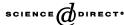


Available online at www.sciencedirect.com



Journal of Combinatorial Theory

Series A

Journal of Combinatorial Theory, Series A 103 (2003) 281-289

http://www.elsevier.com/locate/jcta

Affine semipartial geometries and projections of quadrics

Matthew R. Brown, Frank De Clerck, and Mario Delanote

Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-9000 Gent, Belgium

Received 14 October 2002

Abstract

Debroey and Thas introduced semipartial geometries and determined the full embeddings of semipartial geometries in AG(n,q) for n = 2 and 3. For n > 3 there is no such classification. A model of a semipartial geometry fully embedded in AG(4,q), q even, due to Hirschfeld and Thas, is the $spg(q-1,q^2,2,2q(q-1))$ constructed by projecting the quadric $Q^-(5,q)$ from a point of $PG(5,q)\backslash Q^-(5,q)$. In this paper this semipartial geometry is characterized amongst the $spg(q-1,q^2,2,2q(q-1))$ (of which there is an infinite family of non-classical examples due to Brown) by its full embedding in AG(4,q). © 2003 Elsevier Science (USA). All rights reserved.

Keywords: Semipartial geometry; Affine embedding; Quadric; Generalized quadrangle

1. Introduction

A semipartial geometry [9] with parameters s, t, α, μ , also denoted by $\operatorname{spg}(s, t, \alpha, \mu)$, is a partial linear space $\mathscr{S} = (\mathscr{P}, \mathscr{B}, I)$ of order (s, t), such that for each anti-flag (x, L), the incidence number $\alpha(x, L)$, being the number of points on L collinear with x, equals 0 or a constant α $(\alpha > 0)$ and such that for any two points which are not collinear, there are μ $(\mu > 0)$ points collinear with both $(\mu$ -condition).

A semipartial geometry with $\alpha = 1$ is called a *partial quadrangle*. It was introduced by Cameron [5] as a generalization of a generalized quadrangle. Semipartial geometries generalize at the same time the partial quadrangles and the partial

E-mail addresses: mbrown@maths.adelaide.edu.au (M.R. Brown), Frank.DeClerck@ugent.be (F.D. Clerck), mdelanote@yahoo.fr (M. Delanote).

geometries, which are partial linear spaces of order (s,t), such that for each anti-flag (x,L), the incidence number $\alpha(x,L)=\alpha$ (the μ -condition is automatically satisfied). Partial geometries with $\alpha=1$ are the well-known generalized quadrangles. See for instance [13] for more information on generalized quadrangles and [6,7] for more information on partial and semipartial geometries. A semipartial which is not a partial geometry, nor a partial quadrangle will be called *proper*.

The point graph Γ of a semipartial geometry is strongly regular. For a point x of $\mathscr S$ we will denote by $\Gamma(x)$ the set of points of $\mathscr S$ different from x and collinear to x.

2. Semipartial geometries and generalized quadrangles

In [2] Brown gives the following general construction method for $\operatorname{spg}(q-1,q^2,2,2q(q-1))$. Let $\mathscr S$ be a generalized quadrangle of order (q,q^2) containing a subquadrangle $\mathscr S'$ of order q. If x is a point of $\mathscr S\backslash\mathscr S'$, then each line of $\mathscr S$ incident with x is incident with a unique point of $\mathscr S'$ and the set $\mathscr O_x$ of such points is an ovoid of $\mathscr S'$. (An ovoid of a generalized quadrangle is a set of points such that each line of the generalized quadrangle is incident with a unique point of the set.) The ovoid $\mathscr O_x$ is said to be *subtended* by x. A *rosette* of ovoids of $\mathscr S'$ is a set of q ovoids meeting pairwise in an exactly one fixed point of $\mathscr S'$. If L is a line of $\mathscr S\backslash\mathscr S'$, then the ovoids of $\mathscr S'$ subtended by the points of $\mathscr S\backslash\mathscr S'$ incident with L form a rosette of $\mathscr S'$.

