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Abstract

Exercise-induced rhabdomyolysis (exRML), a pathophysiological condition of skeletal muscle cell damage that may cause acute renal failure
and in some cases death. Increased Ca2+ level in cells along with functional degradation of cell signaling system and cell matrix have been
suggested as the major pathological mechanisms associated with exRML. The onset of exRML may be exhibited in athletes as well as in general
population. Previous studies have reported that possible causes of exRML were associated with excessive eccentric contractions in high
temperature, abnormal electrolytes balance, and nutritional deficiencies possible genetic defects. However, the underlying mechanisms of exRML
have not been clearly established among health professionals or sports medicine personnel. Therefore, we reviewed the possible mechanisms and
correlated prevention of exRML, while providing useful and practical information for the athlete and general exercising population.
© 2016 Production and hosting by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The number of people participating in regular as well as
organized exercise programs has been continuously increasing.
The increase in popularity of physical activity and exercise may
be due to positive effects on physical and mental health.
However, excessive or intense exercise beyond the extent of per-
sonal or physical limits may induce various types of musculo-
skeletal damage, including exercise-induced rhabdomyolysis
(exRML), a pathophysiological condition of skeletal muscle cell
damage.1 exRML may be manifested by an increase in creatine
kinase (CK) or myoglobin (Mb), seeping into the blood stream
through damaged cell membrane as results of excessive or
intense exercise.1 exRML may lead to acute renal failure (ARF),
liver dysfunction, compartment syndrome, heart failure, arrhyth-
mias, electrolyte imbalance, and in severe cases also to death.2,3

exRML can occur via highly intense and prolonged exercise or
due to sudden and excessive contraction of skeletal muscles.
Symptoms of exRML are similar to those of delayed onset
muscle soreness that can be easily overlooked.4 Despite its
importance, people who participate in exercise may not be aware
of exRML. Therefore, the purposes of this review are to provide
exercising population with information about the possible
mechanisms of exRML and offer preventive strategies to avoid
exRML based on results of previously conducted studies.

2. Pathophysiology of exRML

2.1. Role of calcium in the pathogenesis of exRML

Ca2+ has been suggested as an important factor in the pathogen-
esis of exRML (Fig. 1). Numerous studies5,6 have shown increased
levels of Ca2+ in cells of exRML patients. The concentration of
Ca2+ should remain at nano-molar levels under resting conditions.
Ca2+ would increase to mille-molar levels through cell activation
and muscle contraction during exercise.7 Ryanodine receptors in
the sarcoplasmic reticulum, dihydropyridine receptors (i.e.,
voltage-gated L-type Ca2+ channels), and Ca2+ pump are the 3
major pathways controlling the Ca2+ in skeletal muscle cells.8–10

Transient receptor potential channel (non-selective cation
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channel),11 Ca2+-induced Ca2+ release,12 and Na+-Ca2+ exchanger13

contribute to the control of Ca2+. Increased Ca2+ concentration
has been reported in the sarcoplasm of exRML patients6 with
deficiency or depletion of adenosine triphosphate (ATP) due to
intensity of exercise. ATP is continuously synthesized during
exercise. When the amount of ATP is severely depleted, ATP-
dependent ion transporter may be affected.14 ATP-dependent
transporters of skeletal muscle cells are Na+-K+ ATPase15 and
Ca2+ ATPase16 ion transporters. When skeletal muscle cells are
excited, Na+ influx through the voltage-gated Na+ channel creates
an action potential, resulting in similar amounts of K+ efflux
through the K+ channel. The movement of these ions strengthens
the capacity of Na+-K+ ATPase to readjust the distribution of ions
in the sarcoplasm.15 The efflux of Na+ and the influx of K+

become ATP-dependent and move in the opposite direction of the
concentration gradient. If the amount of ATP is deficient or insuf-
ficient, the activity of Na+-K+ ATPase would be reduced.
Decreased amount of ATP could cause dysfunction of the Na+-K+

ATPase,14 resulting in an increased level of Na+ in the cells.17

Normal function of Na+-K+ would activate Na+-Ca2+ exchanger in
the forward mode (Ca2+ extrusion). However, due to the dysfunc-
tion of Na+-K+ ATPase, increased level of Na+ in cells would
activate the reverse mode of Na+-Ca2+ exchanger (Ca2+ influx),
thereby increasing the level of Ca2+ in the cells.18 During the
cycle of contraction and relaxation of skeletal muscle, Ca2+ in the
sarcoplasm repeatedly gain sentry through the Ca2+ pump in the

membrane of sarcoplasmic reticulum.7 Normal function of the
Ca2+ pump requires the hydrolysis of ATP.19,20 If the amount of
ATP is insufficient, the Ca2+ pump would result in abnormal
function. Zhang21 suggested that dysfunction of ion regulation
proteins as, a Na+-K+ ATPase, Na+-Ca2+ exchanger, and Ca2+

pump in skeletal muscle may be strongly related to
rhabdomyolysis (RML).

Ca2+-induced Ca2+ release has been detected earlier than
inositol 1,4,5-triphosphate-induced Ca2+ release for the reser-
vation or mobilization of Ca2+ in the sarcoplasm.12 Ca2+-induced
Ca2+ release is not the primary Ca2+ control mechanism in the
skeletal muscles. It is achieved via protein–protein interaction
of voltage sensor dihydropyridine receptor of the T-tubule with
the Ca2+ release channel ryanodine receptor of the sarcoplasmic
reticulum membrane.22,23 According to the Ca2+-induced Ca2+

release mechanism, membrane depolarization caused by the
action potential increases the levels of Ca2+ in the sarcoplasm,
thus releasing Ca2+ from the Ca2+ store (sarcoplasmic reticu-
lum). Ryanodine receptor and inositol 1,4,5-triphosphate are
both associated with Ca2+-induced Ca2+ release.12 Due to con-
sistent contraction of skeletal muscles, increased level of Ca2+

in the sarcoplasm may activate Ca2+-induced Ca2+ release,
which may have asynergistic effect and subsequently increase
the level of Ca2+ even more. Transient receptor potential chan-
nels are non-selective cation channels permeable to Na+ and
Ca2+.7 In skeletal muscles, transient receptor potential canonical

Fig. 1. The pathophysiological mechanism of rhabdomyolysis focusing on the increase of Ca2+. A: Deficiency of ATP due to high intensity exercise and continuous
muscle contraction could induce the dysfunction of Na+-K+ ATPase, causing subsequent activation of reverse mode Na+-Ca2+ exchanger; B: Depolarization of
sarcolemma and T-tubule by an action potential could activate dihydropyridine receptor and promote the secretion of Ca2+ via ryanodine receptor in sarcoplasmic
reticulum; C: The increase of Ca2+ due to Ca2+ diffused by the rupture of sarcolemma from trauma; D: The entry of store-operated Ca2+ through transient receptor
potential Channel 1 or transient receptor potential Channel 3 with reduced levels of Ca2+ in the sarcoplasmic reticulum; E: The secretion of Ca2+ (Ca2+-induced Ca2+

release) from sarcoplasmic reticulum in accordance with the increase of Ca2+ in sarcoplasm. → represents activation; represents inhibition, represents
candidate mechanisms in the regulation of Ca2+. ATP = adenosine triphosphate; CICR = Ca2+-induced Ca2+ release; DHPR = dihydropyridine receptor; NCXR =
Na+-Ca2+ exchanger; PLA2 = phospholipase A2; ROS = reactive oxygen species; SOCE = store-operated Ca2+ entry; SR = sarcoplasmic reticulum; TRPC = transient
receptor potential cation channels.
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(TRPC) Types 1 and 3 have been identified, with TRPC3 being
reported to interact with ryanodine receptor.24,25 The activation
of store-operated Ca2+ entry by TRPC1/3 with a Ca2+ deficiency
of the sarcoplasmic reticulum due to ryanodine receptor or
inositol 1,4,5-triphosphate activation may increase the levels of
Ca2+ in the sarcoplasm.26,27 The malignant hyperthermia is char-
acterized by an increase in RML28 and store operated cation
channels involving TRPC3 accelerated activation by malignant
hyperthermia.29 This leads to increasing intracellular Ca2+ and
indicates that store operated cation channels and/or TRPC3 is
contributing to the development of RML.

