there are ¢*(q — 1)/2 antiflags (y,L;) of % with incidence number 2, and hence
P —-1D12—¢(q—1)/2—q= (¢ —¢*)/2—q antiflags (z,L;) with incidence
number 0. Counting the number of points z of & such that ze { M, x) or a(z,L;) =
0 for some L; we have at most ¢*(¢ — 1)/2 points, fewer than the total number of
points of .#. Consequently there exists a point x' of % such that x'¢ (M, x> and
a(x’, L;) = 2 for all L;. Hence there are 2¢ points of { M, x) collinear with x’ in .
Let this set of points be Q. Since |Q| = 24 it follows that each affine line through p,
or p3 is incident with 2 points of Q. If N is any line of { M, x)» not incident with
P1, P2 or ps3, then { N,x'> contains at most 3 lines of % on x’ and so N contains at
most 3 points of 2. So now consider any yeQ. Then lines {y,p; >, {y,p»> and
{y,p3» cover 4 points of Q while the remaining ¢ — 2 lines of { M,x) on y must
cover the remaining 2¢ — 4 points of Q with at most 2 points of Q\{y} on a line.
Consequently, each such line contains exactly 3 points of Q. It follows that each line
of { M, x> notincident with p;, p> or p; is incident with 0 or 3 points of Q. Now let p
be any point of M\{py, p2,p3}. By considering the lines of { M, x) on p we see that Q
may be partitioned into sets of size 3 and so 3|¢. O

Lemma 2. Let x and y be two collinear points of &, then a line M of 1l , incident with
p = {x,y) NIl is either a tangent of both 0, and 0,,, a secant of both 0, and 0, with
Mn0.n0, ={p}, or a 3-secant of both 0, and 0, with |M 0, 0,| = 3.

Proof. Let M be a line of I1,, incident with p = {x,y> nIl,. Since o = 2, both
|M 0| and |[Mn0,| are at most 3. If M0, = {p} and |Mn0O,|>1, then this
contradicts oo = 2. Hence if M n0, = {p}, then it is also the case that M N0, = {p},
that is, M is a tangent of both 6, and 0,.

Assume that |[M n0,| =3, then by Lemma | every point of the affine plane
{x,M? is incident with three lines of &% and belonging to that plane; more
particular this holds for the point y and so |[M n0,| = 3.

Hence the only possibility which is left is |[Mn0,| =|Mn0,|=2 with
MnO.n0,={p}. O
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If [M 0\ = | M n0O,\0x| = 1, then M is said to be of type (4) with respect to x
and y. If [M n0,n0,| =3, and hence |[M n0,\0,| = |M n0,\0,| =0, then M is said
to be of type (B) with respect to x and y.

Lemma 3. Let x be a point of &, then 0, is an ovoid of Il ., and q is even.

Proof. Let y be a point of & collinear with x and let p = {x,y)> NIl . By the proof
of Lemma 2 a line of I1,, containing p is either tangent to both 0, and 0,, or is either
of type (A4) or of type (B) with respect to x and y. To prove that 6, is an ovoid, we
have to show that there are no lines of type (B) with respect to x and y.

Let L be the line {x,y) of &. For any line N of & intersecting L (in a point of .¥)
{L,N)» NIl is aline of type (4) or (B) (with respect to x and y). Let this line be M
and suppose that M is of type (4) such that 0.~ M = {p,p;} and 0,n M = {p,p»}.
Let z= {(p2,y> n {p1,x) and suppose that z is incident with a third line of & in
{M,L>. Since z is collinear with x and y and o = 2 this third line must be {z,p).
As a(y, {z,p>) = 2 there is a third line of ¥ on y in { M, L), contradicting the fact
that M is a 2-secant of 0,. Consequently z is incident with exactly two lines of % in
{M,LY. Similar arguments show that each point of {x,p; >\{p1} is incident with
exactly two lines of & in { M, L. It follows that there are exactly ¢ + 1 lines of % in
{M,LY. Also o = 2 implies that no two of these lines meet on M. Hence the lines of
& in (M, L form a dual oval with nucleus M, from which it follows that ¢ is even.

By Lemma 1 if M is a line of type (B), then ¢ is a power of 3. Thus we have two
distinct cases for the lines of IT., through p that are not tangent to both x and y:
either they are all of type (4) or all of type (B). In the latter case 3|¢ and the lines
through p partition 6,\{p} into sets of size 2 which implies that 2|¢g, a contradiction.
So we must be in the former case and ¢ is even.

Now suppose that x is an arbitrary point of & and p a point of 0,. If
ye<x,p>\{x,p}, then by applying the above argument it follows that every line of
IT,, on pis either a tangent or a secant of 0. Hence there are no 3-secants of 0, and
0, 1s an ovoid. O

Corollary 4. Let x and y be two collinear points of &, then 0,0, = 1.