If for a subtended ovoid \mathcal{O}_x there is a point y of $\mathscr{G}\backslash\mathscr{S}'$, $y\neq x$, such that $\mathcal{O}_y=\mathcal{O}_x$, then \mathcal{O}_x is said to be *doubly subtended*. If each ovoid of \mathscr{S}' subtended by a point of $\mathscr{S}\backslash\mathscr{S}'$ is doubly subtended, then \mathscr{S}' is said to be *doubly subtended* in \mathscr{S} . If \mathscr{S}' is doubly subtended in \mathscr{S} , then the incidence structure with point set the subtended ovoids of \mathscr{S}' ; line set the rosettes of subtended ovoids of \mathscr{S}' ; and incidence containment is an $\operatorname{spg}(q-1,q^2,2,2q(q-1))$.

The generalized quadrangle Q(4,q) is doubly subtended in $Q^-(5,q)$ and hence by Brown's construction yields a semipartial geometry which is better known as the Metz model of TQ(4,q) (we use the notation as introduced in [6]). For q odd and $\sigma \in Aut(GF(q))$ the generalized quadrangle Q(4,q) is also doubly subtended in the Kantor translation generalized quadrangle associated with σ [12]. Two such generalized quadrangles associated with field automorphisms σ_1 and σ_2 , respectively, are isomorphic if and only if $\sigma_1 = \sigma_2$ or $\sigma_1 = \sigma_2^{-1}$, and similarly for the $spg(q-1,q^2,2,2q(q-1))$. In the case where σ is the identity the Kantor construction yields $Q^-(5,q)$ and the associated $spg(q-1,q^2,2,2q(q-1))$ is the Metz model of TQ(4,q).

An *embedding* of a partial linear space in AG(n,q) is a representation of the geometry with point set a subset of the point set of AG(n,q); line set a subset of the line set of AG(n,q); and incidence inherited from AG(n,q). The geometry is *fully* embedded if the embedding has the additional property that for every line L of AG(n,q) that is also a line of the geometry, each point of AG(n,q) that is incident with L is a point of the geometry. It is also required that AG(n,q) is generated by the

point set of the geometry. In the same way one can define a full embedding of a partial linear space in PG(n, q).

Let $\mathscr G$ be a generalized quadrangle fully embedded in a projective space $\mathrm{PG}(n,q)$, hence $\mathscr G$ is classical and n=3,4 or 5 [4]. Let p be a point of $\mathrm{PG}(n,q)$ and let Π be a hyperplane of $\mathrm{PG}(n,q)$ not containing p. Let $\mathscr P_1$ be the projection of the point set of $\mathscr G$ from p onto Π and let $\mathscr P_2$ be the set of points of Π on a tangent through p at $\mathscr G$. Consider the incidence structure $\mathscr G_p=(\mathscr P_p,\mathscr L_p,\mathrm I_p)$ with $\mathscr P_p=\mathscr P_1\backslash\mathscr P_2,\ \mathscr L_p$ the set of lines of Π with q points in $\mathscr P_p$ and incidence $\mathrm I_p$ inherited from the projective space. If $\mathscr G=Q^-(5,q)$ (fully embedded in $\mathrm{PG}(5,q)$) or $\mathscr G=H(4,q^2)$ (fully embedded in $\mathrm{PG}(4,q^2)$) the incidence structure $\mathscr G_p$ is a semipartial geometry.

Assume $\mathcal{S} = Q^-(5,q)$ is fully embedded in PG(5,q) and p is not on the quadric $Q^-(5,q)$, then Hirschfeld and Thas [11] proved that projection yields an $\operatorname{spg}(q-1,q^2,2,2q(q-1))$ that is isomorphic to the semipartial geometry TQ(4,q). For the other examples we refer to [7]. If q is even, the Hirschfeld–Thas model of TQ(4,q) yields a semipartial geometry which is fully embedded in AG(4,q).

In [8] Debroey and Thas classified the proper semipartial geometries that may be fully embedded in AG(n,q) for n=2 and 3, as well as the possible models for the embeddings in these cases. For n>3 there is no such classification. There are two examples known, one being the Hirschfeld-Thas model of TQ(4,q), q even.

We will prove the following main theorem.