Increased level of Ca2+ has been reported to have influence
on the activation of proteases and phospholipase A2.30,31 These
responses are strongly associated with damage or decomposi-
tion of phospholipids of the cell membrane,32 which could
induce damage to the cell membrane and reveal toxicity caused
by several types of molecular efflux.5 In addition, the increase
in Ca2+ concentration in the mitochondria due to chemical gra-
dient of Ca2+ between the sarcoplasm and mitochondria may be
another plausible mechanism of damage.20,33 This reaction
could promote the creation of reactive oxygen species (ROS) in
the mitochondria,34 which could damage proteins, lipids, and
nucleic acids.35,36 This type of damage could reduce the synthe-
sis of cell membrane, proteins, and/or ATP.34 The increase of
Ca2+ in the sarcoplasm and mitochondria may amplify the sig-
naling of apoptosis and promoting cell death.37–39 Furthermore,
rupture of muscular cell membrane caused by injury, toxicity, or
exercise may induce the influx of Ca2+ into cells due to concen-
tration gradient, contributing to the elevation of Ca2+ concen-
tration in the sarcoplasm.20,37 Therefore, the increase in Ca2+ in
cells may induce exRML by creating energy, while controlling
the cell signaling pathway system through interactions that may
cause cell death.

2.2. Role of myoglobin in exRML-induced ARF

Among complications of exRML, ARF has shown the great-
est incidence rate increase.40,41 Park et al.42 reported that 10%–
30% of exRML patients may have accompanying ARF, making
exRML a clinically important condition due to strong correla-
tion between ARF and death. ARF from exRML may be caused
by the delay of treatment due to failure of recognizing severe
muscle damage and the presence of renal diseases or age-
related biological decline.43 While the pathogenesis of an ARF
originating from exRML has not been clearly recognized, pre-
vious studies have suggested an association between increased
Mb and K+ ion and uric acid affecting the glomerulus of
kidneys.40 Particularly Mb could easily permeate the glomeru-
lar membrane and subsequently increase the amount of Mb as
results of continued muscle damage.44

The mechanism of exRML-induced ARF may be referred
to vasoconstriction. Necrosis in muscular tissues may create
additional space for increased accumulation of intravascular
fluid and generate hypovolemia,45,46 that may activate sympa-
thetic tone and renin angiotensin–aldosterone system, inducing
vasoconstriction and activate additional vasoactivator (e.g.,
endothelin 1, vasopressin) that are known to suppress

vasodilation induced by protaglandins.47–49 Damage to muscles
promotes extrication of endotoxins and cytokines into sys-
temic circulation and thus promoting vasoconstriction.50,51 Mb
also plays an important role in decreasing nitric oxide and
vasodilation.52,53 Under these conditions, the creation of ATP
would be reduced resulting in vasoconstriction, renal ischemia,
and reduction in oxygen.45

Cast formation is a contributor in the development of
exRML-induced ARF.37,44 Deficit in ATP may cause necrosis of
epithelial cells, accumulation of dead cells in the tubular lumen,
resulting in the precipitation of Mb and formation of casts.47,54

Mb is filtrated at the renal glomeruli.55 The increase in Mb in
pre-urine is accompanied by acidification, and thus, increasing
the accumulation of Mb and Mb cast formation in the distal
convoluted tubules.56 The accumulation of Mb induces constric-
tion of blood vessels and initiates ischemia, reducing the func-
tion of renal tubules in filtering metabolites and waste
products.53 The accumulation of Mb also creates ROS and
induces lipid peroxidation that produces cell membrane and
blood vessels in kidneys causing temporary or chronic impair-
ment of normal kidney function.57,58

2.3. Primary factors

During exercise, factors that may cause exRML include the
exercise experience of participants, level of physical fitness, the
intensity, duration, and types of exercises. Line and Rust59

reported that exRML tends to appear more often in people with
little or no exercise experience or in athletes who are less
trained than others. In addition, a positive relationship was
found between exRML and soldiers performing sedentary
duties compared to trained soldiers.60 Paul et al.61 reported that
highly experienced weight-lifters exhibited relatively lower
levels of CK and Mb than less experienced weight-lifters.

Other important factors in exRML are the intensity and
duration of exercises. Clarkson62 found that the typical onset of
exRML was extreme muscle soreness and brown colored urine
in 12-year-old boys who performed squat jumps 250–500
times. Moeckel-Cole and Clarkson63 also reported the onset of
exRML in college soccer players who conducted highly intense
weight training and performed 300 squat jumps. In addition,
Russo and Bass64 reported exRML in a 17-year-old male bas-
ketball player who had CK level of 241,026 U/L after complet-
ing 800 sit-ups, 400 push-ups, and a 3.2 km run. The
determinations of exRML manifested from other sources are
summarized in Table 1.

The type of exercise is also considered an important factor in
the development of exRML. It has been found that eccentric
contraction of muscles may cause exRML more often than
concentric contraction.40,65,66 Kinematic factors of tension,
changes in the length of eccentric contraction of the muscle, and
attenuation of the bonding between contractile proteins have
been suggested to explain these findings.57,67 According to a
previous study,66 muscle soreness along with the appearance of
CK or Mb in the blood appeared often in the blood after exercises
containing an excessive component of eccentric contractions.
Prolonged and high intensity exercises (e.g., marathon, triathlon,

326 J. Kim et al.



soccer, body-building, or Crossfit) have been reported to activate
exRML.45,58,59

2.4. Secondary factors

2.4.1. Hot environments
Exertional heat stroke syndrome induced fever and encepha-

lopathy (delirium, seizures, and coma) as well as the muscle
weakness could lead to exRML.37 A hyperthermal environments
may increase body temperature above 42°C accompanied by
liquation of the lipids constituting the muscle cell membrane
disturbance by suppressing the process of internal oxidative
phosphorylation or inducing protein denaturation in the mito-
chondria, resulting in hemodynamic changes and subordinate
activation of inflammatory cytokines that may be responsible for
exRML.41 Excessive exercise in high humidity and temperature
has been reported to be the most severe condition that induces
exRML.44 Soldiers and athletes were reported to have more
exRML compared to general population.68 Soldiers who undergo
special force physical training or ranger activities with long dis-
tance marching in hot outdoor environments69,70 and athletes who
are exposed to high heat in outdoor environments when partici-
pating in long activities for hours, such as marathon or triathlon,
might be particularly susceptible to exRML.71,72

2.4.2. Electrolyte imbalance
Aizawa et al.73 reported expression of exRML in a 22-year-

old male soldier who presented with fever, retching, and fatigue
after highly intense physical training for 3 days. They suggested
that electrolyte imbalance (hypokalemia or hyponatremia) may
have produced these symptoms.73 K+ ion generally would
increase blood flow to the contracting muscles during exercise.
However, in the case of excessive exercise in high temperatures,
the body may compromise its homeostasis to control body heat.
As a result, potential hypokalemia may be generated due to
sweating, therefore reducing the blood flow to the muscles and
induced exRML.74 According to Park et al.42 hypokalemia may

lead to exRML by changing voltage of safety film on the cell
membrane by impeding the synthesis of muscle energy sub-
strates such as glycogen. Na+ is closely associated with muscle
contraction and Na+-K+ ATPase may be markedly reduced in a
high temperature environment, resulting in exRML.75 It has
been reported that exRML was induced in body builders who
avoided Na+ and water intake to generate a contrasting contour
of muscles, which affected the electrolyte imbalance.76

2.4.3. Sex
The incidence of exRML in males has been reported to be

higher compared to females.72,77,78 A female group was reported
to have less increase in CK level than the male group.79 In
menopausal women, the secretion of CK and lactate dehydro-
genase (LDH) were diminished in the group taking estrogen
hormone supplement.80 The incidence of exRML was reported
to be lower in female athletes than in male athletes.77 A report
from the U.S. Centers for Disease Control and Prevention also
reported that exRML was observed in 32 men, but not in 84
women among 16,506 fire fighters who participated in a physi-
cal strength examination.81 In an epidemiological investigation
of exRML in high school students, male students were found to
have more cases of exRML than female students.66 At 24 h post
marathon, the level of CK in the male group was 3322 IU/L that
was significantly higher than in the female group constituting
946 IU/L.82 Therefore, males are more vulnerable to exRML
than females. It was reported that estrogen with similar struc-
ture as vitamin E may have suppressed oxidative stress due to
exercise, thus squelching the activation of calpain, a protein
with function of diminishing the infiltration of inflammatory
cells such as neutrophil leukocyte and macrophages.83,84

2.4.4. Nutritional problems
Dietary composition of vegetarians with exRML has been

discussed previously.85 The amount of ingested protein has been
reported to cause variation in the degree of exRML,86 suggest-

Table 1
Case reports of exercise-induced rhabdomyolysis.