Proof. Every line of IT., incident with p = {x,y> NIl is either a tangent to both
0. and 0, or is of type (4) with respect to x and y. O

Lemma 5. Let x and y be two non-collinear points of & andp = {x,y> N1l . Let M
be any line of Il ., incident with p. Then one of the following is the case:

() M is secant to both 0, and 0, and M 0,0, = 0;
(i) M is tangent to both 0, and 0, at a point of 0,0 0,; or
(iil) M is external to both 0y and 0,.

Furthermore 0,0, is an oval with nucleus p.
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Proof. Suppose that red,n0,. We show that {r,p) is tangent to both 0, and 0,.
Suppose that {r,p) is a secant line of at least one of the ovoids, say 6. Hence
(0x <y p>)\{r} = {u} for some point u. Let z = {u,x» n{r,y>. Then x and z are
collinear in % while |0,n0.|>2, contradicting Corollary 4. Hence {(p,r) is a
tangent line of both ovoids.

Now we show that M is secant to 8, if and only if it is secant to 0,. Therefore we
first assume that M intersects 0, in the point v and 0, in the point w, with v#w. Then
{v,x ) intersects {w,y ), and so a(y, {x,v)) = 2. This implies that M intersects 0,
in the distinct points w and w', and moreover w,w' ¢0,n0,. Similarly, since
a(x, {y,w)) =2, it follows that M intersects 0, in the distinct points v and v/, with
v,v'¢0,Nn0,. In other words, M intersects both ovoids in two points outside their
intersection. Since [I'(x)NT'(y)n<x,y,M>| =4 and |I'(x)nT'(y)] = u=2q(q—1)
it follows that there are exactly ¢(¢ — 1)/2 lines incident with p that are secant to
both 6, and 0,. Since this is the number of secants of an ovoid incident with a point
not on the ovoid this means that the set of lines of IT,, incident with p and secant to
0, is also the set of lines incident with p and secant to 0,.

By Lemma 3, ¢ is even and consequently the ¢ + 1 tangents of 0, incident with p
are contained in a plane 7, on p and similarly the ¢ + 1 tangents of 0, incident with
p are contained in a plane 7). There are two cases to consider: n, = 7, and m, N7, is
a line incident with p. First suppose that ©, = m,. It follows that the tangents of 0,
incident with p are precisely the tangents of 0, incident with p with a common point
of tangency. Consequently 0,0, is an oval of n, with nucleus p. So in this case
|0,n0,| = g+ 1. Now suppose that m, N, is a line L incident with p. The line L is a
tangent of both 0, and 0, at a point o€ 0, N 0,. If M # L then by arguments above M
must be external to 6. From this it follows that r, is the tangent plane of 0, at 0 and
similarly 7, is the tangent plane of 0, at o. Since {p,o0) is the only line of Il
incident with p that is tangent to both 0, and 0, it follows that 0, "0, = {0}, and so
|00, = 1.

It is now shown that the case |0, n0,| = 1 cannot occur. Suppose that [0, n0,| =
1. Let M be secant of both 0, and 0,. It follows by arguments above that if 0, "M =
{v,v'} and O,A M = {w,w'}, then {v,v/,w,w'} are four distinct points. Let
{x=x1,x2,...,x,} be the set of g points of % incident with the line L = {x,v).
By Corollary 4, 0,,n0,, = {v} for i,je{l,...,q}, i#j, and by a consequence of
Lemma 2, the ovoids 0, ...,0,, have a common tangent plane at v, m, say. It
follows that the ovoids 0y, ..., 0y, partition the points of IT.,\r, into g sets of size 7>
Without loss of generality assume that y is collinear with the points x; and x3 of L,
so by Corollary 4 |0, n0,,| = |0,n0,,| = 1. By above arguments it follows that for
i=4,..,q, |0,n0|=1o0rqg+ 1

Suppose that |z, 0,| = 1, then since v¢ 0, the ovoids 0y, ..., 0, partition the 7
points of 0,\(n, N 0,) into ¢ sets with size either 1 or ¢ + 1. This requires ¢ — 1 sets of
size¢ ¢+ 1 and 1 set of size 1. However |0, n0,=1 for i=1,2 and 3, a
contradiction. Now suppose that |7,n0,| = ¢+ 1, then since v¢0, the ovoids
O, ..., 0y, partition the ¢*> — ¢ points of 0,\(m, n0,) into ¢ sets with size either 1 or
q + 1. This requires g — 2 sets of size ¢ + 1 and 2 sets of size 1, again a contradiction.
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It follows that |0, n0,| cannot be 1 and so n, = ©, and 0, N0, is an oval of 7, with
nucleus p. O

Theorem 6. Let & be a semipartial geometry spg(q—1,q4%,2,2q(q— 1)) fully
embedded in AG(4,q). Then q=2" & is isomorphic to TQ(4,q) and is fully
embedded as the Hirschfeld—Thas model.