Main Theorem. Let \mathscr{S} be a semipartial geometry $\operatorname{spg}(q-1,q^2,2,2q(q-1))$ fully embedded in $\operatorname{AG}(4,q)$. Then $q=2^h$ and \mathscr{S} is the Hirschfeld–Thas model of $\operatorname{TQ}(4,q)$.

3. The $spg(q - 1, q^2, 2, 2q(q - 1))$ embedded in AG(4, q)

In this section, let \mathcal{S} be an $spg(q-1,q^2,2,2q(q-1))$ fully embedded in $AG(4,q), q \neq 2$.

Let Π_{∞} denote the hyperplane at infinity of AG(4, q). The line set of $\mathscr S$ is a subset of the line set of AG(4, q), which in turn is a subset of the line set of PG(4, q), the projective completion of AG(4, q). Thus a line of $\mathscr S$ will be said to intersect Π_{∞} in the point of Π_{∞} incident with the line in PG(4, q). The same symbol will be used to refer to such a line in the three different contexts.

For a point x of \mathscr{S} , let θ_x denote the set of q^2+1 points in Π_∞ determined by the intersection of Π_∞ with the lines of \mathscr{S} through x. Since $\alpha=2$ any line N of Π_∞ intersects θ_x in at most three points. A line of Π_∞ intersecting θ_x in 0,1,2 or 3 points will be referred to as an external line, tangent, secant or 3-secant, respectively.

Let (x, L) be an antiflag of \mathcal{S} , $M = \langle x, L \rangle \cap \Pi_{\infty}$ and $p = L \cap \Pi_{\infty}$. If $\alpha(x, L) = 0$, then M is either a tangent of θ_x at p or an external line of θ_x , while for $\alpha(x, L) = 2$, we obtain that either $p \notin \theta_x$ and M intersects θ_x in two points, or $p \in \theta_x$ and M intersects θ_x in three points.

Lemma 1. Let x be a point of the semipartial geometry $\mathscr S$ and let M be a projective line of Π_{∞} intersecting θ_x in three points p_1, p_2, p_3 . Then all of the points of $\langle M, x \rangle \backslash M$ are points of $\mathscr S$ and the 3q affine lines in $\langle M, x \rangle$ through p_1, p_2 or p_3 are exactly the lines of $\mathscr S$ contained in the plane $\langle M, x \rangle$. Furthermore, q is a power of 3.

Proof. Let y be a point of $\langle x, p_1 \rangle \setminus \{x, p_1\}$. Since $\alpha(y, \langle x, p_2 \rangle) = 2$ we obtain a line $\langle y, z \rangle$ of $\mathscr S$ with $z \in \langle x, p_2 \rangle \setminus \{x, p_2\}$ which also intersects $\langle x, p_3 \rangle$ in the point u. If $u \neq p_3$, then $\alpha(x, \langle y, z \rangle) > 2$, a contradiction, and so $u = p_3$. Similarly since $\alpha(y, \langle x, p_3 \rangle) = 2$ it follows that the line $\langle y, p_2 \rangle$ is a line of $\mathscr S$. Since this is true for any $y \in \langle x, p_1 \rangle \setminus \{x, p_1\}$ we have that each affine line through p_2 or p_3 is a line of $\mathscr S$. Clearly by similar arguments we also have that each affine line through p_1 is a line of $\mathscr S$. If N is any line of $\langle M, x \rangle$ not incident with p_1, p_2 or p_3 , then N cannot be a line of $\mathscr S$ since for any point y of $\langle M, x \rangle \setminus M$ not on N we would have $\alpha(y, N) > 2$.