Researcher Subject Exercise mode Symptom Complication

Park et al.43 20 years male Scuba diving Vomiting, CK 12,054 U/L, Mb 3000 mg/mL ARF
Clarkson62 12 years male Weight training Brown urine, CK 92,115 U/L, AST 1520 U/L None
Moeckel-Coke and

Clarkson63

18 years male Weight training Brown urine, CK 130,899 U/L None

DeFilippis et al. 143 24 years female Stationary bike Brown urine, CK 161,550 U/L, AST 1983 U/L ARF, compartment syndrome
Goubier et al.144 30 years male Weight training Sever muscle pain, muscle edema, CK 113,260 U/L, LDH 790 U/L None
Kim et al.145 28 years male Weight training Edema, muscle pain, CK 52,240 U/L, LDH 2277 U/L Hepatitis
Gagliano et al.146 30 years male Bodybuilding CK 70,920 U/L, LDH 4981 U/L, Mb 1702 U/L ARF
Inklebarger et al.85 63 years male Stationary bike Sever muscle pain, brown urine, CK 38,120 U/L, Mb 5330 U/L None
Thoenes147 17 years male Stationary bike Brown urine, sever muscle pain, CK is not suggested None
Karre and Gujral148 24 years male Low intensity

exercise
Joint pain, brown urine, CK 214,356 U/L, Mb 1347 mg/mL None

MacDonald et al.149 26.7 years (19–40 years),
n = 17

Weight training Muscle aches, some subjects had hematuria and proteinuria,
CK 1800–220,000 U/L

Unknown

Pierson et al.150 25 years male Weight training CK 31,950 U/L, Mb 50 ng/mL Not present
Summachiwakij and

Sachmechi151

33 years male with Grave’s
disease

Non-strenuous
exercise

Brown urine, AST 993 U/L, ALT 228 U/L, LDH 2330 U/L,
CK 98,407 U/L

Not present

Abbreviations: ALT = alanine aminotransferase; ARF = acute renal failure; AST = aspartate aminotransferase; CK = creatine kinase; LDH = lactate dehydrogenase;
Mb = myoglobin.
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ing that exRML may be associated with deficiency of protein in
the diet. Vegetarian athletes, who do not consume proper
amount of protein with their meals may potentially develop
exRML.87 One young athlete manifested with exRML together
with high levels of CK, muscle pains, discomfort, temporary
tachycardia, and retching was found to have been on vegetarian
diet.86 Therefore, healthy diet containing proper amount of
protein is required to prevent exRML.

Besides proteins, carbohydrate intake may also play a role in
exRML. One male marathoner in his 30s who controlled car-
bohydrate intake through glycogen loading died from heat
stroke accompanied with exRML and increased levels of CK
after finishing the race.77 According to Bank,88 among track and
field athletes who exhibited brown urine after glycogen loading,
were reported to develop ARF. The manifestation of exRML
appeared to originate from acidification and reduction of
normal energy stores in muscles by increasing lactic acid as
results of an increase in glycogen.77 Although the exact mecha-
nism has not been determined, it is possible that track and field
athletes are more vulnerable to myoglobinuria attributed to
glycogen loading.88 Park et al.42 suggested that hypokalemia
induced by increased insulin from excessive intake of carbohy-
drate may be a possible reason for exRML in a body builder
after finishing exercise.

2.4.5. Creatine supplements and alcohol
Creatine supplements have been used by athletes who require

muscle power in a short time and by general public who may
wish to increase the muscle mass.89 Creatine is endogenous
energy substrates that can be taken additionally as supplements.90

The intake of 20–25 g/day of creatine for 5–7 days is recom-
mended. However, over 80% of athletes appear to take much
larger amount of the supplements than recommended.89 Such
excessive intake may cause imbalance in body water, triggering
muscle cramps or dehydration, which may be the root cause of
renal failure or exRML. A male weight-lifter was reported to
have renal failure and compartment syndrome including exRML
after taking high doses of creatine supplement.91 A case of recur-
rence of steroid-responsive nephrotic syndrome along with
reduced creatinine clearance rate caused by the intake of creatine
supplement was also reported.92

The excessive use of medication for medical or entertain-
ment purposes can also cause RML. Excessive exercise while
taking drugs for medical reasons may lead to potentially
adverse drug reactions. A rare case of induced RML by statin
(medication administered for patients to control hyperlipid-
emia) was also reported.93 It was found that statins may impede
the activation of ATP and coenzyme Q10 (antioxidant), making
the muscle cell membrane susceptible to damage.44 Similarly,
steroids typically used by athletes may also induce RML and
liver damage.94,95 Recently, indication of RML was reported in
a person who performed exercise after taking synephrine
(similar to phenylpropanolamine or ephedrine) contained in
supplements used for weight loss.96 Compartment syndrome
with RML was also reported in a soldier who took ephedrine
after completion of physical training.97 In addition, a woman in
her 50s exhibited RML together with symptoms of extreme

pain, muscle hyposthenia, and loss of weight and muscle power
after taking oriental medicine containing Herba Ephedrae who
later died.98

RML may be induced by ingestion of drugs such as heroin,
cocaine, amphetamine, and cyclosporine (immunosuppressive
agent after organ transplantation).44 Alcohol may also cause
RML by aggravating damage to muscles created by exercise. It
was reported that alcohol ingestion after exercise may worsen
edema, soreness, and dehydration.99 Alcohol aggravates muscle
damages by innate immunoreactions of the body influenced by
differentiated activation of inflammatory cells during process of
recovery from muscle damage.100

2.4.6. Other factors
Various diseases may also affect exRML. A young teenager

who participated in a weight lifting training had exRML due to
an influenza virus.101 In addition, a young basketball player
presented with exRML after taking medication to treat
influenza.102 Although the exact cause of exRML symptoms
needs further clarification, it is possible that viral infection may
play a role in the cases of exRML.

Genetic deficiency of metabolic factors may also be
implicated in RML. McArdle’s disease, a deficiency of
myophosphorylase related to the metabolism of carbohydrate,
may impede the supply of energy sources required for exercise
due to the deficiency of enzymes essential for glycolysis and
glycogenolysis.103 Reduction or absence of glycolysis and gly-
cogenolysis would have a negative influence on the synthesis of
ATP as illustrated in Fig. 1. Fatty acid oxidation disorders such
as the disturbance of β-oxidation and other enzyme shave also
been linked to RML.104,105 Fatty acid oxidation is an important
energy metabolism system in skeletal muscles, heart, liver, and
kidneys.106

Deficiency of carnitine palmitoyltransferase II may cause
RML via synthesis of ATP related to lipid metabolism during
aerobic exercise.107 Deficiency of carnitine palmitoyltransferase
II is a common cause of myopathy, resulting in RML in
adults.108

Mutations of LPIN 1 gene have been suggested as a novel
factor in recurrent RML,109 and are associated with the muscle
specific phosphatidic acid phosphatase, a key regulator in tri-
glyceride biosynthesis.110 This gene, predominantly expressed
in muscle and adipose tissues,111 affected recurring RML in
children.112 The prognosis of LPIN 1 deficiency has been con-
sidered as a negative outcome, causing death in one-third of
patients with RML.113

3. Symptoms and diagnoses

The symptoms of exRML may vary individually. However,
changes in the color of urine and muscle soreness are
common.114,115 When RML occurs, excessive Mb contained in
the urine may exhibit myoglobinuria with dark colors. Extreme
muscle soreness is accompanied by cramps or muscular stiff-
ness, nausea, headache, and fatigue.44,115

Blood tests and urinalysis have been adopted to diagnose for
exRML. CK, Mb, LDH, aspartate aminotransferase (AST),
troponin, and aldolase in blood are examined via various blood
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tests that also include tests for CK and Mb. CK is the most
sensitive indicator of RML. The normal level of CK is at
22–198 U/L. Depending on the degree of RML, the level of CK
could increase up to 10,000–200,000 U/L.58 CK level of
3,000,000 U/L was observed in 1 case report.115 Thus, CK level
in blood has been adopted as an indicator of RML. However,
some studies have questioned the diagnosis employing CK.116 It
was reported that CK may be sensitive but not specific for
RML.117 The National Lipid Association’s Muscle Safety
Expert Panel provided the level of CK to diagnose RML into 3
categories: 1) levels less than 10 times of the upper limit of
normal (ULN) was classified as mild; 2) levels of 10–49 times
of ULN was classified as moderate; and 3) levels exceeding 50
times of ULN have been classified as marked.116