Proof. Let % be a semipartial geometry spg(q — 1,¢%,2,2¢q(q — 1)) fully embedded
in AG(4,q). If ¢ =2, then % coincides with its point graph which is the unique
complete graph on six vertices and the result follows. Hence we may assume that
q>2.

Let " =11, %, where Z is the point set of %. The intersections of " with
a plane of PG(4,q) are now considered which will allow the use of a result
of Hirschfeld and Thas in [10] in order to prove the theorem. So let 7 be a plane of
PG(4,q). If n<=l,,, then n=A"; so suppose that nzIl,, and that nI1,, is the
line M.

Suppose that © contains a point x of &. Then M may either be a secant, tangent or
external line of 0,.

Suppose that M is a secant line of 0. This is the case if and only if there exists an
antiflag (x, L) of & contained in = such that a(x, L) = 2. By the proof of Lemma 3
the lines of .% in © form a dual oval & with nucleus M and these are all the lines of .%
in 7. Let z be any point of & "z and not collinear in . with x. Then by Lemma 5, M
is a secant of 6.; hence z is incident with exactly two lines of the dual oval 2. It
follows that 7~ .7 is a dual hyperoval; or equivalently the complement of a maximal
arc of type (0,¢/2).

Next suppose that M n0, = {p}. Hence M is a tangent of 0, at p and all points of
nN S are not collinear in & with x. If y is such a point of & on =, then by Lemma 5
M is a tangent of 0, at p and so {p,y) is a line of . It follows that lines of ¥ in
n are incident with p and that all points of % on = are incident with such a line.
Let z be a point of M\{p}, and let N be a secant of 0, incident with z. By the above
the plane { N, x> meets ¢ in a dual hyperoval and since z ¢ 0, it follows that the line
{z,x) isnot a line of .%. Hence <z, x ) is incident with exactly ¢/2 points of ¥ and
so © meets the line set of ¥ in exactly ¢/2 lines each intersecting M in p. So M is a
tangent of 6, if and only if 7 meets " in the point set of ¢/2 + 1 concurrent lines.

Finally suppose that M is an external line of 0. Let y be any point of M and let L
be a secant of 6, incident with y. The line <{x,y) is incident with ¢/2 points of .¥.
Hence each line of 7 incident with x is incident with ¢/2 points of .%. If z is any other
point of % in 7, then since x and z are not collinear and M is an external line of 0, it
follows by Lemma 5 that M is also an external line of .. Hence n meets ¢ in a
maximal arc of type (0,¢/2), and M is an external line to this maximal arc.

By the above discussion a plane section of # is one of the following sets: (i) a
single line; (ii) the entire plane; (iii) a maximal arc of type (0, ¢/2), plus an external
line; (iv) a dual hyperoval, or equivalently, the complement of a maximal arc of type
(0,¢/2); or (v) ¢/2 + 1 concurrent lines.
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From this list it follows that with respect to the intersection with lines ¢ is a set of
points of type (1,4/2+ 1,q+ 1).

Actually, it is possible to show that no planes of type (i) occur, but we do not need
this. The set .#" does contain plane sections of type (iv), and for ¢ =4, # has no
plane section that is either a unital or a subplane. Hence by [10, Theorem 6] the set
A is the projection of a non-singular quadric of PG(5, ¢) onto PG(4, ¢). Any plane
contained in 2 is also contained in IT., which can only be the case if # is the
projection of an elliptic quadric O~ (5,¢) onto PG(4,¢9). O

We can rephrase as follows our result for an spg(q—1,4%,2,2q(q — 1))
constructed from a doubly subtended subquadrangle of order ¢ of a generalized
quadrangle of order (¢, ¢%).

Corollary 7. Let 9 be a generalized quadrangle of order (q,q°), 9’ a doubly subtended
subquadrangle of % of order q, and & the spg(q — 1,¢%,2,2q(q — 1)) constructed from
G and 9'. If & may be fully embedded in AG(4,q), then ¥ = TQ(4,q), 4= Q (5,9),
9 = Q(4,q) and q = 2"

Proof. By Theorem 6 ¥ =~TQ(4,q) and ¢ = 2". Since . (in the model of Metz) may
be constructed from the doubly subtended subquadrangle Q(4,q) of O~ (5,q), it
follows from [2, Theorem 3.3] that ¥ = Q(4,¢q) and & is the model of Metz in
0(4,q). Since Q(4,q) is doubly subtended in ¥ with all subtended ovoids being
elliptic quadrics on Q(4, ¢), it follows that ¥ = Q= (5,¢) [1,3]. O
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