Now let the affine lines of $\langle M, x \rangle$ through p_1 be labelled $L_1, ..., L_q$. For any L_i there are $q^3(q-1)/2$ antiflags (y, L_i) of \mathcal{S} with incidence number 2, and hence $q^{2}(q^{2}-1)/2-q^{3}(q-1)/2-q=(q^{3}-q^{2})/2-q$ antiflags (z,L_{i}) with incidence number 0. Counting the number of points z of \mathcal{S} such that $z \in \langle M, x \rangle$ or $\alpha(z, L_i) =$ 0 for some L_i we have at most $q^3(q-1)/2$ points, fewer than the total number of points of \mathcal{S} . Consequently there exists a point x' of \mathcal{S} such that $x' \notin \langle M, x \rangle$ and $\alpha(x', L_i) = 2$ for all L_i . Hence there are 2q points of $\langle M, x \rangle$ collinear with x' in \mathcal{S} . Let this set of points be Ω . Since $|\Omega| = 2q$ it follows that each affine line through p_2 or p_3 is incident with 2 points of Ω . If N is any line of $\langle M, x \rangle$ not incident with p_1, p_2 or p_3 , then $\langle N, x' \rangle$ contains at most 3 lines of \mathscr{S} on x' and so N contains at most 3 points of Ω . So now consider any $y \in \Omega$. Then lines $\langle y, p_1 \rangle$, $\langle y, p_2 \rangle$ and $\langle y, p_3 \rangle$ cover 4 points of Ω while the remaining q-2 lines of $\langle M, x \rangle$ on y must cover the remaining 2q-4 points of Ω with at most 2 points of $\Omega \setminus \{y\}$ on a line. Consequently, each such line contains exactly 3 points of Ω . It follows that each line of $\langle M, x \rangle$ not incident with p_1, p_2 or p_3 is incident with 0 or 3 points of Ω . Now let p be any point of $M \setminus \{p_1, p_2, p_3\}$. By considering the lines of $\langle M, x \rangle$ on p we see that Ω may be partitioned into sets of size 3 and so 3|q.

Lemma 2. Let x and y be two collinear points of \mathscr{S} , then a line M of Π_{∞} incident with $p = \langle x, y \rangle \cap \Pi_{\infty}$ is either a tangent of both θ_x and θ_y , a secant of both θ_x and θ_y with $M \cap \theta_x \cap \theta_y = \{p\}$, or a 3-secant of both θ_x and θ_y with $|M \cap \theta_x \cap \theta_y| = 3$.

Proof. Let M be a line of Π_{∞} incident with $p = \langle x, y \rangle \cap \Pi_{\infty}$. Since $\alpha = 2$, both $|M \cap \theta_x|$ and $|M \cap \theta_y|$ are at most 3. If $M \cap \theta_y = \{p\}$ and $|M \cap \theta_x| > 1$, then this contradicts $\alpha = 2$. Hence if $M \cap \theta_y = \{p\}$, then it is also the case that $M \cap \theta_x = \{p\}$, that is, M is a tangent of both θ_x and θ_y .

Assume that $|M \cap \theta_x| = 3$, then by Lemma 1 every point of the affine plane $\langle x, M \rangle$ is incident with three lines of $\mathscr S$ and belonging to that plane; more particular this holds for the point y and so $|M \cap \theta_y| = 3$.

Hence the only possibility which is left is $|M \cap \theta_x| = |M \cap \theta_y| = 2$ with $M \cap \theta_x \cap \theta_y = \{p\}$. \square

If $|M \cap \theta_x \setminus \theta_y| = |M \cap \theta_y \setminus \theta_x| = 1$, then M is said to be of type (A) with respect to x and y. If $|M \cap \theta_x \cap \theta_y| = 3$, and hence $|M \cap \theta_x \setminus \theta_y| = |M \cap \theta_y \setminus \theta_x| = 0$, then M is said to be of type (B) with respect to x and y.

Lemma 3. Let x be a point of \mathcal{S} , then θ_x is an ovoid of Π_{∞} and q is even.

Proof. Let y be a point of \mathscr{S} collinear with x and let $p = \langle x, y \rangle \cap \Pi_{\infty}$. By the proof of Lemma 2 a line of Π_{∞} containing p is either tangent to both θ_x and θ_y , or is either of type (A) or of type (B) with respect to x and y. To prove that θ_x is an ovoid, we have to show that there are no lines of type (B) with respect to x and y.