Since Mb can be quickly removed from the serum, it has a
relatively low reliability as an indicator for RML diagnosis.58,118

In urinalysis, the ratio of nitrogen and creatinine has been
determined to be positive when diagnosing for RML. The
normal ratio of nitrogen and creatinine is 10:1. This ratio may
decrease below 6:1 depending on the symptoms of RML.44 In
addition, electrolyte balance, arterial blood gas examination,
muscle biopsy, and/or electrocardiogram are used for the diag-
nosis of RML.119 Controversy exists that addresses possible and
viable use of biomarkers for detection of RML. Thus, the deter-
mination of RML depends on symptoms recognized by exercise
participants. Previous study has suggested to seek diagnosis
and treatment when pain accompanied with dark urine color are
observed 24–48 h after exercise.120

4. Rehabilitation protocol

Rehabilitation programs related to RML were introduced by
Randall et al.68 The initial rehabilitation program should be
composed of exercise containing gradual resistive exercises to
activate cell function and prevent energy deficiency. This would
enable the exercise intensity of muscles to be placed below an
aerobiosis. In general, the range of motion of joints should
improve simultaneously. During the 1st stage of a rehabilitation
program, manual efforts to secure a range of motions of joints
may require some form of discomfort and perhaps some pain.
Before recovering from complete joint mobilization, the 2nd
stage of rehabilitation should increase gradually. The distal
portion of the upper or lower part of the body should be
manipulated gradually with very low intensity from 5 to 15 min
using a non-weight bearing equipment. If no feeling of discom-
fort or pain is present within 24 h after the exercise, the 3rd
stage of the rehabilitation program could be introduced. In the
3rd stage of the rehabilitation program, isotonic exercises such
as stretching of the joints, modified flexion and extension of
joints, or bench press should be gradually introduced. Modified
flexion and extension of joints should start from forward tilted
position with both hands touching the wall, and then proceed to
a table, a footboard, or chairs, and finally to the floor to increase
the joint mobility and exercise intensity. In the 4th stage of the
rehabilitation program, one set of limited flexion and extension
of the joints should be performed together with the normal
exercise program. The limits of flexion and extension of joints

is to restore performance capability before determination of
RML without loss of range of motion of joints or pain.68

Guidelines of O’Connor et al.121 divide the rehabilitation
program in 3 phases for athletes at low risk for RML. In Phase
1, CK and urinalysis are monitored during moderate resting. In
Phase 2, the guidelines suggest the initiation of physical activ-
ity. In Phase 3, the guidelines suggest a gradual comeback to
sports activity. They recommend 72 h of rest and ample water
intake after the onset of RML in Phase 1. Eight hours of sleep
has been recommended together with remaining in a heat-
controlled environment in the presence of RML when accom-
panied with heat injury. Monitoring of CK and urinalysis every
72 h has also been recommended. Light physical activities in
Phase 2 could be initiated after urinalysis results reveal CK
levels below 5 times of the normal level. In cases where CK or
the results of urinalysis are not normalized within 2 weeks,
medical consultation was recommended. For Phase 2, physical
activities considering self-paced distance should be practiced.
The Phase 3 could be initiated along with necessary follow-ups
when no clinical symptoms a represent during a 1-week
follow-up in Phase 2. The rehabilitation program after the onset
of RML should be advanced gradually while carefully monitor-
ing symptoms (CK, pains, etc.).

5. Prevention guidelines

5.1. Consideration of exercise program components

It has been suggested that warm-up may be the best
approach to improve exercise adherence, as it provides the
participant with pre-practice of the actions required for corre-
sponding exercises or games. Warm-ups could also reduce the
chance or occurrence of musculoskeletal damage.122 It may also
be useful to utilize the same amount of time for warm-up and
cool-down as demanded factual exercise or game.

Several studies have reported that periodic repetition of
eccentric exercises could reduce the level of muscle damage,
inducing positive changes in blood markers such as CK or LDH
as well as diminished pains of the muscles.123–125 To make these
changes, several factors should be considered, including the
interval time between each exercise, the number of repeated
eccentric contractions, length of muscles, and the types of exer-
cise. Various mechanisms related to repeated-bout effect120 have
been reported. Changes to muscle fibers and the nervous system
would require additional motor units for successful eccentric
contractions. Thus, muscles should be adapted by considering
not only dynamic factors such as length-tension changes, but
also reduction in intracellular events such as inflammatory reac-
tion generated from damage or function of excitation-
contraction coupling (E-C coupling) to prevent the onset of
exRML.126,127

What type of exercise could prevent exRML? The answer to
this question is not clear. However, it may be easy to identify the
types of exercises that may promote exRML. CK is a crucial
indicator for the diagnosis of exRML. High-intensity, longer-
duration, and weight-bearing exercise (eccentric contraction
and downhill running) have been found to be responsible for the
increase in CK concentration,128 especially in men who are
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lacking physical strength.129 Thus, the type and intensity of
exercise must be considered prudently before participating in
exercises training program.

5.2. Education of exercise-induced rhabdomyolysis

Generalized guidelines for identification of exRML have not
been established. Individuals participating in exercise requiring
greater or more intense eccentric contraction of muscles should
understand the danger and potential exRML to prevent this
condition.66 It is also important to educate coaches and others
who are involved in training of athletes about the symptoms and
signs of exRML. Lack of descriptions regarding the exRML in
exercise physiology books and books addressing physical train-
ing are warranted.63 Knowledge of exRML would enhance
coaches and other professional of athletes in each field to rec-
ognize quickly when exRML may occur.130

5.3. Prudence in participating in exercise when having
communicable diseases

Regular exercise may become a risk factor in individuals
prone and susceptible to disease. Individuals with mild disease
including communicable diseases should refrain from exercise,
or at least limit the scope of the exercise. In cases of viral
diseases including diarrhea or vomiting, exercise and training
should be modified or abstain from training to prevent possible
development of exRML.130 Symptoms that are similar to those
of influenza or communicable diseases should be considered to
avoid further complications.4

5.4. Environmental factors to be considered in outdoor
exercises

Many previous studies have reported that sufficient intake of
water is effective in preventing heat induced disorders. Normal
hydration could ensure the homeostasis of body
temperature.131,132 These relatively simple and common sense
measures may prevent heat induced disorders and subsequently
reduce the risk and onset of exRML. Since the degree of water
loss in a high temperature environment is usually higher,
coaches and other professional in the field should continually
observe athletes to prevent exRML. In addition, clothing heat
production needs to be considered as well. American football
players often presented with exRML attributed to their heavy
and thick uniforms.133 When participating in exercise in high
temperature, wearing clothing and uniforms that would assist
and aid in heat dissipation and provide a cooling mechanism
should be considered.134

5.5. Consideration of alimentation

Excessive exercise consumes large amounts of body energy.
Thus, supplying the body with major nutrients after completing
exercise, including protein, carbohydrates, and fat, is preferable
and prudent practice. When muscles are damaged, catabolic
state may aggravate the damage. These changes could be dimin-
ished by proper intake of balanced nutrients.135 To promote the
recovery and regeneration of damaged muscles, ingesting
protein together with carbohydrate is more effective since car-

bohydrate improves the rate of glycogen synthesis.136,137 Sweat-
ing and muscular contraction may induce excessive loss of
electrolytes as results of intense exercise or training. Thus,
drinking fluids containing electrolytes during and after exercise
is desirable.138 Proper maintenance of fluids and nutrients after
completing exercise could provide damaged muscles with nec-
essary fuel for recovery and regeneration and prevent the poten-
tial to develop RML.

RML is also known to be associated with oxidative stress.
Proper intake of exogenous antioxidants could be another way
to prevent the onset of RML. Intake of antioxidants, oxidative
stress caused by ROS may be reduced and prevent the damage
or failure of kidneys.139 Since RML is related to oxidative
stress, the uptake of coenzyme Q10 may improve the activa-
tion of endogenous antioxidants such as glutathione, superox-
ide dismutase, and catalase and consequently reduce the levels
of CK and LDH in blood.140 Water soluble antioxidant vitamin
C may contribute at least partially in preventing renal failure
and morphological damage to kidneys due to vitamin C’s
action that may prevent ARF induced by RML.141 In another
study, it was suggested that RML could be prevented via
exogenous intake of antioxidants vitamin C by also reducing
CK.142

6. Conclusion

When accompanied by various complications, exRML can
lead to severe medical conditions. Therefore, it is important to
know the related information about exRML as well as various
kinds of exercise induced risk factors associated with exRML.
Swift and timely measures indicative of symptoms could
prevent medical and clinical complications. Return to the train-
ing and exercise through a basic rehabilitation protocol after
suffering from exRML should be encouraged to prevent the
exRML condition. The intent of this review is to provide ath-
letes, coaches, training and medical professional, as well as
general population with information necessary to identify
various conditions that may lead to exRML as well as how to
prevent it. Further studies on the mechanism of exRML are
warranted to establish prudent or better guidelines to prevent
future cases of exRML.