Let L be the line $\langle x,y \rangle$ of \mathscr{S} . For any line N of \mathscr{S} intersecting L (in a point of \mathscr{S}) $\langle L,N \rangle \cap \Pi_{\infty}$ is a line of type (A) or (B) (with respect to x and y). Let this line be M and suppose that M is of type (A) such that $\theta_x \cap M = \{p,p_1\}$ and $\theta_y \cap M = \{p,p_2\}$. Let $z = \langle p_2,y \rangle \cap \langle p_1,x \rangle$ and suppose that z is incident with a third line of \mathscr{S} in $\langle M,L \rangle$. Since z is collinear with x and y and $\alpha=2$ this third line must be $\langle z,p \rangle$. As $\alpha(y,\langle z,p \rangle)=2$ there is a third line of \mathscr{S} on y in $\langle M,L \rangle$, contradicting the fact that M is a 2-secant of θ_y . Consequently z is incident with exactly two lines of \mathscr{S} in $\langle M,L \rangle$. Similar arguments show that each point of $\langle x,p_1 \rangle \setminus \{p_1\}$ is incident with exactly two lines of \mathscr{S} in $\langle M,L \rangle$. Also $\alpha=2$ implies that no two of these lines meet on M. Hence the lines of \mathscr{S} in $\langle M,L \rangle$ form a dual oval with nucleus M, from which it follows that q is even.

By Lemma 1 if M is a line of type (B), then q is a power of 3. Thus we have two distinct cases for the lines of Π_{∞} through p that are not tangent to both x and y: either they are all of type (A) or all of type (B). In the latter case 3|q and the lines through p partition $\theta_x \setminus \{p\}$ into sets of size 2 which implies that 2|q, a contradiction. So we must be in the former case and q is even.

Now suppose that x is an arbitrary point of \mathscr{S} and p a point of θ_x . If $y \in \langle x, p \rangle \setminus \{x, p\}$, then by applying the above argument it follows that every line of Π_{∞} on p is either a tangent or a secant of θ_x . Hence there are no 3-secants of θ_x and θ_x is an ovoid. \square

Corollary 4. Let x and y be two collinear points of \mathcal{S} , then $|\theta_x \cap \theta_y| = 1$.

Proof. Every line of Π_{∞} incident with $p = \langle x, y \rangle \cap \Pi_{\infty}$ is either a tangent to both θ_x and θ_y or is of type (A) with respect to x and y. \square

Lemma 5. Let x and y be two non-collinear points of $\mathscr S$ and $p = \langle x, y \rangle \cap \Pi_{\infty}$. Let M be any line of Π_{∞} incident with p. Then one of the following is the case:

- (i) M is secant to both θ_x and θ_y and $M \cap \theta_x \cap \theta_y = \emptyset$;
- (ii) *M* is tangent to both θ_x and θ_y at a point of $\theta_x \cap \theta_y$; or
- (iii) M is external to both θ_x and θ_v .

Furthermore $\theta_x \cap \theta_v$ is an oval with nucleus p.

Proof. Suppose that $r \in \theta_x \cap \theta_y$. We show that $\langle r, p \rangle$ is tangent to both θ_x and θ_y . Suppose that $\langle r, p \rangle$ is a secant line of at least one of the ovoids, say θ_x . Hence $(\theta_x \cap \langle r, p \rangle) \setminus \{r\} = \{u\}$ for some point u. Let $z = \langle u, x \rangle \cap \langle r, y \rangle$. Then x and z are collinear in $\mathscr S$ while $|\theta_x \cap \theta_z| \ge 2$, contradicting Corollary 4. Hence $\langle p, r \rangle$ is a tangent line of both ovoids.

Now we show that M is secant to θ_x if and only if it is secant to θ_y . Therefore we first assume that M intersects θ_x in the point v and θ_y in the point w, with $v \neq w$. Then $\langle v, x \rangle$ intersects $\langle w, y \rangle$, and so $\alpha(y, \langle x, v \rangle) = 2$. This implies that M intersects θ_y in the distinct points w and w', and moreover $w, w' \notin \theta_x \cap \theta_y$. Similarly, since $\alpha(x, \langle y, w \rangle) = 2$, it follows that M intersects θ_x in the distinct points v and v', with $v, v' \notin \theta_x \cap \theta_y$. In other words, M intersects both ovoids in two points outside their intersection. Since $|\Gamma(x) \cap \Gamma(y) \cap \langle x, y, M \rangle| = 4$ and $|\Gamma(x) \cap \Gamma(y)| = \mu = 2q(q-1)$ it follows that there are exactly q(q-1)/2 lines incident with p that are secant to both θ_x and θ_y . Since this is the number of secants of an ovoid incident with a point not on the ovoid this means that the set of lines of Π_∞ incident with p and secant to θ_x is also the set of lines incident with p and secant to θ_y .

By Lemma 3, q is even and consequently the q+1 tangents of θ_x incident with p are contained in a plane π_x on p and similarly the q+1 tangents of θ_y incident with p are contained in a plane π_y . There are two cases to consider: $\pi_x = \pi_y$ and $\pi_x \cap \pi_y$ is a line incident with p. First suppose that $\pi_x = \pi_y$. It follows that the tangents of θ_x incident with p are precisely the tangents of θ_y incident with p with a common point of tangency. Consequently $\theta_x \cap \theta_y$ is an oval of π_x with nucleus p. So in this case $|\theta_x \cap \theta_y| = q+1$. Now suppose that $\pi_x \cap \pi_y$ is a line L incident with p. The line L is a tangent of both θ_x and θ_y at a point $o \in \theta_x \cap \theta_y$. If $M \neq L$ then by arguments above M must be external to θ_y . From this it follows that π_x is the tangent plane of θ_y at o and similarly π_y is the tangent plane of θ_x at o. Since $\langle p, o \rangle$ is the only line of Π_∞ incident with p that is tangent to both θ_x and θ_y it follows that $\theta_x \cap \theta_y = \{o\}$, and so $|\theta_x \cap \theta_y| = 1$.

It is now shown that the case $|\theta_x \cap \theta_y| = 1$ cannot occur. Suppose that $|\theta_x \cap \theta_y| = 1$. Let M be secant of both θ_x and θ_y . It follows by arguments above that if $\theta_x \cap M = \{v, v'\}$ and $\theta_y \cap M = \{w, w'\}$, then $\{v, v', w, w'\}$ are four distinct points. Let $\{x = x_1, x_2, ..., x_q\}$ be the set of q points of $\mathscr S$ incident with the line $L = \langle x, v \rangle$. By Corollary 4, $\theta_{x_i} \cap \theta_{x_j} = \{v\}$ for $i, j \in \{1, ..., q\}$, $i \neq j$, and by a consequence of Lemma 2, the ovoids $\theta_{x_1}, ..., \theta_{x_q}$ have a common tangent plane at v, π_v say. It follows that the ovoids $\theta_{x_1}, ..., \theta_{x_q}$ partition the points of $\Pi_\infty \setminus \pi_v$ into q sets of size q^2 . Without loss of generality assume that y is collinear with the points x_2 and x_3 of L, so by Corollary $4 \mid \theta_y \cap \theta_{x_2} \mid = \mid \theta_y \cap \theta_{x_3} \mid = 1$. By above arguments it follows that for i = 4, ..., q, $\mid \theta_y \cap \theta_{x_i} \mid = 1$ or q + 1.

Suppose that $|\pi_v \cap \theta_y| = 1$, then since $v \notin \theta_y$ the ovoids $\theta_{x_1}, \ldots, \theta_{x_q}$ partition the q^2 points of $\theta_y \setminus (\pi_v \cap \theta_y)$ into q sets with size either 1 or q+1. This requires q-1 sets of size q+1 and 1 set of size 1. However $|\theta_{x_i} \cap \theta_y| = 1$ for i=1,2 and 3, a contradiction. Now suppose that $|\pi_v \cap \theta_y| = q+1$, then since $v \notin \theta_y$ the ovoids $\theta_{x_1}, \ldots, \theta_{x_q}$ partition the q^2-q points of $\theta_y \setminus (\pi_v \cap \theta_y)$ into q sets with size either 1 or q+1. This requires q-2 sets of size q+1 and 2 sets of size 1, again a contradiction.

It follows that $|\theta_x \cap \theta_y|$ cannot be 1 and so $\pi_x = \pi_y$ and $\theta_x \cap \theta_y$ is an oval of π_x with nucleus p. \square

Theorem 6. Let \mathscr{S} be a semipartial geometry $\operatorname{spg}(q-1,q^2,2,2q(q-1))$ fully embedded in $\operatorname{AG}(4,q)$. Then $q=2^h$, \mathscr{S} is isomorphic to $\operatorname{TQ}(4,q)$ and is fully embedded as the Hirschfeld–Thas model.