Authors’ contributions

DJS, JK, and JL searched the related studies and contributed
to the writing of the manuscript. SK, HYR, and KSC helped to
draft the manuscript. All authors have read and approved the
final version of the manuscript, and agree with the order of
presentation of the authors.

Competing interests

None of the authors declare competing financial interests.

References

1. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans.
Am J Phys Med Rehabil 2002;81:52–69.

2. Baxter RE, Moore JH. Diagnosis and treatment of acute exertional
rhabdomyolysis. J Orthop Sports Phys Ther 2003;33:104–8.

330 J. Kim et al.

http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0010
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0010
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0015
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0015


3. Patel DR, Gyamfi R, Torres A. Exertional rhabdomyolysis and acute
kidney injury. Phys Sports Med 2009;37:71–9.

4. Clap F. Exertional rhabdomyolysis. Strength Cond J 2005;27:73–4.
5. Zager RA. Rhabdomyolysis and myohemoglobinuric acute renal failure.

Kidney Int 1996;49:314–26.
6. Giannoglou GD, Chatzizisis YS, Misirli G. The syndrome of

rhabdomyolysis: pathophysiology and diagnosis. Eur J Intern Med 2007;
18:90–100.

7. Lee EH. Ca2+ channels and skeletal muscle diseases. Prog Biophys Mol
Biol 2010;103:35–43.

8. Zalk R, Lennart SE, Marks AR. Modulation of the ryanodine receptor and
intracellular calcium. Annu Rev Biochem 2007;76:367–85.

9. Brandi CJ, deLeon S, Martin DR, MacLennan DH. Adult forms of the
Ca2+-ATPase of sarcoplasmic reticulum. Expression in developing
skeletal muscle. J Biol Chem 1987;262:3768–74.

10. Rossi AE, Dirksen RT. Sarcoplasmic reticulum: the dynamic calcium
governor of muscle. Muscle Nerve 2006;33:715–31.

11. Nilius B, Voets T. TRP channels: a TR(I)P through a world of
multifunctional cation channels. Pflugers Arch Eur J Phy 2005;451:
1–10.

12. Endo K. Calcium-induced calcium release in skeletal muscle. Physiol Rev
2009;80:1153–76.

13. Knochel JP. Mechanism of rhabdomyolysis. Curr Opin Rheumatol
1993;5:725–31.

14. Green HJ. Cation pumps in skeletal muscle: potential role in muscle
fatigue. Acta Physiol Scand 1998;162:201–13.

15. Clausen T. Na+-K+ pump regulation and skeletal muscle contractility.
Physiol Rev 2003;83:1269–324.

16. Yoshida M, Minamisawa S, Shimura M, Komazaki S, Kume H, Zhang M,
et al. Impaired Ca2+ store function in skeletal and cardiac muscle cells
from sarcalumenin-deficient mice. J Biol Chem 2005;280:3500–6.

17. Knochel JP. Neuromuscular manifestations of electrolyte disorders. Am J
Med 1982;72:521–35.

18. Tanaka H, Shimada H, Namekata I, Kawanishi T, Iida-Tanaka N,
Shigenobu K. Involvement of the Na+/Ca2+ exchanger in ouabain-induced
inotropy and arrhythogenesis in guinea-pig myocardium as revealed by
SEA0400. J Pharmacol Sci 2007;103:241–6.

19. Pfeiffer DR, Gunter TE, Eliseev R, Broekemeier KM, Gunter KK.
Release of Ca2+ from mitochondria via the saturable mechanism and the
permeability transition. IUBMB Life 2001;52:205–12.

20. Campanella M, Pinton P, Rizzuto R. Mitochondrial Ca2+ homeostasis in
health and disease. Biol Res 2004;37:653–60.

21. Zhang M. Rhabdomyolysis and its pathogenesis. World J Emerg Med
2012;3:11–5.

22. Rios E, Pizarro G. Voltage sensor of excitation-contraction coupling in
skeletal muscle. Physiol Rev 1991;71:849–908.

23. Schneider MF. Control of calcium release in functioning skeletal muscle
fibers. Annu Rev Physiol 1994;56:463–84.

24. Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, et al.
Regulation of transient receptor potential canonical channel 1 (TRPC1)
by sphingosine 1-phosphate in C2C1 myoblasts and its relevance for a
role of mechanotransduction in skeletal muscle differentiation. J Cell Sci
2009;122:1322–33.

25. Woo JS, Kim DH, Allen PD, Lee EH. TRPC3-interacting triadic proteins
in skeletal muscle. Biochem J 2008;411:399–405.

26. Sampieri A, Diaz-Munoz M, Antaramian A, Vaca L. The foot structure
from the type 1 ryanodine receptor is required for functional coupling to
store-operated channels. J Biol Chem 2005;280:24804–15.

27. Kiselyov KI, Shin DM, Wang Y, Pessah IN, Allen PD, Muallem S. Gating
of store-operated channels by conformational coupling to ryanodine
receptors. Mol Cell 2000;6:421–31.

28. Rosenberg H, Sambuughin N, Dirksen R. Malignant hyperthermia
susceptibility. In: GeneReviews at GeneTests: medical genetics
information resource [database online]. Copyright. Seattle, WA:
University of Washingtone; 2012.p. 1997–2011. Available at: http://www
.genetests.org; [accessed 23.02.2014].

29. Yarotskyy V, Protasi F, Dirkesen RT. Accelerated activation of
SOCE current in myotubesfrom two mouse models of anesthetic- and

heat-induced sudden death. PloS One 2013;8(10):e77633. doi:10.1371/
journal.pone.0077633

30. Allen DG. Skeletal muscle function: role of ionic changes in
fatigue, damage and disease. Clin Exp Pharmacol Physiol 2004;31:
485–93.

31. Moopanar TR, Allen DG. Reactive oxygen species reduce myofibrillar
Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37°C. J Physiol
2005;564:189–99.

32. Nigam S, Schewe T. Phospholipase A(2)s and lipid peroxidation. Biochim
Biophys Acta 2000;1488:167–81.

33. Carafoli HJ. Intracellular calcium homeostasis. Ann Rev Biochem
1987;56:395–433.

34. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP,
and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol
2004;287:C817–33.

35. Scheffler IE. A century of mitochondrial research: achievements and
perspectives. Mitochondrion 2001;1:3–31.

36. Nakahara K, Yada T, Kuriyama M, Osame M. Cytosolic Ca2+ increase and
cell damage in L6 rat myoblasts by HMG-CoA reductase inhibitors.
Biochem Biophys Res Commun 1994;202:1579–85.

37. Warren JD, Blumbergs PC, Thompson PD. Rhabdomyolysis: a review.
Muscle Nerve 2002;25:332–47.

38. Kantrow SP, Piantadosi CA. Release of cytochrome c from liver
mitochondria during permeability transition. Biochem Biophys Res
Commun 1997;232:669–71.

39. Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G. Mitochondrial
implication in accidental and programmed cell death: apoptosis and
necrosis. J Bioenerg Biomembr 1997;29:185–93.

40. Elsayed EF, Reilly RF. Rhabdomyolysis: a review, with emphasis on the
pediatric population. Pediatr Nephrol 2009;25:7–18.

41. Khan FY. Rhabdomyolysis: a review of the literature. Neth J Med
2009;67:272–83.

42. Park HS, Jang SI, Lee YK, An HR, Park HC, Ha SK, et al. A case of
rhabdomyolysis in a body-builder. Korean J Nephrol 2009;28:335–8.

43. Park CW, Ok TG, Cho JH, Lee HY, Lee SW, Chung HH, et al.
Rhabdomyolysis after scuba diving. A case report. J Korean Soc Emerg
Med 2004;15:622–5.

44. Huerta-Alardin AL, Varon J, Marik PE. Bench-to-bedside review:
rhabdomyolysis—an overview for clinicians. Crit Care 2005;9:
158–69.

45. Chatzizisis YS, Misirli G, Hatzitolios AI, Giannoglou GD. The syndrome
of rhabdomyolysis: complications and treatment. Eur J Intern Med
2008;19:568–74.

46. Holt SG, Moore KP. Pathogenesis and treatment of renal dysfunction in
rhabdomyolysis. Intensive Care Med 2001;27:803–11.

47. Gonzalez D. Crush syndrome. Crit Care Med 2005;33(Suppl. 1):S34–41.
48. Lameire N, Vanholder R. New perspectives for prevention/treatment of

acute renal failure. Curr Opin Anaesth 2000;13:105–12.
49. Sheridan AM, Bonventre JV. Cell biology and molecular mechanisms of

injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens
2000;9:427–34.

50. Devarajan P. Cellular and molecular derangements in acute tubular
necrosis. Curr Opin Pediatr 2005;17:193–9.

51. Zager RA, Prior RB. Gentamycin and gram negative bacteremia: a
synergism for the development of experimental nephrotoxic acute renal
failure. J Clin Invest 1986;78:196–204.

52. Furchgott RF, Jothianandan D. Endothelial-dependent and -independent
vasodilation involving cGMP: relaxation induced by nitric oxide, carbon
oxide and light. Blood Vessels 1991;28:52–61.

53. Sharma VS, Traylor TG, Gardiner R, Mizukami H. Reaction of nitric
oxide with hemeproteins and model compounds of hemoglobin.
Biochemistry 1987;26:3837–43.

54. Molitoris BA, Sandoval R, Sutton TA. Endothelial injury and dysfunction
in ischemic acute renal failure. Crit Care Med 2004;30(Suppl. 5):
S235–40.

55. Akimau P, Yoshiya K, Hosotsubo H, Takakuwa T, Tanaka H, Sugimoto H.
New experimental model of crush injury of the hindlimbs in rats. J
Trauma 2005;58:51–8.

331Exercise-induced rhabdomyolysis

http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0020
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0020
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0025
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0030
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0030
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0035
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0035
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0035
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0040
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0040
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0045
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0045
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0050
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0050
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0050
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0055
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0055
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0060
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0060
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0060
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0065
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0065
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0070
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0070
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0075
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0075
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0080
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0080
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0085
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0085
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0085
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0090
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0090
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0095
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0095
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0095
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0095
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0100
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0100
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0100
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0105
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0105
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0110
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0110
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0115
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0115
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0120
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0120
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0125
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0125
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0125
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0125
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0125
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0130
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0130
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0135
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0135
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0135
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0140
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0140
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0140
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0145
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0145
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0145
http://www.genetests.org
http://www.genetests.org
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0150
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0150
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0150
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0150
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0155
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0155
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0155
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0160
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0160
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0160
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0165
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0165
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0170
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0170
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0175
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0175
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0175
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0180
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0180
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0185
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0185
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0185
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0190
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0190
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0195
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0195
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0195
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0200
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0200
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0200
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0205
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0205
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0210
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0210
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0215
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0215
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0220
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0220
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0220
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0225
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0225
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0225
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0230
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0230
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0230
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0235
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0235
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0240
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0245
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0245
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0250
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0250
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0250
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0255
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0255
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0260
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0260
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0260
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0265
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0265
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0265
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0270
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0270
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0270
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0275
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0275
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0275
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0280
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0280
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0280


56. Salter MS, Mullins RJ. Rhabdomyolysis and myoglobinuric renal failure
in trauma and surgical patients: a review. J Am Coll Surg 1998;186:
693–716.

57. Sayer SP, Clarkson PM. Exercise-induced rhabdomyolysis. Curr Sports
Med Rep 2002;1:59–60.

58. Criddle LM. Rhabdomyolysis, pathophysiology, recognition and
management. Crit Care Nurse 2003;23:14–22.

59. Line RL, Rust GS. Acute exertional rhabdomyolysis. Am Fam Physician
1995;52:502–6.

60. Brown JA, Elliot MJ, Sray WA. Exercise-induced upper extremity
rhabdomyolysis and myoglobinuria in shipboard military personnel. Mil
Med 1994;159:473–5.

61. Paul GL, DeLany JP, Snook JT, Seifert JG, Kirby TE. Serum and urinary
markers of skeletal muscle tissue damage after weight lifting exercise. Eur
J Appl Physiol Occup Physiol 1989;58:786–90.

62. Clarkson PM. Case report of exertional rhabdomyolysis in a 12-year-old
boy. Med Sci Sports Exerc 2006;38:197–200.

63. Moeckel-Cole SA, Clarkson PM. Rhabdomyolysis in a collegiate football
player. J Strength Cond Res 2009;23:1055–9.

64. Russo C, Bass E. African American adolescent male basketball
player with recurrent rhabdomyolysis. Med Sci Sports Exerc 2007;
39:115. doi: 10.1249/01.mss.0000273380.58805.99

65. Hamer R. When exercise goes awry: exertional rhabdomyolysis. South
Med J 1997;90:548–51.

66. Lin H, Chie W, Lien H. Epidemiological analysis of factors influencing an
episode of exertional rhabdomyolysis in high school students. Am J Sports
Med 2006;34:481–6.

67. Springer BL, Clarkson PM. Two cases of exertional rhabdomyolysis
precipitated by personal trainers. Med Sci Sports Exerc 2003;35:
1499–502.

68. Randall T, Butler N, Vance AM. Rehabilitation of ten soldiers with
exertional rhabdomyolysis. Mil Med 1996;161:564–6.

69. Phinney LT, Gardner JW, Kark JA, Wenger CB. Long-term follow-up
after exertional heat illness during recruit training. Med Sci Sports Exerc
2001;33:1443–8.

70. Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner
JW, et al. The effects of continuous hot weather training on risk of
exertional heat illness. Med Sci Sports Exerc 2005;37:84–90.

71. Skenderi KP, Kavouras SA, Anastasiou CA, Yiannakouris N, Matalas
AL. Exertional rhabdomyolysis during a 246-km continuous running race.
Med Sci Sports Exerc 2006;38:1054–7.

72. Clarkson PM, Hubal MJ. Are women less susceptible to exercise-induced
muscle damage? Curr Opin Clin Nutr Metab Care 2001;4:527–31.

73. Aizawa H, Morita K, Minami H, Sasaki N, Tobise K. Exertional
rhabdomyolysis as a result of strenuous military training. J Neurol Sci
1995;132:239–40.

74. Singhal PC, Abramovici M, Venkatesan J, Mattana J. Hypokalemia and
rhabdomyolysis. Miner Electrolyte Metab 1991;17:335–9.

75. Bruso JR, Hoffman MD, Rogers IR, Lee L, Towle G, Hew-Butler T.
Rhabdomyolysis and hyponatremia: a cluster of five cases at the 161-km
2009 western states endurance run. Wilderness Environ Med 2010;21:
303–8.

76. Britschgi F, Zünd G. Bodybuilding: hypokalemia and hypophosphatemia.
Schweiz Med Wochenschr 1991;121:1163–5.

77. Knochel JP. Catastrophic medical events with exhaustive exercise: “white
collar rhabdomyolysis”. Kidney Int 1990;38:709–19.

78. Tiidus PM, Deller M, Bombardier E, Gül M, Liu XL. Estrogen
supplementation failed to attenuate biochemical indices of neutrophil
infiltration or damage in rat skeletal muscles following ischemia. Biol Res
2005;38:213–23.

79. Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex
matters. Sports Med 2010;40:41–58.

80. Dieli-Conwright CM, Spektor TM, Rice JC, Sattler FR, Schroeder ET.
Hormone therapy attenuates exercise-induced skeletal muscle damage in
postmenopausal women. J Appl Physiol 2009;107:853–8.

81. Centers for Disease Control (CDC). External rhabdomyolysis and acute
renal impairment-New York city and Massachusetts, 1988. Morb Mortal
Wkly Rep 1990;26:751–6.

82. Craig S. Rhabdomyolysis. 2007 Available at: www.emedicine.com/
emerg/topic508.htm; [accessed 15.02.2014].

83. Shumate JB, Brooke MH, Carroll JE, Davis JE. Increased serum creatine
kinase after exercise: a sex-linked phenomenon. Neurology 1979;29:
902–4.

84. Pizza FX, Clark BC, De Meersman RE, Phillips SM, Stupka N, Sipila S,
et al. Comments on point:counterpoint: estrogenand sex do/do not
influence post-exercise indexes of muscle damage, inflammation, and
repair. J Appl Physiol 2009;106:1016–20.