Proof. Let \mathscr{S} be a semipartial geometry $\operatorname{spg}(q-1,q^2,2,2q(q-1))$ fully embedded in $\operatorname{AG}(4,q)$. If q=2, then \mathscr{S} coincides with its point graph which is the unique complete graph on six vertices and the result follows. Hence we may assume that q>2.

Let $\mathscr{K}=\Pi_{\infty}\cup\mathscr{P}$, where \mathscr{P} is the point set of \mathscr{S} . The intersections of \mathscr{K} with a plane of PG(4,q) are now considered which will allow the use of a result of Hirschfeld and Thas in [10] in order to prove the theorem. So let π be a plane of PG(4,q). If $\pi \subset \Pi_{\infty}$, then $\pi \subset \mathscr{K}$; so suppose that $\pi \not\subset \Pi_{\infty}$ and that $\pi \cap \Pi_{\infty}$ is the line M.

Suppose that π contains a point x of \mathcal{S} . Then M may either be a secant, tangent or external line of θ_x .

Suppose that M is a secant line of θ_x . This is the case if and only if there exists an antiflag (x, L) of $\mathscr S$ contained in π such that $\alpha(x, L) = 2$. By the proof of Lemma 3 the lines of $\mathscr S$ in π form a dual oval $\mathscr D$ with nucleus M and these are all the lines of $\mathscr S$ in π . Let z be any point of $\mathscr S \cap \pi$ and not collinear in $\mathscr S$ with x. Then by Lemma 5, M is a secant of θ_z ; hence z is incident with exactly two lines of the dual oval $\mathscr D$. It follows that $\pi \cap \mathscr K$ is a dual hyperoval; or equivalently the complement of a maximal arc of type (0, q/2).

Next suppose that $M \cap \theta_x = \{p\}$. Hence M is a tangent of θ_x at p and all points of $\pi \cap \mathcal{S}$ are not collinear in \mathcal{S} with x. If y is such a point of \mathcal{S} on π , then by Lemma 5 M is a tangent of θ_y at p and so $\langle p, y \rangle$ is a line of \mathcal{S} . It follows that lines of \mathcal{S} in π are incident with p and that all points of \mathcal{S} on π are incident with such a line. Let p be a point of p and let p be a secant of p incident with p. By the above the plane $\langle N, x \rangle$ meets p in a dual hyperoval and since p it follows that the line p is not a line of p. Hence p is incident with exactly p points of p and so p meets the line set of p in exactly p lines each intersecting p in p. So p is a tangent of p if and only if p meets p in the point set of p 1 concurrent lines.

Finally suppose that M is an external line of θ_x . Let y be any point of M and let L be a secant of θ_x incident with y. The line $\langle x, y \rangle$ is incident with q/2 points of \mathscr{S} . Hence each line of π incident with x is incident with q/2 points of \mathscr{S} . If z is any other point of \mathscr{S} in π , then since x and z are not collinear and M is an external line of θ_x it follows by Lemma 5 that M is also an external line of θ_z . Hence π meets \mathscr{K} in a maximal arc of type (0, q/2), and M is an external line to this maximal arc.

By the above discussion a plane section of \mathcal{X} is one of the following sets: (i) a single line; (ii) the entire plane; (iii) a maximal arc of type (0, q/2), plus an external line; (iv) a dual hyperoval, or equivalently, the complement of a maximal arc of type (0, q/2); or (v) q/2 + 1 concurrent lines.

From this list it follows that with respect to the intersection with lines \mathcal{K} is a set of points of type (1, q/2 + 1, q + 1).

Actually, it is possible to show that no planes of type (i) occur, but we do not need this. The set $\mathscr K$ does contain plane sections of type (iv), and for q=4, $\mathscr K$ has no plane section that is either a unital or a subplane. Hence by [10, Theorem 6] the set $\mathscr K$ is the projection of a non-singular quadric of PG(5,q) onto PG(4,q). Any plane contained in $\mathscr K$ is also contained in Π_∞ which can only be the case if $\mathscr K$ is the projection of an elliptic quadric $Q^-(5,q)$ onto PG(4,q). \square

We can rephrase as follows our result for an $\operatorname{spg}(q-1,q^2,2,2q(q-1))$ constructed from a doubly subtended subquadrangle of order q of a generalized quadrangle of order (q,q^2) .