85. Inklebarger J, Galanis N, Kirkos J, Kapetanos G. Exercise-induced
rhabdomyolysis from stationary biking: a case report. Hippokratia
2010;14:279–80.

86. Borrione P, Spaccamiglio A, Salvo RA, Mastrone A, Fagnani F, Pigozzi
F. Rhabdomyolysis in a young vegetarian athlete. Am J Phys Med Rehabil
2009;88:951–4.

87. Fernandez G, Spatz ES, Jablecki C, Phillips PS. Static myopathy: a
common dilemma not reflected in clinical trials. Cleve Clin J Med
2011;78:393–403.

88. Bank WJ. Myoglobinuria in marathon runners: possible relationship
to carbohydrate and lipid metabolism. Ann N Y Acad Sci 1977;301:
942–8.

89. Juhn MS, O’Kane JW, Vinci DM. Oral creatine supplementation in male
collegiate athletes: a survey of dosing habits and side effects. J Am Diet
Assoc 1999;99:593–5.

90. Sandhu RS, Como JJ, Scalea TS, Betts JM. Renal failure and exercise-
induced rhabdomyolysis in patients taking performance-enhancing com-
pounds. J Trauma 2002;53:761–3.

91. Robinson SJ. Acute quadriceps compartment syndrome and
rhabdomyolysis in a weight lifter using high-dose creatine supplementa-
tion. J Am Board Fam Pract 2000;13:134–7.

92. Pritchard NR, Kalra PA. Renal dysfunction accompanying oral creatine
supplements. Lancet 1998;351:1252–3.

93. Phillips PS, Haas RH. Statin myopathy as a metabolic muscle disease.
Expert Rev Cardiovasc Ther 2008;6:971–8.

94. Pertusi R, Dickerman RD, McConathy WJ. Evaluation of
aminotransferase elevations in a bodybuilder using anabolic steroids:
hepatitis or rhabdomyolysis? J Am Osteopath Assoc 2001;101:391–4.

95. Bolgiano EB. Acute rhabdomyolysis due to body building exercise.
Report of a case. J Sports Med Phys Fitness 1994;34:76–8.

96. Burke J, Seda G, Allen D, Knee TS. A case of severe exercise-induced
rhabdomyolysis associated with a weight-loss dietary supplement. Mil
Med 2007;172:656–8.

97. Kuklo TR, Tis JE, Moores LK, Schaefer RA. Fatal rhabdomyolysis
with bilateral gluteal, thigh, and leg compartment syndrome after the
Army Physical Fitness Test. A case report. Am J Sports Med 2000;28:
112–6.

98. Baek JH, Suh BC, Kim YB, Chung PW, Moon HS, Jin DK, et al.
Myopathy following ingestion of Ma-Huang (ephedra)-based herbal
remedy. Korean J Neurosci 2009;27:424–7.

99. Jung MK, Callaci JJ, Lauing KL, Otis JS, Radek KA, Jones MK, et al.
Alcohol exposure and mechanisms of tissue injury and repair. Alcohol
Clin Exp Res 2011;35:392–9.

100. Barnes MJ, Mündel T, Stannard SR. A low dose of alcohol does not
impact skeletal muscle performance after exercise-induced muscle
damage. Eur J Appl Physiol 2011;111:725–9.

101. Keverline JP. Recurrent rhabdomyolysis associated with influenza-like
illness in a weight-lifter. J Sports Med Phys Fitness 1998;38:177–9.

102. Sevketoglu E, Kural B, Beskardes AE, Hatipoglu S. Exertional
rhabdomyolysis after influenza A (H3N2) infection in a basketball player
boy. Ann Trop Paediatr 2011;31:93–6.

103. Vissing J, Haller RG. The effect of oral sucrose on exercise tolerance in
patients with McArdle’s disease. N Engl J Med 2003;349:2503–9.

104. Brumback RA, Feeback DL, Leech RW. Rhabdomyolysis in childhood. A
primer on normal muscle function and selected metabolic myopathies
characterized by disordered energy production. Pediatr Clin North Am
1992;39:821–58.

105. Stanley CA. New genetic defects in mitochondrial fatty acid oxidation
and carnitine deficiency. Adv Pediatr 1987;34:59–88.

332 J. Kim et al.

http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0285
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0285
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0285
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0290
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0290
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0295
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0295
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0300
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0300
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0305
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0305
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0305
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0310
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0310
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0310
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0315
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0315
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0320
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0320
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0325
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0325
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0325
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0330
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0330
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0335
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0335
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0335
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0340
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0340
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0340
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0345
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0345
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0350
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0350
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0350
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0355
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0355
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0355
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0360
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0360
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0360
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0365
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0365
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0370
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0370
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0370
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0375
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0375
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0380
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0380
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0380
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0380
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0385
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0385
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0390
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0390
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0395
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0395
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0395
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0395
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0400
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0400
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0405
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0405
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0405
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0410
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0410
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0410
http://www.emedicine.com/emerg/topic508.htm
http://www.emedicine.com/emerg/topic508.htm
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0420
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0420
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0420
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0425
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0425
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0425
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0425
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0430
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0430
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0430
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0435
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0435
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0435
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0440
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0440
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0440
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0445
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0445
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0445
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0450
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0450
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0450
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0455
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0455
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0455
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0460
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0460
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0460
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0465
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0465
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0470
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0470
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0475
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0475
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0475
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0480
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0480
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0485
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0485
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0485
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0490
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0490
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0490
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0490
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0495
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0495
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0495
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0500
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0500
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0500
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0505
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0505
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0505
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0510
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0510
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0515
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0515
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0515
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0520
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0520
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0525
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0525
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0525
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0525
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0530
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0530


106. Felig P, Wahren J. Fuel homeostasis in exercise. N Engl J Med
1975;258:1078–84.

107. Tonin P, Lewis P, Servidei S, DiMauro S. Metabolic causes of
myoglobinuria. Ann Neurol 1990;27:181–5.

108. Saudubray JM, Charpentier C. The online metabolic and molecular bases
of inherited disease. Columbus, OH: McGraw-Hill; Available at: www
.ommbid.com/OMMBID/the_online_metabolic_and_molecular_bases
_of_inherited_disease/b/abstract/Part6/ch66; [accessed 04.03.2014].

109. Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, et al.
Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood.
Am J Hum Genet 2008;83:489–94.

110. Quinlivan R, Jungbluth H. Myophathic causes of exercise intolerance
with rhabdomyolysis. Dev Med Child Neurol 2012;54:886–91.

111. Reue K, Zhang P. The lipin protein family: dual roles in lipid biosynthesis
and gene expression. FEBS Lett 2008;582:90–6.

112. Zutt R, van der Kooi AJ, Linthorst GE, Wanders RJ, deVisser M.
Rhabdomyolysis: review of the literature. Neuromuscul Disord
2014;24:651–9.

113. Michot C, Hubert L, Brivet M, De Meirleir L, Valayannopoulos V,
Müller-Felber WV, et al. LPIN1 gene mutations: a major cause of
sever rhabdomyolysis in early childhood. Hum Mutat 2010;31:
1564–73.

114. Pearcey GE, Bradbury-Squires DJ, Power KE, Behm DG, Button DC.
Exertional rhabdomyolysis in an acutely detrained athlete/exercise
physiology professor. Clin J Sport Med 2013;23:496–8.

115. Russell TA. Acute renal failure related to rhabdomyolysis:
pathophysiology, diagnosis, and collaborative management. Nephrol Nurs
J 2000;32:409–17.

116. Visweswaran P, Guntupalli J. Rhabdomyolysis. Crit Care Clin
1999;15:415–28.

117. Latham J, Campbell D, Nichols W, Mott T. Clinical inquiries. How much
can exercise raise creatine kinase level-and does it matter? J Fam Pract
2008;57:545–7.

118. Vanholder R, Sever MS, Erek E, Lameire N. Rhabdomyolysis. J Am Soc
Nepthrol 2000;11:1553–61.

119. Brudvig TJ, Fitzgerald PI. Identification of signs and symptoms of acute
exertional rhabdomyolysis in athletes: a guide for the practitioner.
Strength Cond J 2007;29:10–4.

120. Haskins N. Rhabdomyolysis and acute renal failure in intensive care. Nurs
Crit Care 1998;3:283–8.

121. O’Connor FG, Brennan Jr FH, Campbell W, Heled Y, Deuster P. Return
to physical activity after exertional rhabdomyolysis. Curr Sports Med Rep
2008;7:328–31.

122. Szymanski DJ. Recommendations for the avoidance of delayed-onset
muscle soreness. Strength Cond J 2001;23:7–13.

123. Nosaka K, Sakamoto K, Newton M, Sacco P. The repeated bout effect of
reduced-load eccentric exercise on elbow flexor muscle damage. Eur J
Appl Physiol 2001;85:34–40.

124. Howatson G, van Someren KA. Repeated bout effect after maximal
eccentric exercise. Int J Sports Med 2007;28:557–63.

125. Starbuck C, Eston RG. Exercise-induced muscle damage and the repeated
bout effect: evidence for cross transfer. Eur J Appl Physiol 2012;112:
1005–13.

126. McHugh MP. Recent advances in the understanding of the repeated bout
effect: the protective effect against muscle damage from a single bout of
eccentric exercise. Scand J Med Sci Sports 2003;13:88–97.

127. Brentano MA, Martins Kruel LF. A review on strength exercise-induced
muscle damage: application, adaptation mechanism and limitations.
J Sports Med Phys Fitness 2011;51:1–10.

128. RA McPhersonMR Pincus editors. Henry’s clinical diagnosis and
management by laboratory methods. 21st ed. Philadelphia, PA: Saunders
Elsevier; 2007.p.489.

129. Noakes TD. Effect of exercise on serum enzyme activities in human.
Sports Med 1987;5:245–67.

130. Harrelson GL, Fincher AL, Robinson JB. Acute exertional
rhabdomyolysis and its relationship to sickle cell trait. J Athl Train
1995;30:309–12.

131. Montain SJ, Latzka WA, Sawka MN. Fluid replacement
recommendations for training in hot weather. Mil Med 1999;164:502–8.

132. Sawka MN, Cheuvront SN, Carter 3rd R. Human water needs. Nutr Rev
2005;63(6 pt 2):S30–9.

133. Fowkes GS, Bartolozzi AR, Burkolter R, Sugarman E. Core temperature
in a symptomatic NFL running back during a full padded pre-season
practice with post practice urine indices of rhabdomyolysis. Med Sci
Sports Exerc 2006;38(Suppl. 5):S159.

134. Miners AL. The diagnosis and emergency care of heat related illness and
sunburn in athletes: a retrospective case series. J Can Chiropr Assoc
2010;54:107–17.

135. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, et al.
International Society of Sports Nutrition position stand: nutrient timing. J
Int Soc Sports Nutr 2008;5:17. doi: 10.1186/1550-2783-5-18

136. Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Coingestion of
protein with carbohydrate during recovery from endurance exercise
stimulates skeletal muscle protein synthesis in humans. J Appl Physiol
2009;106:1394–402.

137. Jentjens RL, van Loon LJ, Mann CH, Wagenmakers AJ, Jeukendrup AE.
Addition of protein and amino acids to carbohydrates does not enhance
post exercise muscle glycogen synthesis. J Appl Physiol 2001;91:839–46.

138. Millard-Stafford M, Childers WL, Conger SA, Kampfer AJ, Rahnert JA.
Recovery nutrition: timing and composition after endurance exercise.
Curr Sports Med Rep 2008;7:193–201.

139. Singh D, Kaur R, Chander V, Chopra K. Antioxidants in the prevention of
renal disease. J Med Food 2006;9:443–50.

140. Ustundag S, Yalcin O, Sen S, Cukur Z, Ciftci S, Demirkan B.
Experimental myoglobinuric acute renal failure: the effect of vitamin C.
Ren Fail 2008;30:727–35.

141. Farswan M, Rathod SP, Upaganlawar AB, Semwal A. Protective effect of
coenzyme Q10 in simvastatin and gemfibrozil induced rhabdomyolysis in
rats. Indian J Exp Biol 2005;43:845–8.

142. Nakhostin-Roohi B, Babaei P, Rahmani-Nia F, Bohlooli S. Effect of
vitamin C supplementation on lipid peroxidation, muscle damage and
inflammation after 30-min exercise at 75% VO2max. J Sports Med Phys
Fitness 2008;48:217–24.

143. Defilippis EM, Kleiman DA, Derman PB, DiFelice GS, Eachempati SR.
Spinning-induced rhabdomyolysis and the risk of compartment syndrome
and acute kidney injury: two cases and review of the literature. Sports
Health 2014;6:333–5.

144. Goubier JN, Hoffman OS, Oberlin C. Exertion induced rhabdomyolysis
of the long head of the triceps. Br J Sports Med 2002;36:150–1.

145. Kim SA, Jung SJ, Lee CY, Ha BG, Park KS. A case of exercise-induced
rhabdomyolysis with hepatitis. Korean J Occup Environ Med
2006;18:67–72.

146. Gagliano M, Corona D, Giuffrida G, Giaquinta A, Tallarita T, Zerbo D,
et al. Low-intensity body building exercise induced rhabdomyolysis: a
case report. Cases J 2009;2:7. doi: 10.1186/1757-1626-2-7

147. Thoenes M. Rhabdomyolysis: when exercise becomes a risk. J Pediatr
Health Care 2010;24:183–93.

148. Karre RP, Gujral J. Recurrent exercise-induced rhabdomyolysis due to
low intensity fitness exercise in a healthy young patient. BMJ Case Rep
2011; pii: bcr0120113699. doi: 10.1136/bcr.01.2011.3699

149. MacDonald R, Rosner Z, Venters H. Case series of exercise-induced
rhabdomyolysis in the New York City jail system. Am J Emerg Med
2014;32:466–7.

150. Pierson EH, Bantum BM, Schaefer MP. Exertional rhabdomyolysis of the
elbow flexor muscles from weight lifting. PM R 2014;6:556–9.

151. Summachiwakij S, Sachmechi I. Rhabdomyolysis induced by non
strenuous exercise in a patient with graves’ disease. Case Rep Endocrinol
2014;286450. doi:10.1155/2014/286450

333Exercise-induced rhabdomyolysis

http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0535
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0535
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0540
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0540
http://www.ommbid.com/OMMBID/the_online_metabolic_and_molecular_bases_of_inherited_disease/b/abstract/Part6/ch66
http://www.ommbid.com/OMMBID/the_online_metabolic_and_molecular_bases_of_inherited_disease/b/abstract/Part6/ch66
http://www.ommbid.com/OMMBID/the_online_metabolic_and_molecular_bases_of_inherited_disease/b/abstract/Part6/ch66
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0545
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0545
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0545
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0550
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0550
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0555
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0555
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0560
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0560
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0560
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0565
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0565
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0565
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0565
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0570
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0570
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0570
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0575
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0575
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0575
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0580
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0580
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0585
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0585
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0585
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0590
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0590
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0595
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0595
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0595
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0600
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0600
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0605
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0605
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0605
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0610
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0610
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0615
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0615
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0615
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0620
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0620
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0625
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0625
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0625
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0630
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0630
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0630
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0635
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0635
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0635
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0640
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0640
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0640
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0645
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0645
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0650
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0650
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0650
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0655
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0655
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0660
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0660
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0665
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0665
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0665
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0665
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0670
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0670
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0670
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0675
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0675
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0675
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0680
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0680
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0680
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0680
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0685
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0685
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0685
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0690
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0690
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0690
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0695
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0695
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0700
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0700
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0700
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0705
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0705
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0705
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0710
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0710
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0710
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0710
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr9000
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr9000
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr9000
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr9000
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0720
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0720
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0725
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0725
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0725
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0730
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0730
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0730
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0735
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0735
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0740
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0740
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0740
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0745
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0745
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0745
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0750
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0750
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0755
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0755
http://refhub.elsevier.com/S2095-2546(15)00060-5/sr0755

	 Exercise-induced rhabdomyolysis mechanisms and prevention: A literature review
	 Introduction
	 Pathophysiology of exRML
	 Role of calcium in the pathogenesis of exRML
	 Role of myoglobin in exRML-induced ARF
	 Primary factors
	 Secondary factors
	 Hot environments
	 Electrolyte imbalance
	 Sex
	 Nutritional problems
	 Creatine supplements and alcohol
	 Other factors


	 Symptoms and diagnoses
	 Rehabilitation protocol
	 Prevention guidelines
	 Consideration of exercise program components
	 Education of exercise-induced rhabdomyolysis
	 Prudence in participating in exercise when having communicable diseases
	 Environmental factors to be considered in outdoor exercises
	 Consideration of alimentation

	 Conclusion
	 Authors' contributions
	 Competing interests
	 References