Corollary 7. Let \mathcal{G} be a generalized quadrangle of order (q, q^2) , \mathcal{G}' a doubly subtended subquadrangle of \mathcal{G} of order q, and \mathcal{G} the $\operatorname{spg}(q-1,q^2,2,2q(q-1))$ constructed from \mathcal{G} and \mathcal{G}' . If \mathcal{G} may be fully embedded in $\operatorname{AG}(4,q)$, then $\mathcal{G}=\operatorname{TQ}(4,q)$, $\mathcal{G}=Q^-(5,q)$, $\mathcal{G}'=Q(4,q)$ and $q=2^h$.

Proof. By Theorem 6 $\mathscr{S} \cong TQ(4,q)$ and $q=2^h$. Since \mathscr{S} (in the model of Metz) may be constructed from the doubly subtended subquadrangle Q(4,q) of $Q^-(5,q)$, it follows from [2, Theorem 3.3] that $\mathscr{G}'=Q(4,q)$ and \mathscr{S} is the model of Metz in Q(4,q). Since Q(4,q) is doubly subtended in \mathscr{G} with all subtended ovoids being elliptic quadrics on Q(4,q), it follows that $\mathscr{G}=Q^-(5,q)$ [1,3]. \square

Acknowledgments

During the writing of this paper, the first author was a Postdoctoral Research Fellow supported by a research grant of Ghent University, No. GOA 12050300, while the third author was a Research Fellow supported by the Flemish Institute for the Promotion of Scientific and Technological Research in Industry (IWT), Grant No. IWT/SB/971002.

The authors thank one of the referees for his comments which shortened the first version of this paper.

References

- [1] L. Brouns, J.A. Thas, H. Van Maldeghem, A characterization of Q(5,q) using one subquadrangle Q(4,q), European J. Combin. 23 (2) (2002) 163–177.
- [2] M.R. Brown, Semipartial geometries and generalized quadrangles of order (r, r^2) , Bull. Belg. Math. Soc. Simon Stevin 5 (2–3) (1998) 187–205 Finite geometry and combinatoric, Deinze, 1997.
- [3] M.R. Brown, A characterisation of the generalized quadrangle Q(5,q) using cohomology, J. Algebraic Combin. 15 (2) (2002) 107–125.

- [4] F. Buekenhout, C. Lefèvre, Generalized quadrangles in projective spaces, Arch. Math. (Basel) 25 (1974) 540-552.
- [5] P.J. Cameron, Partial quadrangles, Quart. J. Math. Oxford Ser. 26 (2) (1975) 61-73.
- [6] F. De Clerck, Partial and semipartial geometries: an update, Discrete Mathematics, to appear.
- [7] F. De Clerck, H. Van Maldeghem, Some classes of rank 2 geometries, in: F. Buekenhout (Ed.), Handbook of Incidence Geometry, Buildings and Foundations, North-Holland, Amsterdam, 1995, pp. 433–475 (Chapter 10).
- [8] I. Debroey, J.A. Thas, On polarities of symmetric semipartial geometries, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 62 (8) (1977) 607–612.
- [9] I. Debroey, J.A. Thas, On semipartial geometries, J. Combin. Theory Ser. A 25 (1978) 242–250.
- [10] J.W.P. Hirschfeld, J.A. Thas, The characterizations of projections of quadrics over finite fields of even order, J. London Math. Soc. 22 (2) (1980) 226–238.
- [11] J.W.P. Hirschfeld, J.A. Thas, Sets of type (1, n, q + 1) in PG(d, q), Proc. London Math. Soc. XLI (1980) 254–278.
- [12] W.M. Kantor, Ovoids and translation planes, Canad. J. Math. 34 (1982) 1195-1207.
- [13] S.E. Payne, J.A. Thas, Finite Generalized Quadrangles, in: Research Notes in Mathematics, Vol. 110, Pitman, Boston, 1984.